/* drivers/input/touchscreen/gt1x_generic.c * * 2010 - 2014 Goodix Technology. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be a reference * to you, when you are integrating the GOODiX's CTP IC into your system, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Version: 1.4 * Release Date: 2015/07/10 */ /*#include "gt1x_tpd_custom.h"*/ #include "gt1x.h" #include "gt1x_generic.h" #include "gt1x_cfg.h" #if GTP_PROXIMITY && defined(PLATFORM_MTK) #include #include #include #endif #include /*******************GLOBAL VARIABLE*********************/ struct i2c_client *gt1x_i2c_client; static struct workqueue_struct *gt1x_workqueue; u8 gt1x_config[GTP_CONFIG_MAX_LENGTH] = { 0 }; u32 gt1x_cfg_length = GTP_CONFIG_MAX_LENGTH; CHIP_TYPE_T gt1x_chip_type = CHIP_TYPE_NONE; struct gt1x_version_info gt1x_version = { .product_id = {0}, .patch_id = 0, .mask_id = 0, .sensor_id = 0, .match_opt = 0 }; #ifndef TPD_HAVE_BUTTON #define TPD_HAVE_BUTTON 0 #endif #if GTP_HAVE_TOUCH_KEY const u16 gt1x_touch_key_array[] = GTP_KEY_TAB; #elif TPD_HAVE_BUTTON struct key_map_t { int x; int y; }; static struct key_map_t tpd_virtual_key_array[] = TPD_KEY_MAP_ARRAY; #endif #if GTP_WITH_STYLUS && GTP_HAVE_STYLUS_KEY static const u16 gt1x_stylus_key_array[] = GTP_STYLUS_KEY_TAB; #endif #define GOODIX_SYSFS_DIR "goodix" static struct kobject *sysfs_rootdir; volatile int gt1x_rawdiff_mode; u8 gt1x_wakeup_level; u8 gt1x_init_failed; u8 gt1x_int_type; u32 gt1x_abs_x_max; u32 gt1x_abs_y_max; int gt1x_halt; bool gt1x_ics_slot_report; bool gt1x_keep_otp_config; #if GTP_DEBUG_NODE static ssize_t gt1x_debug_read_proc(struct file *, char __user *, size_t, loff_t *); static ssize_t gt1x_debug_write_proc(struct file *, const char __user *, size_t, loff_t *); static struct proc_dir_entry *gt1x_debug_proc_entry; static const struct file_operations gt1x_debug_fops = { .owner = THIS_MODULE, .read = gt1x_debug_read_proc, .write = gt1x_debug_write_proc, }; static s32 gt1x_init_debug_node(void) { gt1x_debug_proc_entry = proc_create(GT1X_DEBUG_PROC_FILE, 0660, NULL, >1x_debug_fops); if (gt1x_debug_proc_entry == NULL) { GTP_ERROR("Create proc entry /proc/%s FAILED!", GT1X_DEBUG_PROC_FILE); return -1; } GTP_INFO("Created proc entry /proc/%s.", GT1X_DEBUG_PROC_FILE); return 0; } static void gt1x_deinit_debug_node(void) { if (gt1x_debug_proc_entry != NULL) { remove_proc_entry(GT1X_DEBUG_PROC_FILE, NULL); } } static ssize_t gt1x_debug_read_proc(struct file *file, char __user *page, size_t size, loff_t *ppos) { char *ptr = page; char temp_data[GTP_CONFIG_MAX_LENGTH] = { 0 }; int i; if (*ppos) { return 0; } ptr += sprintf(ptr, "==== GT1X default config setting in driver====\n"); for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) { ptr += sprintf(ptr, "0x%02X,", gt1x_config[i]); if (i % 10 == 9) ptr += sprintf(ptr, "\n"); } ptr += sprintf(ptr, "\n"); ptr += sprintf(ptr, "==== GT1X config read from chip====\n"); i = gt1x_i2c_read(GTP_REG_CONFIG_DATA, temp_data, GTP_CONFIG_MAX_LENGTH); GTP_INFO("I2C TRANSFER: %d", i); for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) { ptr += sprintf(ptr, "0x%02X,", temp_data[i]); if (i % 10 == 9) ptr += sprintf(ptr, "\n"); } ptr += sprintf(ptr, "\n"); /* Touch PID & VID */ ptr += sprintf(ptr, "==== GT1X Version Info ====\n"); gt1x_i2c_read(GTP_REG_VERSION, temp_data, 12); ptr += sprintf(ptr, "ProductID: GT%c%c%c%c\n", temp_data[0], temp_data[1], temp_data[2], temp_data[3]); ptr += sprintf(ptr, "PatchID: %02X%02X\n", temp_data[4], temp_data[5]); ptr += sprintf(ptr, "MaskID: %02X%02X\n", temp_data[7], temp_data[8]); ptr += sprintf(ptr, "SensorID: %02X\n", temp_data[10] & 0x0F); *ppos += ptr - page; return (ptr - page); } static ssize_t gt1x_debug_write_proc(struct file *file, const char *buffer, size_t count, loff_t *ppos) { s32 ret = 0; u8 buf[GTP_CONFIG_MAX_LENGTH] = { 0 }; char mode_str[50] = { 0 }; int mode; int cfg_len; char arg1[50] = { 0 }; u8 temp_config[GTP_CONFIG_MAX_LENGTH] = { 0 }; GTP_DEBUG("write count %ld\n", (unsigned long)count); if (count > GTP_CONFIG_MAX_LENGTH) { GTP_ERROR("Too much data, buffer size: %d, data:%ld", GTP_CONFIG_MAX_LENGTH, (unsigned long)count); return -EFAULT; } if (copy_from_user(buf, buffer, count)) { GTP_ERROR("copy from user fail!"); return -EFAULT; } /*send config*/ if (count == gt1x_cfg_length) { memcpy(gt1x_config, buf, count); ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); if (ret < 0) { GTP_ERROR("send gt1x_config failed."); return -EFAULT; } gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) + gt1x_config[RESOLUTION_LOC]; gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) + gt1x_config[RESOLUTION_LOC + 2]; return count; } sscanf(buf, "%s %d", (char *)&mode_str, &mode); /*force clear gt1x_config*/ if (strcmp(mode_str, "clear_config") == 0) { GTP_INFO("Force clear gt1x_config"); gt1x_send_cmd(GTP_CMD_CLEAR_CFG, 0); return count; } if (strcmp(mode_str, "init") == 0) { GTP_INFO("Init panel"); gt1x_init_panel(); return count; } if (strcmp(mode_str, "chip") == 0) { GTP_INFO("Get chip type:"); gt1x_get_chip_type(); return count; } if (strcmp(mode_str, "int") == 0) { if (mode == 0) { GTP_INFO("Disable irq."); gt1x_irq_disable(); } else { GTP_INFO("Enable irq."); gt1x_irq_enable(); } return count; } if (strcmp(mode_str, "poweron") == 0) { gt1x_power_switch(1); return count; } if (strcmp(mode_str, "poweroff") == 0) { gt1x_power_switch(0); return count; } if (strcmp(mode_str, "version") == 0) { gt1x_read_version(NULL); return count; } if (strcmp(mode_str, "reset") == 0) { gt1x_irq_disable(); gt1x_reset_guitar(); gt1x_irq_enable(); return count; } #if GTP_CHARGER_SWITCH if (strcmp(mode_str, "charger") == 0) { gt1x_charger_config(mode); return count; } #endif sscanf(buf, "%s %s", (char *)&mode_str, (char *)&arg1); if (strcmp(mode_str, "update") == 0) { gt1x_update_firmware(arg1); return count; } #if 0 //close for GKI if (strcmp(mode_str, "sendconfig") == 0) { cfg_len = gt1x_parse_config(arg1, temp_config); if (cfg_len < 0) { return -1; } gt1x_send_cfg(temp_config, gt1x_cfg_length); return count; } #endif if (strcmp(mode_str, "debug_gesture") == 0) { #if GTP_GESTURE_WAKEUP gt1x_gesture_debug(!!mode); #endif } if (strcmp(mode_str, "force_update") == 0) { update_info.force_update = !!mode; } return gt1x_debug_proc(buf, count); } #endif static u8 __maybe_unused ascii2hex(u8 a) { s8 value = 0; if (a >= '0' && a <= '9') { value = a - '0'; } else if (a >= 'A' && a <= 'F') { value = a - 'A' + 0x0A; } else if (a >= 'a' && a <= 'f') { value = a - 'a' + 0x0A; } else { value = 0xff; } return value; } #if 0 //close for GKI int gt1x_parse_config(char *filename, u8 *config) { mm_segment_t old_fs; struct file *fp = NULL; u8 *buf; int i; int len; int cur_len = -1; u8 high, low; old_fs = get_fs(); set_fs(KERNEL_DS); fp = filp_open(filename, O_RDONLY, 0); if (IS_ERR(fp)) { GTP_ERROR("Open config file error!