Security Class: Top-Secret() Secret() Internal() Public(V')

RK3588 Android 12.0 SDK Developer
Guide

File No.: RK-KF-YF-302
Current Version: V1.0.0
Status: . .
[1Draft Author: Wu Liangging
[V]Released Finish Date: 2022-05-15
[1 Modifying
Auditor: Chen Haiyan
Finish Date: 2022-05-15
Version Revision Revision
Author L. Remark
no. Date Description
Wu release rkr2
V0.0.1 Liangqing/Bian 2022:01- SDK support Only for hardware
o 10 debuggin
Jinchen rk3588/rk35885 Being
Wu release rkr4
. .) 2022-01- ,
V0.1.0 Liangging/Bian o1 SDK support Alpha version
Jinchen rk3588/rk3588S
release rkr6
)) 2022-03-)
V0.2.0 Wu Liangging 15 SDK support Beta version
rk3588/rk3588S
RK3588 EVB7 Hardware
release rkr8 .
)) 2022-05- reference design
V1.0.0 Wu Liangging SDK support)
15 corresponding software
rk3588/rk3588S

configuration

If there is any question about the document, please email to: wig@rock-chips.com

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP")DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN

af://n3
mailto:wlq@rock-chips.com
af://n39

THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

Ll —=/uy Ll —-1y

"Rockchip", "Fmtal", "H " shall be Rockchip’s registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2022. Rockchip
Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute
this document in any form in whole or in part without the written approval of Rockchip.

Rockchips Electronics Co., Ltd.

No.18 Building, A District, No0.89, software Boulevard Fuzhou, Fujian, PRC
Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

RK3588 Android 12.0 SDK Chipset
support

Chipset platform Support or not SDK version
RK3588 Support RKR2
RK3588S Support RKR2

RK3588 Android 12.0 SDK code download
and compile

Code download

Download address

repo init --repo-url=ssh://git@www.rockchip.com.cn:2222/repo-
release/tools/repo.git -u ssh://git@ww.rockchip.com.cn:2222/Android_S/rk3588-
manifests.git -m Androidl2.xml

Download server mirroring

af://n41
af://n43
http://www.rock-chips.com/
http://fae@rock-chips.com/
af://n46
af://n60
af://n61
af://n62
af://n64

repo init --repo-url=ssh://git@www.rockchip.com.cn:2222/repo-
release/tools/repo.git -u ssh://git@www.rockchip.com.cn:2222/Android_sS/rk3588-
manifests.git -m Androidl2.xml --mirror

Note: repo is a script invoking git developed by Google using Python script, and mainly used to
download, manage Android project software lib. The download address is as follows:

git clone ssh://git@www.rockchip.com.cn:2222/repo-release/tools/repo

Generally, Rockchip FAE contact will provide the initial compressed package of the corresponding
version SDK in order to help customers acquire SDK source code quickly. Take
RK3588_ANDROID12.0_SDK_RELEASE.tar.gz.* asan example, you can sync the source code
through the following command after getting the initial package:

mkdir RK3588_ANDROID12.0_SDK_RELEASE

cat RK3588_ANDROID12.0_SDK_RELEASE.tar.gz* | tar -zx -C
RK3588_ANDROID12.0_SDK_RELEASE

cd RK3588_ANDROID12.0_SDK_RELEASE

.repo/repo/repo sync -1

.repo/repo/repo sync -c

Set up your own repo code server

Environment

You can install openssh-server for remote login, git for project management, and keychain for
public key and private key management tools.

sudo apt-get install openssh-server git keychain

Set up gitolite

Server-side operation

Take server address: 10.10.10.206 as an example for description.

1. create git account:

sudo adduser --system --shell /bin/bash --group git
sudo passwd git

2. Log in to the server as a 'git' account;

3. Make sure that '~/.ssh/authorized_keys' is empty or non-existent;
4. Copy the server administrator's public key to '~/ yourname.pub’;
5. Download gitolite source code;

git clone https://github.com/sitaramc/gitolite.git

6. Create bin directory in git user directory;

mkdir -p ~/bin

af://n70
af://n71
af://n74
af://n75

7. Please execute following commands to install gitolite, and the installation method is
different for different versions. Please refer to the documentation in source code:

gitolite/install -to ~/bin
8. Set the administrator.

~/bin/gitolite setup -pk YourName.pub

Client-side operation

1. Clone gitolite management warehouse of the server;

git clone ssh://git@10.10.10.206/gitolite-admin.git
2. Add user's public key to the gitolite directory;

cp username.pub keydir/username.pub

3. Add an administrator user.

vi conf/gitolite.conf

@admin = adminl admin2 admin3
repo gitolite-admin

RW+ = @admin

Set up repo mirror

Server-side operation

1. Log in to the server as a 'git' account;
2. Download the repo tool in the root directory;

git clone ssh://git@www.rockchip.com.cn:2222/repo-release/tools/repo
3. Create a new RK_Android12_mirror directory;

mkdir RK_Androidl2_mirror

4. Enter the RK_Android12_mirror directory;

cd RK_Androidl2_mirror

5. Download RK Android12 SDK mirror;

~/repo/repo init --repo-url=ssh://git@www.rockchip.com.cn:2222/repo-
release/tools/repo.git -u ssh://git@ww.rockchip.com.cn:2222/Android_S/rk3588-
manifests.git -m Androidl2.xml --mirror

6. Create warehouse group permissions.

af://n103
af://n116
af://n117

.repo/repo/repo list -n > android_s.conf
sed -i 's/A/@android_s = RK_Androidl2_mirror\/&/g' android_s.conf

Client-side operation

1. Copy android_r.conf on the server-side to -gitolite-admin/conf/- on the client-side;
2. Add group permissions.

vi conf/android_s.conf
@Qusergroup = userl user2 user3
repo @android_s

R = @usergroup

RW+ = @admin

vi conf/gitolite.conf
include "android_s.conf"

3. Create your own new manifests warehouse.

vi conf/android_s.conf
@android_s = Android_S/manifests_xxx

Client-side operation

1. Download manifests_xxx warehouse on the client-side;
Download manifests_xxx.git warehouse on other client-side

git clone ssh://git@10.10.10.206/Android_S/manifests_xxx.git
2. Download original manifests warehouse on the client-side;
git clone ssh://git@10.10.10.206/Android_S/manifests.git

3. Submit manifest.xml file to manifest_xxx warehouse created newly;
Copy the files below original manifests to the manifests_xxx

cd manifests_xxx
cp -rf manifests/*.xml manifests_xxx/

check copy files

git status

Androidl2.xm]l
Androidl2_Express.xml

defauTlt.xml
include/rk3326_repository.xml
include/rk356x_repository.xml
include/rk_checkout_from_aosp.xml
include/rk_modules_repository.xml
remote.xml

remove_S.xml

af://n140
af://n152

Local commits

git add -A
git commit -m "init xxx"

Push to the remote branch

git push origin master:master

4. Create your own code download link.
Download the repo tool in the root directory

git clone ssh://git@www.rockchip.com.cn:2222/repo-release/tools/repo

After following the above steps, your own code download link is as follows

mkdir Androidl2

cd Androidl2

~/repo/repo init -u ssh://git@10.10.10.206/Android_S/manifests_xxx.git -m
Androidl2.xml

Thereinto:
//10.10.10.206 which is your server address

You can complete your own repo server set-up with above steps, and you can share your code
server links with colleagues to work together.

Code management

After setting up the code server with above steps, most of the code warehouses use the default
branches of RK. If some warehouses need to modify their own codes, you can refer to the
following steps for operation.

Switch your own code branches

1. Enter the code warehouse that needs to be modified, and we take the kernel directory as an
example to illustrate;

cd kernel-4.19

2. Switch a local branch;

git checkout remotes/m/master -b xxx_branch
3. Push xxx_branch to remote server;

git push rk29 xxx_branch:xxx_branch

Thereinto, rk29 is remote, which can be completed automatically by tab key directly

4. Enter.repo/manifests directory and modify the branch which is appointed by manifest;
Enter.repo/manifests directory, and you can find the manifest location corresponding to the
kernel warehouse by grep kernel

af://n178
af://n180

cd .repo/manifests

--- a/include/rk_modules_repository.xml
+++ b/include/rk_modules_repository.xml
@@ -10,7 +10,7 @@

<project path="hardware/rockchip/1libgraphicpolicy"
name="rk/hardware/rk29/1ibgraphicpolicy" remote="rk"
revision="refs/tags/android-11.0-mid-rkr8" />

<project path="hardware/rockchip/1ibhwjpeg" name="rk/hardware/rk29/1ibhwjpeg"
remote="rk" revision="refs/tags/android-11.0-mid-rkr8"/>

<project path="u-boot" name="rk/u-boot" remote="rk"
revision="refs/tags/android-11.0-mid-rkr8"/>
- <project path="kernel" name="rk/kernel" remote="rk29"
revision="refs/tags/android-11.0-mid-rkr8"/>
+ <project path="kernel" name="rk/kernel" remote="rk29" revision="xxx_branch"/>

<project path="bootable/recovery/rkupdate"
name="platform/bootable/recovery/rk_update" remote="rk"
revision="refs/tags/android-11.0-mid-rkr8"/>

<project path="bootable/recovery/rkutility"
name="platform/bootable/recovery/rk_utility" remote="rk"
revision="refs/tags/android-11.0-mid-rkr8"/>

5. Submit the modified manifest to the remote branch.

git add include/rk_modules_repository.xml
git commit -m "change kernel branch on xxx_branch"
git push origin default:master

After submitting manifests warehouse, other colleagues can synchronize the kernel codes of your
own branches.

