/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ExynosDevice.h" #include "ExynosDisplay.h" #include "ExynosLayer.h" #include "ExynosPrimaryDisplayModule.h" #include "ExynosResourceManagerModule.h" #include "ExynosExternalDisplayModule.h" #include "ExynosVirtualDisplayModule.h" #include "ExynosHWCDebug.h" #include "ExynosHWCHelper.h" #include "ExynosDeviceDrmInterface.h" #include #include #include #include "VendorGraphicBuffer.h" using namespace vendor::graphics; using namespace SOC_VERSION; /** * ExynosDevice implementation */ class ExynosDevice; extern void vsync_callback(hwc2_callback_data_t callbackData, hwc2_display_t displayId, int64_t timestamp); extern uint32_t mFenceLogSize; extern void PixelDisplayInit(ExynosDevice *device); int hwcDebug; int hwcFenceDebug[FENCE_IP_ALL]; struct exynos_hwc_control exynosHWCControl; struct update_time_info updateTimeInfo; char fence_names[FENCE_MAX][32]; uint32_t getDeviceInterfaceType() { if (access(DRM_DEVICE_PATH, F_OK) == NO_ERROR) return INTERFACE_TYPE_DRM; else return INTERFACE_TYPE_FB; } ExynosDevice::ExynosDevice() : mGeometryChanged(0), mVsyncFd(-1), mExtVsyncFd(-1), mVsyncDisplayId(getDisplayId(HWC_DISPLAY_PRIMARY, 0)), mTimestamp(0), mDisplayMode(0), mInterfaceType(INTERFACE_TYPE_FB), mIsInTUI(false) { exynosHWCControl.forceGpu = false; exynosHWCControl.windowUpdate = true; exynosHWCControl.forcePanic = false; exynosHWCControl.skipStaticLayers = true; exynosHWCControl.skipM2mProcessing = true; exynosHWCControl.skipResourceAssign = true; exynosHWCControl.multiResolution = true; exynosHWCControl.dumpMidBuf = false; exynosHWCControl.displayMode = DISPLAY_MODE_NUM; exynosHWCControl.setDDIScaler = false; exynosHWCControl.skipWinConfig = false; exynosHWCControl.skipValidate = true; exynosHWCControl.doFenceFileDump = false; exynosHWCControl.fenceTracer = 0; exynosHWCControl.sysFenceLogging = false; exynosHWCControl.useDynamicRecomp = false; mInterfaceType = getDeviceInterfaceType(); ALOGD("HWC2 : %s : interface type(%d)", __func__, mInterfaceType); mResourceManager = new ExynosResourceManagerModule(this); for (size_t i = 0; i < AVAILABLE_DISPLAY_UNITS.size(); i++) { exynos_display_t display_t = AVAILABLE_DISPLAY_UNITS[i]; ExynosDisplay *exynos_display = NULL; ALOGD("Create display[%zu] type: %d, index: %d", i, display_t.type, display_t.index); switch(display_t.type) { case HWC_DISPLAY_PRIMARY: exynos_display = (ExynosDisplay *)(new ExynosPrimaryDisplayModule(display_t.index, this)); if(display_t.index == 0) { exynos_display->mPlugState = true; ExynosMPP::mainDisplayWidth = exynos_display->mXres; if (ExynosMPP::mainDisplayWidth <= 0) { ExynosMPP::mainDisplayWidth = 1440; } ExynosMPP::mainDisplayHeight = exynos_display->mYres; if (ExynosMPP::mainDisplayHeight <= 0) { ExynosMPP::mainDisplayHeight = 2560; } } break; case HWC_DISPLAY_EXTERNAL: exynos_display = (ExynosDisplay *)(new ExynosExternalDisplayModule(display_t.index, this)); break; case HWC_DISPLAY_VIRTUAL: exynos_display = (ExynosDisplay *)(new ExynosVirtualDisplayModule(display_t.index, this)); mNumVirtualDisplay = 0; break; default: ALOGE("Unsupported display type(%d)", display_t.type); break; } exynos_display->mDeconNodeName.appendFormat("%s", display_t.decon_node_name.c_str()); exynos_display->mDisplayName.appendFormat("%s", display_t.display_name.c_str()); mDisplays.add(exynos_display); #ifndef FORCE_DISABLE_DR if (exynos_display->mDREnable) exynosHWCControl.useDynamicRecomp = true; #endif } memset(mCallbackInfos, 0, sizeof(mCallbackInfos)); dynamicRecompositionThreadCreate(); hwcDebug = 0; for (uint32_t i = 0; i < FENCE_IP_ALL; i++) hwcFenceDebug[i] = 