(file: %s)", filename); goto parse_cfg_fail1; } len = fp->f_op->llseek(fp, 0, SEEK_END); if (len > GTP_CONFIG_MAX_LENGTH * 6 || len < GTP_CONFIG_MAX_LENGTH) { GTP_ERROR("Config is invalid!(length: %d)", len); goto parse_cfg_fail2; } buf = kzalloc(len, GFP_KERNEL); if (buf == NULL) { GTP_ERROR("Allocate memory failed!(size: %d)", len); goto parse_cfg_fail2; } fp->f_op->llseek(fp, 0, SEEK_SET); if (fp->f_op->read(fp, (char *)buf, len, &fp->f_pos) != len) { GTP_ERROR("Read %d bytes from file failed!", len); } GTP_INFO("Parse config file: %s (%d bytes)", filename, len); for (i = 0, cur_len = 0; i < len && cur_len < GTP_CONFIG_MAX_LENGTH;) { if (buf[i] == ' ' || buf[i] == '\r' || buf[i] == '\n' || buf[i] == ',') { i++; continue; } if (buf[i] == '0' && (buf[i + 1] == 'x' || buf[i + 1] == 'X')) { high = ascii2hex(buf[i + 2]); low = ascii2hex(buf[i + 3]); if (high != 0xFF && low != 0xFF) { config[cur_len++] = (high << 4) + low; i += 4; continue; } } GTP_ERROR("Illegal config file!"); cur_len = -1; break; } if (cur_len < GTP_CONFIG_MIN_LENGTH || config[cur_len - 1] != 0x01) { cur_len = -1; } else { for (i = 0; i < cur_len; i++) { if (i % 10 == 0) { printk("\n<>:"); } printk("0x%02x,", config[i]); } printk("\n"); } kfree(buf); parse_cfg_fail2: filp_close(fp, NULL); parse_cfg_fail1: set_fs(old_fs); return cur_len; } #endif s32 _do_i2c_read(struct i2c_msg *msgs, u16 addr, u8 *buffer, s32 len) { s32 ret = -1; s32 pos = 0; s32 data_length = len; s32 transfer_length = 0; u8 *data = NULL; u16 address = addr; data = kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ? IIC_MAX_TRANSFER_SIZE : (len + GTP_ADDR_LENGTH), GFP_KERNEL); if (data == NULL) { return ERROR_MEM; } msgs[1].buf = data; while (pos != data_length) { if ((data_length - pos) > IIC_MAX_TRANSFER_SIZE) { transfer_length = IIC_MAX_TRANSFER_SIZE; } else { transfer_length = data_length - pos; } msgs[0].buf[0] = (address >> 8) & 0xFF; msgs[0].buf[1] = address & 0xFF; msgs[1].len = transfer_length; ret = i2c_transfer(gt1x_i2c_client->adapter, msgs, 2); if (ret != 2) { GTP_ERROR("I2c Transfer error! (%d)", ret); kfree(data); return ERROR_IIC; } memcpy(&buffer[pos], msgs[1].buf, transfer_length); pos += transfer_length; address += transfer_length; } kfree(data); return 0; } s32 _do_i2c_write(struct i2c_msg *msg, u16 addr, u8 *buffer, s32 len) { s32 ret = -1; s32 pos = 0; s32 data_length = len; s32 transfer_length = 0; u8 *data = NULL; u16 address = addr; data = kmalloc(IIC_MAX_TRANSFER_SIZE < (len + GTP_ADDR_LENGTH) ? IIC_MAX_TRANSFER_SIZE : (len + GTP_ADDR_LENGTH), GFP_KERNEL); if (data == NULL) { return ERROR_MEM; } msg->buf = data; while (pos != data_length) { if ((data_length - pos) > (IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH)) { transfer_length = IIC_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH; } else { transfer_length = data_length - pos; } msg->buf[0] = (address >> 8) & 0xFF; msg->buf[1] = address & 0xFF; msg->len = transfer_length + GTP_ADDR_LENGTH; memcpy(&msg->buf[GTP_ADDR_LENGTH], &buffer[pos], transfer_length); ret = i2c_transfer(gt1x_i2c_client->adapter, msg, 1); if (ret != 1) { GTP_ERROR("I2c transfer error! (%d)", ret); kfree(data); return ERROR_IIC; } pos += transfer_length; address += transfer_length; } kfree(data); return 0; } #if !GTP_ESD_PROTECT static s32 gt1x_i2c_test(void) { u8 retry = 0; s32 ret = -1; u32 hw_info = 0; GTP_DEBUG_FUNC(); while (retry++ < 3) { ret = gt1x_i2c_read(GTP_REG_HW_INFO, (u8 *) &hw_info, sizeof(hw_info)); if (!ret) { GTP_INFO("Hardware Info:%08X", hw_info); return ret; } usleep_range(10000, 11000); GTP_ERROR("Hardware Info:%08X", hw_info); GTP_ERROR("I2c failed%d.", retry); } return ERROR_RETRY; } #endif /** * gt1x_i2c_read_dbl_check - read twice and double check * @addr: register address * @buffer: data buffer * @len: bytes to read * Return <0: i2c error, 0: ok, 1:fail */ s32 gt1x_i2c_read_dbl_check(u16 addr, u8 *buffer, s32 len) { u8 buf[16] = { 0 }; u8 confirm_buf[16] = { 0 }; int ret; if (len > 16) { GTP_ERROR("i2c_read_dbl_check length %d is too long, exceed %zu", len, sizeof(buf)); return ERROR; } memset(buf, 0xAA, sizeof(buf)); ret = gt1x_i2c_read(addr, buf, len); if (ret < 0) { return ret; } usleep_range(5000, 6000); memset(confirm_buf, 0, sizeof(confirm_buf)); ret = gt1x_i2c_read(addr, confirm_buf, len); if (ret < 0) { return ret; } if (!memcmp(buf, confirm_buf, len)) { memcpy(buffer, confirm_buf, len); return 0; } GTP_ERROR("i2c read 0x%04X, %d bytes, double check failed!", addr, len); return 1; } /** * gt1x_send_cfg - Send gt1x_config Function. * @config: pointer of the configuration array. * @cfg_len: length of configuration array. * Return 0--success,non-0--fail. */ s32 gt1x_send_cfg(u8 *config, int cfg_len) { #if GTP_DRIVER_SEND_CFG static DEFINE_MUTEX(mutex_cfg); int i; s32 ret = 0; s32 retry = 0; u16 checksum = 0; if (update_info.status) { GTP_DEBUG("Ignore cfg during fw update."); return -1; } mutex_lock(&mutex_cfg); GTP_DEBUG("Driver send config, length:%d", cfg_len); for (i = 0; i < cfg_len - 3; i += 2) { checksum += (config[i] << 8) + config[i + 1]; } if (!checksum) { GTP_ERROR("Invalid config, all of the bytes is zero!"); mutex_unlock(&mutex_cfg); return -1; } checksum = 0 - checksum; GTP_DEBUG("Config checksum: 0x%04X", checksum); config[cfg_len - 3] = (checksum >> 8) & 0xFF; config[cfg_len - 2] = checksum & 0xFF; config[cfg_len - 1] = 0x01; while (retry++ < 5) { ret = gt1x_i2c_write(GTP_REG_CONFIG_DATA, config, cfg_len); if (!ret) { msleep(200); /* at least 200ms, wait for storing config into flash. */ mutex_unlock(&mutex_cfg); GTP_DEBUG("Send config successfully!"); return 0; } } GTP_ERROR("Send config failed!"); mutex_unlock(&mutex_cfg); return ret; #endif return 0; } /** * gt1x_init_panel - Prepare config data for touch ic, don't call this function * after initialization. * * Return 0--success,<0 --fail. */ s32 gt1x_init_panel(void) { s32 ret = 0; u8 cfg_len = 0; #if GTP_DRIVER_SEND_CFG u8 sensor_id = 0; const u8 cfg_grp0[] = GTP_CFG_GROUP0; const u8 cfg_grp1[] = GTP_CFG_GROUP1; const u8 cfg_grp2[] = GTP_CFG_GROUP2; const u8 cfg_grp3[] = GTP_CFG_GROUP3; const u8 cfg_grp4[] = GTP_CFG_GROUP4; const u8 cfg_grp5[] = GTP_CFG_GROUP5; const u8 *cfgs[] = { cfg_grp0, cfg_grp1, cfg_grp2, cfg_grp3, cfg_grp4, cfg_grp5 }; u8 cfg_lens[] = { CFG_GROUP_LEN(cfg_grp0), CFG_GROUP_LEN(cfg_grp1), CFG_GROUP_LEN(cfg_grp2), CFG_GROUP_LEN(cfg_grp3), CFG_GROUP_LEN(cfg_grp4), CFG_GROUP_LEN(cfg_grp5) }; if (gt1x_gt5688) { cfgs[0] = gtp_dat_5688; cfg_lens[0] = CFG_GROUP_LEN(gtp_dat_5688); } GTP_DEBUG("Config groups length:%d,%d,%d,%d,%d,%d", cfg_lens[0], cfg_lens[1], cfg_lens[2], cfg_lens[3], cfg_lens[4], cfg_lens[5]); sensor_id = gt1x_version.sensor_id; if (sensor_id >= 6 || cfg_lens[sensor_id] < GTP_CONFIG_MIN_LENGTH || cfg_lens[sensor_id] > GTP_CONFIG_MAX_LENGTH) { sensor_id = 0; gt1x_version.sensor_id = 0; } cfg_len = cfg_lens[sensor_id]; GTP_INFO("Config group%d used, length:%d", sensor_id, cfg_len); if (cfg_len < GTP_CONFIG_MIN_LENGTH || cfg_len > GTP_CONFIG_MAX_LENGTH) { GTP_ERROR("Config group%d is INVALID! You need to check you header file CFG_GROUP section!", sensor_id + 1); return -1; } memset(gt1x_config, 0, sizeof(gt1x_config)); memcpy(gt1x_config, cfgs[sensor_id], cfg_len); /* clear the flag, avoid failure when send the_config of driver. */ gt1x_config[0] &= 0x7F; #if GTP_CUSTOM_CFG gt1x_config[RESOLUTION_LOC] = (u8) GTP_MAX_WIDTH; gt1x_config[RESOLUTION_LOC + 1] = (u8) (GTP_MAX_WIDTH >> 8); gt1x_config[RESOLUTION_LOC + 2] = (u8) GTP_MAX_HEIGHT; gt1x_config[RESOLUTION_LOC + 3] = (u8) (GTP_MAX_HEIGHT >> 8); if (GTP_INT_TRIGGER == 0) { /* RISING */ gt1x_config[TRIGGER_LOC] &= 0xfe; } else if (GTP_INT_TRIGGER == 1) { /* FALLING */ gt1x_config[TRIGGER_LOC] |= 0x01; } set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level); #endif /* END GTP_CUSTOM_CFG */ #endif /* END GTP_DRIVER_SEND_CFG */ if (gt1x_keep_otp_config) { cfg_len = GTP_CONFIG_MAX_LENGTH; ret = gt1x_i2c_read(GTP_REG_CONFIG_DATA, gt1x_config, cfg_len); if (ret < 0) { GTP_ERROR("Failed to read CONFIG data, sensor_id %d", gt1x_version.sensor_id); return ret; } else { int i; u16 checksum = 0; for (i = 0; i < cfg_len - 4; i += 2) { checksum += (gt1x_config[i] << 8) + gt1x_config[i + 1]; } checksum = 0 - checksum; if (!checksum || checksum != ((gt1x_config[i] << 8) + gt1x_config[i + 1])) { GTP_ERROR("Invalid config data, checksum %04x", checksum); } } } GTP_DEBUG_FUNC(); /* match resolution when gt1x_abs_x_max & gt1x_abs_y_max have been set already */ if ((gt1x_abs_x_max == 0) && (gt1x_abs_y_max == 0)) { gt1x_abs_x_max = (gt1x_config[RESOLUTION_LOC + 1] << 8) + gt1x_config[RESOLUTION_LOC]; gt1x_abs_y_max = (gt1x_config[RESOLUTION_LOC + 3] << 8) + gt1x_config[RESOLUTION_LOC + 2]; gt1x_int_type = (gt1x_config[TRIGGER_LOC]) & 0x03; gt1x_wakeup_level = !(gt1x_config[MODULE_SWITCH3_LOC] & 0x20); } else { gt1x_config[RESOLUTION_LOC] = (u8) gt1x_abs_x_max; gt1x_config[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8); gt1x_config[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max; gt1x_config[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8); set_reg_bit(gt1x_config[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level); gt1x_config[TRIGGER_LOC] = (gt1x_config[TRIGGER_LOC] & 0xFC) | gt1x_int_type; } GTP_INFO("X_MAX=%d,Y_MAX=%d,TRIGGER=0x%02x,WAKEUP_LEVEL=%d", gt1x_abs_x_max, gt1x_abs_y_max, gt1x_int_type, gt1x_wakeup_level); gt1x_cfg_length = cfg_len; if (!gt1x_keep_otp_config) { ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); } return ret; } void gt1x_select_addr(void) { if (gpio_is_valid(gt1x_rst_gpio)) GTP_GPIO_OUTPUT(GTP_RST_PORT, 0); GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_i2c_client->addr == 0x14); usleep_range(2000, 3000); if (gpio_is_valid(gt1x_rst_gpio)) GTP_GPIO_OUTPUT(GTP_RST_PORT, 1); usleep_range(2000, 3000); } static s32 gt1x_set_reset_status(void) { /* 0x8040 ~ 0x8043 */ u8 value[] = {0xAA, 0x00, 0x56, 0xAA}; int ret; GTP_DEBUG("Set reset status."); ret = gt1x_i2c_write(GTP_REG_CMD + 1, &value[1], 3); if (ret < 0) return ret; return gt1x_i2c_write(GTP_REG_CMD, value, 1); } #if GTP_INCELL_PANEL int gt1x_write_and_readback(u16 addr, u8 *buffer, s32 len) { int ret; u8 d[len]; ret = gt1x_i2c_write(addr, buffer, len); if (ret < 0) return -1; ret = gt1x_i2c_read(addr, d, len); if (ret < 0 || memcmp(buffer, d, len)) return -1; return 0; } int gt1x_incell_reset(void) { #define RST_RETRY 5 int ret, retry = RST_RETRY; u8 d[2]; do { /* select i2c address */ gt1x_select_addr(); /* test i2c */ ret = gt1x_i2c_read(0x4220, d, 1); } while (--retry && ret < 0); if (ret < 0) { return -1; } /* Stop cpu of the touch ic */ retry = RST_RETRY; do { d[0] = 0x0C; ret = gt1x_write_and_readback(0x4180, d, 1); } while (--retry && ret < 0); if (ret < 0) { GTP_ERROR("Hold error."); return -1; } /* skip sensor id check. [start] */ retry = RST_RETRY; do { d[0] = 0x00; ret = gt1x_write_and_readback(0x4305, d, 1); if (ret < 0) continue; d[0] = 0x2B; d[1] = 0x24; ret = gt1x_write_and_readback(0x42c4, d, 2); if (ret < 0) continue; d[0] = 0xE1; d[1] = 0xD3; ret = gt1x_write_and_readback(0x42e4, d, 2); if (ret < 0) continue; d[0] = 0x01; ret = gt1x_write_and_readback(0x4305, d, 1); if (ret < 0) continue; else break; } while (--retry); if (!retry) return -1; /* skip sensor id check. [end] */ /* release hold of cpu */ retry = RST_RETRY; do { d[0] = 0x00; ret = gt1x_write_and_readback(0x4180, d, 1); } while (--retry && ret < 0); if (ret < 0) return -1; return 0; } #endif s32 gt1x_reset_guitar(void) { int ret; GTP_INFO("GTP RESET!"); #if GTP_INCELL_PANEL ret = gt1x_incell_reset(); if (ret < 0) return ret; #else gt1x_select_addr(); usleep_range(8000, 9000); /* must >= 6ms */ #endif /* int synchronization */ GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); msleep(50); GTP_GPIO_AS_INT(GTP_INT_PORT); /* this operation is necessary even when the esd check fucntion dose not turn on */ ret = gt1x_set_reset_status(); return ret; } /** * gt1x_read_version - Read gt1x version info. * @ver_info: address to store version info * Return 0-succeed. */ s32 gt1x_read_version(struct gt1x_version_info *ver_info) { s32 ret = -1; u8 buf[12] = { 0 }; u32 mask_id = 0; u32 patch_id = 0; u8 product_id[5] = { 0 }; u8 sensor_id = 0; u8 match_opt = 0; unsigned int i, retry = 3; u8 checksum = 0; GTP_DEBUG_FUNC(); while (retry--) { ret = gt1x_i2c_read_dbl_check(GTP_REG_VERSION, buf, sizeof(buf)); if (!ret) { checksum = 0; for (i = 0; i < sizeof(buf); i++) { checksum += buf[i]; } if (checksum == 0 && /* first 3 bytes must be number or char */ IS_NUM_OR_CHAR(buf[0]) && IS_NUM_OR_CHAR(buf[1]) && IS_NUM_OR_CHAR(buf[2]) && buf[10] != 0xFF) { /*sensor id == 0xFF, retry */ break; } else { GTP_ERROR("Read version failed!