/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #pragma clang diagnostic ignored "-Wextra" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "SurfaceFlinger.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BufferLayer.h" #include "BufferQueueLayer.h" #include "BufferStateLayer.h" #include "Client.h" #include "Colorizer.h" #include "ContainerLayer.h" #include "DisplayDevice.h" #include "DisplayHardware/ComposerHal.h" #include "DisplayHardware/DisplayIdentification.h" #include "DisplayHardware/FramebufferSurface.h" #include "DisplayHardware/HWComposer.h" #include "DisplayHardware/Hal.h" #include "DisplayHardware/VirtualDisplaySurface.h" #include "DisplayRenderArea.h" #include "EffectLayer.h" #include "Effects/Daltonizer.h" #include "FpsReporter.h" #include "FrameTimeline/FrameTimeline.h" #include "FrameTracer/FrameTracer.h" #include "HdrLayerInfoReporter.h" #include "Layer.h" #include "LayerProtoHelper.h" #include "LayerRenderArea.h" #include "LayerVector.h" #include "MonitoredProducer.h" #include "NativeWindowSurface.h" #include "RefreshRateOverlay.h" #include "RegionSamplingThread.h" #include "Scheduler/DispSyncSource.h" #include "Scheduler/EventThread.h" #include "Scheduler/LayerHistory.h" #include "Scheduler/MessageQueue.h" #include "Scheduler/Scheduler.h" #include "Scheduler/VsyncConfiguration.h" #include "Scheduler/VsyncController.h" #include "StartPropertySetThread.h" #include "SurfaceFlingerProperties.h" #include "SurfaceInterceptor.h" #include "TimeStats/TimeStats.h" #include "TunnelModeEnabledReporter.h" #include "WindowInfosListenerInvoker.h" #include "android-base/parseint.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #define MAIN_THREAD ACQUIRE(mStateLock) RELEASE(mStateLock) #define ON_MAIN_THREAD(expr) \ [&] { \ LOG_FATAL_IF(std::this_thread::get_id() != mMainThreadId); \ UnnecessaryLock lock(mStateLock); \ return (expr); \ }() #define MAIN_THREAD_GUARD(expr) \ [&] { \ LOG_FATAL_IF(std::this_thread::get_id() != mMainThreadId); \ MainThreadScopedGuard lock(SF_MAIN_THREAD); \ return (expr); \ }() #undef NO_THREAD_SAFETY_ANALYSIS #define NO_THREAD_SAFETY_ANALYSIS \ _Pragma("GCC error \"Prefer MAIN_THREAD macros or {Conditional,Timed,Unnecessary}Lock.\"") namespace android { using namespace std::string_literals; using namespace android::hardware::configstore; using namespace android::hardware::configstore::V1_0; using namespace android::sysprop; using android::hardware::power::Boost; using base::StringAppendF; using gui::IWindowInfosListener; using gui::WindowInfo; using ui::ColorMode; using ui::Dataspace; using ui::DisplayPrimaries; using ui::RenderIntent; namespace hal = android::hardware::graphics::composer::hal; namespace { #pragma clang diagnostic push #pragma clang diagnostic error "-Wswitch-enum" bool isWideColorMode(const ColorMode colorMode) { switch (colorMode) { case ColorMode::DISPLAY_P3: case ColorMode::ADOBE_RGB: case ColorMode::DCI_P3: case ColorMode::BT2020: case ColorMode::DISPLAY_BT2020: case ColorMode::BT2100_PQ: case ColorMode::BT2100_HLG: return true; case ColorMode::NATIVE: case ColorMode::STANDARD_BT601_625: case ColorMode::STANDARD_BT601_625_UNADJUSTED: case ColorMode::STANDARD_BT601_525: case ColorMode::STANDARD_BT601_525_UNADJUSTED: case ColorMode::STANDARD_BT709: case ColorMode::SRGB: return false; } return false; } #pragma clang diagnostic pop template struct SCOPED_CAPABILITY ConditionalLockGuard { ConditionalLockGuard(Mutex& mutex, bool lock) ACQUIRE(mutex) : mutex(mutex), lock(lock) { if (lock) mutex.lock(); } ~ConditionalLockGuard() RELEASE() { if (lock) mutex.unlock(); } Mutex& mutex; const bool lock; }; using ConditionalLock = ConditionalLockGuard; struct SCOPED_CAPABILITY TimedLock { TimedLock(Mutex& mutex, nsecs_t timeout, const char* whence) ACQUIRE(mutex) : mutex(mutex), status(mutex.timedLock(timeout)) { ALOGE_IF(!locked(), "%s timed out locking: %s (%d)", whence, strerror(-status), status); } ~TimedLock() RELEASE() { if (locked()) mutex.unlock(); } bool locked() const { return status == NO_ERROR; } Mutex& mutex; const status_t status; }; struct SCOPED_CAPABILITY UnnecessaryLock { explicit UnnecessaryLock(Mutex& mutex) ACQUIRE(mutex) {} ~UnnecessaryLock() RELEASE() {} }; // TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity. constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV; float getDensityFromProperty(const char* property, bool required) { char value[PROPERTY_VALUE_MAX]; const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f; if (!density && required) { ALOGE("%s must be defined as a build property", property); return FALLBACK_DENSITY; } return density; } // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference. bool validateCompositionDataspace(Dataspace dataspace) { return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3; } class FrameRateFlexibilityToken : public BBinder { public: FrameRateFlexibilityToken(std::function callback) : mCallback(callback) {} virtual ~FrameRateFlexibilityToken() { mCallback(); } private: std::function mCallback; }; enum Permission { ACCESS_SURFACE_FLINGER = 0x1, ROTATE_SURFACE_FLINGER = 0x2, }; struct IdleTimerConfig { int32_t timeoutMs; bool supportKernelIdleTimer; }; IdleTimerConfig getIdleTimerConfiguration(DisplayId displayId) { // TODO(adyabr): use ro.surface_flinger.* namespace const auto displayIdleTimerMsKey = [displayId] { std::stringstream ss; ss << "debug.sf.set_idle_timer_ms_" << displayId.value; return ss.str(); }(); const auto displaySupportKernelIdleTimerKey = [displayId] { std::stringstream ss; ss << "debug.sf.support_kernel_idle_timer_" << displayId.value; return ss.str(); }(); const int32_t displayIdleTimerMs = base::GetIntProperty(displayIdleTimerMsKey, 0); const auto displaySupportKernelIdleTimer = base::GetBoolProperty(displaySupportKernelIdleTimerKey, false); if (displayIdleTimerMs > 0) { return {displayIdleTimerMs, displaySupportKernelIdleTimer}; } const int32_t setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms", 0); const int32_t millis = setIdleTimerMs ? setIdleTimerMs : sysprop::set_idle_timer_ms(0); return {millis, sysprop::support_kernel_idle_timer(false)}; } } // namespace anonymous // --------------------------------------------------------------------------- const String16 sHardwareTest("android.permission.HARDWARE_TEST"); const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER"); const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS"); const String16 sDump("android.permission.DUMP"); const String16 sCaptureBlackoutContent("android.permission.CAPTURE_BLACKOUT_CONTENT"); const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled"; // --------------------------------------------------------------------------- int64_t SurfaceFlinger::dispSyncPresentTimeOffset; bool SurfaceFlinger::useHwcForRgbToYuv; bool SurfaceFlinger::hasSyncFramework; int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; uint32_t SurfaceFlinger::maxGraphicsWidth; uint32_t SurfaceFlinger::maxGraphicsHeight; bool SurfaceFlinger::hasWideColorDisplay; ui::Rotation SurfaceFlinger::internalDisplayOrientation = ui::ROTATION_0; bool SurfaceFlinger::useColorManagement; bool SurfaceFlinger::useContextPriority; Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB; ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888; Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB; ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888; bool SurfaceFlinger::useFrameRateApi; bool SurfaceFlinger::enableSdrDimming; bool SurfaceFlinger::enableLatchUnsignaled; std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) { switch(displayColorSetting) { case DisplayColorSetting::kManaged: return std::string("Managed"); case DisplayColorSetting::kUnmanaged: return std::string("Unmanaged"); case DisplayColorSetting::kEnhanced: return std::string("Enhanced"); default: return std::string("Unknown ") + std::to_string(static_cast(displayColorSetting)); } } bool callingThreadHasRotateSurfaceFlingerAccess() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); return uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(sRotateSurfaceFlinger, pid, uid); } SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag) : mFactory(factory), mInterceptor(mFactory.createSurfaceInterceptor()), mTimeStats(std::make_shared()), mFrameTracer(mFactory.createFrameTracer()), mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, getpid())), mEventQueue(mFactory.createMessageQueue()), mCompositionEngine(mFactory.createCompositionEngine()), mHwcServiceName(base::GetProperty("debug.sf.hwc_service_name"s, "default"s)), mTunnelModeEnabledReporter(new TunnelModeEnabledReporter()), mInternalDisplayDensity(getDensityFromProperty("ro.sf.lcd_density", true)), mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)), mPowerAdvisor(*this), mWindowInfosListenerInvoker(new WindowInfosListenerInvoker(this)) { ALOGI("Using HWComposer service: %s", mHwcServiceName.c_str()); } SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) { ALOGI("SurfaceFlinger is starting"); hasSyncFramework = running_without_sync_framework(true); dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0); useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false); maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(3); maxGraphicsWidth = std::max(max_graphics_width(0), 0); maxGraphicsHeight = std::max(max_graphics_height(0), 0); hasWideColorDisplay = has_wide_color_display(false); #if RK_UTGARD_GPU_CLOSE_COLORMANAGEMENT //Turn off color management on utgard GPU to avoid doing colorspace transformation twice. useColorManagement = use_color_management(false); #else // Android 12 and beyond, color management in display pipeline is turned on // by default. useColorManagement = use_color_management(true); #endif mDefaultCompositionDataspace = static_cast(default_composition_dataspace(Dataspace::V0_SRGB)); mWideColorGamutCompositionDataspace = static_cast(wcg_composition_dataspace( hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB)); defaultCompositionDataspace = mDefaultCompositionDataspace; wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace; defaultCompositionPixelFormat = static_cast( default_composition_pixel_format(ui::PixelFormat::RGBA_8888)); wideColorGamutCompositionPixelFormat = static_cast(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888)); mColorSpaceAgnosticDataspace = static_cast(color_space_agnostic_dataspace(Dataspace::UNKNOWN)); mLayerCachingEnabled = [] { const bool enable = android::sysprop::SurfaceFlingerProperties::enable_layer_caching().value_or(false); return base::GetBoolProperty(std::string("debug.sf.enable_layer_caching"), enable); }(); useContextPriority = use_context_priority(true); using Values = SurfaceFlingerProperties::primary_display_orientation_values; switch (primary_display_orientation(Values::ORIENTATION_0)) { case Values::ORIENTATION_0: break; case Values::ORIENTATION_90: internalDisplayOrientation = ui::ROTATION_90; break; case Values::ORIENTATION_180: internalDisplayOrientation = ui::ROTATION_180; break; case Values::ORIENTATION_270: internalDisplayOrientation = ui::ROTATION_270; break; } ALOGV("Internal Display Orientation: %s", toCString(internalDisplayOrientation)); mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries(); // debugging stuff... char value[PROPERTY_VALUE_MAX]; property_get("ro.bq.gpu_to_cpu_unsupported", value, "0"); mGpuToCpuSupported = !atoi(value); property_get("ro.build.type", value, "user"); mIsUserBuild = strcmp(value, "user") == 0; property_get("debug.sf.showupdates", value, "0"); mDebugRegion = atoi(value); ALOGI_IF(mDebugRegion, "showupdates enabled"); // DDMS debugging deprecated (b/120782499) property_get("debug.sf.ddms", value, "0"); int debugDdms = atoi(value); ALOGI_IF(debugDdms, "DDMS debugging not supported"); property_get("debug.sf.enable_gl_backpressure", value, "0"); mPropagateBackpressureClientComposition = atoi(value); ALOGI_IF(mPropagateBackpressureClientComposition, "Enabling backpressure propagation for Client Composition"); property_get("ro.surface_flinger.supports_background_blur", value, "0"); bool supportsBlurs = atoi(value); mSupportsBlur = supportsBlurs; ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported."); property_get("ro.sf.blurs_are_expensive", value, "0"); mBlursAreExpensive = atoi(value); const size_t defaultListSize = ISurfaceComposer::MAX_LAYERS; auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize)); mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize; mGraphicBufferProducerListSizeLogThreshold = std::max(static_cast(0.95 * static_cast(mMaxGraphicBufferProducerListSize)), 1); property_get("debug.sf.luma_sampling", value, "1"); mLumaSampling = atoi(value); property_get("debug.sf.disable_client_composition_cache", value, "0"); mDisableClientCompositionCache = atoi(value); // We should be reading 'persist.sys.sf.color_saturation' here // but since /data may be encrypted, we need to wait until after vold // comes online to attempt to read the property. The property is // instead read after the boot animation if (base::GetBoolProperty("debug.sf.treble_testing_override"s, false)) { // Without the override SurfaceFlinger cannot connect to HIDL // services that are not listed in the manifests. Considered // deriving the setting from the set service name, but it // would be brittle if the name that's not 'default' is used // for production purposes later on. ALOGI("Enabling Treble testing override"); android::hardware::details::setTrebleTestingOverride(true); } useFrameRateApi = use_frame_rate_api(true); mRefreshRateOverlaySpinner = property_get_bool("sf.debug.show_refresh_rate_overlay_spinner", 0); // Debug property overrides ro. property enableSdrDimming = property_get_bool("debug.sf.enable_sdr_dimming", enable_sdr_dimming(false)); enableLatchUnsignaled = base::GetBoolProperty("debug.sf.latch_unsignaled"s, false); } SurfaceFlinger::~SurfaceFlinger() = default; void SurfaceFlinger::onFirstRef() { mEventQueue->init(this); } void SurfaceFlinger::binderDied(const wp&) { // the window manager died on us. prepare its eulogy. mBootFinished = false; // Sever the link to inputflinger since its gone as well. static_cast(schedule([=] { mInputFlinger = nullptr; })); // restore initial conditions (default device unblank, etc) initializeDisplays(); // restart the boot-animation startBootAnim(); } void SurfaceFlinger::run() { while (true) { mEventQueue->waitMessage(); } } template inline std::future SurfaceFlinger::schedule(F&& f) { auto [task, future] = makeTask(std::move(f)); mEventQueue->postMessage(std::move(task)); return std::move(future); } sp SurfaceFlinger::createConnection() { const sp client = new Client(this); return client->initCheck() == NO_ERROR ? client : nullptr; } sp SurfaceFlinger::createDisplay(const String8& displayName, bool secure) { // onTransact already checks for some permissions, but adding an additional check here. // This is to ensure that only system and graphics can request to create a secure // display. Secure displays can show secure content so we add an additional restriction on it. const int uid = IPCThreadState::self()->getCallingUid(); if (secure && uid != AID_GRAPHICS && uid != AID_SYSTEM) { ALOGE("Only privileged processes can create a secure display"); return nullptr; } class DisplayToken : public BBinder { sp flinger; virtual ~DisplayToken() { // no more references, this display must be terminated Mutex::Autolock _l(flinger->mStateLock); flinger->mCurrentState.displays.removeItem(this); flinger->setTransactionFlags(eDisplayTransactionNeeded); } public: explicit DisplayToken(const sp& flinger) : flinger(flinger) { } }; sp token = new DisplayToken(this); Mutex::Autolock _l(mStateLock); // Display ID is assigned when virtual display is allocated by HWC. DisplayDeviceState state; state.isSecure = secure; state.displayName = displayName; mCurrentState.displays.add(token, state); mInterceptor->saveDisplayCreation(state); return token; } void SurfaceFlinger::destroyDisplay(const sp& displayToken) { Mutex::Autolock lock(mStateLock); const ssize_t index = mCurrentState.displays.indexOfKey(displayToken); if (index < 0) { ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get()); return; } const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); if (state.physical) { ALOGE("%s: Invalid operation on physical display", __FUNCTION__); return; } mInterceptor->saveDisplayDeletion(state.sequenceId); mCurrentState.displays.removeItemsAt(index); setTransactionFlags(eDisplayTransactionNeeded); } void SurfaceFlinger::enableHalVirtualDisplays(bool enable) { auto& generator = mVirtualDisplayIdGenerators.hal; if (!generator && enable) { ALOGI("Enabling HAL virtual displays"); generator.emplace(getHwComposer().getMaxVirtualDisplayCount()); } else if (generator && !enable) { ALOGW_IF(generator->inUse(), "Disabling HAL virtual displays while in use"); generator.reset(); } } VirtualDisplayId SurfaceFlinger::acquireVirtualDisplay(ui::Size resolution, ui::PixelFormat format) { if (auto& generator = mVirtualDisplayIdGenerators.hal) { if (const auto id = generator->generateId()) { if (getHwComposer().allocateVirtualDisplay(*id, resolution, &format)) { return *id; } generator->releaseId(*id); } else { ALOGW("%s: Exhausted HAL virtual displays", __func__); } ALOGW("%s: Falling back to GPU virtual display", __func__); } const auto id = mVirtualDisplayIdGenerators.gpu.generateId(); LOG_ALWAYS_FATAL_IF(!id, "Failed to generate ID for GPU virtual display"); return *id; } void SurfaceFlinger::releaseVirtualDisplay(VirtualDisplayId displayId) { if (const auto id = HalVirtualDisplayId::tryCast(displayId)) { if (auto& generator = mVirtualDisplayIdGenerators.hal) { generator->releaseId(*id); } return; } const auto id = GpuVirtualDisplayId::tryCast(displayId); LOG_ALWAYS_FATAL_IF(!id); mVirtualDisplayIdGenerators.gpu.releaseId(*id); } std::vector SurfaceFlinger::getPhysicalDisplayIdsLocked() const { const auto display = getDefaultDisplayDeviceLocked(); if (!display) { return {}; } std::vector displayIds; displayIds.reserve(mPhysicalDisplayTokens.size()); displayIds.push_back(display->getPhysicalId()); for (const auto& [id, token] : mPhysicalDisplayTokens) { if (id != display->getPhysicalId()) { displayIds.push_back(id); } } return displayIds; } status_t SurfaceFlinger::getPrimaryPhysicalDisplayId(PhysicalDisplayId* id) const { Mutex::Autolock lock(mStateLock); const auto display = getInternalDisplayIdLocked(); if (!display) { return NAME_NOT_FOUND; } *id = *display; return NO_ERROR; } sp SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const { Mutex::Autolock lock(mStateLock); return getPhysicalDisplayTokenLocked(displayId); } status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const { if (!outGetColorManagement) { return BAD_VALUE; } *outGetColorManagement = useColorManagement; return NO_ERROR; } HWComposer& SurfaceFlinger::getHwComposer() const { return mCompositionEngine->getHwComposer(); } renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const { return mCompositionEngine->getRenderEngine(); } compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const { return *mCompositionEngine.get(); } void SurfaceFlinger::bootFinished() { if (mBootFinished == true) { ALOGE("Extra call to bootFinished"); return; } mBootFinished = true; if (mStartPropertySetThread->join() != NO_ERROR) { ALOGE("Join StartPropertySetThread failed!"); } if (mRenderEnginePrimeCacheFuture.valid()) { mRenderEnginePrimeCacheFuture.get(); } const nsecs_t now = systemTime(); const nsecs_t duration = now - mBootTime; ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); mFrameTracer->initialize(); mFrameTimeline->onBootFinished(); // wait patiently for the window manager death const String16 name("window"); mWindowManager = defaultServiceManager()->getService(name); if (mWindowManager != 0) { mWindowManager->linkToDeath(static_cast(this)); } // stop boot animation // formerly we would just kill the process, but we now ask it to exit so it // can choose where to stop the animation. property_set("service.bootanim.exit", "1"); const int LOGTAG_SF_STOP_BOOTANIM = 60110; LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); sp input(defaultServiceManager()->getService(String16("inputflinger"))); static_cast(schedule([=] { if (input == nullptr) { ALOGE("Failed to link to input service"); } else { mInputFlinger = interface_cast(input); } readPersistentProperties(); mPowerAdvisor.onBootFinished(); mBootStage = BootStage::FINISHED; if (property_get_bool("sf.debug.show_refresh_rate_overlay", false)) { ON_MAIN_THREAD(enableRefreshRateOverlay(true)); } })); } uint32_t SurfaceFlinger::getNewTexture() { { std::lock_guard lock(mTexturePoolMutex); if (!mTexturePool.empty()) { uint32_t name = mTexturePool.back(); mTexturePool.pop_back(); ATRACE_INT("TexturePoolSize", mTexturePool.size()); return name; } // The pool was too small, so increase it for the future ++mTexturePoolSize; } // The pool was empty, so we need to get a new texture name directly using a // blocking call to the main thread auto genTextures = [this] { uint32_t name = 0; getRenderEngine().genTextures(1, &name); return name; }; if (std::this_thread::get_id() == mMainThreadId) { return genTextures(); } else { return schedule(genTextures).get(); } } void SurfaceFlinger::deleteTextureAsync(uint32_t texture) { std::lock_guard lock(mTexturePoolMutex); // We don't change the pool size, so the fix-up logic in postComposition will decide whether // to actually delete this or not based on mTexturePoolSize mTexturePool.push_back(texture); ATRACE_INT("TexturePoolSize", mTexturePool.size()); } // Do not call property_set on main thread which will be blocked by init // Use StartPropertySetThread instead. void SurfaceFlinger::init() { ALOGI( "SurfaceFlinger's main thread ready to run. " "Initializing graphics H/W..."); Mutex::Autolock _l(mStateLock); // Get a RenderEngine for the given display / config (can't fail) // TODO(b/77156734): We need to stop casting and use HAL types when possible. // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display. mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create( renderengine::RenderEngineCreationArgs::Builder() .setPixelFormat(static_cast(defaultCompositionPixelFormat)) .setImageCacheSize(maxFrameBufferAcquiredBuffers) .setUseColorManagerment(useColorManagement) .setEnableProtectedContext(enable_protected_contents(false)) .setPrecacheToneMapperShaderOnly(false) .setSupportsBackgroundBlur(mSupportsBlur) .setContextPriority( useContextPriority ? renderengine::RenderEngine::ContextPriority::REALTIME : renderengine::RenderEngine::ContextPriority::MEDIUM) .build())); mMaxRenderTargetSize = std::min(getRenderEngine().getMaxTextureSize(), getRenderEngine().getMaxViewportDims()); // Set SF main policy after initializing RenderEngine which has its own policy. if (!SetTaskProfiles(0, {"SFMainPolicy"})) { ALOGW("Failed to set main task profile"); } mCompositionEngine->setTimeStats(mTimeStats); mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName)); mCompositionEngine->getHwComposer().setCallback(this); ClientCache::getInstance().setRenderEngine(&getRenderEngine()); if (base::GetBoolProperty("debug.sf.enable_hwc_vds"s, false)) { enableHalVirtualDisplays(true); } // Process any initial hotplug and resulting display changes. processDisplayHotplugEventsLocked(); const auto display = getDefaultDisplayDeviceLocked(); LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback."); const auto displayId = display->getPhysicalId(); LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(displayId), "Internal display is disconnected."); // initialize our drawing state mDrawingState = mCurrentState; // set initial conditions (e.g. unblank default device) initializeDisplays(); mPowerAdvisor.init(); char primeShaderCache[PROPERTY_VALUE_MAX]; property_get("service.sf.prime_shader_cache", primeShaderCache, "1"); if (atoi(primeShaderCache)) { if (setSchedFifo(false) != NO_ERROR) { ALOGW("Can't set SCHED_OTHER for primeCache"); } mRenderEnginePrimeCacheFuture = getRenderEngine().primeCache(); if (setSchedFifo(true) != NO_ERROR) { ALOGW("Can't set SCHED_OTHER for primeCache"); } } onActiveDisplaySizeChanged(display); // Inform native graphics APIs whether the present timestamp is supported: const bool presentFenceReliable = !getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE); mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable); if (mStartPropertySetThread->Start() != NO_ERROR) { ALOGE("Run StartPropertySetThread failed!"); } ALOGV("Done initializing"); } void SurfaceFlinger::readPersistentProperties() { Mutex::Autolock _l(mStateLock); char value[PROPERTY_VALUE_MAX]; property_get("persist.sys.sf.color_saturation", value, "1.0"); mGlobalSaturationFactor = atof(value); updateColorMatrixLocked(); ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor); property_get("persist.sys.sf.native_mode", value, "0"); mDisplayColorSetting = static_cast(atoi(value)); property_get("persist.sys.sf.color_mode", value, "0"); mForceColorMode = static_cast(atoi(value)); } void SurfaceFlinger::startBootAnim() { // Start boot animation service by setting a property mailbox // if property setting thread is already running, Start() will be just a NOP mStartPropertySetThread->Start(); // Wait until property was set if (mStartPropertySetThread->join() != NO_ERROR) { ALOGE("Join StartPropertySetThread failed!"); } } // ---------------------------------------------------------------------------- bool SurfaceFlinger::authenticateSurfaceTexture( const sp& bufferProducer) const { Mutex::Autolock _l(mStateLock); return authenticateSurfaceTextureLocked(bufferProducer); } bool SurfaceFlinger::authenticateSurfaceTextureLocked( const sp& bufferProducer) const { sp surfaceTextureBinder(IInterface::asBinder(bufferProducer)); return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0; } status_t SurfaceFlinger::getSupportedFrameTimestamps( std::vector* outSupported) const { *outSupported = { FrameEvent::REQUESTED_PRESENT, FrameEvent::ACQUIRE, FrameEvent::LATCH, FrameEvent::FIRST_REFRESH_START, FrameEvent::LAST_REFRESH_START, FrameEvent::GPU_COMPOSITION_DONE, FrameEvent::DEQUEUE_READY, FrameEvent::RELEASE, }; ConditionalLock _l(mStateLock, std::this_thread::get_id() != mMainThreadId); if (!getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) { outSupported->push_back(FrameEvent::DISPLAY_PRESENT); } return NO_ERROR; } status_t SurfaceFlinger::getDisplayState(const sp& displayToken, ui::DisplayState* state) { if (!displayToken || !state) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } state->layerStack = display->getLayerStack(); state->orientation = display->getOrientation(); const Rect layerStackRect = display->getLayerStackSpaceRect(); state->layerStackSpaceRect = layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize(); return NO_ERROR; } status_t SurfaceFlinger::getStaticDisplayInfo(const sp& displayToken, ui::StaticDisplayInfo* info) { if (!displayToken || !info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } if (const auto connectionType = display->getConnectionType()) info->connectionType = *connectionType; else { return INVALID_OPERATION; } if (mEmulatedDisplayDensity) { info->density = mEmulatedDisplayDensity; } else { info->density = info->connectionType == ui::DisplayConnectionType::Internal ? mInternalDisplayDensity : FALLBACK_DENSITY; } info->density /= ACONFIGURATION_DENSITY_MEDIUM; info->secure = display->isSecure(); info->deviceProductInfo = display->getDeviceProductInfo(); return NO_ERROR; } status_t SurfaceFlinger::getDynamicDisplayInfo(const sp& displayToken, ui::DynamicDisplayInfo* info) { if (!displayToken || !info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } info->activeDisplayModeId = static_cast(display->getActiveMode()->getId().value()); const auto& supportedModes = display->getSupportedModes(); info->supportedDisplayModes.clear(); info->supportedDisplayModes.reserve(supportedModes.size()); for (const auto& mode : supportedModes) { ui::DisplayMode outMode; outMode.id = static_cast(mode->getId().value()); auto width = mode->getWidth(); auto height = mode->getHeight(); auto xDpi = mode->getDpiX(); auto yDpi = mode->getDpiY(); if (display->isPrimary() && (internalDisplayOrientation == ui::ROTATION_90 || internalDisplayOrientation == ui::ROTATION_270)) { std::swap(width, height); std::swap(xDpi, yDpi); } outMode.resolution = ui::Size(width, height); if (mEmulatedDisplayDensity) { outMode.xDpi = mEmulatedDisplayDensity; outMode.yDpi = mEmulatedDisplayDensity; } else { outMode.xDpi = xDpi; outMode.yDpi = yDpi; } const nsecs_t period = mode->getVsyncPeriod(); outMode.refreshRate = Fps::fromPeriodNsecs(period).getValue(); const auto vsyncConfigSet = mVsyncConfiguration->getConfigsForRefreshRate(Fps(outMode.refreshRate)); outMode.appVsyncOffset = vsyncConfigSet.late.appOffset; outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset; outMode.group = mode->getGroup(); // This is how far in advance a buffer must be queued for // presentation at a given time. If you want a buffer to appear // on the screen at time N, you must submit the buffer before // (N - presentationDeadline). // // Normally it's one full refresh period (to give SF a chance to // latch the buffer), but this can be reduced by configuring a // VsyncController offset. Any additional delays introduced by the hardware // composer or panel must be accounted for here. // // We add an additional 1ms to allow for processing time and // differences between the ideal and actual refresh rate. outMode.presentationDeadline = period - outMode.sfVsyncOffset + 1000000; info->supportedDisplayModes.push_back(outMode); } info->activeColorMode = display->getCompositionDisplay()->getState().colorMode; const auto displayId = display->getPhysicalId(); info->supportedColorModes = getDisplayColorModes(displayId); info->hdrCapabilities = display->getHdrCapabilities(); info->autoLowLatencyModeSupported = getHwComposer().hasDisplayCapability(displayId, hal::DisplayCapability::AUTO_LOW_LATENCY_MODE); std::vector types; getHwComposer().getSupportedContentTypes(displayId, &types); info->gameContentTypeSupported = std::any_of(types.begin(), types.end(), [](auto type) { return type == hal::ContentType::GAME; }); return NO_ERROR; } status_t SurfaceFlinger::getDisplayStats(const sp&, DisplayStatInfo* stats) { if (!stats) { return BAD_VALUE; } *stats = mScheduler->getDisplayStatInfo(systemTime()); return NO_ERROR; } void SurfaceFlinger::setDesiredActiveMode(const ActiveModeInfo& info) { ATRACE_CALL(); if (!info.mode) { ALOGW("requested display mode is null"); return; } auto display = getDisplayDeviceLocked(info.mode->getPhysicalDisplayId()); if (!display) { ALOGW("%s: display is no longer valid", __func__); return; } if (display->setDesiredActiveMode(info)) { // This will trigger HWC refresh without resetting the idle timer. repaintEverythingForHWC(); // Start receiving vsync samples now, so that we can detect a period // switch. mScheduler->resyncToHardwareVsync(true, info.mode->getVsyncPeriod()); // As we called to set period, we will call to onRefreshRateChangeCompleted once // VsyncController model is locked. modulateVsync(&VsyncModulator::onRefreshRateChangeInitiated); updatePhaseConfiguration(info.mode->getFps()); mScheduler->setModeChangePending(true); } } status_t SurfaceFlinger::setActiveMode(const sp& displayToken, int modeId) { ATRACE_CALL(); if (!displayToken) { return BAD_VALUE; } auto future = schedule([=]() -> status_t { const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken)); if (!display) { ALOGE("Attempt to set allowed display modes for invalid display token %p", displayToken.get()); return NAME_NOT_FOUND; } if (display->isVirtual()) { ALOGW("Attempt to set allowed display modes for virtual display"); return INVALID_OPERATION; } const auto mode = display->getMode(DisplayModeId{modeId}); if (!mode) { ALOGW("Attempt to switch to an unsupported mode %d.", modeId); return BAD_VALUE; } const auto fps = mode->getFps(); // Keep the old switching type. const auto allowGroupSwitching = display->refreshRateConfigs().getCurrentPolicy().allowGroupSwitching; const scheduler::RefreshRateConfigs::Policy policy{mode->getId(), allowGroupSwitching, {fps, fps}}; constexpr bool kOverridePolicy = false; return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy); }); return future.get(); } void SurfaceFlinger::setActiveModeInternal() { ATRACE_CALL(); const auto display = getDefaultDisplayDeviceLocked(); if (!display) { return; } const auto upcomingModeInfo = MAIN_THREAD_GUARD(display->getUpcomingActiveMode()); if (!upcomingModeInfo.mode) { // There is no pending mode change. This can happen if the active // display changed and the mode change happened on a different display. return; } if (display->getActiveMode()->getSize() != upcomingModeInfo.mode->getSize()) { auto& state = mCurrentState.displays.editValueFor(display->getDisplayToken()); // We need to generate new sequenceId in order to recreate the display (and this // way the framebuffer). state.sequenceId = DisplayDeviceState{}.sequenceId; state.physical->activeMode = upcomingModeInfo.mode; processDisplayChangesLocked(); // processDisplayChangesLocked will update all necessary components so we're done here. return; } // We just created this display so we can call even if we are not on // the main thread MainThreadScopedGuard fakeMainThreadGuard(SF_MAIN_THREAD); display->setActiveMode(upcomingModeInfo.mode->getId()); const Fps refreshRate = upcomingModeInfo.mode->getFps(); mRefreshRateStats->setRefreshRate(refreshRate); updatePhaseConfiguration(refreshRate); if (upcomingModeInfo.event != Scheduler::ModeEvent::None) { mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, upcomingModeInfo.mode); } } void SurfaceFlinger::clearDesiredActiveModeState(const sp& display) { display->clearDesiredActiveModeState(); if (isDisplayActiveLocked(display)) { mScheduler->setModeChangePending(false); } } void SurfaceFlinger::desiredActiveModeChangeDone(const sp& display) { const auto refreshRate = display->getDesiredActiveMode()->mode->getFps(); clearDesiredActiveModeState(display); mScheduler->resyncToHardwareVsync(true, refreshRate.getPeriodNsecs()); updatePhaseConfiguration(refreshRate); } void SurfaceFlinger::performSetActiveMode() { ATRACE_CALL(); ALOGV("%s", __FUNCTION__); for (const auto& iter : mDisplays) { const auto& display = iter.second; if (!display || !display->isInternal()) { continue; } // Store the local variable to release the lock. const auto desiredActiveMode = display->getDesiredActiveMode(); if (!desiredActiveMode) { // No desired active mode pending to be applied continue; } if (!isDisplayActiveLocked(display)) { // display is no longer the active display, so abort the mode change clearDesiredActiveModeState(display); continue; } const auto desiredMode = display->getMode(desiredActiveMode->mode->getId()); if (!desiredMode) { ALOGW("Desired display mode is no longer supported. Mode ID = %d", desiredActiveMode->mode->getId().value()); clearDesiredActiveModeState(display); continue; } const auto refreshRate = desiredMode->getFps(); ALOGV("%s changing active mode to %d(%s) for display %s", __func__, desiredMode->getId().value(), to_string(refreshRate).c_str(), to_string(display->getId()).c_str()); if (display->getActiveMode()->getId() == desiredActiveMode->mode->getId()) { // display is not valid or we are already in the requested mode // on both cases there is nothing left to do desiredActiveModeChangeDone(display); continue; } // Desired active mode was set, it is different than the mode currently in use, however // allowed modes might have changed by the time we process the refresh. // Make sure the desired mode is still allowed const auto displayModeAllowed = display->refreshRateConfigs().isModeAllowed(desiredActiveMode->mode->getId()); if (!displayModeAllowed) { desiredActiveModeChangeDone(display); continue; } // TODO(b/142753666) use constrains hal::VsyncPeriodChangeConstraints constraints; constraints.desiredTimeNanos = systemTime(); constraints.seamlessRequired = false; hal::VsyncPeriodChangeTimeline outTimeline; const auto status = MAIN_THREAD_GUARD( display->initiateModeChange(*desiredActiveMode, constraints, &outTimeline)); if (status != NO_ERROR) { // initiateModeChange may fail if a hotplug event is just about // to be sent. We just log the error in this case. ALOGW("initiateModeChange failed: %d", status); continue; } mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline); // Scheduler will submit an empty frame to HWC if needed. mSetActiveModePending = true; } } void SurfaceFlinger::disableExpensiveRendering() { schedule([=]() MAIN_THREAD { ATRACE_CALL(); if (mPowerAdvisor.isUsingExpensiveRendering()) { const auto& displays = ON_MAIN_THREAD(mDisplays); for (const auto& [_, display] : displays) { const static constexpr auto kDisable = false; mPowerAdvisor.setExpensiveRenderingExpected(display->getId(), kDisable); } } }).wait(); } std::vector SurfaceFlinger::getDisplayColorModes(PhysicalDisplayId displayId) { auto modes = getHwComposer().getColorModes(displayId); bool isInternalDisplay = displayId == getInternalDisplayIdLocked(); // If it's built-in display and the configuration claims it's not wide color capable, // filter out all wide color modes. The typical reason why this happens is that the // hardware is not good enough to support GPU composition of wide color, and thus the // OEMs choose to disable this capability. if (isInternalDisplay && !hasWideColorDisplay) { const auto newEnd = std::remove_if(modes.begin(), modes.end(), isWideColorMode); modes.erase(newEnd, modes.end()); } return modes; } status_t SurfaceFlinger::getDisplayNativePrimaries(const sp& displayToken, ui::DisplayPrimaries &primaries) { if (!displayToken) { return BAD_VALUE; } // Currently we only support this API for a single internal display. if (getInternalDisplayToken() != displayToken) { return NAME_NOT_FOUND; } memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries)); return NO_ERROR; } status_t SurfaceFlinger::setActiveColorMode(const sp& displayToken, ColorMode mode) { schedule([=]() MAIN_THREAD { const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { ALOGE("Invalid display token %p", displayToken.get()); return; } const auto modes = getDisplayColorModes(*displayId); bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes); if (mode < ColorMode::NATIVE || !exists) { ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p", decodeColorMode(mode).c_str(), mode, displayToken.get()); return; } const auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p", decodeColorMode(mode).c_str(), mode, displayToken.get()); } else if (display->isVirtual()) { ALOGW("Attempt to set active color mode %s (%d) for virtual display", decodeColorMode(mode).c_str(), mode); } else { display->getCompositionDisplay()->setColorProfile( compositionengine::Output::ColorProfile{mode, Dataspace::UNKNOWN, RenderIntent::COLORIMETRIC, Dataspace::UNKNOWN}); } }).wait(); return NO_ERROR; } void SurfaceFlinger::setAutoLowLatencyMode(const sp& displayToken, bool on) { static_cast(schedule([=]() MAIN_THREAD { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { getHwComposer().setAutoLowLatencyMode(*displayId, on); } else { ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get()); } })); } void SurfaceFlinger::setGameContentType(const sp& displayToken, bool on) { static_cast(schedule([=]() MAIN_THREAD { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE; getHwComposer().setContentType(*displayId, type); } else { ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get()); } })); } status_t SurfaceFlinger::clearAnimationFrameStats() { Mutex::Autolock _l(mStateLock); mAnimFrameTracker.clearStats(); return NO_ERROR; } status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const { Mutex::Autolock _l(mStateLock); mAnimFrameTracker.getStats(outStats); return NO_ERROR; } status_t SurfaceFlinger::overrideHdrTypes(const sp& displayToken, const std::vector& hdrTypes) { Mutex::Autolock lock(mStateLock); auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get()); return NAME_NOT_FOUND; } display->overrideHdrTypes(hdrTypes); dispatchDisplayHotplugEvent(display->getPhysicalId(), true /* connected */); return NO_ERROR; } status_t SurfaceFlinger::onPullAtom(const int32_t atomId, std::string* pulledData, bool* success) { *success = mTimeStats->onPullAtom(atomId, pulledData); return NO_ERROR; } status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp& displayToken, ui::PixelFormat* outFormat, ui::Dataspace* outDataspace, uint8_t* outComponentMask) const { if (!outFormat || !outDataspace || !outComponentMask) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat, outDataspace, outComponentMask); } status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp& displayToken, bool enable, uint8_t componentMask, uint64_t maxFrames) { return schedule([=]() MAIN_THREAD -> status_t { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable, componentMask, maxFrames); } else { ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get()); return NAME_NOT_FOUND; } }) .get(); } status_t SurfaceFlinger::getDisplayedContentSample(const sp& displayToken, uint64_t maxFrames, uint64_t timestamp, DisplayedFrameStats* outStats) const { Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats); } status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const { if (!outSupported) { return BAD_VALUE; } *outSupported = getRenderEngine().supportsProtectedContent(); return NO_ERROR; } status_t SurfaceFlinger::isWideColorDisplay(const sp& displayToken, bool* outIsWideColorDisplay) const { if (!displayToken || !outIsWideColorDisplay) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } *outIsWideColorDisplay = display->isPrimary() ? hasWideColorDisplay : display->hasWideColorGamut(); return NO_ERROR; } status_t SurfaceFlinger::enableVSyncInjections(bool enable) { schedule([=] { Mutex::Autolock lock(mStateLock); if (const auto handle = mScheduler->enableVSyncInjection(enable)) { mEventQueue->setInjector(enable ? mScheduler->getEventConnection(handle) : nullptr); } }).wait(); return NO_ERROR; } status_t SurfaceFlinger::injectVSync(nsecs_t when) { Mutex::Autolock lock(mStateLock); const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(when); const auto expectedPresent = calculateExpectedPresentTime(stats); return mScheduler->injectVSync(when, /*expectedVSyncTime=*/expectedPresent, /*deadlineTimestamp=*/expectedPresent) ? NO_ERROR : BAD_VALUE; } status_t SurfaceFlinger::getLayerDebugInfo(std::vector* outLayers) { outLayers->clear(); schedule([=] { const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); mDrawingState.traverseInZOrder([&](Layer* layer) { outLayers->push_back(layer->getLayerDebugInfo(display.get())); }); }).wait(); return NO_ERROR; } status_t SurfaceFlinger::getCompositionPreference( Dataspace* outDataspace, ui::PixelFormat* outPixelFormat, Dataspace* outWideColorGamutDataspace, ui::PixelFormat* outWideColorGamutPixelFormat) const { *outDataspace = mDefaultCompositionDataspace; *outPixelFormat = defaultCompositionPixelFormat; *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace; *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat; return NO_ERROR; } status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea, const sp& stopLayerHandle, const sp& listener) { if (!listener || samplingArea == Rect::INVALID_RECT) { return BAD_VALUE; } const wp stopLayer = fromHandle(stopLayerHandle); mRegionSamplingThread->addListener(samplingArea, stopLayer, listener); return NO_ERROR; } status_t SurfaceFlinger::removeRegionSamplingListener(const sp& listener) { if (!listener) { return BAD_VALUE; } mRegionSamplingThread->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp& listener) { if (!listener) { return BAD_VALUE; } mFpsReporter->addListener(listener, taskId); return NO_ERROR; } status_t SurfaceFlinger::removeFpsListener(const sp& listener) { if (!listener) { return BAD_VALUE; } mFpsReporter->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::addTunnelModeEnabledListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mTunnelModeEnabledReporter->addListener(listener); return NO_ERROR; } status_t SurfaceFlinger::removeTunnelModeEnabledListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mTunnelModeEnabledReporter->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp& displayToken, bool* outSupport) const { if (!displayToken || !outSupport) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } *outSupport = getHwComposer().hasDisplayCapability(*displayId, hal::DisplayCapability::BRIGHTNESS); return NO_ERROR; } status_t SurfaceFlinger::setDisplayBrightness(const sp& displayToken, const gui::DisplayBrightness& brightness) { if (!displayToken) { return BAD_VALUE; } return ftl::chain(schedule([=]() MAIN_THREAD { if (const auto display = getDisplayDeviceLocked(displayToken)) { if (enableSdrDimming) { display->getCompositionDisplay() ->setDisplayBrightness(brightness.sdrWhitePointNits, brightness.displayBrightnessNits); } return getHwComposer().setDisplayBrightness(display->getPhysicalId(), brightness.displayBrightness); } else { ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get()); return ftl::yield(NAME_NOT_FOUND); } })) .then([](std::future task) { return task; }) .get(); } status_t SurfaceFlinger::addHdrLayerInfoListener(const sp& displayToken, const sp& listener) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } const auto displayId = display->getId(); sp& hdrInfoReporter = mHdrLayerInfoListeners[displayId]; if (!hdrInfoReporter) { hdrInfoReporter = sp::make(); } hdrInfoReporter->addListener(listener); mAddingHDRLayerInfoListener = true; return OK; } status_t SurfaceFlinger::removeHdrLayerInfoListener( const sp& displayToken, const sp& listener) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } const auto displayId = display->getId(); sp& hdrInfoReporter = mHdrLayerInfoListeners[displayId]; if (hdrInfoReporter) { hdrInfoReporter->removeListener(listener); } return OK; } status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) { Boost powerBoost = static_cast(boostId); if (powerBoost == Boost::INTERACTION) { mScheduler->notifyTouchEvent(); } return NO_ERROR; } // ---------------------------------------------------------------------------- sp SurfaceFlinger::createDisplayEventConnection( ISurfaceComposer::VsyncSource vsyncSource, ISurfaceComposer::EventRegistrationFlags eventRegistration) { const auto& handle = vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle; return mScheduler->createDisplayEventConnection(handle, eventRegistration); } void SurfaceFlinger::signalTransaction() { mScheduler->resetIdleTimer(); mPowerAdvisor.notifyDisplayUpdateImminent(); mEventQueue->invalidate(); } void SurfaceFlinger::signalLayerUpdate() { mScheduler->resetIdleTimer(); mPowerAdvisor.notifyDisplayUpdateImminent(); mEventQueue->invalidate(); } void SurfaceFlinger::signalRefresh() { mRefreshPending = true; mEventQueue->refresh(); } nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const { if (const auto display = getDefaultDisplayDeviceLocked()) { return display->getVsyncPeriodFromHWC(); } return 0; } void SurfaceFlinger::onComposerHalVsync(hal::HWDisplayId hwcDisplayId, int64_t timestamp, std::optional vsyncPeriod) { ATRACE_CALL(); Mutex::Autolock lock(mStateLock); const auto displayId = getHwComposer().toPhysicalDisplayId(hwcDisplayId); if (displayId) { const auto token = getPhysicalDisplayTokenLocked(*displayId); const auto display = getDisplayDeviceLocked(token); display->onVsync(timestamp); } if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) { return; } const bool isActiveDisplay = displayId && getPhysicalDisplayTokenLocked(*displayId) == mActiveDisplayToken; if (!isActiveDisplay) { // For now, we don't do anything with non active display vsyncs. return; } bool periodFlushed = false; mScheduler->addResyncSample(timestamp, vsyncPeriod, &periodFlushed); if (periodFlushed) { modulateVsync(&VsyncModulator::onRefreshRateChangeCompleted); } } void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) { std::lock_guard lock(getBE().mCompositorTimingLock); *compositorTiming = getBE().mCompositorTiming; } void SurfaceFlinger::changeRefreshRateLocked(const RefreshRate& refreshRate, Scheduler::ModeEvent event) { const auto display = getDefaultDisplayDeviceLocked(); if (!display || mBootStage != BootStage::FINISHED) { return; } ATRACE_CALL(); // Don't do any updating if the current fps is the same as the new one. if (!display->refreshRateConfigs().isModeAllowed(refreshRate.getModeId())) { ALOGV("Skipping mode %d as it is not part of allowed modes", refreshRate.getModeId().value()); return; } setDesiredActiveMode({refreshRate.getMode(), event}); } void SurfaceFlinger::onComposerHalHotplug(hal::HWDisplayId hwcDisplayId, hal::Connection connection) { ALOGI("%s(%" PRIu64 ", %s)", __func__, hwcDisplayId, connection == hal::Connection::CONNECTED ? "connected" : "disconnected"); // Only lock if we're not on the main thread. This function is normally // called on a hwbinder thread, but for the primary display it's called on // the main thread with the state lock already held, so don't attempt to // acquire it here. ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection}); if (std::this_thread::get_id() == mMainThreadId) { // Process all pending hot plug events immediately if we are on the main thread. processDisplayHotplugEventsLocked(); } setTransactionFlags(eDisplayTransactionNeeded); } void SurfaceFlinger::onComposerHalVsyncPeriodTimingChanged( hal::HWDisplayId, const hal::VsyncPeriodChangeTimeline& timeline) { Mutex::Autolock lock(mStateLock); mScheduler->onNewVsyncPeriodChangeTimeline(timeline); } void SurfaceFlinger::onComposerHalSeamlessPossible(hal::HWDisplayId) { // TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and // use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE. } void SurfaceFlinger::onComposerHalRefresh(hal::HWDisplayId) { Mutex::Autolock lock(mStateLock); repaintEverythingForHWC(); } void SurfaceFlinger::setVsyncEnabled(bool enabled) { ATRACE_CALL(); // On main thread to avoid race conditions with display power state. static_cast(schedule([=]() MAIN_THREAD { mHWCVsyncPendingState = enabled ? hal::Vsync::ENABLE : hal::Vsync::DISABLE; if (const auto display = getDefaultDisplayDeviceLocked(); display && display->isPoweredOn()) { setHWCVsyncEnabled(display->getPhysicalId(), mHWCVsyncPendingState); } })); } SurfaceFlinger::FenceWithFenceTime SurfaceFlinger::previousFrameFence() { const auto now = systemTime(); const auto vsyncPeriod = mScheduler->getDisplayStatInfo(now).vsyncPeriod; const bool expectedPresentTimeIsTheNextVsync = mExpectedPresentTime - now <= vsyncPeriod; return expectedPresentTimeIsTheNextVsync ? mPreviousPresentFences[0] : mPreviousPresentFences[1]; } bool SurfaceFlinger::previousFramePending(int graceTimeMs) { ATRACE_CALL(); const std::shared_ptr& fence = previousFrameFence().fenceTime; if (fence == FenceTime::NO_FENCE) { return false; } const status_t status = fence->wait(graceTimeMs); // This is the same as Fence::Status::Unsignaled, but it saves a getStatus() call, // which calls wait(0) again internally return status == -ETIME; } nsecs_t SurfaceFlinger::previousFramePresentTime() { const std::shared_ptr& fence = previousFrameFence().fenceTime; if (fence == FenceTime::NO_FENCE) { return Fence::SIGNAL_TIME_INVALID; } return fence->getSignalTime(); } nsecs_t SurfaceFlinger::calculateExpectedPresentTime(DisplayStatInfo stats) const { // Inflate the expected present time if we're targetting the next vsync. return mVsyncModulator->getVsyncConfig().sfOffset > 0 ? stats.vsyncTime : stats.vsyncTime + stats.vsyncPeriod; } void SurfaceFlinger::onMessageReceived(int32_t what, int64_t vsyncId, nsecs_t expectedVSyncTime) { switch (what) { case MessageQueue::INVALIDATE: { onMessageInvalidate(vsyncId, expectedVSyncTime); break; } case MessageQueue::REFRESH: { onMessageRefresh(); break; } } } void SurfaceFlinger::onMessageInvalidate(int64_t vsyncId, nsecs_t expectedVSyncTime) { const nsecs_t frameStart = systemTime(); // calculate the expected present time once and use the cached // value throughout this frame to make sure all layers are // seeing this same value. if (expectedVSyncTime >= frameStart) { mExpectedPresentTime = expectedVSyncTime; } else { const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(frameStart); mExpectedPresentTime = calculateExpectedPresentTime(stats); } const nsecs_t lastScheduledPresentTime = mScheduledPresentTime; mScheduledPresentTime = expectedVSyncTime; const auto vsyncIn = [&] { if (!ATRACE_ENABLED()) return 0.f; return (mExpectedPresentTime - systemTime()) / 1e6f; }(); ATRACE_FORMAT("onMessageInvalidate %" PRId64 " vsyncIn %.2fms%s", vsyncId, vsyncIn, mExpectedPresentTime == expectedVSyncTime ? "" : " (adjusted)"); // When Backpressure propagation is enabled we want to give a small grace period // for the present fence to fire instead of just giving up on this frame to handle cases // where present fence is just about to get signaled. const int graceTimeForPresentFenceMs = (mPropagateBackpressureClientComposition || !mHadClientComposition) ? 