0; for (uint32_t i = 0; i < FENCE_MAX; i++) { memset(fence_names[i], 0, sizeof(fence_names[0])); sprintf(fence_names[i], "_%2dh", i); } String8 saveString; saveString.appendFormat("ExynosDevice is initialized"); uint32_t errFileSize = saveErrorLog(saveString); ALOGI("Initial errlog size: %d bytes\n", errFileSize); /* * This order should not be changed * new ExynosResourceManager -> * create displays and add them to the list -> * initDeviceInterface() -> * ExynosResourceManager::updateRestrictions() */ initDeviceInterface(mInterfaceType); mResourceManager->updateRestrictions(); if (mInterfaceType == INTERFACE_TYPE_DRM) { /* disable vblank immediately after updates */ setVBlankOffDelay(-1); } PixelDisplayInit(this); ExynosDisplay *primary_display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); char value[PROPERTY_VALUE_MAX]; property_get("vendor.display.lbe.supported", value, "0"); mLbeSupported = atoi(value) ? true : false; if (mLbeSupported) { primary_display->initLbe(); } } void ExynosDevice::initDeviceInterface(uint32_t interfaceType) { if (interfaceType == INTERFACE_TYPE_DRM) { mDeviceInterface = std::make_unique(this); } else { LOG_ALWAYS_FATAL("%s::Unknown interface type(%d)", __func__, interfaceType); } mDeviceInterface->init(this); /* Remove display when display interface is not valid */ for (uint32_t i = 0; i < mDisplays.size();) { ExynosDisplay* display = mDisplays[i]; display->initDisplayInterface(interfaceType); if (mDeviceInterface->initDisplayInterface( display->mDisplayInterface) != NO_ERROR) { ALOGD("Remove display[%d], Failed to initialize display interface", i); mDisplays.removeAt(i); delete display; } else { i++; } } } ExynosDevice::~ExynosDevice() { ExynosDisplay *primary_display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY,0)); mDRLoopStatus = false; mDRThread.join(); delete primary_display; } bool ExynosDevice::isFirstValidate() { for (uint32_t i = 0; i < mDisplays.size(); i++) { if ((mDisplays[i]->mType != HWC_DISPLAY_VIRTUAL) && (mDisplays[i]->mPowerModeState == (hwc2_power_mode_t)HWC_POWER_MODE_OFF)) continue; if ((mDisplays[i]->mPlugState == true) && ((mDisplays[i]->mRenderingState != RENDERING_STATE_NONE) && (mDisplays[i]->mRenderingState != RENDERING_STATE_PRESENTED))) return false; } return true; } bool ExynosDevice::isLastValidate(ExynosDisplay *display) { for (uint32_t i = 0; i < mDisplays.size(); i++) { if (mDisplays[i] == display) continue; if ((mDisplays[i]->mType != HWC_DISPLAY_VIRTUAL) && (mDisplays[i]->mPowerModeState == (hwc2_power_mode_t)HWC_POWER_MODE_OFF)) continue; if ((mDisplays[i]->mPlugState == true) && (mDisplays[i]->mRenderingState != RENDERING_STATE_VALIDATED) && (mDisplays[i]->mRenderingState != RENDERING_STATE_ACCEPTED_CHANGE)) return false; } return true; } bool ExynosDevice::isDynamicRecompositionThreadAlive() { android_atomic_acquire_load(&mDRThreadStatus); return (mDRThreadStatus > 0); } void ExynosDevice::checkDynamicRecompositionThread() { // If thread was destroyed, create thread and run. (resume status) if (isDynamicRecompositionThreadAlive() == false) { for (uint32_t i = 0; i < mDisplays.size(); i++) { if (mDisplays[i]->mDREnable) { dynamicRecompositionThreadCreate(); return; } } } else { // If thread is running and all displays turnned off DR, destroy the thread. for (uint32_t i = 0; i < mDisplays.size(); i++) { if (mDisplays[i]->mDREnable) return; } mDRLoopStatus = false; mDRThread.join(); } } void ExynosDevice::dynamicRecompositionThreadCreate() { if (exynosHWCControl.useDynamicRecomp == true) { mDRLoopStatus = true; mDRThread = std::thread(&dynamicRecompositionThreadLoop, this); } } void *ExynosDevice::dynamicRecompositionThreadLoop(void *data) { ExynosDevice *dev = (ExynosDevice *)data; ExynosDisplay *display[dev->mDisplays.size()]; uint64_t event_cnt[dev->mDisplays.size()]; for (uint32_t i = 0; i < dev->mDisplays.size(); i++) { display[i] = dev->mDisplays[i]; event_cnt[i] = 0; } android_atomic_inc(&(dev->mDRThreadStatus)); while (dev->mDRLoopStatus) { uint32_t result = 0; for (uint32_t i = 0; i < dev->mDisplays.size(); i++) event_cnt[i] = display[i]->mUpdateEventCnt; /* * If there is no update for more than 100ms, favor the 3D composition mode. * If all other conditions are met, mode will be switched to 3D composition. */ usleep(100000); for (uint32_t i = 0; i < dev->mDisplays.size(); i++) { if (display[i]->mDREnable && display[i]->mPlugState == true && event_cnt[i] == display[i]->mUpdateEventCnt) { if (display[i]->checkDynamicReCompMode() == DEVICE_2_CLIENT) { display[i]->mUpdateEventCnt = 0; display[i]->setGeometryChanged(GEOMETRY_DISPLAY_DYNAMIC_RECOMPOSITION); result = 1; } } } if (result) dev->invalidate(); } android_atomic_dec(&(dev->mDRThreadStatus)); return NULL; } /** * @param display * @return ExynosDisplay */ ExynosDisplay* ExynosDevice::getDisplay(uint32_t display) { if (mDisplays.isEmpty()) { ALOGE("mDisplays.size(%zu), requested display(%d)", mDisplays.size(), display); return NULL; } for (size_t i = 0;i < mDisplays.size(); i++) { if (mDisplays[i]->mDisplayId == display) return (ExynosDisplay*)mDisplays[i]; } return NULL; } /** * Device Functions for HWC 2.0 */ int32_t ExynosDevice::createVirtualDisplay( uint32_t width, uint32_t height, int32_t* /*android_pixel_format_t*/ format, ExynosDisplay* display) { ((ExynosVirtualDisplay*)display)->createVirtualDisplay(width, height, format); return 0; } /** * @param *display * @return int32_t */ int32_t ExynosDevice::destroyVirtualDisplay(ExynosDisplay* display) { ((ExynosVirtualDisplay *)display)->destroyVirtualDisplay(); return 0; } void ExynosDevice::dump(uint32_t *outSize, char *outBuffer) { if (outSize == NULL) { ALOGE("%s:: outSize is null", __func__); return; } android::String8 result; result.append("\n\n"); struct tm* localTime = (struct tm*)localtime((time_t*)&updateTimeInfo.lastUeventTime.tv_sec); result.appendFormat("lastUeventTime(%02d:%02d:%02d.%03lu) lastTimestamp(%" PRIu64 ")\n", localTime->tm_hour, localTime->tm_min, localTime->tm_sec, updateTimeInfo.lastUeventTime.tv_usec/1000, mTimestamp); localTime = (struct tm*)localtime((time_t*)&updateTimeInfo.lastEnableVsyncTime.tv_sec); result.appendFormat("lastEnableVsyncTime(%02d:%02d:%02d.%03lu)\n", localTime->tm_hour, localTime->tm_min, localTime->tm_sec, updateTimeInfo.lastEnableVsyncTime.tv_usec/1000); localTime = (struct tm*)localtime((time_t*)&updateTimeInfo.lastDisableVsyncTime.tv_sec); result.appendFormat("lastDisableVsyncTime(%02d:%02d:%02d.%03lu)\n", localTime->tm_hour, localTime->tm_min, localTime->tm_sec, updateTimeInfo.lastDisableVsyncTime.tv_usec/1000); localTime = (struct tm*)localtime((time_t*)&updateTimeInfo.lastValidateTime.tv_sec); result.appendFormat("lastValidateTime(%02d:%02d:%02d.%03lu)\n", localTime->tm_hour, localTime->tm_min, localTime->tm_sec, updateTimeInfo.lastValidateTime.tv_usec/1000); localTime = (struct tm*)localtime((time_t*)&updateTimeInfo.lastPresentTime.tv_sec); result.appendFormat("lastPresentTime(%02d:%02d:%02d.