Code modification submittal

After switching branches according to the steps above, you can commit your modification on
your branches and push them directly to the xxx_branch.

Synchronize RK codes

1. It's required to synchronize RK codes on the server-side;

cd RK_Androidl2_mirror

.repo/repo/repo sync -c

2. The manifests that RK modifies are combined by client-side;

e Download the original manifests warehouse of RK;

git clone //10.10.10.206/wlq/test/manifests.git

The manifests (RK original) and the manifests_xxx (yourselves) are compared with the contrast
tools to combine the different parts that RK modifies to your own warehouses (mainly modify the
tag, adding and removing the warehouse, etc)

af://n204
af://n206

e After comparing and confirming, the modification will be pushed to the Manifests XXX.

You can also confirm which warehouses are modified in this step, and in the next step you will
combine the modified warehouses.

3. The directories switched branches by yourselves need to push the merge that RK modifies

to your own branches manually.
Take kernel as an example:

e Check the pointed remote branches at present

wlg@wlq:~/homel/test2/kernel$ git branch -av
* android-11.0-mid-rkr7 Obde59fad73a ARM: configs: rockchip_defconfig enable
ION_CMA_HEAP

XXX_branch Obde59fad73a ARM: configs: rockchip_defconfig enable
ION_CMA_HEAP
remotes/m/master -> rk29/xxx_branch

remotes/rk29/xxx_branch Obde59fad73a ARM: configs: rockchip_defconfig enable
ION_CMA_HEAP

You can find that the branch pointed at present is: remotes/m/master >

rk29/xxx_branch

e (Create alocal branch (switch from your own remote branch)

git checkout remotes/m/xxx_branch -b Tocal_xxx_branch

e Check latest TAG published currently by RK

wlg@wlq:~/homel/test2/kernel$ git tag | grep rkr

android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-10.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.
android-11.

0-mid-rkrl
0-mid-rkrl0
0-mid-rkrll
0-mid-rkrl3
0-mid-rkr2
0-mid-rkr3
0-mid-rkr4
0-mid-rkr5
0-mid-rkr6
0-mid-rkr7
0-mid-rkr8
0-mid-rkr9
0-ebook-rkrl
0-ebook-rkr2
0-ebook-rkr3
0-ebook-rkr4
0-ebook-rkr5
0-ebook-rkré6
0-mid-rkrl
0-mid-rkr2
0-mid-rkr3
0-mid-rkr4
0-mid-rkr4.1
0-mid-rkr5
0-mid-rkr6
0-mid-rkr7
0-mid-rkr7-prev

android-11.0-mid-rkr8
android-12.0-mid-rkrl

You can find the latest tag of Android12 currently is android-12.0-mid-rkrl

e combine android-12.0-mid-rkrl to the local branch
git merge android-12.0-mid-rkrl

Check if there is a conflict. If there is a conflict, resolve the conflict firstly. You can execute the
next step when there is no conflict.

e push the codes which have been combined to the remote branch
git push rk29 local_xxx_branch:xxx_branch

e The other directories swiched can be combined and submitted in this way

kernel Code path description

RK3588 Android12 only supports version 5.10 of the kernel, kernel source code in the project
kernel-5.10 directory,

Code compiling

One key compiling command

./build.sh -UKAup

(WHERE: -U = build uboot
-C = build kernel with Clang
-K = build kernel
-A = build android
-p = will build packaging in IMAGE
-0 = build OTA package
-u = build update.img
-v = build android with 'user' or 'userdebug'
-d = huild kernel dts name
-V = build version
-] = build jobs

———————————— you can use according to the requirement, no need to record
uboot/kernel compiling commands----------—-———————-
)

Please remember to set the environment variable before using the one key
compiling command, and select the platform to be compiled, for example:
source build/envsetup.sh

Tunch rk3566_rgo-userdebug

Compiling command summary

af://n252
af://n255
af://n256
af://n258

The reference one key uboot

Soc type Android o kernel compiling .
model compiling compiling
make ARCH=arm64
/build.sh - rockchip_defconfig android-
RK3588S tablet prototype build/envsetup.sh;lunch AUCKu -d 1 1:conf|.g A ./make.sh
rk3588s_s-userdebug rk3588s- pcie_wifi.config;make rk3588
tablet-v10 ARCH=arm64 rk3588s-tablet-
v10.img -j24
/build.sh - mﬁ?&iﬁ“i@ o
devel t build/ tup.sh;lunch AUCKud :?C ; pr_ e /make.sh
RK35885 evelopmen RK35385-EVB1 uild/envsetup.sh;lunc rK3588s- l.con‘llg A ./make.s|
board rk3588_s-userdebug evb-ldx- pcie_wifi.config;make rk3588
v10 P ARCH=arm64 rk3588s-evb1-
Ip4x-v10.img -j24
make ARCH=arm64
rockchip_defconfig android-
RK3588 development RK3588 EVB1 build/envsetup.sh;lunch /build.sh - 11.config ./make.sh
board rk3588_s-userdebug AUCKu pcie_wifi.config;make rk3588
ARCH=arm64 rk3588-evb1-
Ip4-v10.img -j24
make ARCH=arm64
rockchip_defconfig android-
RK3588 o i RK3588_NVR_DEMO1 build/envsetup.sh;lunch /build.sh - 1 1:con'f|g 4 /make.sh
rk3588_box-userdebug UCKApu pcie_wifi.config;make rk3588

ARCH=arm64 rk3588-nvr-
demo-v10-android.img -j24

Other compiling instruction

Android12.0 cannot directly flash kernel.img and resource.img

Android12.0 kernel.img and resource.img are included in boot.img. which need to use 'build.sh -
K' command for compiling kernel. Please flash boot.img under rockdev after compiling. You can
also compile kernel separately by following method.

Only compile kernel to generate boot.img

Compile principle: Old boot.img is replaced by kernel.img and resource.img compiled and
generated in the catalogue of kernel-5.10.

Take RK3588 prototype for example, replace corresponding boot.img and dts when compiling:
Among the rest, BOOT_IMG=. ./rockdev/Image-rk3588_s/boot.img assigns old boot.img path,
the commands are following:

Export clang to the environment

cd kernel-5.10
export PATH=../prebuilts/clang/host/Tinux-x86/clang-r416183b/bin:$PATH
alias msk="make CROSS_COMPILE=aarch64-1inux-gnu- LLVM=1 LLVM_IAS=1'

msk ARCH=arm64 rockchip_defconfig android-11.config pcie_wifi.config & & msk
ARCH=arm64 BOOT_IMG=../rockdev/Image-rk3588_s/boot.img rk3588-evbl-1p4-v10.img

You can flash boot.img under the catalogue of kernel-5.10 directly to boot position of machine

after compiling, and please load the partition table (parameter.txt) when flashing, for fear of
flashing to the wrong place.

Image flashing

Image flashing tool

af://n301
af://n302
af://n304
af://n310
af://n311

Android12 requires to update the USB driver DriverAssitant to V5.1.1 version. You can refer to the
tool instruction chapter to do the upgrade.
Windows flashing tool:

RKTools/windows/AndroidTool/AndroidTool_Release_v2.90

oy RRTE TR v2.84 - X
THAR AREN EEE i
- Wi &
| Hags AR
| W it E=F Wiz . g AR
1 00 e G AR S WG 71 0sE T
4 ‘ [V 0x00000000 Parameter X:%1_souwrce_code\a5_Androidil_29%ro. .. FEIFLashInfoffiTh
'3 [v | oxoo004000 Uboot [X\ _source_code\aS_Androidll_29\u-bootiuboot. img TDBF 45
4 0x00008000 Misc X:\l_source_codelab_Androidll_29\ro. . ERI0ERLTH
5 ‘ [¥ | 0x0000A000 Dtbo rockdev\Image—xk3566_rgoldtho. img EEEE??]
(3] ‘ [V 0x0000C000 vhmeta U:hcode'rk3568\AVB \vbmeta. img TEEET
T v 0x0000C300 Boot X:\ _source_code\aS_Androidll_2%%\ro. . AT (100%)
8 v 0x00020800 Recovery X:\1_sowrce_code\ab_androidll_29%ro. . TEE LT o
9 ‘ [¥ 0x001D8800 baseparameter rockder'\Image—rk3566_r'\baseparamete. .. EENETE
10 ‘ [V 0x001D9000 Super rockdev\Image—~rk3566_rgo'\super. img FENERT
4 >
Loader Ver:1.01 thiT Nk EENER B
KB -A~ADBBL %

RKTooT1s/Tinux/Linux_Upgrade_Tool/Linux_Upgrade_Tool_v1.65

There are more details in the tool instruction chapter.