1 : 0; // Pending frames may trigger backpressure propagation. const TracedOrdinal framePending = {"PrevFramePending", previousFramePending(graceTimeForPresentFenceMs)}; // Frame missed counts for metrics tracking. // A frame is missed if the prior frame is still pending. If no longer pending, // then we still count the frame as missed if the predicted present time // was further in the past than when the fence actually fired. // Add some slop to correct for drift. This should generally be // smaller than a typical frame duration, but should not be so small // that it reports reasonable drift as a missed frame. const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(systemTime()); const nsecs_t frameMissedSlop = stats.vsyncPeriod / 2; const nsecs_t previousPresentTime = previousFramePresentTime(); const TracedOrdinal frameMissed = {"PrevFrameMissed", framePending || (previousPresentTime >= 0 && (lastScheduledPresentTime < previousPresentTime - frameMissedSlop))}; const TracedOrdinal hwcFrameMissed = {"PrevHwcFrameMissed", mHadDeviceComposition && frameMissed}; const TracedOrdinal gpuFrameMissed = {"PrevGpuFrameMissed", mHadClientComposition && frameMissed}; if (frameMissed) { mFrameMissedCount++; mTimeStats->incrementMissedFrames(); } if (hwcFrameMissed) { mHwcFrameMissedCount++; } if (gpuFrameMissed) { mGpuFrameMissedCount++; } // If we are in the middle of a mode change and the fence hasn't // fired yet just wait for the next invalidate if (mSetActiveModePending) { if (framePending) { mEventQueue->invalidate(); return; } // We received the present fence from the HWC, so we assume it successfully updated // the mode, hence we update SF. mSetActiveModePending = false; ON_MAIN_THREAD(setActiveModeInternal()); } if (framePending) { if ((hwcFrameMissed && !gpuFrameMissed) || mPropagateBackpressureClientComposition) { signalLayerUpdate(); return; } } if (mTracingEnabledChanged) { mTracingEnabled = mTracing.isEnabled(); mTracingEnabledChanged = false; } if (mRefreshRateOverlaySpinner) { if (Mutex::Autolock lock(mStateLock); const auto display = getDefaultDisplayDeviceLocked()) { if (display) { display->onInvalidate(); } else { ALOGW("%s: default display is null", __func__); } } } bool refreshNeeded; { mTracePostComposition = mTracing.flagIsSet(SurfaceTracing::TRACE_COMPOSITION) || mTracing.flagIsSet(SurfaceTracing::TRACE_SYNC) || mTracing.flagIsSet(SurfaceTracing::TRACE_BUFFERS); const bool tracePreComposition = mTracingEnabled && !mTracePostComposition; ConditionalLockGuard lock(mTracingLock, tracePreComposition); mFrameTimeline->setSfWakeUp(vsyncId, frameStart, Fps::fromPeriodNsecs(stats.vsyncPeriod)); refreshNeeded = handleMessageTransaction(); refreshNeeded |= handleMessageInvalidate(); if (tracePreComposition) { if (mVisibleRegionsDirty) { mTracing.notifyLocked("visibleRegionsDirty"); } } } // Layers need to get updated (in the previous line) before we can use them for // choosing the refresh rate. // Hold mStateLock as chooseRefreshRateForContent promotes wp to sp // and may eventually call to ~Layer() if it holds the last reference { Mutex::Autolock _l(mStateLock); mScheduler->chooseRefreshRateForContent(); } ON_MAIN_THREAD(performSetActiveMode()); updateCursorAsync(); updateInputFlinger(); refreshNeeded |= mRepaintEverything; if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) { // Signal a refresh if a transaction modified the window state, // a new buffer was latched, or if HWC has requested a full // repaint if (mFrameStartTime <= 0) { // We should only use the time of the first invalidate // message that signals a refresh as the beginning of the // frame. Otherwise the real frame time will be // underestimated. mFrameStartTime = frameStart; } // Run the refresh immediately after invalidate as there is no point going thru the message // queue again, and to ensure that we actually refresh the screen instead of handling // other messages that were queued us already in the MessageQueue. mRefreshPending = true; onMessageRefresh(); } notifyRegionSamplingThread(); } bool SurfaceFlinger::handleMessageTransaction() { ATRACE_CALL(); if (getTransactionFlags(eTransactionFlushNeeded)) { flushTransactionQueues(); } uint32_t transactionFlags = peekTransactionFlags(); bool runHandleTransaction = ((transactionFlags & (~eTransactionFlushNeeded)) != 0) || mForceTraversal; if (runHandleTransaction) { handleTransaction(eTransactionMask); } if (transactionFlushNeeded()) { setTransactionFlags(eTransactionFlushNeeded); } return runHandleTransaction; } #if RK_FPS static int gsFrameCcount = 0; void SurfaceFlinger::debugShowFPS() const { static int mFrameCount; static int mLastFrameCount = 0; static nsecs_t mLastFpsTime = 0; static float mFps = 0; mFrameCount++; nsecs_t now = systemTime(); nsecs_t diff = now - mLastFpsTime; if (diff > ms2ns(500)) { mFps = ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff; mLastFpsTime = now; mLastFrameCount = mFrameCount; ALOGD("mFrameCount = %d mFps = %2.3f",mFrameCount, mFps); } } #endif void SurfaceFlinger::onMessageRefresh() { ATRACE_CALL(); mRefreshPending = false; compositionengine::CompositionRefreshArgs refreshArgs; const auto& displays = ON_MAIN_THREAD(mDisplays); refreshArgs.outputs.reserve(displays.size()); for (const auto& [_, display] : displays) { refreshArgs.outputs.push_back(display->getCompositionDisplay()); } mDrawingState.traverseInZOrder([&refreshArgs](Layer* layer) { if (auto layerFE = layer->getCompositionEngineLayerFE()) refreshArgs.layers.push_back(layerFE); }); refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size()); for (auto layer : mLayersWithQueuedFrames) { if (auto layerFE = layer->getCompositionEngineLayerFE()) refreshArgs.layersWithQueuedFrames.push_back(layerFE); } refreshArgs.repaintEverything = mRepaintEverything.exchange(false); refreshArgs.outputColorSetting = useColorManagement ? mDisplayColorSetting : compositionengine::OutputColorSetting::kUnmanaged; refreshArgs.colorSpaceAgnosticDataspace = mColorSpaceAgnosticDataspace; refreshArgs.forceOutputColorMode = mForceColorMode; refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty; refreshArgs.updatingGeometryThisFrame = mGeometryInvalid || mVisibleRegionsDirty; refreshArgs.blursAreExpensive = mBlursAreExpensive; refreshArgs.internalDisplayRotationFlags = DisplayDevice::getPrimaryDisplayRotationFlags(); if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) { refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix; mDrawingState.colorMatrixChanged = false; } refreshArgs.devOptForceClientComposition = mDebugDisableHWC || mDebugRegion; if (mDebugRegion != 0) { refreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::milliseconds(mDebugRegion > 1 ? mDebugRegion : 0); } const auto prevVsyncTime = mScheduler->getPreviousVsyncFrom(mExpectedPresentTime); const auto hwcMinWorkDuration = mVsyncConfiguration->getCurrentConfigs().hwcMinWorkDuration; refreshArgs.earliestPresentTime = prevVsyncTime - hwcMinWorkDuration; refreshArgs.previousPresentFence = mPreviousPresentFences[0].fenceTime; refreshArgs.nextInvalidateTime = mEventQueue->nextExpectedInvalidate(); mGeometryInvalid = false; // Store the present time just before calling to the composition engine so we could notify // the scheduler. const auto presentTime = systemTime(); mCompositionEngine->present(refreshArgs); mTimeStats->recordFrameDuration(mFrameStartTime, systemTime()); // Reset the frame start time now that we've recorded this frame. mFrameStartTime = 0; mScheduler->onDisplayRefreshed(presentTime); postFrame(); postComposition(); const bool prevFrameHadClientComposition = mHadClientComposition; mHadClientComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) { const auto& state = pair.second->getCompositionDisplay()->getState(); return state.usesClientComposition && !state.reusedClientComposition; }); mHadDeviceComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) { const auto& state = pair.second->getCompositionDisplay()->getState(); return state.usesDeviceComposition; }); mReusedClientComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) { const auto& state = pair.second->getCompositionDisplay()->getState(); return state.reusedClientComposition; }); // Only report a strategy change if we move in and out of client composition if (prevFrameHadClientComposition != mHadClientComposition) { mTimeStats->incrementCompositionStrategyChanges(); } // TODO: b/160583065 Enable skip validation when SF caches all client composition layers const bool usedGpuComposition = mHadClientComposition || mReusedClientComposition; modulateVsync(&VsyncModulator::onDisplayRefresh, usedGpuComposition); mLayersWithQueuedFrames.clear(); if (mTracingEnabled && mTracePostComposition) { // This may block if SurfaceTracing is running in sync mode. if (mVisibleRegionsDirty) { mTracing.notify("visibleRegionsDirty"); } else if (mTracing.flagIsSet(SurfaceTracing::TRACE_BUFFERS)) { mTracing.notify("bufferLatched"); } } mVisibleRegionsWereDirtyThisFrame = mVisibleRegionsDirty; // Cache value for use in post-comp mVisibleRegionsDirty = false; if (mCompositionEngine->needsAnotherUpdate()) { signalLayerUpdate(); } #if RK_FPS if(gsFrameCcount++%300==0) { gsFrameCcount = 1; char value[PROPERTY_VALUE_MAX]; property_get("debug.sf.fps", value, "0"); mDebugFPS = atoi(value); } if (mDebugFPS > 0) debugShowFPS(); #endif } bool SurfaceFlinger::handleMessageInvalidate() { ATRACE_CALL(); bool refreshNeeded = handlePageFlip(); // Send on commit callbacks mTransactionCallbackInvoker.sendCallbacks(); if (mVisibleRegionsDirty) { computeLayerBounds(); } for (auto& layer : mLayersPendingRefresh) { Region visibleReg; visibleReg.set(layer->getScreenBounds()); invalidateLayerStack(layer, visibleReg); } mLayersPendingRefresh.clear(); return refreshNeeded; } void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime, std::shared_ptr& presentFenceTime) { // Update queue of past composite+present times and determine the // most recently known composite to present latency. getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime}); nsecs_t compositeToPresentLatency = -1; while (!getBE().mCompositePresentTimes.empty()) { SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front(); // Cached values should have been updated before calling this method, // which helps avoid duplicate syscalls. nsecs_t displayTime = cpt.display->getCachedSignalTime(); if (displayTime == Fence::SIGNAL_TIME_PENDING) { break; } compositeToPresentLatency = displayTime - cpt.composite; getBE().mCompositePresentTimes.pop(); } // Don't let mCompositePresentTimes grow unbounded, just in case. while (getBE().mCompositePresentTimes.size() > 16) { getBE().mCompositePresentTimes.pop(); } setCompositorTimingSnapped(stats, compositeToPresentLatency); } void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats, nsecs_t compositeToPresentLatency) { // Integer division and modulo round toward 0 not -inf, so we need to // treat negative and positive offsets differently. nsecs_t idealLatency = (mVsyncConfiguration->getCurrentConfigs().late.sfOffset > 0) ? (stats.vsyncPeriod - (mVsyncConfiguration->getCurrentConfigs().late.sfOffset % stats.vsyncPeriod)) : ((-mVsyncConfiguration->getCurrentConfigs().late.sfOffset) % stats.vsyncPeriod); // Just in case mVsyncConfiguration->getCurrentConfigs().late.sf == -vsyncInterval. if (idealLatency <= 0) { idealLatency = stats.vsyncPeriod; } // Snap the latency to a value that removes scheduling jitter from the // composition and present times, which often have >1ms of jitter. // Reducing jitter is important if an app attempts to extrapolate // something (such as user input) to an accurate diasplay time. // Snapping also allows an app to precisely calculate // mVsyncConfiguration->getCurrentConfigs().late.sf with (presentLatency % interval). nsecs_t bias = stats.vsyncPeriod / 2; int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod; nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency; std::lock_guard lock(getBE().mCompositorTimingLock); getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency; getBE().mCompositorTiming.interval = stats.vsyncPeriod; getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency; } void SurfaceFlinger::postComposition() { ATRACE_CALL(); ALOGV("postComposition"); const auto* display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()).get(); getBE().mGlCompositionDoneTimeline.updateSignalTimes(); std::shared_ptr glCompositionDoneFenceTime; if (display && display->getCompositionDisplay()->getState().usesClientComposition) { glCompositionDoneFenceTime = std::make_shared(display->getCompositionDisplay() ->getRenderSurface() ->getClientTargetAcquireFence()); getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime); } else { glCompositionDoneFenceTime = FenceTime::NO_FENCE; } getBE().mDisplayTimeline.updateSignalTimes(); mPreviousPresentFences[1] = mPreviousPresentFences[0]; mPreviousPresentFences[0].fence = display ? getHwComposer().getPresentFence(display->getPhysicalId()) : Fence::NO_FENCE; mPreviousPresentFences[0].fenceTime = std::make_shared(mPreviousPresentFences[0].fence); getBE().mDisplayTimeline.push(mPreviousPresentFences[0].fenceTime); nsecs_t now = systemTime(); // Set presentation information before calling Layer::releasePendingBuffer, such that jank // information from previous' frame classification is already available when sending jank info // to clients, so they get jank classification as early as possible. mFrameTimeline->setSfPresent(/* sfPresentTime */ now, mPreviousPresentFences[0].fenceTime, glCompositionDoneFenceTime); const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(now); // We use the CompositionEngine::getLastFrameRefreshTimestamp() which might // be sampled a little later than when we started doing work for this frame, // but that should be okay since updateCompositorTiming has snapping logic. updateCompositorTiming(stats, mCompositionEngine->getLastFrameRefreshTimestamp(), mPreviousPresentFences[0].fenceTime); CompositorTiming compositorTiming; { std::lock_guard lock(getBE().mCompositorTimingLock); compositorTiming = getBE().mCompositorTiming; } for (const auto& layer: mLayersWithQueuedFrames) { const bool frameLatched = layer->onPostComposition(display, glCompositionDoneFenceTime, mPreviousPresentFences[0].fenceTime, compositorTiming); layer->releasePendingBuffer(/*dequeueReadyTime*/ now); if (frameLatched) { recordBufferingStats(layer->getName(), layer->getOccupancyHistory(false)); } } std::vector, sp>> hdrInfoListeners; bool haveNewListeners = false; { Mutex::Autolock lock(mStateLock); if (mFpsReporter) { mFpsReporter->dispatchLayerFps(); } if (mTunnelModeEnabledReporter) { mTunnelModeEnabledReporter->updateTunnelModeStatus(); } hdrInfoListeners.reserve(mHdrLayerInfoListeners.size()); for (const auto& [displayId, reporter] : mHdrLayerInfoListeners) { if (reporter && reporter->hasListeners()) { if (const auto display = getDisplayDeviceLocked(displayId)) { hdrInfoListeners.emplace_back(display->getCompositionDisplay(), reporter); } } } haveNewListeners = mAddingHDRLayerInfoListener; // grab this with state lock mAddingHDRLayerInfoListener = false; } if (haveNewListeners || mSomeDataspaceChanged || mVisibleRegionsWereDirtyThisFrame) { for (auto& [compositionDisplay, listener] : hdrInfoListeners) { HdrLayerInfoReporter::HdrLayerInfo info; int32_t maxArea = 0; mDrawingState.traverse([&, compositionDisplay = compositionDisplay](Layer* layer) { const auto layerFe = layer->getCompositionEngineLayerFE(); if (layer->isVisible() && compositionDisplay->belongsInOutput(layerFe)) { const Dataspace transfer = static_cast(layer->getDataSpace() & Dataspace::TRANSFER_MASK); const bool isHdr = (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); if (isHdr) { const auto* outputLayer = compositionDisplay->getOutputLayerForLayer(layerFe); if (outputLayer) { info.numberOfHdrLayers++; const auto displayFrame = outputLayer->getState().displayFrame; const int32_t area = displayFrame.width() * displayFrame.height(); if (area > maxArea) { maxArea = area; info.maxW = displayFrame.width(); info.maxH = displayFrame.height(); } } } } }); listener->dispatchHdrLayerInfo(info); } } mSomeDataspaceChanged = false; mVisibleRegionsWereDirtyThisFrame = false; mTransactionCallbackInvoker.addPresentFence(mPreviousPresentFences[0].fence); mTransactionCallbackInvoker.sendCallbacks(); if (display && display->isInternal() && display->getPowerMode() == hal::PowerMode::ON && mPreviousPresentFences[0].fenceTime->isValid()) { mScheduler->addPresentFence(mPreviousPresentFences[0].fenceTime); } const bool isDisplayConnected = display && getHwComposer().isConnected(display->getPhysicalId()); if (!hasSyncFramework) { if (isDisplayConnected && display->isPoweredOn()) { mScheduler->enableHardwareVsync(); } } if (mAnimCompositionPending) { mAnimCompositionPending = false; if (mPreviousPresentFences[0].fenceTime->isValid()) { mAnimFrameTracker.setActualPresentFence(mPreviousPresentFences[0].fenceTime); } else if (isDisplayConnected) { // The HWC doesn't support present fences, so use the refresh // timestamp instead. const nsecs_t presentTime = display->getRefreshTimestamp(); mAnimFrameTracker.setActualPresentTime(presentTime); } mAnimFrameTracker.advanceFrame(); } mTimeStats->incrementTotalFrames(); if (mHadClientComposition) { mTimeStats->incrementClientCompositionFrames(); } if (mReusedClientComposition) { mTimeStats->incrementClientCompositionReusedFrames(); } mTimeStats->setPresentFenceGlobal(mPreviousPresentFences[0].fenceTime); const size_t sfConnections = mScheduler->getEventThreadConnectionCount(mSfConnectionHandle); const size_t appConnections = mScheduler->getEventThreadConnectionCount(mAppConnectionHandle); mTimeStats->recordDisplayEventConnectionCount(sfConnections + appConnections); if (isDisplayConnected && !display->isPoweredOn()) { return; } nsecs_t currentTime = systemTime(); if (mHasPoweredOff) { mHasPoweredOff = false; } else { nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime; size_t numPeriods = static_cast(elapsedTime / stats.vsyncPeriod); if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) { getBE().mFrameBuckets[numPeriods] += elapsedTime; } else { getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime; } getBE().mTotalTime += elapsedTime; } getBE().mLastSwapTime = currentTime; // Cleanup any outstanding resources due to rendering a prior frame. getRenderEngine().cleanupPostRender(); { std::lock_guard lock(mTexturePoolMutex); if (mTexturePool.size() < mTexturePoolSize) { const size_t refillCount = mTexturePoolSize - mTexturePool.size(); const size_t offset = mTexturePool.size(); mTexturePool.resize(mTexturePoolSize); getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset); ATRACE_INT("TexturePoolSize", mTexturePool.size()); } else if (mTexturePool.size() > mTexturePoolSize) { const size_t deleteCount = mTexturePool.size() - mTexturePoolSize; const size_t offset = mTexturePoolSize; getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset); mTexturePool.resize(mTexturePoolSize); ATRACE_INT("TexturePoolSize", mTexturePool.size()); } } // Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the // side-effect of getTotalSize(), so we check that again here if (ATRACE_ENABLED()) { // getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize()); } } FloatRect SurfaceFlinger::getMaxDisplayBounds() { // Find the largest width and height among all the displays. int32_t maxDisplayWidth = 0; int32_t maxDisplayHeight = 0; for (const auto& pair : ON_MAIN_THREAD(mDisplays)) { const auto& displayDevice = pair.second; int32_t width = displayDevice->getWidth(); int32_t height = displayDevice->getHeight(); if (width > maxDisplayWidth) { maxDisplayWidth = width; } if (height > maxDisplayHeight) { maxDisplayHeight = height; } } // Ignore display bounds for now since they will be computed later. Use a large Rect bound // to ensure it's bigger than an actual display will be. FloatRect maxBounds = FloatRect(-maxDisplayWidth * 10, -maxDisplayHeight * 10, maxDisplayWidth * 10, maxDisplayHeight * 10); return maxBounds; } void SurfaceFlinger::computeLayerBounds() { FloatRect maxBounds = getMaxDisplayBounds(); for (const auto& layer : mDrawingState.layersSortedByZ) { layer->computeBounds(maxBounds, ui::Transform(), 0.f /* shadowRadius */); } } void SurfaceFlinger::postFrame() { const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); if (display && getHwComposer().isConnected(display->getPhysicalId())) { uint32_t flipCount = display->getPageFlipCount(); if (flipCount % LOG_FRAME_STATS_PERIOD == 0) { logFrameStats(); } } } void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) { ATRACE_CALL(); // here we keep a copy of the drawing state (that is the state that's // going to be overwritten by handleTransactionLocked()) outside of // mStateLock so that the side-effects of the State assignment // don't happen with mStateLock held (which can cause deadlocks). State drawingState(mDrawingState); Mutex::Autolock _l(mStateLock); mDebugInTransaction = systemTime(); // Here we're guaranteed that some transaction flags are set // so we can call handleTransactionLocked() unconditionally. // We call getTransactionFlags(), which will also clear the flags, // with mStateLock held to guarantee that mCurrentState won't change // until the transaction is committed. modulateVsync(&VsyncModulator::onTransactionCommit); transactionFlags = getTransactionFlags(eTransactionMask); handleTransactionLocked(transactionFlags); mDebugInTransaction = 0; // here the transaction has been committed } void SurfaceFlinger::loadDisplayModes(PhysicalDisplayId displayId, DisplayModes& outModes, DisplayModePtr& outActiveMode) const { std::vector hwcModes; std::optional activeModeHwcId; bool activeModeIsSupported; int attempt = 0; constexpr int kMaxAttempts = 3; do { hwcModes = getHwComposer().getModes(displayId); activeModeHwcId = getHwComposer().getActiveMode(displayId); LOG_ALWAYS_FATAL_IF(!activeModeHwcId, "HWC returned no active mode"); activeModeIsSupported = std::any_of(hwcModes.begin(), hwcModes.end(), [activeModeHwcId](const HWComposer::HWCDisplayMode& mode) { return mode.hwcId == *activeModeHwcId; }); } while (!activeModeIsSupported && ++attempt < kMaxAttempts); LOG_ALWAYS_FATAL_IF(!activeModeIsSupported, "After %d attempts HWC still returns an active mode which is not" " supported. Active mode ID = %" PRIu64 " . Supported modes = %s", kMaxAttempts, *activeModeHwcId, base::Join(hwcModes, ", ").c_str()); DisplayModes oldModes; if (const auto token = getPhysicalDisplayTokenLocked(displayId)) { oldModes = getDisplayDeviceLocked(token)->getSupportedModes(); } int largestUsedModeId = -1; // Use int instead of DisplayModeId for signedness for (const auto& mode : oldModes) { const auto id = static_cast(mode->getId().value()); if (id > largestUsedModeId) { largestUsedModeId = id; } } DisplayModes newModes; int32_t nextModeId = largestUsedModeId + 1; for (const auto& hwcMode : hwcModes) { newModes.push_back(DisplayMode::Builder(hwcMode.hwcId) .setId(DisplayModeId{nextModeId++}) .setPhysicalDisplayId(displayId) .setWidth(hwcMode.width) .setHeight(hwcMode.height) .setVsyncPeriod(hwcMode.vsyncPeriod) .setDpiX(hwcMode.dpiX) .setDpiY(hwcMode.dpiY) .setGroup(hwcMode.configGroup) .build()); } const bool modesAreSame = std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(), [](DisplayModePtr left, DisplayModePtr right) { return left->equalsExceptDisplayModeId(right); }); if (modesAreSame) { // The supported modes have not changed, keep the old IDs. outModes = oldModes; } else { outModes = newModes; } outActiveMode = *std::find_if(outModes.begin(), outModes.end(), [activeModeHwcId](const DisplayModePtr& mode) { return mode->getHwcId() == *activeModeHwcId; }); } void SurfaceFlinger::processDisplayHotplugEventsLocked() { for (const auto& event : mPendingHotplugEvents) { std::optional info = getHwComposer().onHotplug(event.hwcDisplayId, event.connection); if (!info) { continue; } const auto displayId = info->id; const auto it = mPhysicalDisplayTokens.find(displayId); if (event.connection == hal::Connection::CONNECTED) { DisplayModes supportedModes; DisplayModePtr activeMode; loadDisplayModes(displayId, supportedModes, activeMode); if (it == mPhysicalDisplayTokens.end()) { ALOGV("Creating display %s", to_string(displayId).c_str()); DisplayDeviceState state; state.physical = {.id = displayId, .type = getHwComposer().getDisplayConnectionType(displayId), .hwcDisplayId = event.hwcDisplayId, .deviceProductInfo = std::move(info->deviceProductInfo), .supportedModes = std::move(supportedModes), .activeMode = activeMode}; state.isSecure = true; // All physical displays are currently considered secure. state.displayName = std::move(info->name); sp token = new BBinder(); mCurrentState.displays.add(token, state); mPhysicalDisplayTokens.emplace(displayId, std::move(token)); mInterceptor->saveDisplayCreation(state); } else { ALOGV("Recreating display %s", to_string(displayId).c_str()); const auto token = it->second; auto& state = mCurrentState.displays.editValueFor(token); state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId state.physical->supportedModes = std::move(supportedModes); state.physical->activeMode = activeMode; if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) { state.physical->deviceProductInfo = std::move(info->deviceProductInfo); } } } else { ALOGV("Removing display %s", to_string(displayId).c_str()); const ssize_t index = mCurrentState.displays.indexOfKey(it->second); if (index >= 0) { const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); mInterceptor->saveDisplayDeletion(state.sequenceId); mCurrentState.displays.removeItemsAt(index); } mPhysicalDisplayTokens.erase(it); } processDisplayChangesLocked(); } mPendingHotplugEvents.clear(); } void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) { ALOGI("Dispatching display hotplug event displayId=%s, connected=%d", to_string(displayId).c_str(), connected); mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected); mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected); } sp SurfaceFlinger::setupNewDisplayDeviceInternal( const wp& displayToken, std::shared_ptr compositionDisplay, const DisplayDeviceState& state, const sp& displaySurface, const sp& producer) { DisplayDeviceCreationArgs creationArgs(this, getHwComposer(), displayToken, compositionDisplay); creationArgs.sequenceId = state.sequenceId; creationArgs.isSecure = state.isSecure; creationArgs.displaySurface = displaySurface; creationArgs.hasWideColorGamut = false; creationArgs.supportedPerFrameMetadata = 0; if (const auto& physical = state.physical) { creationArgs.connectionType = physical->type; creationArgs.supportedModes = physical->supportedModes; creationArgs.activeModeId = physical->activeMode->getId(); const auto [idleTimerTimeoutMs, supportKernelIdleTimer] = getIdleTimerConfiguration(compositionDisplay->getId()); scheduler::RefreshRateConfigs::Config config = {.enableFrameRateOverride = android::sysprop::enable_frame_rate_override(false), .frameRateMultipleThreshold = base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0), .idleTimerTimeoutMs = idleTimerTimeoutMs, .supportKernelIdleTimer = supportKernelIdleTimer}; creationArgs.refreshRateConfigs = std::make_shared(creationArgs.supportedModes, creationArgs.activeModeId, config); } if (const auto id = PhysicalDisplayId::tryCast(compositionDisplay->getId())) { creationArgs.isPrimary = id == getInternalDisplayIdLocked(); if (useColorManagement) { std::vector modes = getHwComposer().getColorModes(*id); for (ColorMode colorMode : modes) { if (isWideColorMode(colorMode)) { creationArgs.hasWideColorGamut = true; } std::vector renderIntents = getHwComposer().getRenderIntents(*id, colorMode); creationArgs.hwcColorModes.emplace(colorMode, renderIntents); } } } if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) { getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities); creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id); } auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer); auto nativeWindow = nativeWindowSurface->getNativeWindow(); creationArgs.nativeWindow = nativeWindow; // Make sure that composition can never be stalled by a virtual display // consumer that isn't processing buffers fast enough. We have to do this // here, in case the display is composed entirely by HWC. if (state.isVirtual()) { nativeWindow->setSwapInterval(nativeWindow.get(), 0); } creationArgs.physicalOrientation = creationArgs.isPrimary ? internalDisplayOrientation : ui::ROTATION_0; // virtual displays are always considered enabled creationArgs.initialPowerMode = state.isVirtual() ? hal::PowerMode::ON : hal::PowerMode::OFF; sp display = getFactory().createDisplayDevice(creationArgs); nativeWindowSurface->preallocateBuffers(); ColorMode defaultColorMode = ColorMode::NATIVE; Dataspace defaultDataSpace = Dataspace::UNKNOWN; if (display->hasWideColorGamut()) { defaultColorMode = ColorMode::SRGB; defaultDataSpace = Dataspace::V0_SRGB; } display->getCompositionDisplay()->setColorProfile( compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace, RenderIntent::COLORIMETRIC, Dataspace::UNKNOWN}); if (!state.isVirtual()) { MAIN_THREAD_GUARD(display->setActiveMode(state.physical->activeMode->getId())); display->setDeviceProductInfo(state.physical->deviceProductInfo); } display->setLayerStack(state.layerStack); display->setProjection(state.orientation, state.layerStackSpaceRect, state.orientedDisplaySpaceRect); if(internalDisplayOrientation == ui::ROTATION_90 || internalDisplayOrientation == ui::ROTATION_270){ /*ALOGE("rk-debug[%s %d] name:%s displayInstallOrientation:%d \n", __FUNCTION__,__LINE__,state.displayName.c_str(),displayInstallOrientation);*/ display->setProjection(state.orientation, Rect(display->getHeight(), display->getWidth()), Rect(display->getHeight(), display->getWidth())); } else{ /*ALOGE("rk-debug[%s %d] name:%s displayInstallOrientation:%d \n", __FUNCTION__,__LINE__,state.displayName.c_str(),displayInstallOrientation);*/ display->setProjection(state.orientation, state.layerStackSpaceRect, state.orientedDisplaySpaceRect); } display->setDisplayName(state.displayName); return display; } void SurfaceFlinger::processDisplayAdded(const wp& displayToken, const DisplayDeviceState& state) { ui::Size resolution(0, 0); ui::PixelFormat pixelFormat = static_cast(PIXEL_FORMAT_UNKNOWN); if (state.physical) { resolution = state.physical->activeMode->getSize(); pixelFormat = static_cast(PIXEL_FORMAT_RGBA_8888); } else if (state.surface != nullptr) { int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width); ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status); status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height); ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status); int format; status = state.surface->query(NATIVE_WINDOW_FORMAT, &format); ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status); pixelFormat = static_cast(format); } else { // Virtual displays without a surface are dormant: // they have external state (layer stack, projection, // etc.) but no internal state (i.e. a DisplayDevice). return; } compositionengine::DisplayCreationArgsBuilder builder; if (const auto& physical = state.physical) { builder.setId(physical->id); builder.setConnectionType(physical->type); } else { builder.setId(acquireVirtualDisplay(resolution, pixelFormat)); } builder.setPixels(resolution); builder.setIsSecure(state.isSecure); builder.setLayerStackId(state.layerStack); builder.setPowerAdvisor(&mPowerAdvisor); builder.setName(state.displayName); auto compositionDisplay = getCompositionEngine().createDisplay(builder.build()); compositionDisplay->setLayerCachingEnabled(mLayerCachingEnabled); sp displaySurface; sp producer; sp bqProducer; sp bqConsumer; getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false); if (state.isVirtual()) { const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId()); LOG_FATAL_IF(!displayId); auto surface = sp::make(getHwComposer(), *displayId, state.surface, bqProducer, bqConsumer, state.displayName); displaySurface = surface; producer = std::move(surface); } else { ALOGE_IF(state.surface != nullptr, "adding a supported display, but rendering " "surface is provided (%p), ignoring it", state.surface.get()); const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId()); LOG_FATAL_IF(!displayId); displaySurface = sp::make(getHwComposer(), *displayId, bqConsumer, state.physical->activeMode->getSize(), ui::Size(maxGraphicsWidth, maxGraphicsHeight)); producer = bqProducer; } LOG_FATAL_IF(!displaySurface); const auto display = setupNewDisplayDeviceInternal(displayToken, std::move(compositionDisplay), state, displaySurface, producer); mDisplays.emplace(displayToken, display); if (display->isPrimary()) { initScheduler(display); } if (!state.isVirtual()) { dispatchDisplayHotplugEvent(display->getPhysicalId(), true); } } void SurfaceFlinger::processDisplayRemoved(const wp& displayToken) { auto display = getDisplayDeviceLocked(displayToken); if (display) { display->disconnect(); if (display->isVirtual()) { releaseVirtualDisplay(display->getVirtualId()); } else { dispatchDisplayHotplugEvent(display->getPhysicalId(), false); } } mDisplays.erase(displayToken); if (display && display->isVirtual()) { static_cast(schedule([display = std::move(display)] { // Destroy the display without holding the mStateLock. // This is a temporary solution until we can manage transaction queues without // holding the mStateLock. // With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the // client. When the IGBP is disconnected, its buffer cache in SF will be cleared // via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client // ends up running on the main thread causing a deadlock since setTransactionstate // will try to acquire the mStateLock. Instead we extend the lifetime of // DisplayDevice and destroy it in the main thread without holding the mStateLock. // The display will be disconnected and removed from the mDisplays list so it will // not be accessible. })); } } void SurfaceFlinger::processDisplayChanged(const wp& displayToken, const DisplayDeviceState& currentState, const DisplayDeviceState& drawingState) { const sp currentBinder = IInterface::asBinder(currentState.surface); const sp drawingBinder = IInterface::asBinder(drawingState.surface); // Recreate the DisplayDevice if the surface or sequence ID changed. if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) { getRenderEngine().cleanFramebufferCache(); if (const auto display = getDisplayDeviceLocked(displayToken)) { display->disconnect(); if (display->isVirtual()) { releaseVirtualDisplay(display->getVirtualId()); } } mDisplays.erase(displayToken); if (const auto& physical = currentState.physical) { getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id); } processDisplayAdded(displayToken, currentState); if (currentState.physical) { const auto display = getDisplayDeviceLocked(displayToken); setPowerModeInternal(display, hal::PowerMode::ON); // TODO(b/175678251) Call a listener instead. if (currentState.physical->hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) { updateInternalDisplayVsyncLocked(display); } } return; } if (const auto display = getDisplayDeviceLocked(displayToken)) { if (currentState.layerStack != drawingState.layerStack) { display->setLayerStack(currentState.layerStack); } // @Rockchip fix if (currentState.width != drawingState.width || currentState.height != drawingState.height) { display->setDisplaySize(currentState.width, currentState.height); } // @end if (currentState.flags != drawingState.flags) { display->setFlags(currentState.flags); } if ((currentState.orientation != drawingState.orientation) || (currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) || (currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) { display->setProjection(currentState.orientation, currentState.layerStackSpaceRect, currentState.orientedDisplaySpaceRect); if (isDisplayActiveLocked(display)) { mActiveDisplayTransformHint = display->getTransformHint(); } } if (currentState.width != drawingState.width || currentState.height != drawingState.height) { if (isDisplayActiveLocked(display)) { onActiveDisplaySizeChanged(display); } } } } void SurfaceFlinger::updateInternalDisplayVsyncLocked(const sp& activeDisplay) { mVsyncConfiguration->reset(); const Fps refreshRate = activeDisplay->refreshRateConfigs().getCurrentRefreshRate().getFps(); updatePhaseConfiguration(refreshRate); mRefreshRateStats->setRefreshRate(refreshRate); } void SurfaceFlinger::processDisplayChangesLocked() { // here we take advantage of Vector's copy-on-write semantics to // improve performance by skipping the transaction entirely when // know that the lists are identical const KeyedVector, DisplayDeviceState>& curr(mCurrentState.displays); const KeyedVector, DisplayDeviceState>& draw(mDrawingState.displays); if (!curr.isIdenticalTo(draw)) { mVisibleRegionsDirty = true; // find the displays that were removed // (ie: in drawing state but not in current state) // also handle displays that changed // (ie: displays that are in both lists) for (size_t i = 0; i < draw.size(); i++) { const wp& displayToken = draw.keyAt(i); const ssize_t j = curr.indexOfKey(displayToken); if (j < 0) { // in drawing state but not in current state processDisplayRemoved(displayToken); } else { // this display is in both lists. see if something changed. const DisplayDeviceState& currentState = curr[j]; const DisplayDeviceState& drawingState = draw[i]; processDisplayChanged(displayToken, currentState, drawingState); } } // find displays that were added // (ie: in current state but not in drawing state) for (size_t i = 0; i < curr.size(); i++) { const wp& displayToken = curr.keyAt(i); if (draw.indexOfKey(displayToken) < 0) { processDisplayAdded(displayToken, curr[i]); } } } mDrawingState.displays = mCurrentState.displays; } void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) { // Commit display transactions const bool displayTransactionNeeded = transactionFlags & eDisplayTransactionNeeded; if (displayTransactionNeeded) { processDisplayChangesLocked(); processDisplayHotplugEventsLocked(); } mForceTraversal = false; mForceTransactionDisplayChange = displayTransactionNeeded; if (mSomeChildrenChanged) { mVisibleRegionsDirty = true; mSomeChildrenChanged = false; } // Update transform hint if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) { // The transform hint might have changed for some layers // (either because a display has changed, or because a layer // as changed). // // Walk through all the layers in currentLayers, // and update their transform hint. // // If a layer is visible only on a single display, then that // display is used to calculate the hint, otherwise we use the // default display. // // NOTE: we do this here, rather than when presenting the display so that // the hint is set before we acquire a buffer from the surface texture. // // NOTE: layer transactions have taken place already, so we use their // drawing state. However, SurfaceFlinger's own transaction has not // happened yet, so we must use the current state layer list // (soon to become the drawing state list). // sp hintDisplay; uint32_t currentlayerStack = 0; bool first = true; mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) { // NOTE: we rely on the fact that layers are sorted by // layerStack first (so we don't have to traverse the list // of displays for every layer). uint32_t layerStack = layer->getLayerStack(); if (first || currentlayerStack != layerStack) { currentlayerStack = layerStack; // figure out if this layerstack is mirrored // (more than one display) if so, pick the default display, // if not, pick the only display it's on. hintDisplay = nullptr; for (const auto& [token, display] : mDisplays) { if (display->getCompositionDisplay() ->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) { if (hintDisplay) { hintDisplay = nullptr; break; } else { hintDisplay = display; } } } } if (!hintDisplay) { // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to // redraw after transform hint changes. See bug 8508397. // could be null when this layer is using a layerStack // that is not visible on any display. Also can occur at // screen off/on times. hintDisplay = getDefaultDisplayDeviceLocked(); } // could be null if there is no display available at all to get // the transform hint from. if (hintDisplay) { layer->updateTransformHint(hintDisplay->getTransformHint()); } first = false; }); } /* * Perform our own transaction if needed */ if (mLayersAdded) { mLayersAdded = false; // Layers have been added. mVisibleRegionsDirty = true; } // some layers might have been removed, so // we need to update the regions they're exposing. if (mLayersRemoved) { mLayersRemoved = false; mVisibleRegionsDirty = true; mDrawingState.traverseInZOrder([&](Layer* layer) { if (mLayersPendingRemoval.indexOf(layer) >= 0) { // this layer is not visible anymore Region visibleReg; visibleReg.set(layer->getScreenBounds()); invalidateLayerStack(layer, visibleReg); } }); } commitTransaction(); } void SurfaceFlinger::updateInputFlinger() { ATRACE_CALL(); if (!mInputFlinger) { return; } if (mVisibleRegionsDirty || mInputInfoChanged) { mInputInfoChanged = false; notifyWindowInfos(); } else if (mInputWindowCommands.syncInputWindows) { // If the caller requested to sync input windows, but there are no // changes to input windows, notify immediately. windowInfosReported(); } for (const auto& focusRequest : mInputWindowCommands.focusRequests) { mInputFlinger->setFocusedWindow(focusRequest); } mInputWindowCommands.clear(); } bool enablePerWindowInputRotation() { static bool value = android::base::GetBoolProperty("persist.debug.per_window_input_rotation", false); return value; } void SurfaceFlinger::notifyWindowInfos() { std::vector windowInfos; mDrawingState.traverseInReverseZOrder([&](Layer* layer) { if (!layer->needsInputInfo()) return; sp display = enablePerWindowInputRotation() ? ON_MAIN_THREAD(getDisplayWithInputByLayer(layer)) : nullptr; // When calculating the screen bounds we ignore the transparent region since it may // result in an unwanted offset. windowInfos.push_back(layer->fillInputInfo(display)); }); mWindowInfosListenerInvoker->windowInfosChanged(windowInfos, mInputWindowCommands.syncInputWindows); } void SurfaceFlinger::updateCursorAsync() { compositionengine::CompositionRefreshArgs refreshArgs; for (const auto& [_, display] : ON_MAIN_THREAD(mDisplays)) { if (HalDisplayId::tryCast(display->getId())) { refreshArgs.outputs.push_back(display->getCompositionDisplay()); } } mCompositionEngine->updateCursorAsync(refreshArgs); } void SurfaceFlinger::changeRefreshRate(const RefreshRate& refreshRate, Scheduler::ModeEvent event) { // If this is called from the main thread mStateLock must be locked before // Currently the only way to call this function from the main thread is from // Scheduler::chooseRefreshRateForContent ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); changeRefreshRateLocked(refreshRate, event); } void SurfaceFlinger::triggerOnFrameRateOverridesChanged() { PhysicalDisplayId displayId = [&]() { ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); return getDefaultDisplayDeviceLocked()->getPhysicalId(); }(); mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId); } void SurfaceFlinger::initScheduler(const sp& display) { if (mScheduler) { // If the scheduler is already initialized, this means that we received // a hotplug(connected) on the primary display. In that case we should // update the scheduler with the most recent display information. ALOGW("Scheduler already initialized, updating instead"); mScheduler->setRefreshRateConfigs(display->holdRefreshRateConfigs()); return; } const auto currRefreshRate = display->getActiveMode()->getFps(); mRefreshRateStats = std::make_unique(*mTimeStats, currRefreshRate, hal::PowerMode::OFF); mVsyncConfiguration = getFactory().createVsyncConfiguration(currRefreshRate); mVsyncModulator = sp::make(mVsyncConfiguration->getCurrentConfigs()); // start the EventThread mScheduler = getFactory().createScheduler(display->holdRefreshRateConfigs(), *this); const auto configs = mVsyncConfiguration->getCurrentConfigs(); const nsecs_t vsyncPeriod = currRefreshRate.getPeriodNsecs(); mAppConnectionHandle = mScheduler->createConnection("app", mFrameTimeline->getTokenManager(), /*workDuration=*/configs.late.appWorkDuration, /*readyDuration=*/configs.late.sfWorkDuration, impl::EventThread::InterceptVSyncsCallback()); mSfConnectionHandle = mScheduler->createConnection("appSf", mFrameTimeline->getTokenManager(), /*workDuration=*/std::chrono::nanoseconds(vsyncPeriod), /*readyDuration=*/configs.late.sfWorkDuration, [this](nsecs_t timestamp) { mInterceptor->saveVSyncEvent(timestamp); }); mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(), configs.late.sfWorkDuration); mRegionSamplingThread = new RegionSamplingThread(*this, RegionSamplingThread::EnvironmentTimingTunables()); mFpsReporter = new FpsReporter(*mFrameTimeline, *this); // Dispatch a mode change request for the primary display on scheduler // initialization, so that the EventThreads always contain a reference to a // prior configuration. // // This is a bit hacky, but this avoids a back-pointer into the main SF // classes from EventThread, and there should be no run-time binder cost // anyway since there are no connected apps at this point. mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, display->getActiveMode()); static auto ignorePresentFences = base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false); mScheduler->setIgnorePresentFences( ignorePresentFences || getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE)); } void SurfaceFlinger::updatePhaseConfiguration(const Fps& refreshRate) { mVsyncConfiguration->setRefreshRateFps(refreshRate); setVsyncConfig(mVsyncModulator->setVsyncConfigSet(mVsyncConfiguration->getCurrentConfigs()), refreshRate.getPeriodNsecs()); } void SurfaceFlinger::setVsyncConfig(const VsyncModulator::VsyncConfig& config, nsecs_t vsyncPeriod) { mScheduler->setDuration(mAppConnectionHandle, /*workDuration=*/config.appWorkDuration, /*readyDuration=*/config.sfWorkDuration); mScheduler->setDuration(mSfConnectionHandle, /*workDuration=*/std::chrono::nanoseconds(vsyncPeriod), /*readyDuration=*/config.sfWorkDuration); mEventQueue->setDuration(config.sfWorkDuration); } void SurfaceFlinger::commitTransaction() { ATRACE_CALL(); commitTransactionLocked(); signalSynchronousTransactions(CountDownLatch::eSyncTransaction); mAnimTransactionPending = false; } void SurfaceFlinger::commitTransactionLocked() { if (!mLayersPendingRemoval.isEmpty()) { // Notify removed layers now that they can't be drawn from for (const auto& l : mLayersPendingRemoval) { recordBufferingStats(l->getName(), l->getOccupancyHistory(true)); // Ensure any buffers set to display on any children are released. if (l->isRemovedFromCurrentState()) { l->latchAndReleaseBuffer(); } // If the layer has been removed and has no parent, then it will not be reachable // when traversing layers on screen. Add the layer to the offscreenLayers set to // ensure we can copy its current to drawing state. if (!l->getParent()) { mOffscreenLayers.emplace(l.get()); } } mLayersPendingRemoval.clear(); } // If this transaction is part of a window animation then the next frame // we composite should be considered an animation as well. mAnimCompositionPending = mAnimTransactionPending; mDrawingState = mCurrentState; // clear the "changed" flags in current state mCurrentState.colorMatrixChanged = false; if (mVisibleRegionsDirty) { for (const auto& rootLayer : mDrawingState.layersSortedByZ) { rootLayer->commitChildList(); } } commitOffscreenLayers(); if (mNumClones > 0) { mDrawingState.traverse([&](Layer* layer) { layer->updateMirrorInfo(); }); } } void SurfaceFlinger::commitOffscreenLayers() { for (Layer* offscreenLayer : mOffscreenLayers) { offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) { uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); if (!trFlags) return; layer->doTransaction(0); layer->commitChildList(); }); } } void SurfaceFlinger::invalidateLayerStack(const sp& layer, const Region& dirty) { for (const auto& [token, displayDevice] : ON_MAIN_THREAD(mDisplays)) { auto display = displayDevice->getCompositionDisplay(); if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) { display->editState().dirtyRegion.orSelf(dirty); } } } bool SurfaceFlinger::handlePageFlip() { ATRACE_CALL(); ALOGV("handlePageFlip"); nsecs_t latchTime = systemTime(); bool visibleRegions = false; bool frameQueued = false; bool newDataLatched = false; const nsecs_t expectedPresentTime = mExpectedPresentTime.load(); // Store the set of layers that need updates. This set must not change as // buffers are being latched, as this could result in a deadlock. // Example: Two producers share the same command stream and: // 1.) Layer 0 is latched // 2.) Layer 0 gets a new frame // 2.) Layer 1 gets a new frame // 3.) Layer 1 is latched. // Display is now waiting on Layer 1's frame, which is behind layer 0's // second frame. But layer 0's second frame could be waiting on display. mDrawingState.traverse([&](Layer* layer) { uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); if (trFlags || mForceTransactionDisplayChange) { const uint32_t flags = layer->doTransaction(0); if (flags & Layer::eVisibleRegion) mVisibleRegionsDirty = true; } if (layer->hasReadyFrame()) { frameQueued = true; if (layer->shouldPresentNow(expectedPresentTime)) { mLayersWithQueuedFrames.emplace(layer); } else { ATRACE_NAME("!layer->shouldPresentNow()"); layer->useEmptyDamage(); } } else { layer->useEmptyDamage(); } }); mForceTransactionDisplayChange = false; // The client can continue submitting buffers for offscreen layers, but they will not // be shown on screen. Therefore, we need to latch and release buffers of offscreen // layers to ensure dequeueBuffer doesn't block indefinitely. for (Layer* offscreenLayer : mOffscreenLayers) { offscreenLayer->traverse(LayerVector::StateSet::Drawing, [&](Layer* l) { l->latchAndReleaseBuffer(); }); } if (!mLayersWithQueuedFrames.empty()) { // mStateLock is needed for latchBuffer as LayerRejecter::reject() // writes to Layer current state. See also b/119481871 Mutex::Autolock lock(mStateLock); for (const auto& layer : mLayersWithQueuedFrames) { if (layer->latchBuffer(visibleRegions, latchTime, expectedPresentTime)) { mLayersPendingRefresh.push_back(layer); } layer->useSurfaceDamage(); if (layer->isBufferLatched()) { newDataLatched = true; } } } mVisibleRegionsDirty |= visibleRegions; // If we will need to wake up at some time in the future to deal with a // queued frame that shouldn't be displayed during this vsync period, wake // up during the next vsync period to check again. if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) { signalLayerUpdate(); } // enter boot animation on first buffer latch if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) { ALOGI("Enter boot animation"); mBootStage = BootStage::BOOTANIMATION; } if (mNumClones > 0) { mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); }); } // Only continue with the refresh if there is actually new work to do return !mLayersWithQueuedFrames.empty() && newDataLatched; } void SurfaceFlinger::invalidateHwcGeometry() { mGeometryInvalid = true; } status_t SurfaceFlinger::addClientLayer(const sp& client, const sp& handle, const sp& gbc, const sp& lbc, const sp& parentHandle, const sp& parentLayer, bool addToRoot, uint32_t* outTransformHint) { if (mNumLayers >= ISurfaceComposer::MAX_LAYERS) { ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(), ISurfaceComposer::MAX_LAYERS); return NO_MEMORY; } wp initialProducer; if (gbc != nullptr) { initialProducer = IInterface::asBinder(gbc); } setLayerCreatedState(handle, lbc, parentHandle, parentLayer, initialProducer, addToRoot); // Create a transaction includes the initial parent and producer. Vector states; Vector displays; ComposerState composerState; composerState.state.what = layer_state_t::eLayerCreated; composerState.state.surface = handle; states.add(composerState); lbc->updateTransformHint(mActiveDisplayTransformHint); if (outTransformHint) { *outTransformHint = mActiveDisplayTransformHint; } // attach this layer to the client client->attachLayer(handle, lbc); return setTransactionState(FrameTimelineInfo{}, states, displays, 0 /* flags */, nullptr, InputWindowCommands{}, -1 /* desiredPresentTime */, true /* isAutoTimestamp */, {}, false /* hasListenerCallbacks */, {}, 0 /* Undefined transactionId */); } void SurfaceFlinger::removeGraphicBufferProducerAsync(const wp& binder) { static_cast(schedule([=] { Mutex::Autolock lock(mStateLock); mGraphicBufferProducerList.erase(binder); })); } uint32_t SurfaceFlinger::peekTransactionFlags() { return mTransactionFlags; } uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) { return mTransactionFlags.fetch_and(~flags) & flags; } uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) { return setTransactionFlags(flags, TransactionSchedule::Late); } uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, TransactionSchedule schedule, const sp& token) { uint32_t old = mTransactionFlags.fetch_or(flags); modulateVsync(&VsyncModulator::setTransactionSchedule, schedule, token); if ((old & flags) == 0) signalTransaction(); return old; } void SurfaceFlinger::setTraversalNeeded() { mForceTraversal = true; } void SurfaceFlinger::flushTransactionQueues() { // to prevent onHandleDestroyed from being called while the lock is held, // we must keep a copy of the transactions (specifically the composer // states) around outside the scope of the lock std::vector transactions; // Layer handles that have transactions with buffers that are ready to be applied. std::unordered_set, ISurfaceComposer::SpHash> bufferLayersReadyToPresent; { Mutex::Autolock _l(mStateLock); { Mutex::Autolock _l(mQueueLock); // Collect transactions from pending transaction queue. auto it = mPendingTransactionQueues.begin(); while (it != mPendingTransactionQueues.end()) { auto& [applyToken, transactionQueue] = *it; while (!transactionQueue.empty()) { auto& transaction = transactionQueue.front(); if (!transactionIsReadyToBeApplied(transaction.frameTimelineInfo, transaction.isAutoTimestamp, transaction.desiredPresentTime, transaction.originUid, transaction.states, bufferLayersReadyToPresent)) { setTransactionFlags(eTransactionFlushNeeded); break; } transaction.traverseStatesWithBuffers([&](const layer_state_t& state) { bufferLayersReadyToPresent.insert(state.surface); }); transactions.emplace_back(std::move(transaction)); transactionQueue.pop(); } if (transactionQueue.empty()) { it = mPendingTransactionQueues.erase(it); mTransactionQueueCV.broadcast(); } else { it = std::next(it, 1); } } // Collect transactions from current transaction queue or queue to pending transactions. // Case 1: push to pending when transactionIsReadyToBeApplied is false. // Case 2: push to pending when there exist a pending queue. // Case 3: others are ready to apply. while (!mTransactionQueue.empty()) { auto& transaction = mTransactionQueue.front(); bool pendingTransactions = mPendingTransactionQueues.find(transaction.applyToken) != mPendingTransactionQueues.end(); if (pendingTransactions || !transactionIsReadyToBeApplied(transaction.frameTimelineInfo, transaction.isAutoTimestamp, transaction.desiredPresentTime, transaction.originUid, transaction.states, bufferLayersReadyToPresent)) { mPendingTransactionQueues[transaction.applyToken].push(std::move(transaction)); } else { transaction.traverseStatesWithBuffers([&](const layer_state_t& state) { bufferLayersReadyToPresent.insert(state.surface); }); transactions.emplace_back(std::move(transaction)); } mTransactionQueue.pop(); ATRACE_INT("TransactionQueue", mTransactionQueue.size()); } } // Now apply all transactions. for (const auto& transaction : transactions) { applyTransactionState(transaction.frameTimelineInfo, transaction.states, transaction.displays, transaction.flags, transaction.inputWindowCommands, transaction.desiredPresentTime, transaction.isAutoTimestamp, transaction.buffer, transaction.postTime, transaction.permissions, transaction.hasListenerCallbacks, transaction.listenerCallbacks, transaction.originPid, transaction.originUid, transaction.id); if (transaction.transactionCommittedSignal) { mTransactionCommittedSignals.emplace_back( std::move(transaction.transactionCommittedSignal)); } } } } bool SurfaceFlinger::transactionFlushNeeded() { Mutex::Autolock _l(mQueueLock); return !mPendingTransactionQueues.empty() || !mTransactionQueue.empty(); } bool SurfaceFlinger::frameIsEarly(nsecs_t expectedPresentTime, int64_t vsyncId) const { // The amount of time SF can delay a frame if it is considered early based // on the VsyncModulator::VsyncConfig::appWorkDuration constexpr static std::chrono::nanoseconds kEarlyLatchMaxThreshold = 100ms; const auto currentVsyncPeriod = mScheduler->getDisplayStatInfo(systemTime()).vsyncPeriod; const auto earlyLatchVsyncThreshold = currentVsyncPeriod / 2; const auto prediction = mFrameTimeline->getTokenManager()->getPredictionsForToken(vsyncId); if (!prediction.has_value()) { return false; } if (std::abs(prediction->presentTime - expectedPresentTime) >= kEarlyLatchMaxThreshold.count()) { return false; } return prediction->presentTime >= expectedPresentTime && prediction->presentTime - expectedPresentTime >= earlyLatchVsyncThreshold; } bool SurfaceFlinger::transactionIsReadyToBeApplied( const FrameTimelineInfo& info, bool isAutoTimestamp, int64_t desiredPresentTime, uid_t originUid, const Vector& states, const std::unordered_set, ISurfaceComposer::SpHash>& bufferLayersReadyToPresent) const { ATRACE_CALL(); const nsecs_t expectedPresentTime = mExpectedPresentTime.load(); // Do not present if the desiredPresentTime has not passed unless it is more than one second // in the future. We ignore timestamps more than 1 second in the future for stability reasons. if (!isAutoTimestamp && desiredPresentTime >= expectedPresentTime && desiredPresentTime < expectedPresentTime + s2ns(1)) { ATRACE_NAME("not current"); return false; } if (!mScheduler->isVsyncValid(expectedPresentTime, originUid)) { ATRACE_NAME("!isVsyncValid"); return false; } // If the client didn't specify desiredPresentTime, use the vsyncId to determine the expected // present time of this transaction. if (isAutoTimestamp && frameIsEarly(expectedPresentTime, info.vsyncId)) { ATRACE_NAME("frameIsEarly"); return false; } for (const ComposerState& state : states) { const layer_state_t& s = state.state; const bool acquireFenceChanged = (s.what & layer_state_t::eAcquireFenceChanged); if (acquireFenceChanged && s.acquireFence && !enableLatchUnsignaled && s.acquireFence->getStatus() == Fence::Status::Unsignaled) { ATRACE_NAME("fence unsignaled"); return false; } sp layer = nullptr; if (s.surface) { layer = fromHandle(s.surface).promote(); } else if (s.hasBufferChanges()) { ALOGW("Transaction with buffer, but no Layer?"); continue; } if (!layer) { continue; } ATRACE_NAME(layer->getName().c_str()); if (s.hasBufferChanges()) { // If backpressure is enabled and we already have a buffer to commit, keep the // transaction in the queue. const bool hasPendingBuffer = bufferLayersReadyToPresent.find(s.surface) != bufferLayersReadyToPresent.end(); if (layer->backpressureEnabled() && hasPendingBuffer && isAutoTimestamp) { ATRACE_NAME("hasPendingBuffer"); return false; } } } return true; } void SurfaceFlinger::queueTransaction(TransactionState& state) { Mutex::Autolock _l(mQueueLock); // If its TransactionQueue already has a pending TransactionState or if it is pending auto itr = mPendingTransactionQueues.find(state.applyToken); // if this is an animation frame, wait until prior animation frame has // been applied by SF if (state.flags & eAnimation) { while (itr != mPendingTransactionQueues.end()) { status_t err = mTransactionQueueCV.waitRelative(mQueueLock, s2ns(5)); if (CC_UNLIKELY(err != NO_ERROR)) { ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out " "waiting for animation frame to apply"); break; } itr = mPendingTransactionQueues.find(state.applyToken); } } // Generate a CountDownLatch pending state if this is a synchronous transaction. if ((state.flags & eSynchronous) || state.inputWindowCommands.syncInputWindows) { state.transactionCommittedSignal = std::make_shared( (state.inputWindowCommands.syncInputWindows ? (CountDownLatch::eSyncInputWindows | CountDownLatch::eSyncTransaction) : CountDownLatch::eSyncTransaction)); } mTransactionQueue.emplace(state); ATRACE_INT("TransactionQueue", mTransactionQueue.size()); const auto schedule = [](uint32_t flags) { if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd; if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart; return TransactionSchedule::Late; }(state.flags); setTransactionFlags(eTransactionFlushNeeded, schedule, state.applyToken); } void SurfaceFlinger::waitForSynchronousTransaction( const CountDownLatch& transactionCommittedSignal) { // applyTransactionState is called on the main SF thread. While a given process may wish // to wait on synchronous transactions, the main SF thread should apply the transaction and // set the value to notify this after committed. if (!transactionCommittedSignal.wait_until(std::chrono::seconds(5))) { ALOGE("setTransactionState timed out!"); } } void SurfaceFlinger::signalSynchronousTransactions(const uint32_t flag) { for (auto it = mTransactionCommittedSignals.begin(); it != mTransactionCommittedSignals.end();) { if ((*it)->countDown(flag)) { it = mTransactionCommittedSignals.erase(it); } else { it++; } } } status_t SurfaceFlinger::setTransactionState( const FrameTimelineInfo& frameTimelineInfo, const Vector& states, const Vector& displays, uint32_t flags, const sp& applyToken, const InputWindowCommands& inputWindowCommands, int64_t desiredPresentTime, bool isAutoTimestamp, const client_cache_t& uncacheBuffer, bool hasListenerCallbacks, const std::vector& listenerCallbacks, uint64_t transactionId) { ATRACE_CALL(); uint32_t permissions = callingThreadHasUnscopedSurfaceFlingerAccess() ? Permission::ACCESS_SURFACE_FLINGER : 0; // Avoid checking for rotation permissions if the caller already has ACCESS_SURFACE_FLINGER // permissions. if ((permissions & Permission::ACCESS_SURFACE_FLINGER) || callingThreadHasRotateSurfaceFlingerAccess()) { permissions |= Permission::ROTATE_SURFACE_FLINGER; } if (!(permissions & Permission::ACCESS_SURFACE_FLINGER) && (flags & (eEarlyWakeupStart | eEarlyWakeupEnd))) { ALOGE("Only WindowManager is allowed to use eEarlyWakeup[Start|End] flags"); flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd); } const int64_t postTime = systemTime(); IPCThreadState* ipc = IPCThreadState::self(); const int originPid = ipc->getCallingPid(); const int originUid = ipc->getCallingUid(); TransactionState state{frameTimelineInfo, states, displays, flags, applyToken, inputWindowCommands, desiredPresentTime, isAutoTimestamp, uncacheBuffer, postTime, permissions, hasListenerCallbacks, listenerCallbacks, originPid, originUid, transactionId}; // Check for incoming buffer updates and increment the pending buffer count. state.traverseStatesWithBuffers([&](const layer_state_t& state) { mBufferCountTracker.increment(state.surface->localBinder()); }); queueTransaction(state); // Check the pending state to make sure the transaction is synchronous. if (state.transactionCommittedSignal) { waitForSynchronousTransaction(*state.transactionCommittedSignal); } return NO_ERROR; } void SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo, const Vector& states, const Vector& displays, uint32_t flags, const InputWindowCommands& inputWindowCommands, const int64_t desiredPresentTime, bool isAutoTimestamp, const client_cache_t& uncacheBuffer, const int64_t postTime, uint32_t permissions, bool hasListenerCallbacks, const std::vector& listenerCallbacks, int originPid, int originUid, uint64_t transactionId) { uint32_t transactionFlags = 0; for (const DisplayState& display : displays) { transactionFlags |= setDisplayStateLocked(display); } // start and end registration for listeners w/ no surface so they can get their callback. Note // that listeners with SurfaceControls will start registration during setClientStateLocked // below. for (const auto& listener : listenerCallbacks) { mTransactionCallbackInvoker.startRegistration(listener); mTransactionCallbackInvoker.endRegistration(listener); } std::unordered_set listenerCallbacksWithSurfaces; uint32_t clientStateFlags = 0; for (const ComposerState& state : states) { clientStateFlags |= setClientStateLocked(frameTimelineInfo, state, desiredPresentTime, isAutoTimestamp, postTime, permissions, listenerCallbacksWithSurfaces); if ((flags & eAnimation) && state.state.surface) { if (const auto layer = fromHandle(state.state.surface).promote(); layer) { mScheduler->recordLayerHistory(layer.get(), isAutoTimestamp ? 0 : desiredPresentTime, LayerHistory::LayerUpdateType::AnimationTX); } } } for (const auto& listenerCallback : listenerCallbacksWithSurfaces) { mTransactionCallbackInvoker.endRegistration(listenerCallback); } // If the state doesn't require a traversal and there are callbacks, send them now if (!(clientStateFlags & eTraversalNeeded) && hasListenerCallbacks) { mTransactionCallbackInvoker.sendCallbacks(); } transactionFlags |= clientStateFlags; if (permissions & Permission::ACCESS_SURFACE_FLINGER) { transactionFlags |= addInputWindowCommands(inputWindowCommands); } else if (!inputWindowCommands.empty()) { ALOGE("Only privileged callers are allowed to send input commands."); } if (uncacheBuffer.isValid()) { ClientCache::getInstance().erase(uncacheBuffer); } // If a synchronous transaction is explicitly requested without any changes, force a transaction // anyway. This can be used as a flush mechanism for previous async transactions. // Empty animation transaction can be used to simulate back-pressure, so also force a // transaction for empty animation transactions. if (transactionFlags == 0 && ((flags & eSynchronous) || (flags & eAnimation))) { transactionFlags = eTransactionNeeded; } if (transactionFlags) { if (mInterceptor->isEnabled()) { mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags, originPid, originUid, transactionId); } // We are on the main thread, we are about to preform a traversal. Clear the traversal bit // so we don't have to wake up again next frame to preform an unnecessary traversal. if (transactionFlags & eTraversalNeeded) { transactionFlags = transactionFlags & (~eTraversalNeeded); mForceTraversal = true; } if (transactionFlags) { setTransactionFlags(transactionFlags); } if (flags & eAnimation) { mAnimTransactionPending = true; } } } uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) { const ssize_t index = mCurrentState.displays.indexOfKey(s.token); if (index < 0) return 0; uint32_t flags = 0; DisplayDeviceState& state = mCurrentState.displays.editValueAt(index); const uint32_t what = s.what; if (what & DisplayState::eSurfaceChanged) { if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) { state.surface = s.surface; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eLayerStackChanged) { if (state.layerStack != s.layerStack) { state.layerStack = s.layerStack; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eFlagsChanged) { if (state.flags != s.flags) { state.flags = s.flags; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eDisplayProjectionChanged) { if (state.orientation != s.orientation) { state.orientation = s.orientation; flags |= eDisplayTransactionNeeded; } if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) { state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect; flags |= eDisplayTransactionNeeded; } if (state.layerStackSpaceRect != s.layerStackSpaceRect) { state.layerStackSpaceRect = s.layerStackSpaceRect; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eDisplaySizeChanged) { if (state.width != s.width) { state.width = s.width; flags |= eDisplayTransactionNeeded; } if (state.height != s.height) { state.height = s.height; flags |= eDisplayTransactionNeeded; } } return flags; } bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) && (usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid) : !checkPermission(sAccessSurfaceFlinger, pid, uid))) { return false; } return true; } uint32_t SurfaceFlinger::setClientStateLocked( const FrameTimelineInfo& frameTimelineInfo, const ComposerState& composerState, int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime, uint32_t permissions, std::unordered_set& outListenerCallbacks) { const layer_state_t& s = composerState.state; const bool privileged = permissions & Permission::ACCESS_SURFACE_FLINGER; std::vector filteredListeners; for (auto& listener : s.listeners) { // Starts a registration but separates the callback ids according to callback type. This // allows the callback invoker to send on latch callbacks earlier. // note that startRegistration will not re-register if the listener has // already be registered for a prior surface control ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT); if (!onCommitCallbacks.callbackIds.empty()) { mTransactionCallbackInvoker.startRegistration(onCommitCallbacks); filteredListeners.push_back(onCommitCallbacks); outListenerCallbacks.insert(onCommitCallbacks); } ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE); if (!onCompleteCallbacks.callbackIds.empty()) { mTransactionCallbackInvoker.startRegistration(onCompleteCallbacks); filteredListeners.push_back(onCompleteCallbacks); outListenerCallbacks.insert(onCompleteCallbacks); } } const uint64_t what = s.what; uint32_t flags = 0; sp layer = nullptr; if (s.surface) { if (what & layer_state_t::eLayerCreated) { layer = handleLayerCreatedLocked(s.surface); if (layer) { flags |= eTransactionNeeded | eTraversalNeeded; mLayersAdded = true; } } else { layer = fromHandle(s.surface).promote(); } } else { // The client may provide us a null handle. Treat it as if the layer was removed. ALOGW("Attempt to set client state with a null layer handle"); } if (layer == nullptr) { for (auto& [listener, callbackIds] : s.listeners) { mTransactionCallbackInvoker.registerUnpresentedCallbackHandle( new CallbackHandle(listener, callbackIds, s.surface)); } return 0; } // Only set by BLAST adapter layers if (what & layer_state_t::eProducerDisconnect) { layer->onDisconnect(); } if (what & layer_state_t::ePositionChanged) { if (layer->setPosition(s.x, s.y)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eLayerChanged) { // NOTE: index needs to be calculated before we update the state const auto& p = layer->getParent(); if (p == nullptr) { ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); if (layer->setLayer(s.z) && idx >= 0) { mCurrentState.layersSortedByZ.removeAt(idx); mCurrentState.layersSortedByZ.add(layer); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded|eTraversalNeeded; } } else { if (p->setChildLayer(layer, s.z)) { flags |= eTransactionNeeded|eTraversalNeeded; } } } if (what & layer_state_t::eRelativeLayerChanged) { // NOTE: index needs to be calculated before we update the state const auto& p = layer->getParent(); const auto& relativeHandle = s.relativeLayerSurfaceControl ? s.relativeLayerSurfaceControl->getHandle() : nullptr; if (p == nullptr) { ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); if (layer->setRelativeLayer(relativeHandle, s.z) && idx >= 0) { mCurrentState.layersSortedByZ.removeAt(idx); mCurrentState.layersSortedByZ.add(layer); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded|eTraversalNeeded; } } else { if (p->setChildRelativeLayer(layer, relativeHandle, s.z)) { flags |= eTransactionNeeded|eTraversalNeeded; } } } if (what & layer_state_t::eSizeChanged) { if (layer->setSize(s.w, s.h)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eAlphaChanged) { if (layer->setAlpha(s.alpha)) flags |= eTraversalNeeded; } if (what & layer_state_t::eColorChanged) { if (layer->setColor(s.color)) flags |= eTraversalNeeded; } if (what & layer_state_t::eColorTransformChanged) { if (layer->setColorTransform(s.colorTransform)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eBackgroundColorChanged) { if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eMatrixChanged) { // TODO: b/109894387 // // SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary // rotation. To see the problem observe that if we have a square parent, and a child // of the same size, then we rotate the child 45 degrees around it's center, the child // must now be cropped to a non rectangular 8 sided region. // // Of course we can fix this in the future. For now, we are lucky, SurfaceControl is // private API, and arbitrary rotation is used in limited use cases, for instance: // - WindowManager only uses rotation in one case, which is on a top level layer in which // cropping is not an issue. // - Launcher, as a privileged app, uses this to transition an application to PiP // (picture-in-picture) mode. // // However given that abuse of rotation matrices could lead to surfaces extending outside // of cropped areas, we need to prevent non-root clients without permission // ACCESS_SURFACE_FLINGER nor ROTATE_SURFACE_FLINGER // (a.k.a. everyone except WindowManager / tests / Launcher) from setting non rectangle // preserving transformations. const bool allowNonRectPreservingTransforms = permissions & Permission::ROTATE_SURFACE_FLINGER; if (layer->setMatrix(s.matrix, allowNonRectPreservingTransforms)) flags |= eTraversalNeeded; } if (what & layer_state_t::eTransparentRegionChanged) { if (layer->setTransparentRegionHint(s.transparentRegion)) flags |= eTraversalNeeded; } if (what & layer_state_t::eFlagsChanged) { if (layer->setFlags(s.flags, s.mask)) flags |= eTraversalNeeded; } if (what & layer_state_t::eCornerRadiusChanged) { if (layer->setCornerRadius(s.cornerRadius)) flags |= eTraversalNeeded; } if (what & layer_state_t::eBackgroundBlurRadiusChanged && mSupportsBlur) { if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded; } if (what & layer_state_t::eBlurRegionsChanged) { if (layer->setBlurRegions(s.blurRegions)) flags |= eTraversalNeeded; } if (what & layer_state_t::eLayerStackChanged) { ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); // We only allow setting layer stacks for top level layers, // everything else inherits layer stack from its parent. if (layer->hasParent()) { ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid", layer->getDebugName()); } else if (idx < 0) { ALOGE("Attempt to set layer stack on layer without parent (%s) that " "that also does not appear in the top level layer list. Something" " has gone wrong.", layer->getDebugName()); } else if (layer->setLayerStack(s.layerStack)) { mCurrentState.layersSortedByZ.removeAt(idx); mCurrentState.layersSortedByZ.add(layer); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded; } } if (what & layer_state_t::eTransformChanged) { if (layer->setTransform(s.transform)) flags |= eTraversalNeeded; } if (what & layer_state_t::eTransformToDisplayInverseChanged) { if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse)) flags |= eTraversalNeeded; } if (what & layer_state_t::eCropChanged) { if (layer->setCrop(s.crop)) flags |= eTraversalNeeded; } if (what & layer_state_t::eAcquireFenceChanged) { if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded; } if (what & layer_state_t::eDataspaceChanged) { if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded; } if (what & layer_state_t::eHdrMetadataChanged) { if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded; } if (what & layer_state_t::eSurfaceDamageRegionChanged) { if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded; } if (what & layer_state_t::eApiChanged) { if (layer->setApi(s.api)) flags |= eTraversalNeeded; } if (what & layer_state_t::eSidebandStreamChanged) { if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded; } if (what & layer_state_t::eInputInfoChanged) { if (privileged) { layer->setInputInfo(*s.windowInfoHandle->getInfo()); flags |= eTraversalNeeded; } else { ALOGE("Attempt to update WindowInfo without permission ACCESS_SURFACE_FLINGER"); } } std::optional dequeueBufferTimestamp; if (what & layer_state_t::eMetadataChanged) { dequeueBufferTimestamp = s.metadata.getInt64(METADATA_DEQUEUE_TIME); auto gameMode = s.metadata.getInt32(METADATA_GAME_MODE, -1); if (gameMode != -1) { // The transaction will be received on the Task layer and needs to be applied to all // child layers. Child layers that are added at a later point will obtain the game mode // info through addChild(). layer->setGameModeForTree(gameMode); } if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded; } if (what & layer_state_t::eColorSpaceAgnosticChanged) { if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eShadowRadiusChanged) { if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded; } if (what & layer_state_t::eFrameRateSelectionPriority) { if (privileged && layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eFrameRateChanged) { if (ValidateFrameRate(s.frameRate, s.frameRateCompatibility, s.changeFrameRateStrategy, "SurfaceFlinger::setClientStateLocked", privileged)) { const auto compatibility = Layer::FrameRate::convertCompatibility(s.frameRateCompatibility); const auto strategy = Layer::FrameRate::convertChangeFrameRateStrategy(s.changeFrameRateStrategy); if (layer->setFrameRate(Layer::FrameRate(Fps(s.frameRate), compatibility, strategy))) { flags |= eTraversalNeeded; } } } if (what & layer_state_t::eFixedTransformHintChanged) { if (layer->setFixedTransformHint(s.fixedTransformHint)) { flags |= eTraversalNeeded | eTransformHintUpdateNeeded; } } if (what & layer_state_t::eAutoRefreshChanged) { layer->setAutoRefresh(s.autoRefresh); } if (what & layer_state_t::eTrustedOverlayChanged) { if (privileged) { if (layer->setTrustedOverlay(s.isTrustedOverlay)) { flags |= eTraversalNeeded; } } else { ALOGE("Attempt to set trusted overlay without permission ACCESS_SURFACE_FLINGER"); } } if (what & layer_state_t::eStretchChanged) { if (layer->setStretchEffect(s.stretchEffect)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eBufferCropChanged) { if (layer->setBufferCrop(s.bufferCrop)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eDestinationFrameChanged) { if (layer->setDestinationFrame(s.destinationFrame)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eDropInputModeChanged) { if (privileged) { if (layer->setDropInputMode(s.dropInputMode)) { flags |= eTraversalNeeded; mInputInfoChanged = true; } } else { ALOGE("Attempt to update InputPolicyFlags without permission ACCESS_SURFACE_FLINGER"); } } // This has to happen after we reparent children because when we reparent to null we remove // child layers from current state and remove its relative z. If the children are reparented in // the same transaction, then we have to make sure we reparent the children first so we do not // lose its relative z order. if (what & layer_state_t::eReparent) { bool hadParent = layer->hasParent(); auto parentHandle = (s.parentSurfaceControlForChild) ? s.parentSurfaceControlForChild->getHandle() : nullptr; if (layer->reparent(parentHandle)) { if (!hadParent) { layer->setIsAtRoot(false); mCurrentState.layersSortedByZ.remove(layer); } flags |= eTransactionNeeded | eTraversalNeeded; } } std::vector> callbackHandles; if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) { for (auto& [listener, callbackIds] : filteredListeners) { callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface)); } } bool bufferChanged = what & layer_state_t::eBufferChanged; bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged; bool bufferSizeExceedsLimit = false; std::shared_ptr buffer; if (bufferChanged && cacheIdChanged && s.buffer != nullptr) { bufferSizeExceedsLimit = exceedsMaxRenderTargetSize(s.buffer->getWidth(), s.buffer->getHeight()); if (!bufferSizeExceedsLimit) { ClientCache::getInstance().add(s.cachedBuffer, s.buffer); buffer = ClientCache::getInstance().get(s.cachedBuffer); } } else if (cacheIdChanged) { buffer = ClientCache::getInstance().get(s.cachedBuffer); } else if (bufferChanged && s.buffer != nullptr) { bufferSizeExceedsLimit = exceedsMaxRenderTargetSize(s.buffer->getWidth(), s.buffer->getHeight()); if (!bufferSizeExceedsLimit) { buffer = std::make_shared< renderengine::ExternalTexture>(s.buffer, getRenderEngine(), renderengine::ExternalTexture::Usage::READABLE); } } ALOGE_IF(bufferSizeExceedsLimit, "Attempted to create an ExternalTexture for layer %s that exceeds render target size " "limit.", layer->getDebugName()); if (buffer) { const bool frameNumberChanged = what & layer_state_t::eFrameNumberChanged; const uint64_t frameNumber = frameNumberChanged ? s.frameNumber : layer->getHeadFrameNumber(-1 /* expectedPresentTime */) + 1; if (layer->setBuffer(buffer, s.acquireFence, postTime, desiredPresentTime, isAutoTimestamp, s.cachedBuffer, frameNumber, dequeueBufferTimestamp, frameTimelineInfo, s.releaseBufferListener, s.releaseBufferEndpoint)) { flags |= eTraversalNeeded; } } else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) { layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime); } if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded; // Do not put anything that updates layer state or modifies flags after // setTransactionCompletedListener return flags; } uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) { bool hasChanges = mInputWindowCommands.merge(inputWindowCommands); return hasChanges ? eTraversalNeeded : 0; } status_t SurfaceFlinger::mirrorLayer(const sp& client, const sp& mirrorFromHandle, sp* outHandle, int32_t* outLayerId) { if (!mirrorFromHandle) { return NAME_NOT_FOUND; } sp mirrorLayer; sp mirrorFrom; std::string uniqueName = getUniqueLayerName("MirrorRoot"); { Mutex::Autolock _l(mStateLock); mirrorFrom = fromHandle(mirrorFromHandle).promote(); if (!mirrorFrom) { return NAME_NOT_FOUND; } status_t result = createContainerLayer(client, std::move(uniqueName), -1, -1, 0, LayerMetadata(), outHandle, &mirrorLayer); if (result != NO_ERROR) { return result; } mirrorLayer->setClonedChild(mirrorFrom->createClone()); } *outLayerId = mirrorLayer->sequence; return addClientLayer(client, *outHandle, nullptr, mirrorLayer, nullptr, nullptr, false, nullptr /* outTransformHint */); } status_t SurfaceFlinger::createLayer(const String8& name, const sp& client, uint32_t w, uint32_t h, PixelFormat format, uint32_t flags, LayerMetadata metadata, sp* handle, sp* gbp, const sp& parentHandle, int32_t* outLayerId, const sp& parentLayer, uint32_t* outTransformHint) { if (int32_t(w|h) < 0) { ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)", int(w), int(h)); return BAD_VALUE; } ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr, "Expected only one of parentLayer