
Rockchip Developer Guide Linux IOMMU

ID: RK-KF-YF-110

Release Version: V1.0.0

Release Date: 2019-12-23

Security Level: □Top-Secret □Secret □Internal ■Public

af://n0

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. FUZHOU ROCKCHIP ELECTRONICS CO., LTD.
(“ROCKCHIP”)DOES NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR
OTHERWISE, WITH RESPECT TO THE ACCURACY, RELIABILITY,
COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-
INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN THIS DOCUMENT.
THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED OR CHANGED
WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR ANY OTHER
REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2019. Fuzhou Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Fuzhou Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Kernel Version

All chipset 4.4 & 4.19

Preface

Overview

IOMMU is used for the conversion of 32-bit virtual addresses and physical addresses. It has read-write control
bits and can generate page fault exceptions and bus exception interrupts.

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers
Software development engineers

Version Author Date Change Description

V1.0.0 Simon.Xue 2019-12-23 Initial version

Revision History

Rockchip Developer Guide Linux IOMMU
1. IOMMU Structure
2. IOMMU Driver

2.1 Driver File
2.2 DTS Configuration

3. IOMMU Usage
4. Kernel configuration
5. IOMMU FAQ

1. IOMMU Structure

It is using 2 level table structure, which as follow:

32bit address structure, the first 10 bits of the first-level page table offset, the middle 10 bits of the second-level
page table offset, and the last 12 bits within the page offset.

DTE structure：

bit0：indicates whether the next page table present

PTE structure：

af://n50

bit0：indicates whether the actual physical page present

bit1：Read permission

bit2：write permission

2. IOMMU Driver

2.1 Driver File

The driver file is in:
drivers/iommu/rockchip-iommu.c

2.2 DTS Configuration

The reference DTS configuration is
Documentation/devicetree/bindings/iommu/rockchip,iommu.txt here introduce the follow
parameter mainly:

compatible = "rockchip,iommu";

For all the iommu of the device, the compatible field value is the same

interrupts = <GIC_SPI 119 IRQ_TYPE_LEVEL_HIGH 0>;

It used for exceptional interrupt, such as page fault interrupts.

clocks = <&cru ACLK_VOP1>, <&cru HCLK_VOP1>;

clock-names = "aclk", "hclk";

IOMMU and master share clock, here IOMMU driver controls clock separately

power-domains = <&power RK3399_PD_VOPL>;

IOMMU driver manipulates PD.

iommu-cells = <0>;

Here value must be 0, the reason refer to iommu.txt

3. IOMMU Usage

The ROCKCHIP IOMMU driver depends on the IOMMU framework (drivers/iommu/iommu.c), which
mainly implements the callback function in struct iommu_ops rk_iommu_ops , and then the master calls the
API provided by the iommu framework to operate on iommu, as follows:

1. iommu attach

iommu_attach_device -> rk_iommu_attach_device /* enable iommu */

2. iommu detach

iommu_detach_device -> rk_iommu_detach_device /* disable iommu */

af://n63
af://n64
af://n66
af://n90

3. iommu map

iommu_map -> rk_iommu_map

Create a page table and establish the mapping relationship between the virtual address and the physical
address. When debugging, open the dbg in iommu_map and observe the mapping

4. iommu unmap

iommu_unmap -> rk_iommu_unmap

Remove the mapping relationship between the virtual address and the physical address, and release the
virtual address space. When debugging, open the dbg in iommu_unmap and observe
unmapping

5. domain alloc

iommu_domain_alloc -> rk_iommu_domain_alloc

Apply page table base address for attach / detach operation

6. domain free

iommu_domain_free -> rk_iommu_domain_free

Free page space

7. dump iommu

Take RK3399 vopl_iommu as example, assume the current virtual address is 0x00001000, dump page
table as follow order

1. obtain the level 1 page table base address: DT

io -4 0xff8f3f00

2. calculate page level 1 page table offset

index1 = VA >> 22

3. calculate page level 1 page table physical address: DTE

DTE = index1 * 4 + DT

4. obtain the level 2 page table base address: PT

PT = io -4 DTE

5. calculate page level 2 page table offset

index2 = VA && 0x3ff000

6. calculate page level 1 page table physical address: PTE

PTE = index2 * 4 + PT

7. obtain PAGE physical address: page

page = io -4 PTE

8. Calculate in-page offset

offset = page + (VA && 0xfff)

offset is the physical address corresponding to the virtual address 0x00001000, which the master can use to
analyze whether the data is correct