Image instruction

After complete compiling, it will generate the following files:

rockdev/Image-rk3588_s/
boot-debug.img
boot.img

config.cfg

dtbo.img
MiniLoaderAll.bin
misc.img
parameter.txt
pcba_small_misc.img
pcba_whole_misc.img
recovery.img
resource.img
super.img

uboot.img
update.img
vbmeta.img

[TTTTTTTTTTTTTT

Just use the tool to flash the following files:(no need to flash trust.img for RK3566/RK3568)

af://n317

rockdev/Image-rk3588_s/

— boot.img
— dtbo.img

— MiniLoaderAll.bin

F— misc.img

— parameter.txt
— recovery.img
— super.img

— uboot.img

L— vbmeta.img

Image instruction

Image

boot.img

boot-debug.img

dtbo.img

config.cfg

MiniLoaderAll.bin

misc.img

parameter.txt

pcba_small_misc.img

pcba_whole_misc.img

recovery.img

super.img

trust.img

uboot.img

vbmeta.img

update.img

or you can directly flash update.img

Instruction
including ramdis. kernel, dtb

the difference between boot.img and boot-debug.img is that user
image can flash this boot.img to do root operation

Device Tree Overlays refer to dtbo chapter instruction later

the configuration file of the flash tool, you can directly load the
options required to be flashed for the flash tool

including first level loader

including recovery-wipe boot symbol information, after flashing it
will enter recovery

including partition information

including pcba boot symbol information, after flashing it will enter
the simple pcba mode

including pcba boot symbol information, after flashing it will enter
the complete pcba mode

including recovery-ramdis. kernel, dtb
including the contents of odm, vendor, system partitions

including BL31, BL32 which are not generated for
RK3566/RK3568, no need to flash

including uboot image
including avb verification information, used for AVB verification

including the above img files to be flashed, can be used for the
tool to directly flash the whole image package

Use fastboot to flash dynamic partition

af://n323
af://n373

The new device with R supports dynamic partition, and already removes system/vendor/odm
partitions. Please flash super.img. Use fastbootd can flash system/vendor/odm alone. The
version of adb and fastboot should be the latest. SDK provides the compiled tool package:

RKTooTls/Tinux/Linux_adb_fastboot (Linux_x86 version)
RKTools/windows/adb_fastboot (Windows_x86 version)

e Use the command to flash dynamic partition:

adb reboot fastboot

fastboot flash vendor vendor.img
fastboot flash system system.img
fastboot flash odm odm.img

Note: After entering fastbootd mode, relative information of the device will be displayed on the
screen, as shown below:

fastbootd

Android Fastboot

Product name - rk3326_q
Bootloader version - unknown
Baseband version -

Serial number - YOVGGEWYJK
Secure boot - yes

HW version - ®

Use volume up/down and power.

v bootloader

The way to flash GSI:

e After the device is unlocked, enter fastbootd, only need to flash system.img of GSI and
misc.img of the image, and after flashing it will enter recovery to do factory reset. Attach the
complete flashing process as below:

1. Reboot to bootloader, lock->unlock the device:

adb reboot bootloader
fastboot oem at-unlock-vboot ## for the customers already flashing avb public
key, please refer to the corresponding document to unlock.

2. Reset to factory setting, reboot to fastbootd:

fastboot flash misc misc.img
fastboot reboot fastboot ## now it will enter fastbootd

3. Start to flash GSI

fastboot delete-logical-partition product ## (optional) for the device with
small partition space, you can execute this command to delete product partition
first and then flash GSI

fastboot flash system system.img

fastboot reboot ## after flashing successfully, reboot the device

e Use DSU(Dynamic System Updates) to flash GSI, and current Rockchip platform already
supports DSU by default. As this function requires large memory, it is not recommended to
use on the device with 1G DDR or less. For the instruction and usage of DSU, please refer to
Android official website:
https://source.android.com/devices/tech/ota/dynamic-system-updates

e Note 1: when testing VTS, need to flash the compiled boot-debug.img to boot partition.

e Note 2: when testing CTS-ON-GSI, no need to flash boot-debug.img.

e Note 3: please use GSl image ended with -signed released by Google for testing.

DTBO function

Android 10.0 and above versions support Device Tree Overlays function, which requires to flash
dtbo.img during development, and is compatible with multiple products.
The modification method:

1. Find (or specify) the template file:

get_build_var PRODUCT_DTBO_TEMPLATE

For example:

PRODUCT_DTBO_TEMPLATE := $(LOCAL_PATH)/dt-
overlay.in(device/rockchip/rk388/rk3588_s/dt-overlay.in)

2. Add or modify the required node:

For example:
/dts-vl/;
/plugin/;
&chosen {
bootargs_ext = "androidboot.boot_devices=${_boot_device}";
T
&firmware_android {
vbmeta {
status = "disabled";
s
fstab {
status = "disabled";
e

e

https://source.android.com/devices/tech/ota/dynamic-system-updates
af://n404

&reboot_mode {
mode-bootloader = <0x5242C309>;
mode-charge = <0x5242C30B>;
mode-fastbhoot = <0x5242C303>;
mode-loader = <0x5242C301>;
mode-normal <0x5242C300>;
mode-recovery = <0x5242C303>;

e

Note: There must be alias in the dts when using dtbo, otherwise it cannot overlay
successfully

Modify fstab file
1. Fine (or specify) the template file:

get_build_var PRODUCT_FSTAB_TEMPLATE

For example:

PRODUCT_FSTAB_TEMPLATE := device/rockchip/common/scripts/fstab_tools/fstab.in

2. Modify: add partition mounting, modify swap_zram parameter, modify data partition format
and soon

Modify parameter.txt

Android 12 adds the tool that can generate parameter.txt, and support to compile parameter.txt
according to the configuration parameters. If there is no configuration template file, it will find
and add the modified parameter.txt file.

1. Find (or specify) the template file:

get_build_var PRODUCT_PARAMETER_TEMPLATE

For example:

PRODUCT_PARAMETER_TEMPLATE :=
device/rockchip/common/scripts/parameter_tools/parameter.in

2. Partition size configuration(example as below):

BOARD_SUPER_PARTITION_SIZE := 2688548864
BOARD_DTBOIMG_PARTITION_SIZE := XXXX

BOARD_BOOTIMAGE_PARTITION_SIZE := XXXXX
BOARD_CACHEIMAGE_PARTITION_SIZE := XXXX

3. Not to use parameter generation tool:
Just add a parameter.txt file to your device directory:
For example:

af://n418
af://n427

device/rockchip/rk3326/rk3326_s/parameter.txt
4. Only use the tool to generate parameter.txt(example as below):

parameter_tools --input
device/rockchip/common/scripts/parameter_tools/parameter.in --firmware-version
11.0 --machine-model rk3326 --manufacturer rockchip --machine rk3326_r --
partition-Tlist
uboot_a:4096K,trust_a:4M,misc:4M,dtbo_a:4M,vbmeta_a:4M,boot_a:33554432,backup:30
OM, security:4M,cache:300M,metadata:4096,frp: 512K, super:2G --output
parameter_new.txt

Note: If need to do the big version upgrade through OTA, please directly use the previous
version's parameter.txt

Android common configuration

Create product lunch

Take RK356x platform as example to create a new rk3588_s product. The steps are as below:
1.Modify device/rockchip/rk3588/AndroidProducts.mk to add rk3588_s lunch

--- a/AndroidProducts.mk
+++ b/AndroidProducts.mk
@@ -17,10 +17,14 @@
PRODUCT_MAKEFILES := \
$(LOCAL_DIR)/rk3588_s/rk3588_s.mk \
+ $(LOCAL_DIR)/rk3588s_s/rk3588s_s.mk \

COMMON_LUNCH_CHOICES := \
rk3588_s-userdebug \
rk3588_s-user \

+ rk3588s_s-userdebug \
+ rk3588s_s-user \

2.Create rk3588s_s directory under device/rockchip/rk3588

Create referring to the existing rk3588s_s product directory in device/rockchip/rk356x. You can
directly copy rk3588s_s to rk3588s_s, and then replace all the rk3588_s under rk3588s_s
directory with rk3588s_s