or parentHandle to be non-null. " "Programmer error?"); status_t result = NO_ERROR; sp layer; std::string uniqueName = getUniqueLayerName(name.string()); switch (flags & ISurfaceComposerClient::eFXSurfaceMask) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: case ISurfaceComposerClient::eFXSurfaceBufferState: { result = createBufferStateLayer(client, std::move(uniqueName), w, h, flags, std::move(metadata), handle, &layer); std::atomic* pendingBufferCounter = layer->getPendingBufferCounter(); if (pendingBufferCounter) { std::string counterName = layer->getPendingBufferCounterName(); mBufferCountTracker.add((*handle)->localBinder(), counterName, pendingBufferCounter); } } break; case ISurfaceComposerClient::eFXSurfaceEffect: // check if buffer size is set for color layer. if (w > 0 || h > 0) { ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)", int(w), int(h)); return BAD_VALUE; } result = createEffectLayer(client, std::move(uniqueName), w, h, flags, std::move(metadata), handle, &layer); break; case ISurfaceComposerClient::eFXSurfaceContainer: // check if buffer size is set for container layer. if (w > 0 || h > 0) { ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)", int(w), int(h)); return BAD_VALUE; } result = createContainerLayer(client, std::move(uniqueName), w, h, flags, std::move(metadata), handle, &layer); break; default: result = BAD_VALUE; break; } if (result != NO_ERROR) { return result; } bool addToRoot = callingThreadHasUnscopedSurfaceFlingerAccess(); result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer, addToRoot, outTransformHint); if (result != NO_ERROR) { return result; } mInterceptor->saveSurfaceCreation(layer); setTransactionFlags(eTransactionNeeded); *outLayerId = layer->sequence; return result; } std::string SurfaceFlinger::getUniqueLayerName(const char* name) { unsigned dupeCounter = 0; // Tack on our counter whether there is a hit or not, so everyone gets a tag std::string uniqueName = base::StringPrintf("%s#%u", name, dupeCounter); // Grab the state lock since we're accessing mCurrentState Mutex::Autolock lock(mStateLock); // Loop over layers until we're sure there is no matching name bool matchFound = true; while (matchFound) { matchFound = false; mCurrentState.traverse([&](Layer* layer) { if (layer->getName() == uniqueName) { matchFound = true; uniqueName = base::StringPrintf("%s#%u", name, ++dupeCounter); } }); } ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name, uniqueName.c_str()); return uniqueName; } status_t SurfaceFlinger::createBufferQueueLayer(const sp& client, std::string name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata, PixelFormat& format, sp* handle, sp* gbp, sp* outLayer) { // initialize the surfaces switch (format) { case PIXEL_FORMAT_TRANSPARENT: case PIXEL_FORMAT_TRANSLUCENT: format = PIXEL_FORMAT_RGBA_8888; break; case PIXEL_FORMAT_OPAQUE: format = PIXEL_FORMAT_RGBX_8888; break; } sp layer; LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata)); args.textureName = getNewTexture(); { // Grab the SF state lock during this since it's the only safe way to access // RenderEngine when creating a BufferLayerConsumer // TODO: Check if this lock is still needed here Mutex::Autolock lock(mStateLock); layer = getFactory().createBufferQueueLayer(args); } status_t err = layer->setDefaultBufferProperties(w, h, format); if (err == NO_ERROR) { *handle = layer->getHandle(); *gbp = layer->getProducer(); *outLayer = layer; } ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err)); return err; } status_t SurfaceFlinger::createBufferStateLayer(const sp& client, std::string name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata, sp* handle, sp* outLayer) { LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata)); args.textureName = getNewTexture(); sp layer = getFactory().createBufferStateLayer(args); *handle = layer->getHandle(); *outLayer = layer; return NO_ERROR; } status_t SurfaceFlinger::createEffectLayer(const sp& client, std::string name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata, sp* handle, sp* outLayer) { *outLayer = getFactory().createEffectLayer( {this, client, std::move(name), w, h, flags, std::move(metadata)}); *handle = (*outLayer)->getHandle(); return NO_ERROR; } status_t SurfaceFlinger::createContainerLayer(const sp& client, std::string name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata, sp* handle, sp* outLayer) { *outLayer = getFactory().createContainerLayer( {this, client, std::move(name), w, h, flags, std::move(metadata)}); *handle = (*outLayer)->getHandle(); return NO_ERROR; } void SurfaceFlinger::markLayerPendingRemovalLocked(const sp& layer) { mLayersPendingRemoval.add(layer); mLayersRemoved = true; setTransactionFlags(eTransactionNeeded); } void SurfaceFlinger::onHandleDestroyed(BBinder* handle, sp& layer) { Mutex::Autolock lock(mStateLock); // If a layer has a parent, we allow it to out-live it's handle // with the idea that the parent holds a reference and will eventually // be cleaned up. However no one cleans up the top-level so we do so // here. if (layer->isAtRoot()) { layer->setIsAtRoot(false); mCurrentState.layersSortedByZ.remove(layer); } markLayerPendingRemovalLocked(layer); mBufferCountTracker.remove(handle); layer.clear(); } // --------------------------------------------------------------------------- void SurfaceFlinger::onInitializeDisplays() { const auto display = getDefaultDisplayDeviceLocked(); if (!display) return; const sp token = display->getDisplayToken().promote(); LOG_ALWAYS_FATAL_IF(token == nullptr); // reset screen orientation and use primary layer stack Vector state; Vector displays; DisplayState d; d.what = DisplayState::eDisplayProjectionChanged | DisplayState::eLayerStackChanged; d.token = token; d.layerStack = 0; d.orientation = ui::ROTATION_0; d.orientedDisplaySpaceRect.makeInvalid(); d.layerStackSpaceRect.makeInvalid(); d.width = 0; d.height = 0; displays.add(d); nsecs_t now = systemTime(); // It should be on the main thread, apply it directly. applyTransactionState(FrameTimelineInfo{}, state, displays, 0, mInputWindowCommands, /* desiredPresentTime */ now, true, {}, /* postTime */ now, true, false, {}, getpid(), getuid(), 0 /* Undefined transactionId */); setPowerModeInternal(display, hal::PowerMode::ON); const nsecs_t vsyncPeriod = display->refreshRateConfigs().getCurrentRefreshRate().getVsyncPeriod(); mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod); mActiveDisplayTransformHint = display->getTransformHint(); // Use phase of 0 since phase is not known. // Use latency of 0, which will snap to the ideal latency. DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod}; setCompositorTimingSnapped(stats, 0); } void SurfaceFlinger::initializeDisplays() { // Async since we may be called from the main thread. static_cast(schedule([this]() MAIN_THREAD { onInitializeDisplays(); })); } sp SurfaceFlinger::getDisplayWithInputByLayer(Layer* layer) const { sp display; for (const auto& pair : mDisplays) { const auto& displayDevice = pair.second; if (!displayDevice->receivesInput() || !displayDevice->getCompositionDisplay() ->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) { continue; } // Don't return immediately so that we can log duplicates. if (display) { ALOGE("Multiple display devices claim to accept input for the same layerstack: %d", layer->getLayerStack()); continue; } display = displayDevice; } return display; } void SurfaceFlinger::setPowerModeInternal(const sp& display, hal::PowerMode mode) { if (display->isVirtual()) { ALOGE("%s: Invalid operation on virtual display", __FUNCTION__); return; } const auto displayId = display->getPhysicalId(); ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str()); const hal::PowerMode currentMode = display->getPowerMode(); if (mode == currentMode) { return; } const auto activeDisplay = getDisplayDeviceLocked(mActiveDisplayToken); if (activeDisplay != display && display->isInternal() && activeDisplay && activeDisplay->isPoweredOn()) { ALOGW("Trying to change power mode on non active display while the active display is ON"); } display->setPowerMode(mode); if (mInterceptor->isEnabled()) { mInterceptor->savePowerModeUpdate(display->getSequenceId(), static_cast(mode)); } const auto vsyncPeriod = display->refreshRateConfigs().getCurrentRefreshRate().getVsyncPeriod(); if (currentMode == hal::PowerMode::OFF) { // Turn on the display if (display->isInternal() && (!activeDisplay || !activeDisplay->isPoweredOn())) { onActiveDisplayChangedLocked(display); } // Keep uclamp in a separate syscall and set it before changing to RT due to b/190237315. // We can merge the syscall later. if (SurfaceFlinger::setSchedAttr(true) != NO_ERROR) { ALOGW("Couldn't set uclamp.min on display on: %s\n", strerror(errno)); } if (SurfaceFlinger::setSchedFifo(true) != NO_ERROR) { ALOGW("Couldn't set SCHED_FIFO on display on: %s\n", strerror(errno)); } getHwComposer().setPowerMode(displayId, mode); if (isDisplayActiveLocked(display) && mode != hal::PowerMode::DOZE_SUSPEND) { setHWCVsyncEnabled(displayId, mHWCVsyncPendingState); mScheduler->onScreenAcquired(mAppConnectionHandle); mScheduler->resyncToHardwareVsync(true, vsyncPeriod); } mVisibleRegionsDirty = true; mHasPoweredOff = true; repaintEverything(); } else if (mode == hal::PowerMode::OFF) { // Turn off the display if (SurfaceFlinger::setSchedFifo(false) != NO_ERROR) { ALOGW("Couldn't set SCHED_OTHER on display off: %s\n", strerror(errno)); } if (SurfaceFlinger::setSchedAttr(false) != NO_ERROR) { ALOGW("Couldn't set uclamp.min on display off: %s\n", strerror(errno)); } if (isDisplayActiveLocked(display) && currentMode != hal::PowerMode::DOZE_SUSPEND) { mScheduler->disableHardwareVsync(true); mScheduler->onScreenReleased(mAppConnectionHandle); } // Make sure HWVsync is disabled before turning off the display setHWCVsyncEnabled(displayId, hal::Vsync::DISABLE); getHwComposer().setPowerMode(displayId, mode); mVisibleRegionsDirty = true; // from this point on, SF will stop drawing on this display } else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) { // Update display while dozing getHwComposer().setPowerMode(displayId, mode); if (isDisplayActiveLocked(display) && currentMode == hal::PowerMode::DOZE_SUSPEND) { mScheduler->onScreenAcquired(mAppConnectionHandle); mScheduler->resyncToHardwareVsync(true, vsyncPeriod); } } else if (mode == hal::PowerMode::DOZE_SUSPEND) { // Leave display going to doze if (isDisplayActiveLocked(display)) { mScheduler->disableHardwareVsync(true); mScheduler->onScreenReleased(mAppConnectionHandle); } getHwComposer().setPowerMode(displayId, mode); } else { ALOGE("Attempting to set unknown power mode: %d\n", mode); getHwComposer().setPowerMode(displayId, mode); } if (isDisplayActiveLocked(display)) { mTimeStats->setPowerMode(mode); mRefreshRateStats->setPowerMode(mode); mScheduler->setDisplayPowerState(mode == hal::PowerMode::ON); } ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str()); } void SurfaceFlinger::setPowerMode(const sp& displayToken, int mode) { schedule([=]() MAIN_THREAD { const auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("Attempt to set power mode %d for invalid display token %p", mode, displayToken.get()); } else if (display->isVirtual()) { ALOGW("Attempt to set power mode %d for virtual display", mode); } else { setPowerModeInternal(display, static_cast(mode)); } }).wait(); } status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) { std::string result; IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid); } else { static const std::unordered_map dumpers = { {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)}, {"--dispsync"s, dumper([this](std::string& s) { mScheduler->dumpVsync(s); })}, {"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)}, {"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)}, {"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)}, {"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)}, {"--list"s, dumper(&SurfaceFlinger::listLayersLocked)}, {"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)}, {"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)}, {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)}, {"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)}, {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)}, {"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)}, }; const auto flag = args.empty() ? ""s : std::string(String8(args[0])); bool dumpLayers = true; { TimedLock lock(mStateLock, s2ns(1), __FUNCTION__); if (!lock.locked()) { StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n", strerror(-lock.status), lock.status); } if (const auto it = dumpers.find(flag); it != dumpers.end()) { (it->second)(args, asProto, result); dumpLayers = false; } else if (!asProto) { dumpAllLocked(args, result); } } if (dumpLayers) { LayersTraceFileProto traceFileProto = SurfaceTracing::createLayersTraceFileProto(); LayersTraceProto* layersTrace = traceFileProto.add_entry(); LayersProto layersProto = dumpProtoFromMainThread(); layersTrace->mutable_layers()->Swap(&layersProto); dumpDisplayProto(*layersTrace); if (asProto) { result.append(traceFileProto.SerializeAsString()); } else { // Dump info that we need to access from the main thread const auto layerTree = LayerProtoParser::generateLayerTree(layersTrace->layers()); result.append(LayerProtoParser::layerTreeToString(layerTree)); result.append("\n"); dumpOffscreenLayers(result); } } } write(fd, result.c_str(), result.size()); return NO_ERROR; } status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) { if (asProto && mTracing.isEnabled()) { mTracing.writeToFile(); } return doDump(fd, DumpArgs(), asProto); } void SurfaceFlinger::listLayersLocked(std::string& result) const { mCurrentState.traverseInZOrder( [&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); }); } void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const { StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC()); if (args.size() > 1) { const auto name = String8(args[1]); mCurrentState.traverseInZOrder([&](Layer* layer) { if (layer->getName() == name.string()) { layer->dumpFrameStats(result); } }); } else { mAnimFrameTracker.dumpStats(result); } } void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) { const bool clearAll = args.size() < 2; const auto name = clearAll ? String8() : String8(args[1]); mCurrentState.traverse([&](Layer* layer) { if (clearAll || layer->getName() == name.string()) { layer->clearFrameStats(); } }); mAnimFrameTracker.clearStats(); } void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const { mTimeStats->parseArgs(asProto, args, result); } void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const { mFrameTimeline->parseArgs(args, result); } // This should only be called from the main thread. Otherwise it would need // the lock and should use mCurrentState rather than mDrawingState. void SurfaceFlinger::logFrameStats() { mDrawingState.traverse([&](Layer* layer) { layer->logFrameStats(); }); mAnimFrameTracker.logAndResetStats(""); } void SurfaceFlinger::appendSfConfigString(std::string& result) const { result.append(" [sf"); StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset); StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv); StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%zu", getHwComposer().getMaxVirtualDisplayDimension()); StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework); StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64, maxFrameBufferAcquiredBuffers); result.append("]"); } void SurfaceFlinger::dumpVSync(std::string& result) const { mScheduler->dump(result); mRefreshRateStats->dump(result); result.append("\n"); mVsyncConfiguration->dump(result); StringAppendF(&result, " present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n", dispSyncPresentTimeOffset, getVsyncPeriodFromHWC()); StringAppendF(&result, "(mode override by backdoor: %s)\n\n", mDebugDisplayModeSetByBackdoor ? "yes" : "no"); mScheduler->dump(mAppConnectionHandle, result); mScheduler->dumpVsync(result); StringAppendF(&result, "mHWCVsyncPendingState=%s mLastHWCVsyncState=%s\n", to_string(mHWCVsyncPendingState).c_str(), to_string(mLastHWCVsyncState).c_str()); } void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto compositionDisplay = display->getCompositionDisplay(); compositionDisplay->dumpPlannerInfo(args, result); } } void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const { result.append("Static screen stats:\n"); for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) { float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9; float percent = 100.0f * static_cast(getBE().mFrameBuckets[b]) / getBE().mTotalTime; StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent); } float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9; float percent = 100.0f * static_cast(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime; StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1, bucketTimeSec, percent); } void SurfaceFlinger::recordBufferingStats(const std::string& layerName, std::vector&& history) { Mutex::Autolock lock(getBE().mBufferingStatsMutex); auto& stats = getBE().mBufferingStats[layerName]; for (const auto& segment : history) { if (!segment.usedThirdBuffer) { stats.twoBufferTime += segment.totalTime; } if (segment.occupancyAverage < 1.0f) { stats.doubleBufferedTime += segment.totalTime; } else if (segment.occupancyAverage < 2.0f) { stats.tripleBufferedTime += segment.totalTime; } ++stats.numSegments; stats.totalTime += segment.totalTime; } } void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) { result.append("Layer frame timestamps:\n"); // Traverse all layers to dump frame-events for each layer mCurrentState.traverseInZOrder( [&] (Layer* layer) { layer->dumpFrameEvents(result); }); } void SurfaceFlinger::dumpBufferingStats(std::string& result) const { result.append("Buffering stats:\n"); result.append(" [Layer name] " " \n"); Mutex::Autolock lock(getBE().mBufferingStatsMutex); typedef std::tuple BufferTuple; std::map> sorted; for (const auto& statsPair : getBE().mBufferingStats) { const char* name = statsPair.first.c_str(); const SurfaceFlingerBE::BufferingStats& stats = statsPair.second; if (stats.numSegments == 0) { continue; } float activeTime = ns2ms(stats.totalTime) / 1000.0f; float twoBufferRatio = static_cast(stats.twoBufferTime) / stats.totalTime; float doubleBufferRatio = static_cast( stats.doubleBufferedTime) / stats.totalTime; float tripleBufferRatio = static_cast( stats.tripleBufferedTime) / stats.totalTime; sorted.insert({activeTime, {name, twoBufferRatio, doubleBufferRatio, tripleBufferRatio}}); } for (const auto& sortedPair : sorted) { float activeTime = sortedPair.first; const BufferTuple& values = sortedPair.second; StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(), activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values)); } result.append("\n"); } void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto displayId = PhysicalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId); if (!hwcDisplayId) { continue; } StringAppendF(&result, "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(), *hwcDisplayId); uint8_t port; DisplayIdentificationData data; if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) { result.append("no identification data\n"); continue; } if (!isEdid(data)) { result.append("unknown identification data\n"); continue; } const auto edid = parseEdid(data); if (!edid) { result.append("invalid EDID\n"); continue; } StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data()); result.append(edid->displayName.data(), edid->displayName.length()); result.append("\"\n"); } } void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args, std::string& result) const { hal::HWDisplayId hwcDisplayId; uint8_t port; DisplayIdentificationData data; if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) && getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) { result.append(reinterpret_cast(data.data()), data.size()); } } void SurfaceFlinger::dumpWideColorInfo(std::string& result) const { StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay); StringAppendF(&result, "Device uses color management: %d\n", useColorManagement); StringAppendF(&result, "DisplayColorSetting: %s\n", decodeDisplayColorSetting(mDisplayColorSetting).c_str()); // TODO: print out if wide-color mode is active or not for (const auto& [token, display] : mDisplays) { const auto displayId = PhysicalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str()); std::vector modes = getHwComposer().getColorModes(*displayId); for (auto&& mode : modes) { StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode); } ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode; StringAppendF(&result, " Current color mode: %s (%d)\n", decodeColorMode(currentMode).c_str(), currentMode); } result.append("\n"); } LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const { // If context is SurfaceTracing thread, mTracingLock blocks display transactions on main thread. const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); LayersProto layersProto; for (const sp& layer : mDrawingState.layersSortedByZ) { layer->writeToProto(layersProto, traceFlags, display.get()); } return layersProto; } void SurfaceFlinger::dumpDisplayProto(LayersTraceProto& layersTraceProto) const { for (const auto& [_, display] : ON_MAIN_THREAD(mDisplays)) { DisplayProto* displayProto = layersTraceProto.add_displays(); displayProto->set_id(display->getId().value); displayProto->set_name(display->getDisplayName()); displayProto->set_layer_stack(display->getLayerStack()); LayerProtoHelper::writeSizeToProto(display->getWidth(), display->getHeight(), [&]() { return displayProto->mutable_size(); }); LayerProtoHelper::writeToProto(display->getLayerStackSpaceRect(), [&]() { return displayProto->mutable_layer_stack_space_rect(); }); LayerProtoHelper::writeTransformToProto(display->getTransform(), displayProto->mutable_transform()); } } void SurfaceFlinger::dumpHwc(std::string& result) const { getHwComposer().dump(result); } void SurfaceFlinger::dumpOffscreenLayersProto(LayersProto& layersProto, uint32_t traceFlags) const { // Add a fake invisible root layer to the proto output and parent all the offscreen layers to // it. LayerProto* rootProto = layersProto.add_layers(); const int32_t offscreenRootLayerId = INT32_MAX - 2; rootProto->set_id(offscreenRootLayerId); rootProto->set_name("Offscreen Root"); rootProto->set_parent(-1); for (Layer* offscreenLayer : mOffscreenLayers) { // Add layer as child of the fake root rootProto->add_children(offscreenLayer->sequence); // Add layer LayerProto* layerProto = offscreenLayer->writeToProto(layersProto, traceFlags, nullptr /*device*/); layerProto->set_parent(offscreenRootLayerId); } } LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) { return schedule([=] { return dumpDrawingStateProto(traceFlags); }).get(); } void SurfaceFlinger::dumpOffscreenLayers(std::string& result) { result.append("Offscreen Layers:\n"); result.append(schedule([this] { std::string result; for (Layer* offscreenLayer : mOffscreenLayers) { offscreenLayer->traverse(LayerVector::StateSet::Drawing, [&](Layer* layer) { layer->dumpCallingUidPid(result); }); } return result; }).get()); } void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const { const bool colorize = !args.empty() && args[0] == String16("--color"); Colorizer colorizer(colorize); // figure out if we're stuck somewhere const nsecs_t now = systemTime(); const nsecs_t inTransaction(mDebugInTransaction); nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; /* * Dump library configuration. */ colorizer.bold(result); result.append("Build configuration:"); colorizer.reset(result); appendSfConfigString(result); result.append("\n"); result.append("\nDisplay identification data:\n"); dumpDisplayIdentificationData(result); result.append("\nWide-Color information:\n"); dumpWideColorInfo(result); colorizer.bold(result); result.append("Sync configuration: "); colorizer.reset(result); result.append(SyncFeatures::getInstance().toString()); result.append("\n\n"); colorizer.bold(result); result.append("Scheduler:\n"); colorizer.reset(result); dumpVSync(result); result.append("\n"); dumpStaticScreenStats(result); result.append("\n"); StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load()); StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load()); StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load()); dumpBufferingStats(result); /* * Dump the visible layer list */ colorizer.bold(result); StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers.load()); StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n", mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize); colorizer.reset(result); { StringAppendF(&result, "Composition layers\n"); mDrawingState.traverseInZOrder([&](Layer* layer) { auto* compositionState = layer->getCompositionState(); if (!compositionState || !compositionState->isVisible) return; android::base::StringAppendF(&result, "* Layer %p (%s)\n", layer, layer->getDebugName() ? layer->getDebugName() : ""); compositionState->dump(result); }); } /* * Dump Display state */ colorizer.bold(result); StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size()); colorizer.reset(result); for (const auto& [token, display] : mDisplays) { display->dump(result); } result.append("\n"); /* * Dump CompositionEngine state */ mCompositionEngine->dump(result); /* * Dump SurfaceFlinger global state */ colorizer.bold(result); result.append("SurfaceFlinger global state:\n"); colorizer.reset(result); getRenderEngine().dump(result); result.append("ClientCache state:\n"); ClientCache::getInstance().dump(result); DebugEGLImageTracker::getInstance()->dump(result); if (const auto display = getDefaultDisplayDeviceLocked()) { display->getCompositionDisplay()->getState().undefinedRegion.dump(result, "undefinedRegion"); StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n", toCString(display->getOrientation()), display->isPoweredOn()); } StringAppendF(&result, " transaction-flags : %08x\n" " gpu_to_cpu_unsupported : %d\n", mTransactionFlags.load(), !mGpuToCpuSupported); if (const auto display = getDefaultDisplayDeviceLocked()) { std::string fps, xDpi, yDpi; if (const auto activeMode = display->getActiveMode()) { fps = to_string(activeMode->getFps()); xDpi = base::StringPrintf("%.2f", activeMode->getDpiX()); yDpi = base::StringPrintf("%.2f", activeMode->getDpiY()); } else { fps = "unknown"; xDpi = "unknown"; yDpi = "unknown"; } StringAppendF(&result, " refresh-rate : %s\n" " x-dpi : %s\n" " y-dpi : %s\n", fps.c_str(), xDpi.c_str(), yDpi.c_str()); } StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0); /* * Tracing state */ mTracing.dump(result); result.append("\n"); /* * HWC layer minidump */ for (const auto& [token, display] : mDisplays) { const auto displayId = HalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } StringAppendF(&result, "Display %s (%s) HWC layers:\n", to_string(*displayId).c_str(), (isDisplayActiveLocked(display) ? "active" : "inactive")); Layer::miniDumpHeader(result); const DisplayDevice& ref = *display; mCurrentState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, ref); }); result.append("\n"); } { DumpArgs plannerArgs; plannerArgs.add(); // first argument is ignored plannerArgs.add(String16("--layers")); dumpPlannerInfo(plannerArgs, result); } /* * Dump HWComposer state */ colorizer.bold(result); result.append("h/w composer state:\n"); colorizer.reset(result); bool hwcDisabled = mDebugDisableHWC || mDebugRegion; StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled"); getHwComposer().dump(result); /* * Dump gralloc state */ const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); alloc.dump(result); result.append(mTimeStats->miniDump()); result.append("\n"); } mat4 SurfaceFlinger::calculateColorMatrix(float saturation) { if (saturation == 1) { return mat4(); } float3 luminance{0.213f, 0.715f, 0.072f}; luminance *= 1.0f - saturation; mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f}, vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f}, vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f}, vec4{0.0f, 0.0f, 0.0f, 1.0f}); return saturationMatrix; } void SurfaceFlinger::updateColorMatrixLocked() { mat4 colorMatrix = mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer(); if (mCurrentState.colorMatrix != colorMatrix) { mCurrentState.colorMatrix = colorMatrix; mCurrentState.colorMatrixChanged = true; setTransactionFlags(eTransactionNeeded); } } status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) { #pragma clang diagnostic push #pragma clang diagnostic error "-Wswitch-enum" switch (static_cast(code)) { case ENABLE_VSYNC_INJECTIONS: case INJECT_VSYNC: if (!hasMockHwc()) return PERMISSION_DENIED; [[fallthrough]]; // These methods should at minimum make sure that the client requested // access to SF. case BOOT_FINISHED: case CLEAR_ANIMATION_FRAME_STATS: case CREATE_DISPLAY: case DESTROY_DISPLAY: case GET_ANIMATION_FRAME_STATS: case OVERRIDE_HDR_TYPES: case GET_HDR_CAPABILITIES: case SET_DESIRED_DISPLAY_MODE_SPECS: case GET_DESIRED_DISPLAY_MODE_SPECS: case SET_ACTIVE_COLOR_MODE: case GET_AUTO_LOW_LATENCY_MODE_SUPPORT: case SET_AUTO_LOW_LATENCY_MODE: case GET_GAME_CONTENT_TYPE_SUPPORT: case SET_GAME_CONTENT_TYPE: case SET_POWER_MODE: case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES: case SET_DISPLAY_CONTENT_SAMPLING_ENABLED: case GET_DISPLAYED_CONTENT_SAMPLE: case ADD_TUNNEL_MODE_ENABLED_LISTENER: case REMOVE_TUNNEL_MODE_ENABLED_LISTENER: case NOTIFY_POWER_BOOST: case SET_GLOBAL_SHADOW_SETTINGS: case GET_PRIMARY_PHYSICAL_DISPLAY_ID: case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: { // ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN and OVERRIDE_HDR_TYPES are used by CTS tests, // which acquire the necessary permission dynamically. Don't use the permission cache // for this check. bool usePermissionCache = code != ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN && code != OVERRIDE_HDR_TYPES; if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) { IPCThreadState* ipc = IPCThreadState::self(); ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(), ipc->getCallingUid()); return PERMISSION_DENIED; } return OK; } case GET_LAYER_DEBUG_INFO: { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } // Used by apps to hook Choreographer to SurfaceFlinger. case CREATE_DISPLAY_EVENT_CONNECTION: // The following calls are currently used by clients that do not // request necessary permissions. However, they do not expose any secret // information, so it is OK to pass them. case AUTHENTICATE_SURFACE: case GET_ACTIVE_COLOR_MODE: case GET_ACTIVE_DISPLAY_MODE: case GET_PHYSICAL_DISPLAY_IDS: case GET_PHYSICAL_DISPLAY_TOKEN: case GET_DISPLAY_COLOR_MODES: case GET_DISPLAY_NATIVE_PRIMARIES: case GET_STATIC_DISPLAY_INFO: case GET_DYNAMIC_DISPLAY_INFO: case GET_DISPLAY_MODES: case GET_DISPLAY_STATE: case GET_DISPLAY_STATS: case GET_SUPPORTED_FRAME_TIMESTAMPS: // Calling setTransactionState is safe, because you need to have been // granted a reference to Client* and Handle* to do anything with it. case SET_TRANSACTION_STATE: case CREATE_CONNECTION: case GET_COLOR_MANAGEMENT: case GET_COMPOSITION_PREFERENCE: case GET_PROTECTED_CONTENT_SUPPORT: case IS_WIDE_COLOR_DISPLAY: // setFrameRate() is deliberately available for apps to call without any // special permissions. case SET_FRAME_RATE: case GET_DISPLAY_BRIGHTNESS_SUPPORT: // captureLayers and captureDisplay will handle the permission check in the function case CAPTURE_LAYERS: case CAPTURE_DISPLAY: case SET_FRAME_TIMELINE_INFO: case GET_GPU_CONTEXT_PRIORITY: case GET_MAX_ACQUIRED_BUFFER_COUNT: { // This is not sensitive information, so should not require permission control. return OK; } case SET_DISPLAY_BRIGHTNESS: case ADD_HDR_LAYER_INFO_LISTENER: case REMOVE_HDR_LAYER_INFO_LISTENER: { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && !PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) { ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } case ADD_FPS_LISTENER: case REMOVE_FPS_LISTENER: case ADD_REGION_SAMPLING_LISTENER: case REMOVE_REGION_SAMPLING_LISTENER: { // codes that require permission check IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } case ADD_TRANSACTION_TRACE_LISTENER: case CAPTURE_DISPLAY_BY_ID: { IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) { return OK; } return PERMISSION_DENIED; } case ON_PULL_ATOM: { const int uid = IPCThreadState::self()->getCallingUid(); if (uid == AID_SYSTEM) { return OK; } return PERMISSION_DENIED; } case ADD_WINDOW_INFOS_LISTENER: case REMOVE_WINDOW_INFOS_LISTENER: { const int uid = IPCThreadState::self()->getCallingUid(); if (uid == AID_SYSTEM || uid == AID_GRAPHICS) { return OK; } return PERMISSION_DENIED; } } // These codes are used for the IBinder protocol to either interrogate the recipient // side of the transaction for its canonical interface descriptor or to dump its state. // We let them pass by default. if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION || code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION || code == IBinder::SYSPROPS_TRANSACTION) { return OK; } // Numbers from 1000 to 1040 are currently used for backdoors. The code // in onTransact verifies that the user is root, and has access to use SF. if (code >= 1000 && code <= 1040) { ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code); return OK; } ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code); return PERMISSION_DENIED; #pragma clang diagnostic pop } status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { status_t credentialCheck = CheckTransactCodeCredentials(code); if (credentialCheck != OK) { return credentialCheck; } status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { CHECK_INTERFACE(ISurfaceComposer, data, reply); IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (CC_UNLIKELY(uid != AID_SYSTEM && !PermissionCache::checkCallingPermission(sHardwareTest))) { const int pid = ipc->getCallingPid(); ALOGE("Permission Denial: " "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } int n; switch (code) { case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE return NO_ERROR; case 1002: // SHOW_UPDATES n = data.readInt32(); mDebugRegion = n ? n : (mDebugRegion ? 0 : 1); invalidateHwcGeometry(); repaintEverything(); return NO_ERROR; case 1004:{ // repaint everything repaintEverything(); return NO_ERROR; } case 1005:{ // force transaction Mutex::Autolock _l(mStateLock); setTransactionFlags( eTransactionNeeded| eDisplayTransactionNeeded| eTraversalNeeded); return NO_ERROR; } case 1006:{ // send empty update signalRefresh(); return NO_ERROR; } case 1008: // toggle use of hw composer n = data.readInt32(); mDebugDisableHWC = n != 0; invalidateHwcGeometry(); repaintEverything(); return NO_ERROR; case 1009: // toggle use of transform hint n = data.readInt32(); mDebugDisableTransformHint = n != 0; invalidateHwcGeometry(); repaintEverything(); return NO_ERROR; case 1010: // interrogate. reply->writeInt32(0); reply->writeInt32(0); reply->writeInt32(mDebugRegion); reply->writeInt32(0); reply->writeInt32(mDebugDisableHWC); return NO_ERROR; case 1013: { const auto display = getDefaultDisplayDevice(); if (!display) { return NAME_NOT_FOUND; } reply->writeInt32(display->getPageFlipCount()); return NO_ERROR; } case 1014: { Mutex::Autolock _l(mStateLock); // daltonize n = data.readInt32(); switch (n % 10) { case 1: mDaltonizer.setType(ColorBlindnessType::Protanomaly); break; case 2: mDaltonizer.setType(ColorBlindnessType::Deuteranomaly); break; case 3: mDaltonizer.setType(ColorBlindnessType::Tritanomaly); break; default: mDaltonizer.setType(ColorBlindnessType::None); break; } if (n >= 10) { mDaltonizer.setMode(ColorBlindnessMode::Correction); } else { mDaltonizer.setMode(ColorBlindnessMode::Simulation); } updateColorMatrixLocked(); return NO_ERROR; } case 1015: { Mutex::Autolock _l(mStateLock); // apply a color matrix n = data.readInt32(); if (n) { // color matrix is sent as a column-major mat4 matrix for (size_t i = 0 ; i < 4; i++) { for (size_t j = 0; j < 4; j++) { mClientColorMatrix[i][j] = data.readFloat(); } } } else { mClientColorMatrix = mat4(); } // Check that supplied matrix's last row is {0,0,0,1} so we can avoid // the division by w in the fragment shader float4 lastRow(transpose(mClientColorMatrix)[3]); if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) { ALOGE("The color transform's last row must be (0, 0, 0, 1)"); } updateColorMatrixLocked(); return NO_ERROR; } case 1016: { // Unused. return NAME_NOT_FOUND; } case 1017: { n = data.readInt32(); mForceFullDamage = n != 0; return NO_ERROR; } case 1018: { // Modify Choreographer's duration n = data.readInt32(); mScheduler->setDuration(mAppConnectionHandle, std::chrono::nanoseconds(n), 0ns); return NO_ERROR; } case 1019: { // Modify SurfaceFlinger's duration n = data.readInt32(); mScheduler->setDuration(mSfConnectionHandle, std::chrono::nanoseconds(n), 0ns); return NO_ERROR; } case 1020: { // Layer updates interceptor n = data.readInt32(); if (n) { ALOGV("Interceptor enabled"); mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays); } else{ ALOGV("Interceptor disabled"); mInterceptor->disable(); } return NO_ERROR; } case 1021: { // Disable HWC virtual displays const bool enable = data.readInt32() != 0; static_cast(schedule([this, enable] { enableHalVirtualDisplays(enable); })); return NO_ERROR; } case 1022: { // Set saturation boost Mutex::Autolock _l(mStateLock); mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f)); updateColorMatrixLocked(); return NO_ERROR; } case 1023: { // Set native mode int32_t colorMode; mDisplayColorSetting = static_cast(data.readInt32()); if (data.readInt32(&colorMode) == NO_ERROR) { mForceColorMode = static_cast(colorMode); } invalidateHwcGeometry(); repaintEverything(); return NO_ERROR; } // Deprecate, use 1030 to check whether the device is color managed. case 1024: { return NAME_NOT_FOUND; } case 1025: { // Set layer tracing n = data.readInt32(); bool tracingEnabledChanged; if (n) { ALOGD("LayerTracing enabled"); tracingEnabledChanged = mTracing.enable(); if (tracingEnabledChanged) { schedule([&]() MAIN_THREAD { mTracing.notify("start"); }).wait(); } } else { ALOGD("LayerTracing disabled"); tracingEnabledChanged = mTracing.disable(); } mTracingEnabledChanged = tracingEnabledChanged; reply->writeInt32(NO_ERROR); return NO_ERROR; } case 1026: { // Get layer tracing status reply->writeBool(mTracing.isEnabled()); return NO_ERROR; } // Is a DisplayColorSetting supported? case 1027: { const auto display = getDefaultDisplayDevice(); if (!display) { return NAME_NOT_FOUND; } DisplayColorSetting setting = static_cast(data.readInt32()); switch (setting) { case DisplayColorSetting::kManaged: reply->writeBool(useColorManagement); break; case DisplayColorSetting::kUnmanaged: reply->writeBool(true); break; case DisplayColorSetting::kEnhanced: reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE)); break; default: // vendor display color setting reply->writeBool( display->hasRenderIntent(static_cast(setting))); break; } return NO_ERROR; } case 1028: { // Unused. return NAME_NOT_FOUND; } // Set buffer size for SF tracing (value in KB) case 1029: { n = data.readInt32(); if (n <= 0 || n > MAX_TRACING_MEMORY) { ALOGW("Invalid buffer size: %d KB", n); reply->writeInt32(BAD_VALUE); return BAD_VALUE; } ALOGD("Updating trace buffer to %d KB", n); mTracing.setBufferSize(n * 1024); reply->writeInt32(NO_ERROR); return NO_ERROR; } // Is device color managed? case 1030: { reply->writeBool(useColorManagement); return NO_ERROR; } // Override default composition data space // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \ // && adb shell stop zygote && adb shell start zygote // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \ // adb shell stop zygote && adb shell start zygote case 1031: { Mutex::Autolock _l(mStateLock); n = data.readInt32(); if (n) { n = data.readInt32(); if (n) { Dataspace dataspace = static_cast(n); if (!validateCompositionDataspace(dataspace)) { return BAD_VALUE; } mDefaultCompositionDataspace = dataspace; } n = data.readInt32(); if (n) { Dataspace dataspace = static_cast(n); if (!validateCompositionDataspace(dataspace)) { return BAD_VALUE; } mWideColorGamutCompositionDataspace = dataspace; } } else { // restore composition data space. mDefaultCompositionDataspace = defaultCompositionDataspace; mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace; } return NO_ERROR; } // Set trace flags case 1033: { n = data.readUint32(); ALOGD("Updating trace flags to 0x%x", n); mTracing.setTraceFlags(n); reply->writeInt32(NO_ERROR); return NO_ERROR; } case 1034: { schedule([&] { switch (n = data.readInt32()) { case 0: case 1: ON_MAIN_THREAD(enableRefreshRateOverlay(static_cast(n))); break; default: { reply->writeBool(ON_MAIN_THREAD(isRefreshRateOverlayEnabled())); } } }).get(); return NO_ERROR; } case 1035: { const int modeId = data.readInt32(); mDebugDisplayModeSetByBackdoor = false; const auto displayId = [&]() -> std::optional { uint64_t inputDisplayId = 0; if (data.readUint64(&inputDisplayId) == NO_ERROR) { const auto token = getPhysicalDisplayToken( static_cast(inputDisplayId)); if (!token) { ALOGE("No display with id: %" PRIu64, inputDisplayId); return std::nullopt; } return std::make_optional(inputDisplayId); } return getDefaultDisplayDevice()->getPhysicalId(); }(); if (!displayId) { ALOGE("No display found"); return NO_ERROR; } status_t result = setActiveMode(getPhysicalDisplayToken(*displayId), modeId); if (result != NO_ERROR) { return result; } mDebugDisplayModeSetByBackdoor = true; return NO_ERROR; } case 1036: { if (data.readInt32() > 0) { status_t result = acquireFrameRateFlexibilityToken(&mDebugFrameRateFlexibilityToken); if (result != NO_ERROR) { return result; } } else { mDebugFrameRateFlexibilityToken = nullptr; } return NO_ERROR; } // Inject a hotplug connected event for the primary display. This will deallocate and // reallocate the display state including framebuffers. case 1037: { std::optional hwcId; { Mutex::Autolock lock(mStateLock); hwcId = getHwComposer().getInternalHwcDisplayId(); } onComposerHalHotplug(*hwcId, hal::Connection::CONNECTED); return NO_ERROR; } // Modify the max number of display frames stored within FrameTimeline case 1038: { n = data.readInt32(); if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) { ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES); return BAD_VALUE; } if (n == 0) { // restore to default mFrameTimeline->reset(); return NO_ERROR; } mFrameTimeline->setMaxDisplayFrames(n); return NO_ERROR; } case 1039: { PhysicalDisplayId displayId = [&]() { Mutex::Autolock lock(mStateLock); return getDefaultDisplayDeviceLocked()->getPhysicalId(); }(); auto inUid = static_cast(data.readInt32()); const auto refreshRate = data.readFloat(); mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{inUid, refreshRate}); mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId); return NO_ERROR; } // Toggle caching feature // First argument is an int32 - nonzero enables caching and zero disables caching // Second argument is an optional uint64 - if present, then limits enabling/disabling // caching to a particular physical display case 1040: { status_t error = schedule([&] { n = data.readInt32(); std::optional inputId = std::nullopt; if (uint64_t inputDisplayId; data.readUint64(&inputDisplayId) == NO_ERROR) { const auto token = getPhysicalDisplayToken( static_cast(inputDisplayId)); if (!token) { ALOGE("No display with id: %" PRIu64, inputDisplayId); return NAME_NOT_FOUND; } inputId = std::make_optional(inputDisplayId); } { Mutex::Autolock lock(mStateLock); mLayerCachingEnabled = n != 0; for (const auto& [_, display] : mDisplays) { if (!inputId || *inputId == display->getPhysicalId()) { display->enableLayerCaching(mLayerCachingEnabled); } } } return OK; }).get(); if (error != OK) { return error; } invalidateHwcGeometry(); repaintEverything(); return NO_ERROR; } } } return err; } void SurfaceFlinger::repaintEverything() { mRepaintEverything = true; signalTransaction(); } void SurfaceFlinger::repaintEverythingForHWC() { mRepaintEverything = true; mPowerAdvisor.notifyDisplayUpdateImminent(); mEventQueue->invalidate(); } void SurfaceFlinger::kernelTimerChanged(bool expired) { static bool updateOverlay = property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true); if (!updateOverlay) return; if (Mutex::Autolock lock(mStateLock); !isRefreshRateOverlayEnabled()) return; // Update the overlay on the main thread to avoid race conditions with // mRefreshRateConfigs->getCurrentRefreshRate() static_cast(schedule([=] { const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); if (!display) { ALOGW("%s: default display is null", __func__); return; } const auto desiredActiveMode = display->getDesiredActiveMode(); const std::optional desiredModeId = desiredActiveMode ? std::make_optional(desiredActiveMode->mode->getId()) : std::nullopt; const bool timerExpired = mKernelIdleTimerEnabled && expired; if (display->onKernelTimerChanged(desiredModeId, timerExpired)) { mEventQueue->invalidate(); } })); } void SurfaceFlinger::toggleKernelIdleTimer() { using KernelIdleTimerAction = scheduler::RefreshRateConfigs::KernelIdleTimerAction; const auto display = getDefaultDisplayDeviceLocked(); if (!display) { ALOGW("%s: default display is null", __func__); return; } // If the support for kernel idle timer is disabled for the active display, // don't do anything. if (!display->refreshRateConfigs().supportsKernelIdleTimer()) { return; } const KernelIdleTimerAction action = display->refreshRateConfigs().getIdleTimerAction(); switch (action) { case KernelIdleTimerAction::TurnOff: if (mKernelIdleTimerEnabled) { ATRACE_INT("KernelIdleTimer", 0); base::SetProperty(KERNEL_IDLE_TIMER_PROP, "false"); mKernelIdleTimerEnabled = false; } break; case KernelIdleTimerAction::TurnOn: if (!mKernelIdleTimerEnabled) { ATRACE_INT("KernelIdleTimer", 1); base::SetProperty(KERNEL_IDLE_TIMER_PROP, "true"); mKernelIdleTimerEnabled = true; } break; } } // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope class WindowDisconnector { public: WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {} ~WindowDisconnector() { native_window_api_disconnect(mWindow, mApi); } private: ANativeWindow* mWindow; const int mApi; }; static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) { switch (colorMode) { case ColorMode::DISPLAY_P3: case ColorMode::BT2100_PQ: case ColorMode::BT2100_HLG: case ColorMode::DISPLAY_BT2020: return Dataspace::DISPLAY_P3; default: return Dataspace::V0_SRGB; } } static bool hasCaptureBlackoutContentPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); return uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(sCaptureBlackoutContent, pid, uid); } static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if (uid == AID_GRAPHICS || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { return OK; } // If the caller doesn't have the correct permissions but is only attempting to screenshot // itself, we allow it to continue. if (captureArgs.uid == uid) { return OK; } ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } status_t SurfaceFlinger::setSchedFifo(bool enabled) { static constexpr int kFifoPriority = 2; static constexpr int kOtherPriority = 0; struct sched_param param = {0}; int sched_policy; if (enabled) { sched_policy = SCHED_FIFO; param.sched_priority = kFifoPriority; } else { sched_policy = SCHED_OTHER; param.sched_priority = kOtherPriority; } if (sched_setscheduler(0, sched_policy, ¶m) != 0) { return -errno; } return NO_ERROR; } status_t SurfaceFlinger::setSchedAttr(bool enabled) { static const unsigned int kUclampMin = base::GetUintProperty("ro.surface_flinger.uclamp.min", 0U); if (!kUclampMin) { // uclamp.min set to 0 (default), skip setting return NO_ERROR; } // Currently, there is no wrapper in bionic: b/183240349. struct sched_attr { uint32_t size; uint32_t sched_policy; uint64_t sched_flags; int32_t sched_nice; uint32_t sched_priority; uint64_t sched_runtime; uint64_t sched_deadline; uint64_t sched_period; uint32_t sched_util_min; uint32_t sched_util_max; }; sched_attr attr = {}; attr.size = sizeof(attr); attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP); attr.sched_util_min = enabled ? kUclampMin : 0; attr.sched_util_max = 1024; if (syscall(__NR_sched_setattr, 0, &attr, 0)) { return -errno; } return NO_ERROR; } status_t SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args, const sp& captureListener) { ATRACE_CALL(); status_t validate = validateScreenshotPermissions(args); if (validate != OK) { return validate; } if (!args.displayToken) return BAD_VALUE; wp displayWeak; ui::LayerStack layerStack; ui::Size reqSize(args.width, args.height); ui::Dataspace dataspace; { Mutex::Autolock lock(mStateLock); sp display = getDisplayDeviceLocked(args.displayToken); if (!display) return NAME_NOT_FOUND; displayWeak = display; layerStack = display->getLayerStack(); // set the requested width/height to the logical display layer stack rect size by default if (args.width == 0 || args.height == 0) { reqSize = display->getLayerStackSpaceRect().getSize(); } // The dataspace is depended on the color mode of display, that could use non-native mode // (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes, // and failed if display is not in native mode. This provide a way to force using native // colors when capture. dataspace = args.dataspace; if (dataspace == ui::Dataspace::UNKNOWN) { const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode; dataspace = pickDataspaceFromColorMode(colorMode); } } RenderAreaFuture renderAreaFuture = ftl::defer([=] { return DisplayRenderArea::create(displayWeak, args.sourceCrop, reqSize, dataspace, args.useIdentityTransform, args.captureSecureLayers); }); auto traverseLayers = [this, args, layerStack](const LayerVector::Visitor& visitor) { traverseLayersInLayerStack(layerStack, args.uid, visitor); }; return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize, args.pixelFormat, args.allowProtected, args.grayscale, captureListener); } status_t SurfaceFlinger::captureDisplay(uint64_t displayIdOrLayerStack, const sp& captureListener) { ui::LayerStack layerStack; wp displayWeak; ui::Size size; ui::Dataspace dataspace; { Mutex::Autolock lock(mStateLock); auto display = getDisplayDeviceLocked(PhysicalDisplayId{displayIdOrLayerStack}); // Fall back to first display whose layer stack matches. if (!display) { const auto layerStack = static_cast(displayIdOrLayerStack); display = findDisplay(WithLayerStack(layerStack)); } if (!display) { return NAME_NOT_FOUND; } layerStack = display->getLayerStack(); displayWeak = display; size = display->getLayerStackSpaceRect().getSize(); dataspace = pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode); } RenderAreaFuture renderAreaFuture = ftl::defer([=] { return DisplayRenderArea::create(displayWeak, Rect(), size, dataspace, false /* useIdentityTransform */, false /* captureSecureLayers */); }); auto traverseLayers = [this, layerStack](const LayerVector::Visitor& visitor) { traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, visitor); }; return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, size, ui::PixelFormat::RGBA_8888, false /* allowProtected */, false /* grayscale */, captureListener); } status_t SurfaceFlinger::captureLayers(const LayerCaptureArgs& args, const sp& captureListener) { ATRACE_CALL(); status_t validate = validateScreenshotPermissions(args); if (validate != OK) { return validate; } ui::Size reqSize; sp parent; Rect crop(args.sourceCrop); std::unordered_set, ISurfaceComposer::SpHash> excludeLayers; ui::Dataspace dataspace; // Call this before holding mStateLock to avoid any deadlocking. bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission(); { Mutex::Autolock lock(mStateLock); parent = fromHandle(args.layerHandle).promote(); if (parent == nullptr) { ALOGE("captureLayers called with an invalid or removed parent"); return NAME_NOT_FOUND; } if (!canCaptureBlackoutContent && parent->getDrawingState().flags & layer_state_t::eLayerSecure) { ALOGW("Attempting to capture secure layer: PERMISSION_DENIED"); return PERMISSION_DENIED; } Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getDrawingState()); if (args.sourceCrop.width() <= 0) { crop.left = 0; crop.right = parentSourceBounds.getWidth(); } if (args.sourceCrop.height() <= 0) { crop.top = 0; crop.bottom = parentSourceBounds.getHeight(); } if (crop.isEmpty() || args.frameScaleX <= 0.0f || args.frameScaleY <= 0.0f) { // Error out if the layer has no source bounds (i.e. they are boundless) and a source // crop was not specified, or an invalid frame scale was provided. return BAD_VALUE; } reqSize = ui::Size(crop.width() * args.frameScaleX, crop.height() * args.frameScaleY); for (const auto& handle : args.excludeHandles) { sp excludeLayer = fromHandle(handle).promote(); if (excludeLayer != nullptr) { excludeLayers.emplace(excludeLayer); } else { ALOGW("Invalid layer handle passed as excludeLayer to captureLayers"); return NAME_NOT_FOUND; } } // The dataspace is depended on the color mode of display, that could use non-native mode // (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes, // and failed if display is not in native mode. This provide a way to force using native // colors when capture. dataspace = args.dataspace; if (dataspace == ui::Dataspace::UNKNOWN) { auto display = findDisplay(WithLayerStack(parent->getLayerStack())); if (!display) { // If the layer is not on a display, use the dataspace for the default display. display = getDefaultDisplayDeviceLocked(); } const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode; dataspace = pickDataspaceFromColorMode(colorMode); } } // mStateLock // really small crop or frameScale if (reqSize.width <= 0 || reqSize.height <= 0) { ALOGW("Failed to captureLayes: crop or scale too small"); return BAD_VALUE; } Rect layerStackSpaceRect(0, 0, reqSize.width, reqSize.height); bool childrenOnly = args.childrenOnly; RenderAreaFuture renderAreaFuture = ftl::defer([=]() -> std::unique_ptr { return std::make_unique(*this, parent, crop, reqSize, dataspace, childrenOnly, layerStackSpaceRect, args.captureSecureLayers); }); auto traverseLayers = [parent, args, excludeLayers](const LayerVector::Visitor& visitor) { parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { if (!layer->isVisible()) { return; } else if (args.childrenOnly && layer == parent.get()) { return; } else if (args.uid != CaptureArgs::UNSET_UID && args.uid != layer->getOwnerUid()) { return; } sp p = layer; while (p != nullptr) { if (excludeLayers.count(p) != 0) { return; } p = p->getParent(); } visitor(layer); }); }; return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize, args.pixelFormat, args.allowProtected, args.grayscale, captureListener); } status_t SurfaceFlinger::captureScreenCommon(RenderAreaFuture renderAreaFuture, TraverseLayersFunction traverseLayers, ui::Size bufferSize, ui::PixelFormat reqPixelFormat, bool allowProtected, bool grayscale, const sp& captureListener) { ATRACE_CALL(); if (exceedsMaxRenderTargetSize(bufferSize.getWidth(), bufferSize.getHeight())) { ALOGE("Attempted to capture screen with size (%" PRId32 ", %" PRId32 ") that exceeds render target size limit.", bufferSize.getWidth(), bufferSize.getHeight()); return BAD_VALUE; } // Loop over all visible layers to see whether there's any protected layer. A protected layer is // typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer. // A protected layer has no implication on whether it's secure, which is explicitly set by // application to avoid being screenshot or drawn via unsecure display. const bool supportsProtected = getRenderEngine().supportsProtectedContent(); bool hasProtectedLayer = false; if (allowProtected && supportsProtected) { hasProtectedLayer = schedule([=]() { bool protectedLayerFound = false; traverseLayers([&](Layer* layer) { protectedLayerFound = protectedLayerFound || (layer->isVisible() && layer->isProtected()); }); return protectedLayerFound; }).get(); } const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE | (hasProtectedLayer && allowProtected && supportsProtected ? GRALLOC_USAGE_PROTECTED : GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN); sp buffer = getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(), static_cast(reqPixelFormat), 1 /* layerCount */, usage, "screenshot"); const status_t bufferStatus = buffer->initCheck(); LOG_ALWAYS_FATAL_IF(bufferStatus != OK, "captureScreenCommon: Buffer failed to allocate: %d", bufferStatus); const auto texture = std::make_shared< renderengine::ExternalTexture>(buffer, getRenderEngine(), renderengine::ExternalTexture::Usage::WRITEABLE); return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, texture, false /* regionSampling */, grayscale, captureListener); } status_t SurfaceFlinger::captureScreenCommon( RenderAreaFuture renderAreaFuture, TraverseLayersFunction traverseLayers, const std::shared_ptr& buffer, bool regionSampling, bool grayscale, const sp& captureListener) { ATRACE_CALL(); if (captureListener == nullptr) { ALOGE("capture screen must provide a capture listener callback"); return BAD_VALUE; } bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission(); static_cast(schedule([=, renderAreaFuture = std::move(renderAreaFuture)]() mutable { if (mRefreshPending) { ALOGW("Skipping screenshot for now"); captureScreenCommon(std::move(renderAreaFuture), traverseLayers, buffer, regionSampling, grayscale, captureListener); return; } ScreenCaptureResults captureResults; std::unique_ptr renderArea = renderAreaFuture.get(); if (!renderArea) { ALOGW("Skipping screen capture because of invalid render area."); captureResults.result = NO_MEMORY; captureListener->onScreenCaptureCompleted(captureResults); return; } status_t result = NO_ERROR; renderArea->render([&] { result = renderScreenImplLocked(*renderArea, traverseLayers, buffer, canCaptureBlackoutContent, regionSampling, grayscale, captureResults); }); captureResults.result = result; captureListener->onScreenCaptureCompleted(captureResults); })); return NO_ERROR; } status_t SurfaceFlinger::renderScreenImplLocked( const RenderArea& renderArea, TraverseLayersFunction traverseLayers, const std::shared_ptr& buffer, bool canCaptureBlackoutContent, bool regionSampling, bool grayscale, ScreenCaptureResults& captureResults) { ATRACE_CALL(); traverseLayers([&](Layer* layer) { captureResults.capturedSecureLayers = captureResults.capturedSecureLayers || (layer->isVisible() && layer->isSecure()); }); const bool useProtected = buffer->getBuffer()->getUsage() & GRALLOC_USAGE_PROTECTED; // We allow the system server to take screenshots of secure layers for // use in situations like the Screen-rotation animation and place // the impetus on WindowManager to not persist them. if (captureResults.capturedSecureLayers && !canCaptureBlackoutContent) { ALOGW("FB is protected: PERMISSION_DENIED"); return PERMISSION_DENIED; } captureResults.buffer = buffer->getBuffer(); captureResults.capturedDataspace = renderArea.getReqDataSpace(); const auto reqWidth = renderArea.getReqWidth(); const auto reqHeight = renderArea.getReqHeight(); const auto sourceCrop = renderArea.getSourceCrop(); const auto transform = renderArea.getTransform(); const auto rotation = renderArea.getRotationFlags(); const auto& layerStackSpaceRect = renderArea.getLayerStackSpaceRect(); renderengine::DisplaySettings clientCompositionDisplay; std::vector clientCompositionLayers; // assume that bounds are never offset, and that they are the same as the // buffer bounds. clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight); clientCompositionDisplay.clip = sourceCrop; clientCompositionDisplay.orientation = rotation; clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace(); clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance; const float colorSaturation = grayscale ? 0 : 1; clientCompositionDisplay.colorTransform = calculateColorMatrix(colorSaturation); const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill()); compositionengine::LayerFE::LayerSettings fillLayer; fillLayer.source.buffer.buffer = nullptr; fillLayer.source.solidColor = half3(0.0, 0.0, 0.0); fillLayer.geometry.boundaries = FloatRect(sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom); fillLayer.alpha = half(alpha); clientCompositionLayers.push_back(fillLayer); const auto display = renderArea.getDisplayDevice(); std::vector renderedLayers; Region clearRegion = Region::INVALID_REGION; bool disableBlurs = false; traverseLayers([&](Layer* layer) { disableBlurs |= layer->getDrawingState().sidebandStream != nullptr; Region clip(renderArea.getBounds()); compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{ clip, layer->needsFilteringForScreenshots(display.get(), transform) || renderArea.needsFiltering(), renderArea.isSecure(), useProtected, clearRegion, layerStackSpaceRect, clientCompositionDisplay.outputDataspace, true, /* realContentIsVisible */ false, /* clearContent */ disableBlurs ? compositionengine::LayerFE::ClientCompositionTargetSettings:: BlurSetting::Disabled : compositionengine::LayerFE::ClientCompositionTargetSettings:: BlurSetting::Enabled, }; std::vector results = layer->prepareClientCompositionList(targetSettings); if (results.size() > 0) { for (auto& settings : results) { settings.geometry.positionTransform = transform.asMatrix4() * settings.geometry.positionTransform; // There's no need to process blurs when we're executing region sampling, // we're just trying to understand what we're drawing, and doing so without // blurs is already a pretty good approximation. if (regionSampling) { settings.backgroundBlurRadius = 0; } } clientCompositionLayers.insert(clientCompositionLayers.end(), std::make_move_iterator(results.begin()), std::make_move_iterator(results.end())); renderedLayers.push_back(layer); } }); std::vector clientCompositionLayerPointers( clientCompositionLayers.size()); std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(), clientCompositionLayerPointers.begin(), std::pointer_traits::pointer_to); clientCompositionDisplay.clearRegion = clearRegion; // Use an empty fence for the buffer fence, since we just created the buffer so // there is no need for synchronization with the GPU. base::unique_fd bufferFence; base::unique_fd drawFence; getRenderEngine().useProtectedContext(useProtected); const constexpr bool kUseFramebufferCache = false; getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, buffer, kUseFramebufferCache, std::move(bufferFence), &drawFence); if (drawFence >= 0) { sp releaseFence = new Fence(dup(drawFence)); for (auto* layer : renderedLayers) { layer->onLayerDisplayed(releaseFence); } } captureResults.fence = new Fence(drawFence.release()); // Always switch back to unprotected context. getRenderEngine().useProtectedContext(false); return NO_ERROR; } void SurfaceFlinger::windowInfosReported() { Mutex::Autolock _l(mStateLock); signalSynchronousTransactions(CountDownLatch::eSyncInputWindows); } // --------------------------------------------------------------------------- void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const { layersSortedByZ.traverse(visitor); } void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const { layersSortedByZ.traverseInZOrder(stateSet, visitor); } void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const { layersSortedByZ.traverseInReverseZOrder(stateSet, visitor); } void SurfaceFlinger::traverseLayersInLayerStack(ui::LayerStack layerStack, const int32_t uid, const LayerVector::Visitor& visitor) { // We loop through the first level of layers without traversing, // as we need to determine which layers belong to the requested display. for (const auto& layer : mDrawingState.layersSortedByZ) { if (!layer->belongsToDisplay(layerStack)) { continue; } // relative layers are traversed in Layer::traverseInZOrder layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { if (layer->getPrimaryDisplayOnly()) { return; } if (!layer->isVisible()) { return; } if (uid != CaptureArgs::UNSET_UID && layer->getOwnerUid() != uid) { return; } visitor(layer); }); } } status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal( const sp& display, const std::optional& policy, bool overridePolicy) { Mutex::Autolock lock(mStateLock); if (mDebugDisplayModeSetByBackdoor) { // ignore this request as mode is overridden by backdoor return NO_ERROR; } status_t setPolicyResult = overridePolicy ? display->refreshRateConfigs().setOverridePolicy(policy) : display->refreshRateConfigs().setDisplayManagerPolicy(*policy); if (setPolicyResult < 0) { return BAD_VALUE; } if (setPolicyResult == scheduler::RefreshRateConfigs::CURRENT_POLICY_UNCHANGED) { return NO_ERROR; } scheduler::RefreshRateConfigs::Policy currentPolicy = display->refreshRateConfigs().getCurrentPolicy(); ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str()); // TODO(b/140204874): Leave the event in until we do proper testing with all apps that might // be depending in this callback. const auto activeMode = display->getActiveMode(); if (isDisplayActiveLocked(display)) { mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode); toggleKernelIdleTimer(); } else { mScheduler->onNonPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode); } const DisplayModePtr preferredDisplayMode = [&] { const auto schedulerMode = mScheduler->getPreferredDisplayMode(); if (schedulerMode && schedulerMode->getPhysicalDisplayId() == display->getPhysicalId()) { return schedulerMode; } return display->getMode(currentPolicy.defaultMode); }(); ALOGV("trying to switch to Scheduler preferred mode %d (%s)", preferredDisplayMode->getId().value(), to_string(preferredDisplayMode->getFps()).c_str()); if (display->refreshRateConfigs().isModeAllowed(preferredDisplayMode->getId())) { ALOGV("switching to Scheduler preferred display mode %d", preferredDisplayMode->getId().value()); setDesiredActiveMode({preferredDisplayMode, Scheduler::ModeEvent::Changed}); } else { LOG_ALWAYS_FATAL("Desired display mode not allowed: %d", preferredDisplayMode->getId().value()); } return NO_ERROR; } status_t SurfaceFlinger::setDesiredDisplayModeSpecs( const sp& displayToken, ui::DisplayModeId defaultMode, bool allowGroupSwitching, float primaryRefreshRateMin, float primaryRefreshRateMax, float appRequestRefreshRateMin, float appRequestRefreshRateMax) { ATRACE_CALL(); if (!displayToken) { return BAD_VALUE; } auto future = schedule([=]() -> status_t { const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken)); if (!display) { ALOGE("Attempt to set desired display modes for invalid display token %p", displayToken.get()); return NAME_NOT_FOUND; } else if (display->isVirtual()) { ALOGW("Attempt to set desired display modes for virtual display"); return INVALID_OPERATION; } else { using Policy = scheduler::RefreshRateConfigs::Policy; const Policy policy{DisplayModeId(defaultMode), allowGroupSwitching, {Fps(primaryRefreshRateMin), Fps(primaryRefreshRateMax)}, {Fps(appRequestRefreshRateMin), Fps(appRequestRefreshRateMax)}}; constexpr bool kOverridePolicy = false; return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy); } }); return future.get(); } status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp& displayToken, ui::DisplayModeId* outDefaultMode, bool* outAllowGroupSwitching, float* outPrimaryRefreshRateMin, float* outPrimaryRefreshRateMax, float* outAppRequestRefreshRateMin, float* outAppRequestRefreshRateMax) { ATRACE_CALL(); if (!displayToken || !outDefaultMode || !outPrimaryRefreshRateMin || !outPrimaryRefreshRateMax || !outAppRequestRefreshRateMin || !outAppRequestRefreshRateMax) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } if (display->isVirtual()) { return INVALID_OPERATION; } scheduler::RefreshRateConfigs::Policy policy = display->refreshRateConfigs().getDisplayManagerPolicy(); *outDefaultMode = policy.defaultMode.value(); *outAllowGroupSwitching = policy.allowGroupSwitching; *outPrimaryRefreshRateMin = policy.primaryRange.min.getValue(); *outPrimaryRefreshRateMax = policy.primaryRange.max.getValue(); *outAppRequestRefreshRateMin = policy.appRequestRange.min.getValue(); *outAppRequestRefreshRateMax = policy.appRequestRange.max.getValue(); return NO_ERROR; } wp SurfaceFlinger::fromHandle(const sp& handle) const { return Layer::fromHandle(handle); } void SurfaceFlinger::onLayerFirstRef(Layer* layer) { mNumLayers++; if (!layer->isRemovedFromCurrentState()) { mScheduler->registerLayer(layer); } } void SurfaceFlinger::onLayerDestroyed(Layer* layer) { mNumLayers--; removeHierarchyFromOffscreenLayers(layer); if (!layer->isRemovedFromCurrentState()) { mScheduler->deregisterLayer(layer); } } // WARNING: ONLY CALL THIS FROM LAYER DTOR // Here we add children in the current state to offscreen layers and remove the // layer itself from the offscreen layer list. Since // this is the dtor, it is safe to access the current state. This keeps us // from dangling children layers such that they are not reachable from the // Drawing state nor the offscreen layer list // See b/141111965 void SurfaceFlinger::removeHierarchyFromOffscreenLayers(Layer* layer) { for (auto& child : layer->getCurrentChildren()) { mOffscreenLayers.emplace(child.get()); } mOffscreenLayers.erase(layer); } void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) { mOffscreenLayers.erase(layer); } status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor, float lightPosY, float lightPosZ, float lightRadius) { Mutex::Autolock _l(mStateLock); mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor); mCurrentState.globalShadowSettings.spotColor = vec4(spotColor); mCurrentState.globalShadowSettings.lightPos.y = lightPosY; mCurrentState.globalShadowSettings.lightPos.z = lightPosZ; mCurrentState.globalShadowSettings.lightRadius = lightRadius; // these values are overridden when calculating the shadow settings for a layer. mCurrentState.globalShadowSettings.lightPos.x = 0.f; mCurrentState.globalShadowSettings.length = 0.f; return NO_ERROR; } const std::unordered_map& SurfaceFlinger::getGenericLayerMetadataKeyMap() const { // TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking // on the work to remove the table in that bug rather than adding more to // it. static const std::unordered_map genericLayerMetadataKeyMap{ {"org.chromium.arc.V1_0.TaskId", METADATA_TASK_ID}, {"org.chromium.arc.V1_0.CursorInfo", METADATA_MOUSE_CURSOR}, }; return genericLayerMetadataKeyMap; } status_t SurfaceFlinger::setFrameRate(const sp& surface, float frameRate, int8_t compatibility, int8_t changeFrameRateStrategy) { if (!ValidateFrameRate(frameRate, compatibility, changeFrameRateStrategy, "SurfaceFlinger::setFrameRate")) { return BAD_VALUE; } static_cast(schedule([=] { Mutex::Autolock lock(mStateLock); if (authenticateSurfaceTextureLocked(surface)) { sp layer = (static_cast(surface.get()))->getLayer(); if (layer == nullptr) { ALOGE("Attempt to set frame rate on a layer that no longer exists"); return BAD_VALUE; } const auto strategy = Layer::FrameRate::convertChangeFrameRateStrategy(changeFrameRateStrategy); if (layer->setFrameRate( Layer::FrameRate(Fps{frameRate}, Layer::FrameRate::convertCompatibility(compatibility), strategy))) { setTransactionFlags(eTraversalNeeded); } } else { ALOGE("Attempt to set frame rate on an unrecognized IGraphicBufferProducer"); return BAD_VALUE; } return NO_ERROR; })); return NO_ERROR; } status_t SurfaceFlinger::acquireFrameRateFlexibilityToken(sp* outToken) { if (!outToken) { return BAD_VALUE; } auto future = schedule([this] { status_t result = NO_ERROR; sp token; if (mFrameRateFlexibilityTokenCount == 0) { const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); // This is a little racy, but not in a way that hurts anything. As we grab the // defaultMode from the display manager policy, we could be setting a new display // manager policy, leaving us using a stale defaultMode. The defaultMode doesn't // matter for the override policy though, since we set allowGroupSwitching to // true, so it's not a problem. scheduler::RefreshRateConfigs::Policy overridePolicy; overridePolicy.defaultMode = display->refreshRateConfigs().getDisplayManagerPolicy().defaultMode; overridePolicy.allowGroupSwitching = true; constexpr bool kOverridePolicy = true; result = setDesiredDisplayModeSpecsInternal(display, overridePolicy, kOverridePolicy); } if (result == NO_ERROR) { mFrameRateFlexibilityTokenCount++; // Handing out a reference to the SurfaceFlinger object, as we're doing in the line // below, is something to consider carefully. The lifetime of the // FrameRateFlexibilityToken isn't tied to SurfaceFlinger object lifetime, so if this // SurfaceFlinger object were to be destroyed while the token still exists, the token // destructor would be accessing a stale SurfaceFlinger reference, and crash. This is ok // in this case, for two reasons: // 1. Once SurfaceFlinger::run() is called by main_surfaceflinger.cpp, the only way // the program exits is via a crash. So we won't have a situation where the // SurfaceFlinger object is dead but the process is still up. // 2. The frame rate flexibility token is acquired/released only by CTS tests, so even // if condition 1 were changed, the problem would only show up when running CTS tests, // not on end user devices, so we could spot it and fix it without serious impact. token = new FrameRateFlexibilityToken( [this]() { onFrameRateFlexibilityTokenReleased(); }); ALOGD("Frame rate flexibility token acquired. count=%d", mFrameRateFlexibilityTokenCount); } return std::make_pair(result, token); }); status_t result; std::tie(result, *outToken) = future.get(); return result; } void SurfaceFlinger::onFrameRateFlexibilityTokenReleased() { static_cast(schedule([this] { LOG_ALWAYS_FATAL_IF(mFrameRateFlexibilityTokenCount == 0, "Failed tracking frame rate flexibility tokens"); mFrameRateFlexibilityTokenCount--; ALOGD("Frame rate flexibility token released. count=%d", mFrameRateFlexibilityTokenCount); if (mFrameRateFlexibilityTokenCount == 0) { const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); constexpr bool kOverridePolicy = true; status_t result = setDesiredDisplayModeSpecsInternal(display, {}, kOverridePolicy); LOG_ALWAYS_FATAL_IF(result < 0, "Failed releasing frame rate flexibility token"); } })); } status_t SurfaceFlinger::setFrameTimelineInfo(const sp& surface, const FrameTimelineInfo& frameTimelineInfo) { Mutex::Autolock lock(mStateLock); if (!authenticateSurfaceTextureLocked(surface)) { ALOGE("Attempt to set frame timeline info on an unrecognized IGraphicBufferProducer"); return BAD_VALUE; } sp layer = (static_cast(surface.get()))->getLayer(); if (layer == nullptr) { ALOGE("Attempt to set frame timeline info on a layer that no longer exists"); return BAD_VALUE; } layer->setFrameTimelineInfoForBuffer(frameTimelineInfo); return NO_ERROR; } void SurfaceFlinger::enableRefreshRateOverlay(bool enable) { for (const auto& [ignored, display] : mDisplays) { if (display->isInternal()) { display->enableRefreshRateOverlay(enable, mRefreshRateOverlaySpinner); } } } status_t SurfaceFlinger::addTransactionTraceListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mInterceptor->addTransactionTraceListener(listener); return NO_ERROR; } int SurfaceFlinger::getGPUContextPriority() { return getRenderEngine().getContextPriority(); } int SurfaceFlinger::calculateMaxAcquiredBufferCount(Fps refreshRate, std::chrono::nanoseconds presentLatency) { auto pipelineDepth = presentLatency.count() / refreshRate.getPeriodNsecs(); if (presentLatency.count() % refreshRate.getPeriodNsecs()) { pipelineDepth++; } return std::max(1ll, pipelineDepth - 1); } status_t SurfaceFlinger::getMaxAcquiredBufferCount(int* buffers) const { const auto maxSupportedRefreshRate = [&] { const auto display = getDefaultDisplayDevice(); if (display) { return display->refreshRateConfigs().getSupportedRefreshRateRange().max; } ALOGW("%s: default display is null", __func__); return Fps(60); }(); *buffers = getMaxAcquiredBufferCountForRefreshRate(maxSupportedRefreshRate); // RK_SUPPORT: // 多屏异刷应用需要申请更多的内存,来保证流畅性 if(maxFrameBufferAcquiredBuffers > 3){ *buffers = static_cast(maxFrameBufferAcquiredBuffers - 2); } return NO_ERROR; } int SurfaceFlinger::getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const { const auto refreshRate = [&] { const auto frameRateOverride = mScheduler->getFrameRateOverride(uid); if (frameRateOverride.has_value()) { return frameRateOverride.value(); } const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()); if (display) { return display->refreshRateConfigs().getCurrentRefreshRate().getFps(); } ALOGW("%s: default display is null", __func__); return Fps(60); }(); return getMaxAcquiredBufferCountForRefreshRate(refreshRate); } int SurfaceFlinger::getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const { const auto vsyncConfig = mVsyncConfiguration->getConfigsForRefreshRate(refreshRate).late; const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration; return calculateMaxAcquiredBufferCount(refreshRate, presentLatency); } void SurfaceFlinger::TransactionState::traverseStatesWithBuffers( std::function visitor) { for (const auto& state : states) { if (state.state.hasBufferChanges() && state.state.hasValidBuffer() && state.state.surface) { visitor(state.state); } } } void SurfaceFlinger::setLayerCreatedState(const sp& handle, const wp& layer, const wp& parent, const wp parentLayer, const wp& producer, bool addToRoot) { Mutex::Autolock lock(mCreatedLayersLock); mCreatedLayers[handle->localBinder()] = std::make_unique(layer, parent, parentLayer, producer, addToRoot); } auto SurfaceFlinger::getLayerCreatedState(const sp& handle) { Mutex::Autolock lock(mCreatedLayersLock); BBinder* b = nullptr; if (handle) { b = handle->localBinder(); } if (b == nullptr) { return std::unique_ptr(nullptr); } auto it = mCreatedLayers.find(b); if (it == mCreatedLayers.end()) { ALOGE("Can't find layer from handle %p", handle.get()); return std::unique_ptr(nullptr); } auto state = std::move(it->second); mCreatedLayers.erase(it); return state; } sp SurfaceFlinger::handleLayerCreatedLocked(const sp& handle) { const auto& state = getLayerCreatedState(handle); if (!state) { return nullptr; } sp layer = state->layer.promote(); if (!layer) { ALOGE("Invalid layer %p", state->layer.unsafe_get()); return nullptr; } sp parent; bool allowAddRoot = state->addToRoot; if (state->initialParent != nullptr) { parent = fromHandle(state->initialParent.promote()).promote(); if (parent == nullptr) { ALOGE("Invalid parent %p", state->initialParent.unsafe_get()); allowAddRoot = false; } } else if (state->initialParentLayer != nullptr) { parent = state->initialParentLayer.promote(); allowAddRoot = false; } if (parent == nullptr && allowAddRoot) { layer->setIsAtRoot(true); mCurrentState.layersSortedByZ.add(layer); } else if (parent == nullptr) { layer->onRemovedFromCurrentState(); } else if (parent->isRemovedFromCurrentState()) { parent->addChild(layer); layer->onRemovedFromCurrentState(); } else { parent->addChild(layer); } layer->updateTransformHint(mActiveDisplayTransformHint); if (state->initialProducer != nullptr) { mGraphicBufferProducerList.insert(state->initialProducer); LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() > mMaxGraphicBufferProducerListSize, "Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers", mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize, mNumLayers.load()); if (mGraphicBufferProducerList.size() > mGraphicBufferProducerListSizeLogThreshold) { ALOGW("Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers", mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize, mNumLayers.load()); } } return layer; } void SurfaceFlinger::scheduleRegionSamplingThread() { static_cast(schedule([&] { notifyRegionSamplingThread(); })); } void SurfaceFlinger::notifyRegionSamplingThread() { if (!mLumaSampling || !mRegionSamplingThread) { return; } mRegionSamplingThread->onCompositionComplete(mEventQueue->nextExpectedInvalidate()); } void SurfaceFlinger::onActiveDisplaySizeChanged(const sp& activeDisplay) { mScheduler->onActiveDisplayAreaChanged(activeDisplay->getWidth() * activeDisplay->getHeight()); getRenderEngine().onActiveDisplaySizeChanged(activeDisplay->getSize()); } void SurfaceFlinger::onActiveDisplayChangedLocked(const sp& activeDisplay) { ATRACE_CALL(); if (const auto display = getDisplayDeviceLocked(mActiveDisplayToken)) { display->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(false); } if (!activeDisplay) { ALOGE("%s: activeDisplay is null", __func__); return; } mActiveDisplayToken = activeDisplay->getDisplayToken(); activeDisplay->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(true); updateInternalDisplayVsyncLocked(activeDisplay); mScheduler->setModeChangePending(false); mScheduler->setRefreshRateConfigs(activeDisplay->holdRefreshRateConfigs()); onActiveDisplaySizeChanged(activeDisplay); mActiveDisplayTransformHint = activeDisplay->getTransformHint(); // Update the kernel timer for the current active display, since the policy // for this display might have changed when it was not the active display. toggleKernelIdleTimer(); } status_t SurfaceFlinger::addWindowInfosListener( const sp& windowInfosListener) const { mWindowInfosListenerInvoker->addWindowInfosListener(windowInfosListener); return NO_ERROR; } status_t SurfaceFlinger::removeWindowInfosListener( const sp& windowInfosListener) const { mWindowInfosListenerInvoker->removeWindowInfosListener(windowInfosListener); return NO_ERROR; } } // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion -Wextra"