(checksum error)"); } } else { GTP_ERROR("Read version failed!"); } GTP_DEBUG("Read version : %d", retry); msleep(100); } if (retry <= 0) { if (ver_info) ver_info->sensor_id = 0; return -1; } mask_id = (u32) ((buf[7] << 16) | (buf[8] << 8) | buf[9]); patch_id = (u32) ((buf[4] << 16) | (buf[5] << 8) | buf[6]); memcpy(product_id, buf, 4); sensor_id = buf[10] & 0x0F; match_opt = (buf[10] >> 4) & 0x0F; GTP_INFO("IC VERSION:GT%s_%06X(Patch)_%04X(Mask)_%02X(SensorID)", product_id, patch_id, mask_id >> 8, sensor_id); if (ver_info != NULL) { ver_info->mask_id = mask_id; ver_info->patch_id = patch_id; memcpy(ver_info->product_id, product_id, 5); ver_info->sensor_id = sensor_id; ver_info->match_opt = match_opt; } return 0; } /** * gt1x_get_chip_type - get chip type . * * different chip synchronize in different way, */ s32 gt1x_get_chip_type(void) { u8 opr_buf[4] = { 0x00 }; u8 gt1x_data[] = { 0x02, 0x08, 0x90, 0x00 }; u8 gt9l_data[] = { 0x03, 0x10, 0x90, 0x00 }; s32 ret = -1; /* chip type already exist */ if (gt1x_chip_type != CHIP_TYPE_NONE) { return 0; } /* read hardware */ ret = gt1x_i2c_read_dbl_check(GTP_REG_HW_INFO, opr_buf, sizeof(opr_buf)); if (ret) { GTP_ERROR("I2c communication error."); return -1; } /* find chip type */ if (!memcmp(opr_buf, gt1x_data, sizeof(gt1x_data))) { gt1x_chip_type = CHIP_TYPE_GT1X; } else if (!memcmp(opr_buf, gt9l_data, sizeof(gt9l_data))) { gt1x_chip_type = CHIP_TYPE_GT2X; } if (gt1x_chip_type != CHIP_TYPE_NONE) { GTP_INFO("Chip Type: %s", (gt1x_chip_type == CHIP_TYPE_GT1X) ? "GT1X" : "GT2X"); return 0; } else { return -1; } } /** * gt1x_enter_sleep - Eter sleep function. * * Returns 0--success,non-0--fail. */ static s32 gt1x_enter_sleep(void) { s32 retry = 0; #if GTP_POWER_CTRL_SLEEP if (!gt1x_power_switch(SWITCH_OFF)) { GTP_INFO("Enter sleep mode by poweroff"); return 0; } #endif if (gt1x_wakeup_level == 1) { /* high level wakeup */ GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); } usleep_range(5000, 6000); while (retry++ < 3) { if (!gt1x_send_cmd(GTP_CMD_SLEEP, 0)) { GTP_INFO("Enter sleep mode!"); return 0; } usleep_range(10000, 11000); } GTP_ERROR("Enter sleep mode failed."); return -1; } /** * gt1x_wakeup_sleep - wakeup from sleep mode Function. * * Return: 0--success,non-0--fail. */ static s32 gt1x_wakeup_sleep(void) { u8 retry = 0; s32 ret = -1; int flag = 0; GTP_DEBUG("Wake up begin."); gt1x_irq_disable(); #if GTP_POWER_CTRL_SLEEP /* power manager unit control the procedure */ if (!gt1x_power_switch(SWITCH_ON)) { gt1x_power_reset(); GTP_INFO("Wakeup by poweron"); return 0; } #endif /* gesture wakeup & int port wakeup */ while (retry++ < 2) { #if GTP_GESTURE_WAKEUP if (gesture_enabled) { gesture_doze_status = DOZE_DISABLED; ret = gt1x_reset_guitar(); if (!ret) { break; } } else #endif { /* wake up through int port */ GTP_GPIO_OUTPUT(GTP_INT_PORT, gt1x_wakeup_level); usleep_range(5000, 6000); /* Synchronize int IO */ GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); msleep(50); GTP_GPIO_AS_INT(GTP_INT_PORT); flag = 1; #if GTP_ESD_PROTECT ret = gt1x_set_reset_status(); #else ret = gt1x_i2c_test(); #endif if (!ret) break; } /* end int wakeup */ } if (ret < 0 && flag) { /* int wakeup failed , try waking up by reset */ while (retry--) { ret = gt1x_reset_guitar(); if (!ret) break; } } if (ret) { GTP_ERROR("Wake up sleep failed."); return -1; } else { GTP_INFO("Wake up end."); return 0; } } /** * gt1x_send_cmd - seng cmd * must write data & checksum first * byte content * 0 cmd * 1 data * 2 checksum * Returns 0 - succeed,non-0 - failed */ s32 gt1x_send_cmd(u8 cmd, u8 data) { s32 ret; static DEFINE_MUTEX(cmd_mutex); u8 buffer[3] = { cmd, data, 0 }; mutex_lock(&cmd_mutex); buffer[2] = (u8) ((0 - cmd - data) & 0xFF); ret = gt1x_i2c_write(GTP_REG_CMD + 1, &buffer[1], 2); ret |= gt1x_i2c_write(GTP_REG_CMD, &buffer[0], 1); msleep(50); mutex_unlock(&cmd_mutex); return ret; } void gt1x_power_reset(void) { static int rst_flag; s32 i = 0; if (rst_flag || update_info.status) { return; } GTP_INFO("force_reset_guitar"); rst_flag = 1; gt1x_irq_disable(); gt1x_power_switch(SWITCH_OFF); msleep(30); gt1x_power_switch(SWITCH_ON); msleep(30); for (i = 0; i < 5; i++) { if (gt1x_reset_guitar()) { continue; } if (gt1x_send_cfg(gt1x_config, gt1x_cfg_length)) { msleep(500); continue; } break; } gt1x_irq_enable(); rst_flag = 0; } s32 gt1x_request_event_handler(void) { s32 ret = -1; u8 rqst_data = 0; ret = gt1x_i2c_read(GTP_REG_RQST, &rqst_data, 1); if (ret) { GTP_ERROR("I2C transfer error. errno:%d", ret); return -1; } GTP_DEBUG("Request state:0x%02x.", rqst_data); switch (rqst_data & 0x0F) { case GTP_RQST_CONFIG: GTP_INFO("Request Config."); ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); if (ret) { GTP_ERROR("Send gt1x_config error."); } else { GTP_INFO("Send gt1x_config success."); rqst_data = GTP_RQST_RESPONDED; gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1); } break; case GTP_RQST_RESET: GTP_INFO("Request Reset."); gt1x_reset_guitar(); rqst_data = GTP_RQST_RESPONDED; gt1x_i2c_write(GTP_REG_RQST, &rqst_data, 1); break; case GTP_RQST_BAK_REF: GTP_INFO("Request Ref."); break; case GTP_RQST_MAIN_CLOCK: GTP_INFO("Request main clock."); break; #if GTP_HOTKNOT case GTP_RQST_HOTKNOT_CODE: GTP_INFO("Request HotKnot Code."); break; #endif default: break; } return 0; } /** * gt1x_touch_event_handler - handle touch event * (pen event, key event, finger touch envent) * @data: * Return <0: failed, 0: succeed */ s32 gt1x_touch_event_handler(u8 *data, struct input_dev *dev, struct input_dev *pen_dev) { u8 touch_data[1 + 8 * GTP_MAX_TOUCH + 2] = { 0 }; static u16 pre_event; static u16 pre_index; u8 touch_num = 0; u8 key_value = 0; u16 cur_event = 0; u8 *coor_data = NULL; u8 check_sum = 0; s32 input_x = 0; s32 input_y = 0; s32 input_w = 0; s32 id = 0; s32 i = 0; s32 ret = -1; GTP_DEBUG_FUNC(); touch_num = data[0] & 0x0f; if (touch_num > GTP_MAX_TOUCH) { GTP_ERROR("Illegal finger number!"); return ERROR_VALUE; } memcpy(touch_data, data, 11); /* read the remaining coor data * 0x814E(touch status) + 8(every coordinate consist of 8 bytes data) * touch num + * keycode + checksum */ if (touch_num > 1) { ret = gt1x_i2c_read((GTP_READ_COOR_ADDR + 11), &touch_data[11], 1 + 8 * touch_num + 2 - 11); if (ret) { return ret; } } /* cacl checksum */ for (i = 0; i < 1 + 8 * touch_num + 2; i++) { check_sum += touch_data[i]; } if (check_sum) { /* checksum error*/ ret = gt1x_i2c_read(GTP_READ_COOR_ADDR, touch_data, 3 + 8 * touch_num); if (ret) { return ret; } for (i = 0, check_sum = 0; i < 3 + 8 * touch_num; i++) { check_sum += touch_data[i]; } if (check_sum) { GTP_ERROR("Checksum error[%x]", check_sum); return ERROR_VALUE; } } /* * cur_event , pre_event bit defination * bits: bit4 bit3 bit2 bit1 bit0 * event: hover stylus_key stylus key touch */ key_value = touch_data[1 + 8 * touch_num]; /* start check current event */ if ((touch_data[0] & 0x10) && key_value) { #if (GTP_HAVE_STYLUS_KEY || GTP_HAVE_TOUCH_KEY || TPD_HAVE_BUTTON) /* get current key states */ if (key_value & 0xF0) { SET_BIT(cur_event, BIT_STYLUS_KEY); } else if (key_value & 0x0F) { SET_BIT(cur_event, BIT_TOUCH_KEY); } #endif } #if GTP_WITH_STYLUS else if (touch_data[1] & 0x80) { SET_BIT(cur_event, BIT_STYLUS); } #endif else if (touch_num) { SET_BIT(cur_event, BIT_TOUCH); } /* start handle current event and pre-event */ #if GTP_HAVE_STYLUS_KEY if (CHK_BIT(cur_event, BIT_STYLUS_KEY) || CHK_BIT(pre_event, BIT_STYLUS_KEY)) { /* * 0x10 -- stylus key0 down * 0x20 -- stylus key1 down * 0x40 -- stylus key0 & stylus key1 both down */ u8 temp = (key_value & 0x40) ? 