Kernel dts instruction

Create new product dts

You can select the corresponding dts according to the configuration in the following table as
reference to create new product dts.

af://n449
af://n450
af://n454
af://n455

Soc

RK3588

RK3588

RK3588

RK3588S

RK3588S

RK3588S

RK3588

PMIC

RK806 * 2

RK806 * 2

RK806+RK860

RK806 * 2

RK806 * 2

RK806+RK860

RK860*1

Type

development
board

development
board

development
board

development
board

tablet

tablet

box

Model

RK3588 EVB1

RK3588 EVB3

RK3588 Hardware reference
design corresponding software
configuration

RK3588S EVB1

prototype

Refer to the hardware design
diagram for the RK3588S tablet

Refer to the hardware design
diagram for the
RK3588_NVR_DEMO1_LP4X
tablet

Document instruction

Peripheral support list

DTS

rk3588-
evb1-lp4-
v10

rk3588-
evb3-Ip5-
v10

rk3588-
evb4-Ip7-
v10

rk3588s-
evb1-lp4x-
v10

rk3588s-
tablet-v10

rk3588s-
tablet-v11

rk3588-
nvr-demo-
v10-
android

DDR/EMMC/NAND FLASH/WIFI/3G/CAMERA support lists keep updating in redmine, through the

following link:

https://redmine.rockchip.com.cn/projects/fae/documents

Android document

RKDocs\android

Android_SELinux(Sepolicy) developer guide

RKDocs/android/Rockchip_Developer_Guide_Android_SELinux(Sepolicy)_CN.pdf

Android 12 System Optimization developer guide

Including bootup speed up, app startup speed up, performance, memory optimization and

commonly used analysis tools

af://n506
af://n507
af://n510
af://n512
af://n514

RKDocs\android\Rockchip_Developer_Guide_Androidll_optimization_CN.pdf
Wi-Fi document

RKDocs/android/wifi/
— Rockchip_Introduction_Androidl0.0_WIFI_Configuration_CN&EN.pdf
L— Rockchip_Introduction_REALTEK_WIFI_Driver_Porting_CN&EN.pdf

3G/4G module instruction document

RKDocs/common/mobile-net/

— Rockchip_Introduction_3G_bata_cCard_USB_File_Conversion_CN.pdf
— Rockchip_Introduction_3G_bongle_Configuration_CN.pdf

L— Rockchip_Introduction_4G_Module_cConfiguration_CN&EN.pdf

Kernel document

RKDocs\common

DDR related document

RKDocs/common/DDR/

— Rockchip-Developer-Guide-DDR-CN.pdf

— Rockchip-Developer-Guide-DDR-EN.pdf

— Rockchip-Developer-Guide-DDR-Problem-SoTlution-CN.pdf

— Rockchip-Developer-Guide-DDR-Problem-Solution-EN.pdf

L— Rockchip-Developer-Guide-DDR-Verification-Process-CN.pdf

Audio module document

RKDocs/common/Audio/

—
Rockchip_Developer_Guide_Audio_Call_3A_Algorithm_Integration_and_Parameter_bebug
ging_CN.pdf

— Rockchip_beveloper_Guide_Linux4.4_Audio_CN.pdf

L— Rockchip_Developer_Guide_RK817_RK809_cCodec_CN.pdf

CRU module document

RKDocs/common/CRU/
— Rockchip_beveloper_Guide_Linux3.10_Clock_CN.pdf
L— Rockchip_RK3399_bDeveloper_Guide_Linux4.4_Clock_CN.pdf

GMAC module document

af://n517
af://n519
af://n521
af://n523
af://n525
af://n527
af://n529

RKDocs/common/GMAC/
L— Rockchip_bDeveloper_Guide_Ethernet_CN.pdf

PCie module document

RKDocs/common/PCie/
L— Rockchip-Developer-Guide-Tlinux4.4-pPCIe.pdf

12C module document

RKDocs/common/I2C/
L— Rockchip_Developer_Guide_I2C_CN.pdf

PIN-Ctrl GPIO module document

RKDocs/common/PIN-Ctrl/
L— Rockchip-Developer-Guide-Linux-Pin-Ctr1-CN.pdf

SPI module document

RKDocs/common/SPI/
L— Rockchip-Developer-Guide-Tinux4.4-SPI.pdf

Sensor module document

RKDocs/common/Sensors/
L— Rockchip_bDeveloper_Guide_Sensors_CN.pdf

10-Domain module document

RKDocs/common/IO-Domain/
L— Rockchip_beveloper_Guide_Linux_IO_DOMAIN_CN.pdf

Leds module document

RKDocs/common/Leds/
L— Rockchip_Introduction_Leds_GPIO_Configuration_for_Linux4.4_CN.pdf

Thermal control module document

RKDocs/common/Thermal/
— Rockchip-Developer-Guide-Linux4.4-Thermal-CN.pdf
L— Rockchip-Developer-Guide-Linux4.4-Thermal-EN.pdf

af://n531
af://n533
af://n535
af://n537
af://n539
af://n541
af://n543
af://n545
af://n547

PMIC power management module document

RKDocs/common/PMIC/

— Archive.zip

— Rockchip_beveloper_Guide_Power_Discrete_DCDC_EN.pdf

— Rockchip-Developer-Guide-Power-Discrete-DCDC-Linux4.4.pdf
— Rockchip-Developer-Guide-RK805.pdf

— Rockchip_beveloper_Guide_RK817_RK809_Fuel_Gauge_CN.pdf
— Rockchip_RK805_Developer_Guide_CN.pdf

L— Rockchip_RK818_RK816_Introduction_Fuel_Gauge_Log_CN.pdf

MCU module document

RKDocs/common/MCU/
L— Rockchip_Developer_Guide_MCU_EN.pdf

Power consumption and sleep module document

RKDocs/common/power/
— Rockchip_beveloper_Guide_Power_Analysis_EN.pdf
L— Rockchip_bDeveloper_Guide_Sleep_and_Resume_CN.pdf

UART module document

RKDocs/common/UART/
— Rockchip-Developer-Guide-Tinux4.4-UART.pdf
L— Rockchip-Developer-Guide-RT-Thread-UART.pdf

DVFS CPU/GPU/DDR frequency scaling related
document

RKDocs/common/DVFS/

— Rockchip_beveloper_Guide_CPUFreq_CN.pdf

— Rockchip_beveloper_Guide_CPUFreq_EN.pdf

— Rockchip_beveloper_Guide_bevfreq_CN.pdf

— Rockchip_Developer_Guide_Linux4.4_CPUFreq_CN.pdf
L— Rockchip_Developer_Guide_Linux4.4_bevfreq_CN.pdf

EMMC/SDMMC/SDIO module document

RKDocs/common,/MMC
L— Rockchip-Developer-Guide-Tinux4.4-SDMMC-SDIO-eMMC.pdf

PWM module document

af://n547
af://n549
af://n551
af://n553
af://n555
af://n557
af://n559

RKDocs/common/PwM/
— Rockchip-Developer-Guide-Linux-PwWM-CN.pdf
L— Rockchip_Developer_Guide_PWM_IR_CN.pdf

USB module document

RKDocs/common/usb/

— putty20190213_162833_1.7o0g

— Rockchip-Developer-Guide-Linux4.4-RK3399-USB-DTS-CN.pdf

— Rockchip-Developer-Guide-Linux4.4-USB-CN.pdf

— Rockchip-Developer-Guide-Linux4.4-USB-FFS-Test-Demo-CN.pdf

— Rockchip-Developer-Guide-Linux4.4-USB-Gadget-UAC-CN.pdf

— Rockchip-Developer-Guide-USB-Initialization-Log-Analysis-CN.pdf
— Rockchip-Developer-Guide-USB-Performance-Analysis-CN.pdf

— Rockchip-Developer-Guide-USB-PHY-CN.pdf

L— Rockchip-Developer-Guide-USB-SQ-Test-CN.pdf

HDMI-IN function document

RKDocs/common/hdmi-in/
L— Rockchip_bDeveloper_Guide_HDMI_IN_CN.pdf

Security module document

RKDocs/common/security/

— Efuse process explain .pdf

— RK3399_Efuse_operation_Instructions_v1.00_20190214_gN.pdf
— Rockchip_beveloper_Guide_Secure_Boot_Vv1.1_20190603_CN.pdf
— Rockchip_beveloper_Guide_TEE_Secure_SDK_CN.pdf

— Rockchip_RK3399_1Introduction_Efuse_Operation_EN.pdf

— Rockchip-Secure-Boot2.0.pdf

— Rockchip-Secure-Boot-AppTlication-Note-v1.9.pdf

L— Rockchip vendor Storage Application Note.pdf

uboot introduction document
RKDocs\common\u-boot\Rockchip-Developer-Guide-UBoot-nextdev-CN.pdf