%03lu)\n", localTime->tm_hour, localTime->tm_min, localTime->tm_sec, updateTimeInfo.lastPresentTime.tv_usec/1000); result.appendFormat("\n"); mResourceManager->dump(result); for (size_t i = 0;i < mDisplays.size(); i++) { ExynosDisplay *display = mDisplays[i]; if (display->mPlugState == true) display->dump(result); } if (outBuffer == NULL) { *outSize = (uint32_t)result.length(); } else { if (*outSize == 0) { ALOGE("%s:: outSize is 0", __func__); return; } uint32_t copySize = *outSize; if (*outSize > result.size()) copySize = (uint32_t)result.size(); ALOGI("HWC dump:: resultSize(%zu), outSize(%d), copySize(%d)", result.size(), *outSize, copySize); strlcpy(outBuffer, result.string(), copySize); } return; } uint32_t ExynosDevice::getMaxVirtualDisplayCount() { #ifdef USES_VIRTUAL_DISPLAY return 1; #else return 0; #endif } int32_t ExynosDevice::registerCallback ( int32_t descriptor, hwc2_callback_data_t callbackData, hwc2_function_pointer_t point) { if (descriptor < 0 || descriptor > HWC2_CALLBACK_SEAMLESS_POSSIBLE) return HWC2_ERROR_BAD_PARAMETER; mCallbackInfos[descriptor].callbackData = callbackData; mCallbackInfos[descriptor].funcPointer = point; /* Call hotplug callback for primary display*/ if (descriptor == HWC2_CALLBACK_HOTPLUG) { HWC2_PFN_HOTPLUG callbackFunc = (HWC2_PFN_HOTPLUG)mCallbackInfos[descriptor].funcPointer; if (callbackFunc != NULL) { for (auto it : mDisplays) { if (it->mPlugState) callbackFunc(callbackData, getDisplayId(it->mType, it->mIndex), HWC2_CONNECTION_CONNECTED); } } else { // unregistering callback can be used as a sign of ComposerClient's death for (auto it : mDisplays) { it->cleanupAfterClientDeath(); } } } if (descriptor == HWC2_CALLBACK_VSYNC) mResourceManager->doPreProcessing(); return HWC2_ERROR_NONE; } void ExynosDevice::invalidate() { HWC2_PFN_REFRESH callbackFunc = (HWC2_PFN_REFRESH)mCallbackInfos[HWC2_CALLBACK_REFRESH].funcPointer; if (callbackFunc != NULL) callbackFunc(mCallbackInfos[HWC2_CALLBACK_REFRESH].callbackData, getDisplayId(HWC_DISPLAY_PRIMARY, 0)); else ALOGE("%s:: refresh callback is not registered", __func__); } void ExynosDevice::setHWCDebug(unsigned int debug) { hwcDebug = debug; } uint32_t ExynosDevice::getHWCDebug() { return hwcDebug; } void ExynosDevice::setHWCFenceDebug(uint32_t typeNum, uint32_t ipNum, uint32_t mode) { if (typeNum > FENCE_TYPE_ALL || typeNum < 0 || ipNum > FENCE_IP_ALL || ipNum < 0 || mode > 1 || mode < 0) { ALOGE("%s:: input is not valid type(%u), IP(%u), mode(%d)", __func__, typeNum, ipNum, mode); return; } uint32_t value = 0; if (typeNum == FENCE_TYPE_ALL) value = (1 << FENCE_TYPE_ALL) - 1; else value = 1 << typeNum; if (ipNum == FENCE_IP_ALL) { for (uint32_t i = 0; i < FENCE_IP_ALL; i++) { if (mode) hwcFenceDebug[i] |= value; else hwcFenceDebug[i] &= (~value); } } else { if (mode) hwcFenceDebug[ipNum] |= value; else hwcFenceDebug[ipNum] &= (~value); } } void ExynosDevice::getHWCFenceDebug() { for (uint32_t i = 0; i < FENCE_IP_ALL; i++) ALOGE("[HWCFenceDebug] IP_Number(%d) : Debug(%x)", i, hwcFenceDebug[i]); } void ExynosDevice::setHWCControl(uint32_t display, uint32_t ctrl, int32_t val) { ExynosDisplay *exynosDisplay = NULL; switch (ctrl) { case HWC_CTL_FORCE_GPU: ALOGI("%s::HWC_CTL_FORCE_GPU on/off=%d", __func__, val); exynosHWCControl.forceGpu = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; case HWC_CTL_WINDOW_UPDATE: ALOGI("%s::HWC_CTL_WINDOW_UPDATE on/off=%d", __func__, val); exynosHWCControl.windowUpdate = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; case HWC_CTL_FORCE_PANIC: ALOGI("%s::HWC_CTL_FORCE_PANIC on/off=%d", __func__, val); exynosHWCControl.forcePanic = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); break; case HWC_CTL_SKIP_STATIC: ALOGI("%s::HWC_CTL_SKIP_STATIC on/off=%d", __func__, val); exynosHWCControl.skipStaticLayers = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); break; case HWC_CTL_SKIP_M2M_PROCESSING: ALOGI("%s::HWC_CTL_SKIP_M2M_PROCESSING on/off=%d", __func__, val); exynosHWCControl.skipM2mProcessing = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); break; case HWC_CTL_SKIP_RESOURCE_ASSIGN: ALOGI("%s::HWC_CTL_SKIP_RESOURCE_ASSIGN on/off=%d", __func__, val); exynosHWCControl.skipResourceAssign = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; case HWC_CTL_SKIP_VALIDATE: ALOGI("%s::HWC_CTL_SKIP_VALIDATE on/off=%d", __func__, val); exynosHWCControl.skipValidate = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; case HWC_CTL_DUMP_MID_BUF: ALOGI("%s::HWC_CTL_DUMP_MID_BUF on/off=%d", __func__, val); exynosHWCControl.dumpMidBuf = (unsigned int)val; setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; case HWC_CTL_CAPTURE_READBACK: captureScreenWithReadback(HWC_DISPLAY_PRIMARY); break; case HWC_CTL_DISPLAY_MODE: ALOGI("%s::HWC_CTL_DISPLAY_MODE mode=%d", __func__, val); setDisplayMode((uint32_t)val); setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; // Support DDI scalser { case HWC_CTL_DDI_RESOLUTION_CHANGE: ALOGI("%s::HWC_CTL_DDI_RESOLUTION_CHANGE mode=%d", __func__, val); exynosDisplay = (ExynosDisplay*)getDisplay(display); uint32_t width, height; /* TODO: Add branch here for each resolution/index */ switch(val) { case 1: case 2: case 3: default: width = 1440; height = 2960; break; } if (exynosDisplay == NULL) { for (uint32_t i = 0; i < mDisplays.size(); i++) { mDisplays[i]->setDDIScalerEnable(width, height); } } else { exynosDisplay->setDDIScalerEnable(width, height); } setGeometryChanged(GEOMETRY_DISPLAY_RESOLUTION_CHANGED); invalidate(); break; // } Support DDI scaler case HWC_CTL_ENABLE_COMPOSITION_CROP: case HWC_CTL_ENABLE_EXYNOSCOMPOSITION_OPT: case HWC_CTL_ENABLE_CLIENTCOMPOSITION_OPT: case HWC_CTL_USE_MAX_G2D_SRC: case HWC_CTL_ENABLE_HANDLE_LOW_FPS: case HWC_CTL_ENABLE_EARLY_START_MPP: exynosDisplay = (ExynosDisplay*)getDisplay(display); if (exynosDisplay == NULL) { for (uint32_t i = 0; i < mDisplays.size(); i++) { mDisplays[i]->setHWCControl(ctrl, val); } } else { exynosDisplay->setHWCControl(ctrl, val); } setGeometryChanged(GEOMETRY_DEVICE_CONFIG_CHANGED); invalidate(); break; case HWC_CTL_DYNAMIC_RECOMP: ALOGI("%s::HWC_CTL_DYNAMIC_RECOMP on/off = %d", __func__, val); setDynamicRecomposition((unsigned int)val); break; case HWC_CTL_ENABLE_FENCE_TRACER: ALOGI("%s::HWC_CTL_ENABLE_FENCE_TRACER on/off=%d", __func__, val); exynosHWCControl.fenceTracer = (unsigned int)val; break; case HWC_CTL_SYS_FENCE_LOGGING: ALOGI("%s::HWC_CTL_SYS_FENCE_LOGGING on/off=%d", __func__, val); exynosHWCControl.sysFenceLogging = (unsigned int)val; break; case HWC_CTL_DO_FENCE_FILE_DUMP: ALOGI("%s::HWC_CTL_DO_FENCE_FILE_DUMP on/off=%d", __func__, val); exynosHWCControl.doFenceFileDump = (unsigned int)val; break; default: ALOGE("%s: unsupported HWC_CTL (%d)", __func__, ctrl); break; } } void ExynosDevice::setDisplayMode(uint32_t displayMode) { exynosHWCControl.displayMode = displayMode; } void ExynosDevice::setDynamicRecomposition(unsigned int on) { exynosHWCControl.useDynamicRecomp = on; } bool ExynosDevice::checkDisplayConnection(uint32_t displayId) { ExynosDisplay *display = getDisplay(displayId); if (!display) return false; else return display->mPlugState; } bool ExynosDevice::checkNonInternalConnection() { for (uint32_t i = 0; i < mDisplays.size(); i++) { switch(mDisplays[i]->mType) { case HWC_DISPLAY_PRIMARY: break; case HWC_DISPLAY_EXTERNAL: case HWC_DISPLAY_VIRTUAL: if (mDisplays[i]->mPlugState) return true; break; default: break; } } return false; } void ExynosDevice::getCapabilities(uint32_t *outCount, int32_t* outCapabilities) { uint32_t