0x30 : key_value; for (i = 4; i < 6; i++) { input_report_key(pen_dev, gt1x_stylus_key_array[i - 4], temp & (0x01 << i)); } GTP_DEBUG("Stulus key event."); } #endif #if GTP_WITH_STYLUS if (CHK_BIT(cur_event, BIT_STYLUS)) { coor_data = &touch_data[1]; id = coor_data[0] & 0x7F; input_x = coor_data[1] | (coor_data[2] << 8); input_y = coor_data[3] | (coor_data[4] << 8); input_w = coor_data[5] | (coor_data[6] << 8); input_x = GTP_WARP_X(gt1x_abs_x_max, input_x); input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y); GTP_DEBUG("Pen touch DOWN."); gt1x_pen_down(input_x, input_y, input_w, 0); } else if (CHK_BIT(pre_event, BIT_STYLUS)) { GTP_DEBUG("Pen touch UP."); gt1x_pen_up(0); } #endif #if GTP_HAVE_TOUCH_KEY if (CHK_BIT(cur_event, BIT_TOUCH_KEY) || CHK_BIT(pre_event, BIT_TOUCH_KEY)) { for (i = 0; i < GTP_MAX_KEY_NUM; i++) { input_report_key(dev, gt1x_touch_key_array[i], key_value & (0x01 << i)); } if (CHK_BIT(cur_event, BIT_TOUCH_KEY)) { GTP_DEBUG("Key Down."); } else { GTP_DEBUG("Key Up."); } } #elif TPD_HAVE_BUTTON if (CHK_BIT(cur_event, BIT_TOUCH_KEY) || CHK_BIT(pre_event, BIT_TOUCH_KEY)) { for (i = 0; i < TPD_KEY_COUNT; i++) { if (key_value & (0x01 << i)) { gt1x_touch_down(tpd_virtual_key_array[i].x, tpd_virtual_key_array[i].y, 0, 0); GTP_DEBUG("Key Down."); break; } } if (i == TPD_KEY_COUNT) { gt1x_touch_up(0); GTP_DEBUG("Key Up."); } } #endif /* finger touch event*/ if (CHK_BIT(cur_event, BIT_TOUCH)) { u8 report_num = 0; coor_data = &touch_data[1]; id = coor_data[0] & 0x0F; for (i = 0; i < GTP_MAX_TOUCH; i++) { if (i == id) { input_x = coor_data[1] | (coor_data[2] << 8); input_y = coor_data[3] | (coor_data[4] << 8); input_w = coor_data[5] | (coor_data[6] << 8); input_x = GTP_WARP_X(gt1x_abs_x_max, input_x); input_y = GTP_WARP_Y(gt1x_abs_y_max, input_y); GTP_DEBUG("(%d)(%d,%d)[%d]", id, input_x, input_y, input_w); gt1x_touch_down(input_x, input_y, input_w, i); if (report_num++ < touch_num) { coor_data += 8; id = coor_data[0] & 0x0F; } pre_index |= 0x01 << i; } else if (pre_index & (0x01 << i)) { if (gt1x_ics_slot_report) gt1x_touch_up(i); pre_index &= ~(0x01 << i); } } } else if (CHK_BIT(pre_event, BIT_TOUCH)) { if (gt1x_ics_slot_report) { int cycles = pre_index < 3 ? 3 : GTP_MAX_TOUCH; for (i = 0; i < cycles; i++) { if (pre_index >> i & 0x01) gt1x_touch_up(i); } } else { gt1x_touch_up(0); } GTP_DEBUG("Released Touch."); pre_index = 0; } /* start sync input report */ if (CHK_BIT(cur_event, BIT_STYLUS_KEY | BIT_STYLUS) || CHK_BIT(pre_event, BIT_STYLUS_KEY | BIT_STYLUS)) { input_sync(pen_dev); } if (CHK_BIT(cur_event, BIT_TOUCH_KEY | BIT_TOUCH) || CHK_BIT(pre_event, BIT_TOUCH_KEY | BIT_TOUCH)) { input_sync(dev); } if (unlikely(!pre_event && !cur_event)) { GTP_DEBUG("Additional Int Pulse."); } else { pre_event = cur_event; } return 0; } #if GTP_WITH_STYLUS struct input_dev *pen_dev; static void gt1x_pen_init(void) { s32 ret = 0; pen_dev = input_allocate_device(); if (pen_dev == NULL) { GTP_ERROR("Failed to allocate input device for pen/stylus."); return; } pen_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); pen_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); set_bit(BTN_TOOL_PEN, pen_dev->keybit); set_bit(INPUT_PROP_DIRECT, pen_dev->propbit); #if GTP_HAVE_STYLUS_KEY input_set_capability(pen_dev, EV_KEY, BTN_STYLUS); input_set_capability(pen_dev, EV_KEY, BTN_STYLUS2); #endif input_set_abs_params(pen_dev, ABS_MT_POSITION_X, 0, gt1x_abs_x_max, 0, 0); input_set_abs_params(pen_dev, ABS_MT_POSITION_Y, 0, gt1x_abs_y_max, 0, 0); input_set_abs_params(pen_dev, ABS_MT_PRESSURE, 0, 255, 0, 0); input_set_abs_params(pen_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(pen_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0); pen_dev->name = "goodix-pen"; pen_dev->phys = "input/ts"; pen_dev->id.bustype = BUS_I2C; ret = input_register_device(pen_dev); if (ret) { GTP_ERROR("Register %s input device failed", pen_dev->name); return; } } void gt1x_pen_down(s32 x, s32 y, s32 size, s32 id) { input_report_key(pen_dev, BTN_TOOL_PEN, 1); #if GTP_CHANGE_X2Y GTP_SWAP(x, y); #endif if (gt1x_ics_slot_report) { input_mt_slot(pen_dev, id); input_report_abs(pen_dev, ABS_MT_PRESSURE, size); input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size); input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id); input_report_abs(pen_dev, ABS_MT_POSITION_X, x); input_report_abs(pen_dev, ABS_MT_POSITION_Y, y); } else { input_report_key(pen_dev, BTN_TOUCH, 1); if ((!size) && (!id)) { /* for virtual button */ input_report_abs(pen_dev, ABS_MT_PRESSURE, 100); input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, 100); } else { input_report_abs(pen_dev, ABS_MT_PRESSURE, size); input_report_abs(pen_dev, ABS_MT_TOUCH_MAJOR, size); input_report_abs(pen_dev, ABS_MT_TRACKING_ID, id); } input_report_abs(pen_dev, ABS_MT_POSITION_X, x); input_report_abs(pen_dev, ABS_MT_POSITION_Y, y); input_mt_sync(pen_dev); } } void gt1x_pen_up(s32 id) { input_report_key(pen_dev, BTN_TOOL_PEN, 0); if (gt1x_ics_slot_report) { input_mt_slot(pen_dev, id); input_report_abs(pen_dev, ABS_MT_TRACKING_ID, -1); } else { input_report_key(pen_dev, BTN_TOUCH, 0); input_mt_sync(pen_dev); } } #endif /** * Proximity Module */ #if GTP_PROXIMITY #define GTP_PS_DEV_NAME "goodix_proximity" #define GTP_REG_PROXIMITY_ENABLE 0x8049 #define PS_FARAWAY 1 #define PS_NEAR 0 struct gt1x_ps_device{ int enabled; /* module enabled/disabled */ int state; /* Faraway or Near */ #ifdef PLATFORM_MTK struct hwmsen_object obj_ps; #else struct input_dev *input_dev; struct kobject *kobj; #endif }; static struct gt1x_ps_device *gt1x_ps_dev; static void gt1x_ps_report(int state) { #ifdef PLATFORM_MTK s32 ret = -1; hwm_sensor_data sensor_data; /*map and store data to hwm_sensor_data*/ sensor_data.values[0] = !!state; sensor_data.value_divide = 1; sensor_data.status = SENSOR_STATUS_ACCURACY_MEDIUM; /*report to the up-layer*/ ret = hwmsen_get_interrupt_data(ID_PROXIMITY, &sensor_data); if (ret) { GTP_ERROR("Call hwmsen_get_interrupt_data fail = %d\n", ret); } #else input_report_abs(gt1x_ps_dev->input_dev, ABS_DISTANCE, !!state); input_sync(gt1x_ps_dev->input_dev); #endif /* End PLATFROM_MTK */ GTP_INFO("Report proximity state: %s", state == PS_FARAWAY ? "FARAWAY":"NEAR"); } static s32 gt1x_ps_enable(s32 enable) { u8 state; s32 ret = -1; GTP_INFO("Proximity function to be %s.", enable ? "on" : "off"); state = enable ? 1 : 0; if (gt1x_chip_type == CHIP_TYPE_GT1X) ret = gt1x_i2c_write(GTP_REG_PROXIMITY_ENABLE, &state, 1); else if (gt1x_chip_type == CHIP_TYPE_GT2X) ret = gt1x_send_cmd(state ? 