Trust introduction document

RKDocs/common/TRUST/
— Rockchip_beveloper_Guide_Trust_CN.pdf
L— Rockchip_Developer_Guide_Trust_EN.pdf

Camera document

RKDocs\common\camera\HAL3\

af://n561
af://n563
af://n565
af://n567
af://n569
af://n571
af://n573

Camera IQ Tool document

external/camera_engine_rkaiq/rkisp2x_tuner/doc/

— Rockchip_color_optimization_Guide_ISP2x_CN_v2.0.0.pdf
— Rockchip_1Q_Tools_Guide_ISP2x_CN_v2.0.0.pdf

L— Rockchip_Tuning_Guide_ISP21_CN_v2.0.0.pdf

Tool document

RKDocs\common\RKTools manuals

PCBA development and usage document
RKDocs\android\Rockchip_Developer_Guide_PCBA_Test_Tool_CN&EN.pdf

Panel driver debugging guide

RKDocs\common\dispTlay\Rockchip_Developer_Guide_DRM_Panel_Porting_CN.pdf

HDMI debugging guide

RKDocs\common\display\Rockchip_Developer_Guide_HDMI_Based_on_DRM_Framework_CN.pd
.F

Graphic display DRM Hardware Composer (HWC)
issue analyzing

RKDocs\common\display\Rockchip FAQ DRM Hardware Composer V1.00-20181213.pdf

DRM display developer guide

RKDocs\common\dispTlay\Rockchip DRM Display Driver Development Guide Vv1.0.pdf

RGA related issues analyzing

RKDocs\common\display\Rockchip_RGA_FAQ.pdf

Graphic display framework common issue analysis

include frameworks, GPU.Gralloc, GUI, HWComposer, HWUI, RGA

RKDocs\common\display\Rockchip_Trouble_Shooting_Graphics

af://n573
af://n575
af://n577
af://n579
af://n581
af://n583
af://n585
af://n587
af://n589

rknn-toolkit2 Develop SDK and documentation

hardware/rockchip/rknn-toolkit2/doc/

Tool usage

StressTest

Use the Stresstest tool to do the stress test for the various functions on the target devices to
make sure the whole system running stably. SDK can start StressTest application and perform
stress test of various functions by entering “83991906=" code in the calculator.

The test items of Stresstest tool mainly include:

Module related

e Camera stress test: including Camera on/off, Camera taking photo and Camera switch.
e Bluetooth stress test: including Bluetooth on/off.
e Wi-Fi stress test: including Wi-Fi on/off, (plan to add ping test and iperf test).

Non module related

e Fly mode on/off test

e Suspend and resume stress test
e Video playing stress test

e Reboot stress test

e Recovery stress test

e ARM frequency scaling test

e GPU frequency scaling test

e DDR frequency scaling test

PCBA test tool

PCBA test tool is used to help quickly identify good and bad product features during production
to improve the production efficiency. Current test items include panel (LCD), wireless (Wi-Fi),
Bluetooth, DDR/EMMC memory, SD card, USB HOST, key, speaker earphone (Codec).

These test items include automatic test item and manual test item. Wireless network,
DDR/EMMC, Ethernet are automatic test items, while key, SD card, USB Host, Codec are manual
test items.

For the detailed PCBA function configuration and usage, please refer to:

RKDocs\android\Rockchip_bDeveloper_Guide_PCBA_Test_Tool_CN&EN.pdf_v1.1_20171222.p
df.

DeviceTest

af://n592
af://n594
af://n595
af://n597
af://n604
af://n622
af://n626

DeviceTest is used for the whole device test in factory, which mainly test whether the peripheral
components work normally after assembling. SDK will enter DeviceTest by entering “000.=" code
in the calculator, as shown below:

DeviceTest Version:V20111216_01 (for android6.0)

7 ILCD , [Touch

. Vibration _. 'Speaker
. Bluetooth , Wifi

_. 'Battery .IsD card
'Brightness . UsbHost

; IGPS , Storage

, Msensor , (Gyroscope

_. \/ideoPIayer

TEST CHECKED UNINSTALL

a < O E 1 [

In factory, you can test the corresponding peripheral according to this interface. Click “TEST
CHECKED" to test the items one by one. If succeed, click pass, if fail, click failed, the final result will
display on the screen, as shown below. Red means failed item, others are pass, and the factory
can repair accordingly based on the test result. Besides, if customers need to customize the tool,
please contact FAE to apply for the corresponding source code.

USB driver

Rockchip USB driver install package includes ADB and image flashing driver

RKTooTls\windows\DriverAssitant_v5.1.1.zip

Development flashing tool

Windows version

af://n628
af://n631
af://n632

RKTools/windows/AndroidTool/AndroidTool_Release_v2.90.zip

oy WESRTE TR v2.84

THER HEEH SRR Wi A G
- W& &R
SR TE
LI - T T B
- voomm Lo W FOrlanions
2 [¥ 0x00000000 Parameter X:\1_source_codelaS_Androidil_29%ro. .. FREIFlashInfofifT)
3 [¥ 0x00004000 Uboot ‘ X\ _source_codehaS_Androidll_29%u-boot'uboot. img T0BFF i
4 000008000 Mizc X:\l_source_codehab_Androidll 29%ro, . FERIOBRLIH
B [¥ 0x0000ADCO Dtho rockdev\Image—rk3566_rgo\dtho. img ;gig:gfﬁ
(3] [¥ 0x0000C000 vhmeta U:hcode'rk3568\AVE \vbmeta. img TEEET
T [¥ | 0x0000C500 Boot X:41_source_codehaS_Androidil_29%ro. . AT (100%)
8 [¥ 0x00020800 Recovery X:\l_sowce_codelsf_fndroidll 28%ro. . TEE T o
9 [¥ 0x001D8800 baseparameter rockder'\Image—rk3566_r\baseparamete. .. EENETE
10 | [¥ 0x001D9000 Super rockdev\Image—rk3566_rgo'\super. img EELERMT
< >
Loader Ver:1.01 ik REHEE Az
KB -AADBB
Linux version

RKTools/linux/Linux_Upgrade_Tool/Linux_Upgrade_Tool_v1.56.zip

Linux_Upgrade_Tool_v1.56% sudo ./upgrade_tool -h
Program Data in /home/wlq/.config/upgrade_tool

Help H

Quit

version: \%

Clear Screen: cs

—————————————————— Upgrade Command -----------—-——-—-———-
ChooseDevice: CcD

ListDevice: LD

SwitchDevice: SD

UpgradeFirmware: UF <Firmware> [-noreset]
UpgradeLoader: UL <Loader> [-noreset]

DownloadImage: DI <-p|-b|-k|-s|-r|-m|-u|-t|-re image>
DownloadBoot: DB <Loader>

EraseFlash: EF <Loader|firmware> [DirectLBA]
PartitionList: PL

WriteSN: SN <serial number>

ReadSN: RSN

———————————————— Professional Ccommand ---------—-—-—----—--
TestDevice: TD

ResetDevice: RD [subcode]

ResetPipe: RP [pipel

ReadCapability: RCB

ReadFlashiID: RID

ReadFlashinfo: RFI

ReadChipInfo: RCI

ReadSector: RS <BeginSec> <SectorLen> [-decode] [File]
writeSector: WS <BeginSec> <File>

ReadLBA: RL <BeginSec> <SectorLen> [File]
WriteLBA: WL <BeginSec> <File>

EraseLBA: EL <BeginSec> <EraseCount>
EraseBlock: EB <CS> <BeginBlock> <BlokcLen> [--Force]

af://n634

Tool to implement SD upgrading and boot

It is used to implement SD card upgrading, SD card boot, SD card PCBA test.

RKTooTs\windows\SDDiskTool_v1.59.zip

Write SN tool

RKTools\windows\RKDevInfoWriteTool_Setup_V1.0.3.rar
Install after unzip RKDevinfoWriteTool_Setup_V1.0.3.rar
Use admin ID to open the software

[] RKDevinfoWriteTool V1.0.3 ¥
=E H&==it =T

SN: ||

WIFI:

LAM:

IMET: 1=E
BE¥1 Eh
BEX2:

LOADER: W10, 10, 10, 205wlgh1_source_code'\a3_rk3399_android10.0_29%ocke

ERRIEE

For the tool instruction, please refer to:

RKDocs\common\RKTools manuals\RKDevInfowriteTool_User_Guide_Vv1.0.3.pdf

DDR welding test tool

af://n637
af://n640
af://n643

It is used to test DDR hardware conncection, troubleshooting hardware issues such as virtual
welding.

RKTooT1s\windows\Rockchip_Platform_DDR_Test_Tool_Vv1.38_Release_Annoucement_CN.7z
RKToo1s\windows\Rockchip_Platform_DDR_Test_Tool_Vv1.38_Release_Annoucement_EN.7z

efuse flashing tool
It is used to flash efuse, suitable for RK3288W/RK3368/RK3399 platforms.