8. dma-mapping

1. if dev is not iommu device

ARM32: dev->dma_ops = arm_dma_ops;

ARM64: dev->dma_ops = arm64_swiotlb_dma_ops;

2. if dev is iommu device

ARM32: dev->dma_ops = iommu_ops;

ARM64: dev->dma_ops = iommu_dma_ops;

take dma_alloc_attrs as example:

1. For non-iommu dev, call alloc callback from a's dma_ops to alloc
continuous physical memory and kernel mode virtual address

2. For iommu dev, call the alloc callback from b's dma_ops to alloc
physical memory, and call it through the iommu framework
iommu_map to create the IOMMU page table, establish the mapping
between the virtual address and the physical address, and return
the first IOMMU virtual address and kernel mode virtual address

One of the easiest steps to use IOMMU

IOMMU is a basic component that can be embedded in various memory allocation frameworks, such as ION /
DRM. Taking DRM under the ARM64 environment as an example, a complete IOMMU buffer allocation and
mapping process is as follows

The IOMMU mapping process by passing FD is as follows:

4. Kernel configuration

1. domain = iommu_domain_alloc(&platform_bus_type);

2. iommu_map(domain, iova, paddr, size, prot)；

3. iommu_attach_device(domain, dev)；

4. master access memory via iommu

rockchip_gem_alloc_buf ->

rockchip_gem_get_pages ->

rockchip_gem_iommu_map ->

iommu_map_sg ->

iommu_map

struct dma_buf *dmabuf = dma_buf_get(fd) ->

dma_buf_attach -> dma_buf_map_attachment ->

map_dma_buf -> drm_gem_map_dma_buf ->

dma_map_sg_attrs -> map_sg ->

__iommu_map_sg_attrs ->

iommu_dma_map_sg ->

iommu_map_sg ->

iommu_map

af://n167

5. IOMMU FAQ

1. Pagefault interrupt

A pagefault interrupt occurs, indicating that the current IOMMU has a page fault exception, that is, the
virtual address currently being accessed does not create a matched map. There are caused by three
possibilities, the first one is to access the address not mapped, the other is access beyond the mapping area,
and the third is to start accessing without mapping. In history, three situations above all have appeared in
master.

2. Error IOMMU enable stall

This is likely to be that a pagefault exception has occurred in IOMMU, the master does not handle the
exception but continue to visit, which can be find from the log.

3. Error access IOMMU registers

It is likely caused by the master's processing of PD, that is, the use of pm_runtime_get_sync /
pm_runtime_put_sync is unreasonable, which also means accessing to the IOMMU register without
opening the IOMMU power domain.

4. Continue to trigger IOMMU interrupt

The IOMMU interrupt number is incorrect in DTS file.

5. Splash screen

During vop display, enable IOMMU may leads to vop access memory error. In the chip without frame
effect function, should not enable IOMMU until vop is in idle status.

6. Error IOMMU register

It is very likely caused by the master accesses the IOMMU register out of IOMMU register range or the
master resets the entire IP.

7. Device Link

IOMMU integrates device link operation and hands over the PD operation authority to the master. The
master needs to pay attention to the use of pm_runtime_get / pm_runtime_put .

8. Shared IOMMU

In the ARM32 environment, the master of the shared IOMMU needs to maintain
independent page tables, such as VEPU and VDPU. Before each accessing, the matched page table needs to
be attached. ARM64 is a shared page table, and does not need to be attached every time.

Symbol: ROCKCHIP_IOMMU [=y]

Type : boolean

Prompt: Rockchip IOMMU Support

 Location:

 -> Device Drivers

 -> IOMMU Hardware Support (IOMMU_SUPPORT [=y])

 Defined at drivers/iommu/Kconfig:211

 Depends on: IOMMU_SUPPORT [=y] && (ARM || ARM64 [=y]) && (ARCH_ROCKCHIP [=y]

||

 COMPILE_TEST [=n])

 Selects: IOMMU_API [=y] && ARM_DMA_USE_IOMMU

af://n169

	Rockchip Developer Guide Linux IOMMU
	IOMMU Structure
	IOMMU Driver
	Driver File
	DTS Configuration

	IOMMU Usage
	Kernel configuration
	IOMMU FAQ