0x12 : 0x13, 0); if (ret) { GTP_ERROR("GTP %s proximity cmd failed.", state ? "enable" : "disable"); } if (!ret && enable) { gt1x_ps_dev->enabled = 1; } else { gt1x_ps_dev->enabled = 0; } gt1x_ps_dev->state = PS_FARAWAY; GTP_INFO("Proximity function %s %s.", state ? "enable" : "disable", ret ? "fail" : "success"); return ret; } int gt1x_prox_event_handler(u8 *data) { u8 ps = 0; if (gt1x_ps_dev && gt1x_ps_dev->enabled) { ps = (data[0] & 0x60) ? 0 : 1; if (ps != gt1x_ps_dev->state) { gt1x_ps_report(ps); gt1x_ps_dev->state = ps; GTP_DEBUG("REG INDEX[0x814E]:0x%02X\n", data[0]); } return (ps == PS_NEAR ? 1 : 0); } return -1; } #ifdef PLATFORM_MTK static inline s32 gt1x_get_ps_value(void) { return gt1x_ps_dev->state; } static s32 gt1x_ps_operate(void *self, u32 command, void *buff_in, s32 size_in, void *buff_out, s32 size_out, s32 *actualout) { s32 err = 0; s32 value; hwm_sensor_data *sensor_data; GTP_INFO("psensor operator cmd:%d", command); switch (command) { case SENSOR_DELAY: if ((buff_in == NULL) || (size_in < sizeof(int))) { GTP_ERROR("Set delay parameter error!"); err = -EINVAL; } /*Do nothing*/ break; case SENSOR_ENABLE: if ((buff_in == NULL) || (size_in < sizeof(int))) { GTP_ERROR("Enable sensor parameter error!"); err = -EINVAL; } else { value = *(int *)buff_in; err = gt1x_ps_enable(value); } break; case SENSOR_GET_DATA: if ((buff_out == NULL) || (size_out < sizeof(hwm_sensor_data))) { GTP_ERROR("Get sensor data parameter error!"); err = -EINVAL; } else { sensor_data = (hwm_sensor_data *) buff_out; sensor_data->values[0] = gt1x_get_ps_value(); sensor_data->value_divide = 1; sensor_data->status = SENSOR_STATUS_ACCURACY_MEDIUM; } break; default: GTP_ERROR("proxmy sensor operate function no this parameter %d!\n", command); err = -1; break; } return err; } #endif #ifndef PLATFORM_MTK static ssize_t gt1x_ps_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d", gt1x_ps_dev->enabled); } static ssize_t gt1x_ps_enable_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int input; if (sscanf(buf, "%u", &input) != 1) { return -EINVAL; } if (input == 1) { gt1x_ps_enable(1); gt1x_ps_report(PS_FARAWAY); } else if (input == 0) { gt1x_ps_report(PS_FARAWAY); gt1x_ps_enable(0); } else { return -EINVAL; } return count; } static ssize_t gt1x_ps_state_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return scnprintf(buf, PAGE_SIZE, "%d", gt1x_ps_dev->state); } static ssize_t gt1x_ps_state_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int input; if (sscanf(buf, "%u", &input) != 1) { return -EINVAL; } if (!gt1x_ps_dev->enabled) { return -EINVAL; } if (input == 1) { gt1x_ps_dev->state = PS_FARAWAY; } else if (input == 0) { gt1x_ps_dev->state = PS_NEAR; } else { return -EINVAL; } gt1x_ps_report(gt1x_ps_dev->state); return count; } static struct kobj_attribute ps_attrs[] = { __ATTR(enable, S_IWUGO | S_IRUGO, gt1x_ps_enable_show, gt1x_ps_enable_store), __ATTR(state, S_IWUGO | S_IRUGO, gt1x_ps_state_show, gt1x_ps_state_store) }; #endif /* End PLATFORM_MTK */ static int gt1x_ps_init(void) { int err; gt1x_ps_dev = kzalloc(sizeof(struct gt1x_ps_device), GFP_KERNEL); if (!gt1x_ps_dev) { return -ENOMEM; } gt1x_ps_dev->state = PS_FARAWAY; #ifdef PLATFORM_MTK gt1x_ps_dev->obj_ps.polling = 0; /* 0--interrupt mode;1--polling mode; */ gt1x_ps_dev->obj_ps.sensor_operate = gt1x_ps_operate; if (hwmsen_attach(ID_PROXIMITY, >1x_ps_dev->obj_ps)) { GTP_ERROR("hwmsen attach fail, return:%d.", err); goto err_exit; } GTP_INFO("hwmsen attach OK."); return 0; #else gt1x_ps_dev->input_dev = input_allocate_device(); if (!gt1x_ps_dev->input_dev) { GTP_ERROR("Failed to alloc inpput device for proximity!"); err = -ENOMEM; goto err_exit; } gt1x_ps_dev->input_dev->name = GTP_PS_DEV_NAME; gt1x_ps_dev->input_dev->phys = "goodix/proximity"; gt1x_ps_dev->input_dev->id.bustype = BUS_I2C; gt1x_ps_dev->input_dev->id.vendor = 0xDEED; gt1x_ps_dev->input_dev->id.product = 0xBEEF; gt1x_ps_dev->input_dev->id.version = 1; set_bit(EV_ABS, gt1x_ps_dev->input_dev->evbit); input_set_abs_params(gt1x_ps_dev->input_dev, ABS_DISTANCE, 0, 1, 0, 0); err = input_register_device(gt1x_ps_dev->input_dev); if (err) { GTP_ERROR("Failed to register proximity input device: %s!", gt1x_ps_dev->input_dev->name); goto err_register_dev; } /* register sysfs interface */ if (!sysfs_rootdir) { sysfs_rootdir = kobject_create_and_add("goodix", NULL); if (!sysfs_rootdir) { GTP_ERROR("Failed to create and add sysfs interface: goodix."); err = -ENOMEM; goto err_register_dev; } } gt1x_ps_dev->kobj = kobject_create_and_add("proximity", sysfs_rootdir); if (!gt1x_ps_dev->kobj) { GTP_ERROR("Failed to create and add sysfs interface: proximity."); err = -ENOMEM; goto err_register_dev; } /*create sysfs files*/ { int i; for (i = 0; i < sizeof(ps_attrs)/sizeof(ps_attrs[0]); i++) { if (sysfs_create_file(gt1x_ps_dev->kobj, &ps_attrs[i].attr)) { goto err_create_file; } } } GTP_INFO("Proximity sensor init OK."); return 0; err_create_file: kobject_put(gt1x_ps_dev->kobj); err_register_dev: input_free_device(gt1x_ps_dev->input_dev); #endif /* End PLATFROM_MTK */ err_exit: kfree(gt1x_ps_dev); gt1x_ps_dev = NULL; return err; } static void gt1x_ps_deinit(void) { if (gt1x_ps_dev) { #ifndef PLATFORM_MTK int i = 0; for (; i < sizeof(ps_attrs) / sizeof(ps_attrs[0]); i++) { sysfs_remove_file(gt1x_ps_dev->kobj, &ps_attrs[i].attr); } kobject_del(gt1x_ps_dev->kobj); input_free_device(gt1x_ps_dev->input_dev); #endif kfree(gt1x_ps_dev); } } #endif /*GTP_PROXIMITY */ /** * ESD Protect Module */ #if GTP_ESD_PROTECT static int esd_work_cycle = 200; static struct delayed_work esd_check_work; static int esd_running; static struct mutex esd_lock; static void gt1x_esd_check_func(struct work_struct *); void gt1x_init_esd_protect(void) { esd_work_cycle = 2 * HZ; /* HZ: clock ticks in 1 second generated by system */ GTP_DEBUG("Clock ticks for an esd cycle: %d", esd_work_cycle); INIT_DELAYED_WORK(&esd_check_work, gt1x_esd_check_func); mutex_init(&esd_lock); } static void gt1x_deinit_esd_protect(void) { gt1x_esd_switch(SWITCH_OFF); } void gt1x_esd_switch(s32 on) { mutex_lock(&esd_lock); if (SWITCH_ON == on) { /* switch on esd check */ if (!esd_running) { esd_running = 1; GTP_INFO("Esd protector started!"); queue_delayed_work(gt1x_workqueue, &esd_check_work, esd_work_cycle); } } else { /* switch off esd check */ if (esd_running) { esd_running = 0; GTP_INFO("Esd protector stoped!"); cancel_delayed_work(&esd_check_work); } } mutex_unlock(&esd_lock); } static void gt1x_esd_check_func(struct work_struct *work) { s32 i = 0; s32 ret = -1; u8 esd_buf[4] = { 0 }; if (!esd_running) { GTP_INFO("Esd protector suspended!"); return; } for (i = 0; i < 3; i++) { ret = gt1x_i2c_read(GTP_REG_CMD, esd_buf, 4); GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8043 = 0x%02X", esd_buf[0], esd_buf[3]); if (!ret && esd_buf[0] != 0xAA && esd_buf[3] == 0xAA) { break; } msleep(50); } if (likely(i < 3)) { /* IC works normally, Write 0x8040 0xAA, feed the watchdog */ gt1x_send_cmd(GTP_CMD_ESD, 0); } else { if (esd_running) { GTP_ERROR("IC works abnormally! Process reset guitar."); memset(esd_buf, 0x01, sizeof(esd_buf)); gt1x_i2c_write(0x4226, esd_buf, sizeof(esd_buf)); msleep(50); gt1x_power_reset(); } else { GTP_INFO("Esd protector suspended, no need reset!"); } } mutex_lock(&esd_lock); if (esd_running) { queue_delayed_work(gt1x_workqueue, &esd_check_work, esd_work_cycle); } else { GTP_INFO("Esd protector suspended!"); } mutex_unlock(&esd_lock); } #endif /** * Smart Cover Module */ #if GTP_SMART_COVER struct smart_cover_device{ int enabled; int state; /* 0:cover faraway 1:near */ int suspended; /* suspended or woring */ struct kobject *kobj; u8 config[GTP_CONFIG_MAX_LENGTH]; int cfg_len; }; static struct smart_cover_device *gt1x_sc_dev; /** * gt1x_smart_cover_update_state - update smart cover config */ static int gt1x_smart_cover_update_state(void) { int ret = 0; struct smart_cover_device *dev = gt1x_sc_dev; if (!dev) { return -ENODEV; } if (!dev->suspended) { if (dev->state) { /* near */ ret = gt1x_send_cfg(dev->config, dev->cfg_len); } else { #if GTP_CHARGER_SWITCH gt1x_charger_config(1); /*charger detector module check and*/ /*send a config*/ #else ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length); #endif } GTP_DEBUG("Update cover state %s.", dev->state ? "Nearby" : "Far away"); } else { GTP_DEBUG("TP is suspended, do nothing."); } return ret; } static ssize_t smart_cover_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct smart_cover_device *dev = gt1x_sc_dev; if (!dev) { return -ENODEV; } return scnprintf(buf, PAGE_SIZE, "%d", dev->state); } static ssize_t smart_cover_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct smart_cover_device *dev = gt1x_sc_dev; int s = (buf[0] - '0'); if (!dev || !dev->enabled || s > 1 || s == dev->state) { return count; } dev->state = s; gt1x_smart_cover_update_state(); return count; } /** * gt1x_parse_sc_cfg - parse smart cover config * @sensor_id: sensor id of the hardware */ int gt1x_parse_sc_cfg(int sensor_id) { #undef _cfg_array_ #define _cfg_array_(n) GTP_SMART_COVER_CFG_GROUP##n u8 *cfg; int *len; if (!gt1x_sc_dev) return -ENODEV; cfg = gt1x_sc_dev->config; len = >1x_sc_dev->cfg_len; #if GTP_DRIVER_SEND_CFG do { u8 cfg_grp0[] = _cfg_array_(0); u8 cfg_grp1[] = _cfg_array_(1); u8 cfg_grp2[] = _cfg_array_(2); u8 cfg_grp3[] = _cfg_array_(3); u8 cfg_grp4[] = _cfg_array_(4); u8 cfg_grp5[] = _cfg_array_(5); u8 *cfgs[] = { cfg_grp0, cfg_grp1, cfg_grp2, cfg_grp3, cfg_grp4, cfg_grp5 }; u8 cfg_lens[] = { CFG_GROUP_LEN(cfg_grp0), CFG_GROUP_LEN(cfg_grp1), CFG_GROUP_LEN(cfg_grp2), CFG_GROUP_LEN(cfg_grp3), CFG_GROUP_LEN(cfg_grp4), CFG_GROUP_LEN(cfg_grp5) }; if (sensor_id >= sizeof(cfgs) / sizeof(cfgs[0])) { GTP_ERROR("Invalid sensor id."); return -1; } *len = cfg_lens[sensor_id]; if (*len == 0 || *len != gt1x_cfg_length) { memset(cfg, 0, GTP_CONFIG_MAX_LENGTH); *len = 0; GTP_ERROR("Length of config is incorrect."); return -1; } memcpy(cfg, cfgs[sensor_id], cfg_lens[sensor_id]); cfg[0] &= 0x7F; set_reg_bit(cfg[TRIGGER_LOC], 0, gt1x_int_type); set_reg_bit(cfg[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level); } while (0); #endif return 0; } static struct kobj_attribute sc_attr = __ATTR(state, S_IWUGO | S_IRUGO, smart_cover_show, smart_cover_store); static int gt1x_smart_cover_init(void) { int err = 0; gt1x_sc_dev = kzalloc(sizeof(struct smart_cover_device), GFP_KERNEL); if (!gt1x_sc_dev) { GTP_ERROR("SmartCover init failed in step: 1."); return -ENOMEM; } gt1x_sc_dev->enabled = 1; gt1x_parse_sc_cfg(gt1x_version.sensor_id); if (!sysfs_rootdir) { /*this kobject is shared between modules, do not free it when error occur*/ sysfs_rootdir = kobject_create_and_add(GOODIX_SYSFS_DIR, NULL); if (!sysfs_rootdir) { err = -2; goto exit_free_mem; } } if (!gt1x_sc_dev->kobj) gt1x_sc_dev->kobj = kobject_create_and_add("smartcover", sysfs_rootdir); if (!gt1x_sc_dev->kobj) { err = -3; goto exit_free_mem; } if (sysfs_create_file(gt1x_sc_dev->kobj, &sc_attr.attr)) { err = -4; goto exit_put_kobj; } GTP_INFO("SmartCover module init OK."); return 0; exit_put_kobj: kobject_put(gt1x_sc_dev->kobj); exit_free_mem: kfree(gt1x_sc_dev); gt1x_sc_dev = NULL; GTP_ERROR("SmartCover init failed in step:%d", -err); return err; } static void gt1x_smart_cover_deinit(void) { if (!gt1x_sc_dev) { return; } kobject_del(gt1x_sc_dev->kobj); kfree(gt1x_sc_dev); gt1x_sc_dev = NULL; } #endif /** * Charger Detect & Switch Module */ #if GTP_CHARGER_SWITCH static u8 gt1x_config_charger[GTP_CONFIG_MAX_LENGTH] = { 0 }; static struct delayed_work charger_switch_work; static int charger_work_cycle = 200; static spinlock_t charger_lock; static int charger_running; static void gt1x_charger_work_func(struct work_struct *); /** * gt1x_parse_chr_cfg - parse charger config * @sensor_id: sensor id of the hardware * Return: 0: succeed, <0 error */ int gt1x_parse_chr_cfg(int sensor_id) { #undef _cfg_array_ #define _cfg_array_(n) GTP_CHARGER_CFG_GROUP##n u8 *cfg; int len; cfg = gt1x_config_charger; #if GTP_DRIVER_SEND_CFG do { u8 cfg_grp0[] = _cfg_array_(0); u8 cfg_grp1[] = _cfg_array_(1); u8 cfg_grp2[] = _cfg_array_(2); u8 cfg_grp3[] = _cfg_array_(3); u8 cfg_grp4[] = _cfg_array_(4); u8 cfg_grp5[] = _cfg_array_(5); u8 *cfgs[] = { cfg_grp0, cfg_grp1, cfg_grp2, cfg_grp3, cfg_grp4, cfg_grp5 }; u8 cfg_lens[] = { CFG_GROUP_LEN(cfg_grp0), CFG_GROUP_LEN(cfg_grp1), CFG_GROUP_LEN(cfg_grp2), CFG_GROUP_LEN(cfg_grp3), CFG_GROUP_LEN(cfg_grp4), CFG_GROUP_LEN(cfg_grp5) }; if (sensor_id >= sizeof(cfgs) / sizeof(cfgs[0])) { return -1; } len = cfg_lens[sensor_id]; if (len == 0 || len != gt1x_cfg_length) { memset(cfg, 0, GTP_CONFIG_MAX_LENGTH); GTP_ERROR("Length of config is incorrect."); return -1; } memcpy(cfg, cfgs[sensor_id], cfg_lens[sensor_id]); cfg[0] &= 0x7F; cfg[RESOLUTION_LOC] = (u8) gt1x_abs_x_max; cfg[RESOLUTION_LOC + 1] = (u8) (gt1x_abs_x_max >> 8); cfg[RESOLUTION_LOC + 2] = (u8) gt1x_abs_y_max; cfg[RESOLUTION_LOC + 3] = (u8) (gt1x_abs_y_max >> 8); set_reg_bit(cfg[TRIGGER_LOC], 0, gt1x_int_type); set_reg_bit(cfg[MODULE_SWITCH3_LOC], 5, !gt1x_wakeup_level); } while (0); #endif return 0; } static void gt1x_init_charger(void) { charger_work_cycle = 2 * HZ; /* HZ: clock ticks in 1 second generated by system */ GTP_DEBUG("Clock ticks for an charger cycle: %d", charger_work_cycle); INIT_DELAYED_WORK(&charger_switch_work, gt1x_charger_work_func); spin_lock_init(&charger_lock); if (gt1x_parse_chr_cfg(gt1x_version.sensor_id) < 0) { GTP_ERROR("Error