RKTools\windows\efuse_v1.37.rar

efuse/otp sign tool

It is used to sign efuse/otp of image.

RKTooTs\windows\SecureBootTool_v1.94.zip

Factory production image flashing tool
It is uesed for batch image flashing in factory.

RKTooT1s\windows\FactoryTool_1.66.zip

Image update tool

It is used to modify update.img.

RKTooTs\windows\FwFactoryTool_V5.52.rar

userdata partition data prebuilt tool

It is the tool used to make userdata partition pre-built data package.

RKTools\windows\OemTool_vl1.3.rar

System debugging

ADB tool

Overview

ADB (Android Debug Bridge) is a tool in Android SDK which can be used to operate and manage
Android simulator or the real Android device. The functions mainly include:

e Run the device shell (command line)
e Manage the port mapping of the simulator or the device
e Upload/download files between the computer and the device

af://n646
af://n649
af://n652
af://n655
af://n658
af://n661
af://n662
af://n663

e |nstall the local apk to simulator or Android device
ADB is a “client - server” program. Usually the client is PC and the server is the actual
Android device or simulator. The ADB can be divided into two categories according to the
way PC connects to the Android device:

e Network ADB: PC connects to STB device through cable/wireless network.

e USB ADB: PC connects to STB device through USB cable.

USB adb usage

USB adb usage has the following limitations:

e Only support USB OTG port

e Not support multiple clients at the same time (such as cnd window, eclipse etc.)

e Support host connects to only one device but not multiple devices
The connection steps are as below:
1. The device already running Android system, setting -> developer option -> connect to the
computer, enable usb debugging switch.
2. PC connects to the device USB otg port only through USB cable, and then the computer
connects with Android device through below command:

adb shell

3. Execute the command "adb devices” to see if the connection is successful or not. If the device
serial number shows up, the connection is successful.

ADB commonly used command elaboration

(1) Check the device situation
Check the Android device or simulator connected to computer:

adb devices
The return result is the serial number or IP and port number, status of the Android device
connected to PC.
(2) Install APK
Install the specific apk file to the device:
adb install <apk file path>
For example:
adb install “F:\wishTv\wishTVv.apk”
Re-install application:

adb install -r “F:\WishTv\wishTv.apk”

(3) Uninstall APK
Complete uninstall:

adb uninstall <package>

af://n677
af://n689

For example:
adb uninstall com.wishtv
(4) Use rm to remove apk file:
adb shell rm <filepath>

For example:

adb shell rm “system/app/wishTv.apk”

Note: remove “WishTV.apk” file in the directory of “system/app”.
(5) Enter shell of the device and simulator
Enthe the shell environment of the device or simulator:

adb shell

(6) Upload the file to the device from PC
Use push command can upload any file or folder from PC to the device. Generally local path
means the computer and remote path means the single board device connected with ADB.
adb push
For example:

adb push “F:\WishTv\WishTv.apk” “system/app”
Note: upload local “WishTV.apk” file to the “system/app” directory of the Android system.
(7) Download the file from the device to PC

Use pull command can download the file or folder from the device to local computer.

adb pull <remote path> <local path>

For example:

adb pull system/app/Contacts.apk F:\

Note: download the file or folder from the “system/app” directory of Android system to local “F:\"
directory.

(8) Check bug report
Run adb bugreport command can check all the error message report generated by system. The
command will show all dumpsys, dumpstate and logcat information of the Android system.

(9) Check the device system information
The specific commands in adb shell to check the device system information.

adb shell getprop

Logcat tool

af://n716

Android logcat system provides the function to record and check the system debugging
information. The logcats are all recorded from various softwares and some system buffer. The
buffer can be checked and used through Logcat. Logcat is the function most commonly used by
debugging program. The function shows the program running status mainly by printing logcat.
Because the amount of logcat is very large, need to do filtering and other operations.

Logcat command usage

Use logcat command to check the contents of the system logcat buffer:
The basic format:

[adb] Togcat [<option>] [<filter-spec>]
For example:

adb shell
Togcat

The commonly used logcat filter method

Several ways to control the logcat output:
e (Control the logcat output priority

For example:

adb shell
Togcat *:w

Note: show the logcat information with priority of warning or higher.
e (Control the logcat label and output priority

For example:

adb shell
Togcat ActivityManager:I MyApp:D *:S

Note: support all the logcat information except those with label of “ActivityManager” and priority
of “Info” above, label of “MyApp” and priority of “Debug” above.

e Only output the logcat with the specific label
For example:

adb shell
Togcat wishTv:* *:S

or

adb shell
Togcat -s wishTv

Note: only output the logcat with label of WishTV.

af://n718
af://n723

Only output the logcat with the specific priority and label
For example:

adb shell
Togcat wishTv:I *:S

Note: only output the logcat with priority of | and label of WishTV.

Procrank tool

Procrank is a debugging tool with Android, running in the shell environment of the device, used
to output the memory snapshot of the process in order to effectively observe the memory usage
status of the process.

Include the following memory information:

VSS: Virtual Set Size The memory size used by virtual (including the memory used by the
shared lib)

RSS: Resident Set Size The actually used physical memory size (including the memory used
by the shared lib)

PSS: Proportional Set Size The actually used physical memory size (allocate the memory
used by the shared lib in proportion)

USS: Unique Set Size The physical memory used exclusively by the process (not including
the memory used by the shared lib)

Note:

USS size represents the memory size only used by the process, and it will be completely
recovered after the process is killed.

VSS/RSS includes the memory used by the shared lib, so it is not helpful to check the
memory status of the single process.

PSS is the shared memory status used by the specific single process after the shared
memory is allocated in proportion.

Use procrank

Make sure the terminal has the root authority before executing procrank

su

The command format:

procrank [W1 [-v]| -r| -p| -u| -h]

The commonly used command instructions:

-V

S ss ®ET S

order by VSS
order by RSS

: order by PSS

: order by USS

: convert to order by increasing[decreasing] method
: only display the statistical count of working set

. reset the statistical count of working set

: help

For example:
Output the memory snapshot:

procrank

af://n747
af://n764

Output the memory snapshot in VSS decreasing order:

procrank -v

Procrank is output in PSS order by default.

Search the specific content information

Use below command format to view the memory status of the specific process:
procrank | grep [cmdline | PID]

cmdline means the target application name, PID means the target application process.
Output the memory status used by systemUl process:

procrank | grep “com.android.systemui”
or:

procrank | grep 3396

Trace the process memory status

Analyze if there is memory leakage in the process by tracing the memory usage status. Use the
script to continuously output the process memory snapshot, and compare with USS segment to
see if there is memory leakage in this process.

For example: output the application memory usage of the process named com.android.systemui
to see if there is leakage:

1. Write the script test.sh

#!/bin/bash

while true;do

adb shell procrank | grep “com.android.systemui”
sleep 1

done

2. After connect to the device by adb tool, run the script: ./test.sh
Dumpsys tool

Dumpsys tool is a debugging tool in Android system, running in the shell environment of the
device, and provides the service status information running in the system. The running service
means the service process in the Android binder mechanism.

The conditions for dumpsys to output the print:

1. Only print the services already loaded to ServiceManager.

2. If the dump function in the service code is not implemented, there will be no information
output.

Use Dumpsys

e View Dumpsys help
Function: output dympsys help information.

af://n772
af://n779
af://n783
af://n785

dumpsys -help

e View the service list of Dumpsys
Function: output all the printable service information of dumpsys, developer can pay
attention to the service names required for debugging.

dumpsys -1

e Qutput the specific service information
Function: output the specific service dump information.
Format: dumpsys [servicename]

For example: execute below command can output the service information of SurfaceFlinger:

dumpsys SurfaceFlinger

e Qutput the specific service and application process information
Function: output the specific service and application process information.
Format: dumpsys [servicename] [application name]
For example: execute below command to output the memory information for the service
named meminfo and process named com.android.systemui:

dumpsys meminfo com.android.systemui

Note: the service name is case sensitive and must input the full service name.