capabilityNum = 0; #ifdef HWC_SUPPORT_COLOR_TRANSFORM capabilityNum++; #endif #ifdef HWC_SKIP_VALIDATE capabilityNum++; #endif if (outCapabilities == NULL) { *outCount = capabilityNum; return; } if (capabilityNum != *outCount) { ALOGE("%s:: invalid outCount(%d), should be(%d)", __func__, *outCount, capabilityNum); return; } #if defined(HWC_SUPPORT_COLOR_TRANSFORM) || defined(HWC_SKIP_VALIDATE) uint32_t index = 0; #endif #ifdef HWC_SUPPORT_COLOR_TRANSFORM outCapabilities[index++] = HWC2_CAPABILITY_SKIP_CLIENT_COLOR_TRANSFORM; #endif #ifdef HWC_SKIP_VALIDATE outCapabilities[index++] = HWC2_CAPABILITY_SKIP_VALIDATE; #endif return; } void ExynosDevice::clearGeometryChanged() { mGeometryChanged = 0; } bool ExynosDevice::canSkipValidate() { /* * This should be called by presentDisplay() * when presentDisplay() is called without validateDisplay() call */ int ret = 0; if (exynosHWCControl.skipValidate == false) return false; for (uint32_t i = 0; i < mDisplays.size(); i++) { /* * Check all displays. * Resource assignment can have problem if validateDisplay is skipped * on only some displays. * All display's validateDisplay should be skipped or all display's validateDisplay * should not be skipped. */ if (mDisplays[i]->mPlugState) { /* * presentDisplay is called without validateDisplay. * Call functions that should be called in validateDiplay */ mDisplays[i]->doPreProcessing(); mDisplays[i]->checkLayerFps(); if ((ret = mDisplays[i]->canSkipValidate()) != NO_ERROR) { HDEBUGLOGD(eDebugSkipValidate, "Display[%d] can't skip validate (%d), renderingState(%d), geometryChanged(0x%" PRIx64 ")", mDisplays[i]->mDisplayId, ret, mDisplays[i]->mRenderingState, mGeometryChanged); return false; } else { HDEBUGLOGD(eDebugSkipValidate, "Display[%d] can skip validate (%d), renderingState(%d), geometryChanged(0x%" PRIx64 ")", mDisplays[i]->mDisplayId, ret, mDisplays[i]->mRenderingState, mGeometryChanged); } } } return true; } bool ExynosDevice::validateFences(ExynosDisplay *display) { if (!validateFencePerFrame(display)) { String8 errString; errString.appendFormat("You should doubt fence leak!\n"); ALOGE("%s", errString.string()); saveFenceTrace(display); return false; } if (fenceWarn(display, MAX_FENCE_THRESHOLD)) { String8 errString; errString.appendFormat("Fence leak!\n"); printLeakFds(display); ALOGE("Fence leak! --"); saveFenceTrace(display); return false; } if (exynosHWCControl.doFenceFileDump) { ALOGE("Fence file dump !"); if (mFenceLogSize != 0) ALOGE("Fence file not empty!"); saveFenceTrace(display); exynosHWCControl.doFenceFileDump = false; } return true; } void ExynosDevice::compareVsyncPeriod() { ExynosDisplay *primary_display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); ExynosDisplay *external_display = getDisplay(getDisplayId(HWC_DISPLAY_EXTERNAL, 0)); mVsyncDisplayId = getDisplayId(HWC_DISPLAY_PRIMARY, 0); if ((external_display == nullptr) || (external_display->mPowerModeState == HWC2_POWER_MODE_OFF)) { return; } else if (primary_display->mPowerModeState == HWC2_POWER_MODE_OFF) { mVsyncDisplayId = getDisplayId(HWC_DISPLAY_EXTERNAL, 0); return; } else if (((primary_display->mPowerModeState == HWC2_POWER_MODE_DOZE) || (primary_display->mPowerModeState == HWC2_POWER_MODE_DOZE_SUSPEND)) && (external_display->mVsyncPeriod >= DOZE_VSYNC_PERIOD)) { /*30fps*/ mVsyncDisplayId = getDisplayId(HWC_DISPLAY_EXTERNAL, 0); return; } else if (primary_display->mVsyncPeriod <= external_display->mVsyncPeriod) { mVsyncDisplayId = getDisplayId(HWC_DISPLAY_EXTERNAL, 0); return; } return; } ExynosDevice::captureReadbackClass::captureReadbackClass( ExynosDevice *device) : mDevice(device) { if (device == nullptr) return; } ExynosDevice::captureReadbackClass::~captureReadbackClass() { VendorGraphicBufferMapper& gMapper(VendorGraphicBufferMapper::get()); if (mBuffer != nullptr) gMapper.freeBuffer(mBuffer); if (mDevice != nullptr) mDevice->clearWaitingReadbackReqDone(); } int32_t ExynosDevice::captureReadbackClass::allocBuffer( uint32_t format, uint32_t w, uint32_t h) { VendorGraphicBufferAllocator& gAllocator(VendorGraphicBufferAllocator::get()); uint32_t dstStride = 0; uint64_t usage = static_cast(GRALLOC1_CONSUMER_USAGE_HWCOMPOSER | GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN); status_t error = NO_ERROR; error = gAllocator.allocate(w, h, format, 1, usage, &mBuffer, &dstStride, "HWC"); if ((error != NO_ERROR) || (mBuffer == nullptr)) { ALOGE("failed to allocate destination buffer(%dx%d): %d", w, h, error); return static_cast(error); } return NO_ERROR; } void ExynosDevice::captureReadbackClass::saveToFile(const String8 &fileName) { if (mBuffer == nullptr) { ALOGE("%s:: buffer is null", __func__); return; } char filePath[MAX_DEV_NAME] = {0}; VendorGraphicBufferMeta gmeta(mBuffer); snprintf(filePath, MAX_DEV_NAME, "%s/%s", WRITEBACK_CAPTURE_PATH, fileName.string()); FILE *fp = fopen(filePath, "w"); if (fp) { uint32_t writeSize = gmeta.stride * gmeta.vstride * formatToBpp(gmeta.format)/8; void *writebackData = mmap(0, writeSize, PROT_READ|PROT_WRITE, MAP_SHARED, gmeta.fd, 0); if (writebackData != MAP_FAILED && writebackData != NULL) { size_t result = fwrite(writebackData, writeSize, 1, fp); munmap(writebackData, writeSize); ALOGD("Success to write %zu data, size(%d)", result, writeSize); } else { ALOGE("Fail to mmap"); } } else { ALOGE("Fail to open %s", filePath); } } void ExynosDevice::signalReadbackDone() { if (mIsWaitingReadbackReqDone) { Mutex::Autolock lock(mCaptureMutex); mCaptureCondition.signal(); } } void ExynosDevice::captureScreenWithReadback(uint32_t displayType) { ExynosDisplay *display = getDisplay(displayType); if (display == nullptr) { ALOGE("There is no display(%d)", displayType); return; } int32_t outFormat; int32_t outDataspace; int32_t ret = 0; if ((ret = display->getReadbackBufferAttributes( &outFormat, &outDataspace)) != HWC2_ERROR_NONE) { ALOGE("getReadbackBufferAttributes fail, ret(%d)", ret); return; } captureReadbackClass captureClass(this); if ((ret = captureClass.allocBuffer(outFormat, display->mXres, display->mYres)) != NO_ERROR) { return; } mIsWaitingReadbackReqDone = true; if (display->setReadbackBuffer(captureClass.getBuffer(), -1, true) != HWC2_ERROR_NONE) { ALOGE("setReadbackBuffer fail"); return; } /* Update screen */ invalidate(); /* Wait for handling readback */ uint32_t waitPeriod = display->mVsyncPeriod * 3; { Mutex::Autolock lock(mCaptureMutex); status_t err = mCaptureCondition.waitRelative( mCaptureMutex, us2ns(waitPeriod)); if (err == TIMED_OUT) { ALOGE("timeout, readback is not requested"); return; } else if (err != NO_ERROR) { ALOGE("error waiting for readback request: %s (%d)", strerror(-err), err); return; } else { ALOGD("readback request is done"); } } int32_t fence = -1; if (display->getReadbackBufferFence(&fence) != HWC2_ERROR_NONE) { ALOGE("getReadbackBufferFence fail"); return; } if (sync_wait(fence, 1000) < 0) { ALOGE("sync wait error, fence(%d)", fence); } hwcFdClose(fence); String8 fileName; time_t curTime = time(NULL); struct tm *tm = localtime(&curTime); fileName.appendFormat("capture_format%d_%dx%d_%04d-%02d-%02d_%02d_%02d_%02d.raw", outFormat, display->mXres, display->mYres, tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); captureClass.saveToFile(fileName); } int32_t