occured when parse charger config."); } } /** * gt1x_charger_switch - switch states of charging work thread * * @on: SWITCH_ON - start work thread, SWITCH_OFF: stop . */ void gt1x_charger_switch(s32 on) { spin_lock(&charger_lock); if (SWITCH_ON == on) { if (!charger_running) { charger_running = 1; spin_unlock(&charger_lock); GTP_INFO("Charger checker started!"); queue_delayed_work(gt1x_workqueue, &charger_switch_work, charger_work_cycle); } else { spin_unlock(&charger_lock); } } else { if (charger_running) { charger_running = 0; spin_unlock(&charger_lock); cancel_delayed_work(&charger_switch_work); GTP_INFO("Charger checker stoped!"); } else { spin_unlock(&charger_lock); } } } /** * gt1x_charger_config - check and update charging status configuration * @dir_update * 0: check before send charging status configuration * 1: directly send charging status configuration * */ void gt1x_charger_config(s32 dir_update) { static u8 chr_pluggedin; #if GTP_SMART_COVER if (gt1x_sc_dev && gt1x_sc_dev->enabled && gt1x_sc_dev->state) { return; } #endif if (gt1x_get_charger_status()) { if (!chr_pluggedin || dir_update) { GTP_INFO("Charger Plugin."); if (gt1x_send_cfg(gt1x_config_charger, gt1x_cfg_length)) { GTP_ERROR("Send config for Charger Plugin failed!"); } if (gt1x_send_cmd(GTP_CMD_CHARGER_ON, 0)) { GTP_ERROR("Update status for Charger Plugin failed!"); } chr_pluggedin = 1; } } else { if (chr_pluggedin || dir_update) { GTP_INFO("Charger Plugout."); if (gt1x_send_cfg(gt1x_config, gt1x_cfg_length)) { GTP_ERROR("Send config for Charger Plugout failed!"); } if (gt1x_send_cmd(GTP_CMD_CHARGER_OFF, 0)) { GTP_ERROR("Update status for Charger Plugout failed!"); } chr_pluggedin = 0; } } } static void gt1x_charger_work_func(struct work_struct *work) { if (!charger_running) { GTP_INFO("Charger checker suspended!"); return; } gt1x_charger_config(0); GTP_DEBUG("Charger check done!"); if (charger_running) { queue_delayed_work(gt1x_workqueue, &charger_switch_work, charger_work_cycle); } } #endif int gt1x_suspend(void) { s32 ret = -1; #if GTP_HOTKNOT && !HOTKNOT_BLOCK_RW u8 buf[1] = { 0 }; #endif if (update_info.status) { return 0; } #if GTP_SMART_COVER if (gt1x_sc_dev) { gt1x_sc_dev->suspended = 1; } #endif GTP_INFO("Suspend start..."); #if GTP_PROXIMITY if (gt1x_ps_dev && gt1x_ps_dev->enabled) { GTP_INFO("proximity is detected!"); return 0; } #endif #if GTP_HOTKNOT if (hotknot_enabled) { #if HOTKNOT_BLOCK_RW if (hotknot_paired_flag) { GTP_INFO("hotknot is paired!"); return 0; } #else ret = gt1x_i2c_read_dbl_check(GTP_REG_HN_PAIRED, buf, sizeof(buf)); if ((!ret && buf[0] == 0x55) || hotknot_transfer_mode) { GTP_DEBUG("0x81AA: 0x%02X", buf[0]); GTP_INFO("hotknot is paired!"); return 0; } #endif } #endif gt1x_halt = 1; #if GTP_ESD_PROTECT gt1x_esd_switch(SWITCH_OFF); #endif #if GTP_CHARGER_SWITCH gt1x_charger_switch(SWITCH_OFF); #endif gt1x_irq_disable(); #if GTP_GESTURE_WAKEUP gesture_clear_wakeup_data(); if (gesture_enabled) { gesture_enter_doze(); gt1x_irq_enable(); gt1x_halt = 0; } else #endif { ret = gt1x_enter_sleep(); if (ret < 0) { GTP_ERROR("Suspend failed."); } } /* to avoid waking up while not sleeping delay 48 + 10ms to ensure reliability */ msleep(58); GTP_INFO("Suspend end..."); return 0; } int gt1x_resume(void) { s32 ret = -1; if (update_info.status) { return 0; } #if GTP_SMART_COVER if (gt1x_sc_dev) { gt1x_sc_dev->suspended = 0; } #endif GTP_DEBUG("Resume start..."); #if GTP_PROXIMITY if (gt1x_ps_dev && gt1x_ps_dev->enabled) { GTP_INFO("Proximity is on!"); return 0; } #endif #if GTP_HOTKNOT if (hotknot_enabled) { #if HOTKNOT_BLOCK_RW if (hotknot_paired_flag) { hotknot_paired_flag = 0; GTP_INFO("Hotknot is paired!"); return 0; } #endif } #endif #if GTP_GESTURE_WAKEUP /* just return 0 if IC does not suspend */ if (!gesture_enabled && !gt1x_halt) return 0; #else if (!gt1x_halt) return 0; #endif ret = gt1x_wakeup_sleep(); if (ret < 0) { GTP_ERROR("Resume failed."); } #if GTP_HOTKNOT if (!hotknot_enabled) { gt1x_send_cmd(GTP_CMD_HN_EXIT_SLAVE, 0); } #endif #if GTP_CHARGER_SWITCH gt1x_charger_config(0); gt1x_charger_switch(SWITCH_ON); #endif gt1x_halt = 0; gt1x_irq_enable(); #if GTP_ESD_PROTECT gt1x_esd_switch(SWITCH_ON); #endif GTP_DEBUG("Resume end."); return 0; } s32 gt1x_init(void) { s32 ret = -1; s32 retry = 0; u8 reg_val[1]; /* power on */ gt1x_power_switch(SWITCH_ON); while (retry++ < 5) { gt1x_init_failed = 0; /* reset ic */ ret = gt1x_reset_guitar(); if (ret != 0) { GTP_ERROR("Reset guitar failed!"); continue; } /* check main system firmware */ ret = gt1x_i2c_read_dbl_check(GTP_REG_FW_CHK_MAINSYS, reg_val, 1); if (ret != 0) { continue; } else if (reg_val[0] != 0xBE) { GTP_ERROR("Check main system not pass[0x%2X].", reg_val[0]); gt1x_init_failed = 1; } #if !GTP_AUTO_UPDATE /* debug info */ ret = gt1x_i2c_read_dbl_check(GTP_REG_FW_CHK_SUBSYS, reg_val, 1); if (!ret && reg_val[0] == 0xAA) { GTP_ERROR("Check subsystem not pass[0x%2X].", reg_val[0]); } #endif break; } /* if the initialization fails, set default setting */ ret |= gt1x_init_failed; if (ret) { GTP_ERROR("Init failed, use default setting"); gt1x_abs_x_max = GTP_MAX_WIDTH; gt1x_abs_y_max = GTP_MAX_HEIGHT; gt1x_int_type = GTP_INT_TRIGGER; gt1x_wakeup_level = GTP_WAKEUP_LEVEL; } /* get chip type */ ret = gt1x_get_chip_type(); if (ret != 0) { GTP_ERROR("Get chip type failed!"); } /* read version information */ ret = gt1x_read_version(>1x_version); if (ret != 0) { GTP_ERROR("Get verision failed!"); } /* init and send configs */ ret = gt1x_init_panel(); if (ret != 0) { GTP_ERROR("Init panel failed."); } gt1x_workqueue = create_singlethread_workqueue("gt1x_workthread"); if (gt1x_workqueue == NULL) { GTP_ERROR("Create workqueue failed!"); } /* init auxiliary node and functions */ #if GTP_DEBUG_NODE gt1x_init_debug_node(); #endif #if GTP_CREATE_WR_NODE gt1x_init_tool_node(); #endif #if GTP_GESTURE_WAKEUP || GTP_HOTKNOT gt1x_init_node(); #endif #if GTP_PROXIMITY gt1x_ps_init(); #endif #if GTP_CHARGER_SWITCH gt1x_init_charger(); gt1x_charger_config(1); gt1x_charger_switch(SWITCH_ON); #endif #if GTP_SMART_COVER gt1x_smart_cover_init(); #endif #if GTP_WITH_STYLUS gt1x_pen_init(); #endif if (ret != 0) gt1x_power_switch(SWITCH_OFF); return ret; } void gt1x_deinit(void) { #if GTP_DEBUG_NODE gt1x_deinit_debug_node(); #endif #if GTP_GESTURE_WAKEUP || GTP_HOTKNOT gt1x_deinit_node(); #endif #if GTP_CREATE_WR_NODE gt1x_deinit_tool_node(); #endif #if GTP_ESD_PROTECT gt1x_deinit_esd_protect(); #endif #if GTP_CHARGER_SWITCH gt1x_charger_switch(SWITCH_OFF); #endif #if GTP_PROXIMITY gt1x_ps_deinit(); #endif #if GTP_SMART_COVER gt1x_smart_cover_deinit(); #endif if (sysfs_rootdir) { kobject_del(sysfs_rootdir); sysfs_rootdir = NULL; } if (gt1x_workqueue) { destroy_workqueue(gt1x_workqueue); } }