Last log enable
e Add the following two nodes in dts file

ramoops_mem: ramoops_mem {
reg = <0x0 0x110000 Ox0 Oxf0000>;

reg-names = '"ramoops_mem";

3

ramoops {
compatible = "ramoops";
record-size = <0x0 0x20000>;
console-size = <0x0 0x80000>;
ftrace-size = <0x0 0x00000>;
pmsg-size = <0x0 0x50000>;
memory-region = <&ramoops_mem>;

};

- Check Tast Tog in the device

130 | root@rk3399:/sys/fs/pstore # 1s

dmesg-ramoops-0 Log saved after Tlast kernel panic

pmsg-ramoops-0 Log of Tast user space, android Tlog

ftrace-ramoops-0 Print function trace during some period

console-ramoops-0 kernel log when last_log was enabled Tast time, but only save
the Tog with higher priority than default log level

e Usage:

af://n803

cat dmesg-ramoops-0

cat console-ramoops-0

Togcat -L (pmsg-ramoops-0) pull out by logcat and parse
cat ftrace-ramoops-0

FIQ mode

You can input fig command through the serial port to check the system status when the device
crashes or gets stuck. The specific command is as below:

127|console:/ $ fiq
debug> help
FIQ Debugger commands:

pc PC status

regs Register dump

allregs Extended Register dump
bt Stack trace

reboot [<c>] Reboot with command <c>
reset [<c>] Hard reset with command <c>

irgs Interupt status

kmsg Kernel Tog

version Kernel version

sleep Allow sTeep while in FIQ
nosleep Disable sTeep while in FIQ
console Switch terminal to console
cpu Current CPU

cpu <number> Switch to CPU<number>

ps Process 1list

sysrq sysrq options

sysrq <param> Execute sysrq with <param>

Common issues

What is current kernel version and u-boot version?

The corresponding kernel version of Androidl2.0 is: develop-5.10, u-boot branch
is next-dev branch

How to acquire the corresponding RK release
version for current SDK

Rockchip Android12.0 SDK includes AOSP source code and RK changed code. RK changed libs are
involved in xml under the directory .repo/manifests/include, while AOSP default libs are in
.repo/manifests/default.xml ,

Version confirm:

e RK modification part

vim .repo/manifests/include/rk_checkout_from_aosp.xml
<project groups="pdk" name="platform/build" path="build/make" remote="rk"
revision="refs/tags/android-12.0-mid-rkrl">

af://n813
af://n816
af://n817
af://n819

Means RK version is android-12.0-mid-rkr1

e AQOSP part

vim .repo/manifests/default.xml
<default revision="refs/tags/android-12.0.0_r2"

Means OASP version is android-12.0.0_r2
Just provide the above two version information when needed.
You can directly acquire tag information through the following command for single lib:

/kernel$ git tag
android-12.0-mid-rkrl
develop-4.4-20190201

RK version is incremental with the format of android-12.0-mid-rkrxx, so current latest tag is
android-12.0-mid-rkr1

How to confirm if local SDK is already updated to
the latest SDK version released by RK

When RK SDK is released, the commit information corresponding to the version will be submited
under the .repo/manifests/commit/ directory. Customers can confirm whether SDK is updated
completely or not by comparing with the commit information. The specific operations are as
follows:

e First confirm RK version of SDK according to the instruction of "How to acquire the
corresponding RK release version for current SDK". Below take RKR6 version as example to
introduce.

e Use the following command to save local commit information

.repo/repo/repo manifest -r -o release_manifest_rkrl_local.xml

e Comparing .repo/manifests/commit/commit_release_rkr1.xml with
release_manifest_rkr1_local.xml can confirm whether SDK code is completely updated or
not, while .repo/manifests/commit/commit_release_rkr6.xml is the commit information
released along with RKR1 version.

Replace uboot and kernel logo picture

uboot and kernel logo are the first and second logo picture displayed during bootup, and they
can be changed according to the product requirement.

uboot logo source file: kernel/logo.bmp

kernel logo source file: kernel/Togo_kernel.bmp

If need to change the picture, just use the bmp with the same name to replace, and re-compile
kernel. The compiled file is in boot.img.

Note: Logo picture size currently only supports to 8M with 8, 16, 24, 32bit bmp format.

Power off charging and low battery precharging

Power off charging and low battery precharging can be configured in dts, as shown below:

af://n833
af://n843
af://n846

charge-animation {
compatible = "rockchip,uboot-charge";
rockchip,uboot-charge-on = <1>;
rockchip,android-charge-on = <0>;
rockchip,uboot-Tow-power-voltage = <3400>;
rockchip,screen-on-voltage = <3500>;
status = "okay";

Note:

rockchip,uboot-charge-on: uboot power off charging is mutually exclusive with android power off
charging

rockchip,android-charge-on: android power off charging is mutually exclusive with uboot power
off charging

rockchip,uboot-low-power-voltage: configure the voltage for low battery precharging to boot, it
can be configured according to the actual requirement

rockchip,screen-on-voltage: configure the voltage for low battery precharging to light the panel, it
can be configured according to the actual requirement

Uboot charging logo package and replace

Charging logo path, you can directly replace with the file with the same name, and the format
should be the same as original file.

u-boot/tools/images/
— battery_0.bmp
— battery_1.bmp
— battery_2.bmp
— battery_3.bmp
— battery_4.bmp
— battery_5.bmp
L— battery_fail.bmp

If uboot charging is enabled, but there is no charging logo displaed, maybe it is because the
picture is not packaged into resource.img. You can package per the following command:

cd u-boot
./scripts/pack_resource.sh ../kernel/resource.img
cp resource.img ../kernel/resource.img

After executing the above command, uboot charging logo will be packaged into resource.img in
kernel directory. Now need to re-package resource.img into boot.img. You can execute
./mkiamge.sh in android root directory, and then flash boot.img under rockdev/.

HDMI IN configuration

hdmi in function is disabled in SDK by default. If need to enable, operate as below:

vim device/rockchip/rk3588/Boardconfig.mk
+BOARD_HDMI_IN_SUPPORT := true

RM310 4G configuration

af://n850
af://n856
af://n859

4G function is disabled in SDK by default. If need to enable, operate as below:

vim device/rockchip/common/BoardConfig.mk
#for rk 4g modem

-BOARD_HAS_RK_4G_MODEM ?= false
+BOARD_HAS_RK_4G_MODEM ?= true

Recovery rotation configuration

Support Recovery rotation with 0/90/180/270 degree. Disabled by default (thatis to rotate O
degree) . The rotation configuration is described as below:

vim device/rockchip/common/BoardConfig.mk

#0: ROTATION_NONE rotate O degree

#90: ROTATION_RIGHT rotate 90 degrees

#180: ROTATION_DOWN rotate 180 degrees

#270: ROTATION_LEFT rotate 270 degrees

For Recovery Rotation
TARGET_RECOVERY_DEFAULT_ROTATION 7= ROTATION_NONE

Android Surface rotation

For Android system display rotation, you can modify the following configuration with the
parameters 0/90/180/270

For surface Flinger Rotation
SF_PRIMARY_DISPLAY_ORIENTATION ?= 0

Replace some remote of AOSP source code
The speed for customer to download RK release code is relatively slow. You can change the
remote of AOSP to domestic mirror source, or Google mirror source for foreign customers, to
improve the downloading speed. The detailed method is described as below:
After executing repo init (or unpacking base package), modify .repo/manifests/remote.xml.
Change the remote fetch of AOSP from

< remote name="aosp" fetch="./" review="https://10.10.10.29" />
to
for domestic customers: (here we take Tsinghua university mirror source as example. You can
change to other domestic mirror source)

< remote name="aosp" fetch="https://aosp.tuna.tsinghua.edu.cn" />;

for foreign customers: (Google mirror source)

< remote name="aosp" fetch="https://android.googlesource.com" />

Data area read and write performance optimization

af://n862
af://n865
af://n868
af://n875

For devices with batteries, advised to add ‘fsync_mode=nobarrier’ to the data partition mounting
parameter of fstab to improve storage read/write rates and performance. This parameter may
cause data damage on devices without batteries. Therefore, it is not recommended to add this
parameter to devices without batteries. Modified patches as follows:

cd device/rockchip/common

diff --git a/scripts/fstab_tools/fstab.in b/scripts/fstab_tools/fstab.in

index 2ec6c265..c890cc84 100755

--- a/scripts/fstab_tools/fstab.in
+++ b/scripts/fstab_tools/fstab.in
@@ -23,6 +23,6 @@ ${_block_prefix}odm /odm ext4 ro,barrier=1
${_flags},first_stage_mount

For sdmmc

/devices/platform/${_sdmmc_device}/mmc_host* auto auto defaults

voldmanaged=sdcardl:auto

Full disk encryption has Tess effect on rk3326, so default to enable this.
-/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard, reserve_root=32768,resgid=1065
Tatemount,wait,check,fileencryption=aes-256-xts:aes-256-
cts:v2+inlinecrypt_optimized, keydirectory=/metadata/vold/metadata_encryption,quo
ta,formattable, reservedsize=128M, checkpoint=fs
+/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard, reserve_root=32768,resgid=1065, fsync_mode=nobarrier
Tatemount,wait,check,fileencryption=aes-256-xts:aes-256-
cts:v2+inlinecrypt_optimized, keydirectory=/metadata/vold/metadata_encryption,quo
ta,formattable, reservedsize=128M, checkpoint=fs

for ext4

#/dev/block/by-name/userdata /data ext4
discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1
Tatemount,wait,formattable,check,fileencryption=software,quota,reservedsize=128M
,checkpoint=block

diff --git a/scripts/fstab_tools/fstab_go.in b/scripts/fstab_tools/fstab_go.in
index 582557f2..05c7653c 100755