ExynosDevice::setDisplayDeviceMode(int32_t display_id, int32_t mode) { int32_t ret = HWC2_ERROR_NONE; if (display_id == HWC_DISPLAY_PRIMARY) { if (mode == static_cast(ext_hwc2_power_mode_t::PAUSE) || mode == static_cast(ext_hwc2_power_mode_t::RESUME)) { ret = mDisplays[display_id]->setPowerMode(mode); if (mode == static_cast(ext_hwc2_power_mode_t::RESUME) && ret == HWC2_ERROR_NONE) { invalidate(); } return ret; } else { return HWC2_ERROR_UNSUPPORTED; } } else { return HWC2_ERROR_UNSUPPORTED; } } int32_t ExynosDevice::setPanelGammaTableSource(int32_t display_id, int32_t type, int32_t source) { if (display_id < HWC_DISPLAY_PRIMARY || display_id >= HWC_NUM_DISPLAY_TYPES) { ALOGE("invalid display %d", display_id); return HWC2_ERROR_BAD_DISPLAY; } if (type < static_cast(DisplayType::DISPLAY_PRIMARY) || type >= static_cast(DisplayType::DISPLAY_MAX)) { ALOGE("invalid display type %d", type); return HWC2_ERROR_BAD_PARAMETER; } if (source < static_cast(PanelGammaSource::GAMMA_DEFAULT) || source >= static_cast(PanelGammaSource::GAMMA_TYPES)) { ALOGE("invalid gamma source %d", source); return HWC2_ERROR_BAD_PARAMETER; } return mDisplays[display_id]->SetCurrentPanelGammaSource(static_cast(type), static_cast(source)); } void ExynosDevice::getLayerGenericMetadataKey(uint32_t __unused keyIndex, uint32_t* outKeyLength, char* __unused outKey, bool* __unused outMandatory) { *outKeyLength = 0; return; } void ExynosDevice::setVBlankOffDelay(int vblankOffDelay) { static constexpr const char *kVblankOffDelayPath = "/sys/module/drm/parameters/vblankoffdelay"; writeIntToFile(kVblankOffDelayPath, vblankOffDelay); } bool ExynosDevice::isLbeSupported() { return mLbeSupported; } bool ExynosDevice::isColorCalibratedByDevice() { ExynosDisplay *display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); return display->isColorCalibratedByDevice(); } void ExynosDevice::setLbeState(LbeState state) { if (mLbeSupported) { ExynosDisplay *primary_display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); primary_display->setLbeState(state); } } void ExynosDevice::setLbeAmbientLight(int value) { if (mLbeSupported) { ExynosDisplay *primary_display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); primary_display->setLbeAmbientLight(value); } } LbeState ExynosDevice::getLbeState() { if (mLbeSupported) { ExynosDisplay *primary_display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); return primary_display->getLbeState(); } return LbeState::OFF; } bool ExynosDevice::isLhbmSupported() { ExynosDisplay *display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); return display->isLhbmSupported(); } int32_t ExynosDevice::setLhbmState(bool enabled) { if (isLhbmSupported()) { ExynosDisplay *display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); return display->setLhbmState(enabled); } return -1; } bool ExynosDevice::getLhbmState() { if (isLhbmSupported()) { ExynosDisplay *display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); return display->getLhbmState(); } return false; } int ExynosDevice::setMinIdleRefreshRate(const int fps) { ExynosDisplay *display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); if (display) { return display->setMinIdleRefreshRate(fps); } return BAD_VALUE; } int ExynosDevice::setRefreshRateThrottle(const int delayMs) { if (delayMs < 0) { ALOGE("%s fail: delayMs(%d) is less than 0", __func__, delayMs); return BAD_VALUE; } ExynosDisplay *display = getDisplay(getDisplayId(HWC_DISPLAY_PRIMARY, 0)); if (display) { return display->setRefreshRateThrottleNanos( std::chrono::duration_cast( std::chrono::milliseconds(delayMs)) .count()); } return BAD_VALUE; }