--- a/scripts/fstab_tools/fstab_go.in

+++ b/scripts/fstab_tools/fstab_go.in

@@ -17,6 +17,6 @@ ${_block_prefix}odm /odm ext4 ro,barrier=1
${_flags},first_stage_mount

For sdmmc

/devices/platform/${_sdmmc_device}/mmc_host* auto auto defaults

voldmanaged=sdcardl:auto

Full disk encryption has Tess effect on rk3326, so default to enable this.
-/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard, reserve_root=32768,resgid=1065
Tatemount,wait,check,fileencryption=aes-256-xts:aes-256-
cts:v2+inlinecrypt_optimized, keydirectory=/metadata/vold/metadata_encryption,quo
ta,formattable, reservedsize=128M, checkpoint=fs

+/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard, reserve_root=32768,resgid=10651, fsync_mode=nobarrie
r latemount,wait,check, fileencryption=aes-256-xts:aes-256-
cts:v2+inlinecrypt_optimized, keydirectory=/metadata/vold/metadata_encryption,quo
ta,formattable, reservedsize=128M, checkpoint=fs

for ext4d

#/dev/block/by-name/userdata /data ext4
discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1
Tatemount,wait,formattable,check,fileencryption=software,quota,reservedsize=128M
,checkpoint=block

Change userdata partition file system to EXT4

The default file system of data partition is f2fs. Recommend to change the file system of data
partition to ext4 for the product without battery, as it can reduce the risk of data loss after
abnormal power down. The modification method is as below:

Take rk3566_r as example:

device/rockchip/common$ git diff

diff --git a/scripts/fstab_tools/fstab.in b/scripts/fstab_tools/fstab.in

index 6e78b00..a658332 100755

--- a/scripts/fstab_tools/fstab.in

+++ b/scripts/fstab_tools/fstab.in

@@ -20,6 +20,6 @@ ${_block_prefix}system_ext /system_ext ext4 ro,barrier=1

${_flags},first_stage_

For sdmmc

/devices/platform/${_sdmmc_device}/mmc_host* auto auto defaults
voldmanaged=sdcardl:auto

Full disk encryption has Tess effect on rk3326, so default to enable this.

-/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard, reserve_root=32768,resgid=1065

Tatemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,quota,formattable, reservedsize=128M, checkpoint=fs

+#/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard, reserve_root=32768,resgid=1065

Tatemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,quota,formattable, reservedsize=128M, checkpoint=fs

for ext4

-#/dev/block/by-name/userdata /data ext4

discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1

Tatemount,wait,formattable, check,fileencryption=software,quota, reservedsize=128M

,checkpoint=block

+/dev/block/by-name/userdata /data ext4

discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1

Tatemount,wait,formattable, check,fileencryption=software,quota, reservedsize=128M

,checkpoint=block

device/rockchip/rk356x$ git diff

diff --git a/rk3566_r/recovery.fstab b/rk3566_r/recovery.fstab
index 7532217..cf789ac 100755

--- a/rk3566_r/recovery.fstab

+++ b/rk3566_r/recovery.fstab

e@ -7,7 +7,7 @@

/dev/block/by-name/odm /odm ext4
defaults defaults
/dev/block/by-name/cache /cache ext4
defaults defaults
/dev/block/by-name/metadata /metadata ext4
defaults defaults
-/dev/block/by-name/userdata /data f2fs
defaults defaults
+/dev/block/by-name/userdata /data ext4
defaults defaults
/dev/block/by-name/cust /cust ext4

defaults defaults

af://n878

/dev/block/by-name/custom /custom ext4

defaults defaults
/dev/block/by-name/radical_update /radical_update ext4
defaults defaults

Modify power on/off animation and tones
Reference document:

RKDocs\android\Rockchip_Introduction_Android_Power_on_Off_Animation_and_Tone_Cus
tomization_CN&EN.pdf

APP performance mode setting

Configure the file: package_performance.xml in device/rockchip/rk3xxx/. Add the package names
which need to use performance mode in the node: (use aapt dump badging (file_path.apk) to
acquire the package name)

< app package="package name" mode="whether to enable the acceleration, 1 for
enable, 0 for disable"/>

Take antutu as example as below:

< app package="com.antutu.ABenchMark"mode="1"/>
< app package="com.antutu.benchmark.full"mode="1"\/>
< app package="com.antutu.benchmark.full"mode="1"\/>

It will package the file into the image when compiling.
Debugging method of GPU related issues
You can do the initial debugging for the issues referring to the following documents.

RKDocs\android\Rockchip_User_Guide_Dr.G_CN&EN.pdf

OTP and efuse instruction

OTP support chipset

e RK3326
e PX30
e RK3566
e RK3568
e RK3588
e RK3568S
EFUSE support chipset
e RK3288
e RK3368
e RK3399
Refer to the document for image signing and otp/efuse flashing:

af://n882
af://n885
af://n891
af://n894

RKDocs\common\security\Rockchip-Secure-Boot-Application-Note-Vv1.9.pdf

How to judge from the code whether OTP/EFUSE of
the device is already flashed or not

The status of OTP/EFUSE will be transmitted through kernel cmdline and fuse.programmed in
cmdline is used to mark the status of OTP/EFUSE. The details are as follows:

e "fuse.programmed=1": the software image package is already signed by secure-boot and
efuse/otp of the hardware device is already flashed.

e "fuse.programmed=0": the software image package is already signed by secure-boot but
efuse/otp of the hardware device is not flashed.

e thereis no fuse.programmed in cmdline: the software image package is not signed by
secure-boot (Miniloader doesn't tramsmit), or Miniloader is too old to support transmission.

Enable/disable selinux

Refer to the following modification, false to disable, true to enable

device/rockchip/common$
--- a/Boardconfig.mk
+++ b/BoardcConfig.mk
@@ -67,7 +67,7 @@ endif

Enable android verified boot 2.0
BOARD_AVB_ENABLE ?= false
-BOARD_SELINUX_ENFORCING 7= false
+BOARD_SELINUX_ENFORCING ?= true

Warning “There's an internal problem with your device.”
pops up after boot up

There are two reasons to pop up the warning:

1. Image mismatch, the fingerprints of system/boot/vendor are not consistent.

2. The device is enabled with a configuration that supports 10 debugging. This problem can be
solved by using the previous compile kernel command in the documentation.

3. For projects with |10 debugging, regardless of the above two reasons, please merge the
following patches directly to eliminate the warning:

diff --git
a/services/core/java/com/android/server/wm/ActivityTaskManagerService.java
b/services/core/java/com/android/server/wm/ActivityTaskManagerService.java
index 595c340..d4e495a 100644
--- a/services/core/java/com/android/server/wm/ActivityTaskManagerService.java
+++ b/services/core/java/com/android/server/wm/ActivityTaskManagerService.java
@@ -6555,7 +6555,7 @@ public class ActivityTaskManagerService extends
IActivityTaskManager.Stub {

} catch (RemoteException e) {

}

- if (!Build.isBuildcConsistent()) {
+ if (0 && !'Build.isBuildconsistent()) {

af://n916
af://n924
af://n928

Slog.e(TAG, "Build fingerprint is not consistent, warning
user");
mUiHandler.post(() -> {
if (mShowbialogs) {

How to enable the setting options for Ethernet in
Settings

There is no default option of Ethernet setting in the system Settings. If Ethernet is needed in the
project, it can be turned on as follows:

--- a/Boardconfig.mk
+++ b/Boardconfig.mk
@@ -146,3 +146,6 @@ endif

ifeq ($(strip $(BOARD_USES_AB_IMAGE)), true)
DEVICE_MANIFEST_FILE :=
device/rockchip/$(TARGET_BOARD_PLATFORM) /manifest_ab.xml
endif

+# for ethernet
+BOARD_HS_ETHERNET := true

About AVB and security boot

For AVB and security boot related instruction and configurations, you can refer to the document

RKDocs/common/security/RK356X_SecurityBoot_And_AVB_instructions_CN.pdf

Cannot use 10 commands

IO commands rely on DEVMEM which is disabled by default, so it is not able to use 10 by default.
If need to use |0 commands for debugging, you can modify as follows

wlg@ubuntu:~/rk3588_androidl2.0/kernel$ vim kernel/configs/android-11.config
For GO produts, need to modify:

wlq@ubuntu:~/rk3588_androidl2.0/kernel$ vim kernel/configs/android-11-go.config
delete the following line:

CONFIG_DEVMEM is not set

If you want to compile Android, you also need to modify the following code

cd rk3588_androidl2.0/kernel/configs

diff --git a/android-5.10/android-base.config b/android-5.10/android-base.config
index 5de76f0..6dcdf86 100644

--- a/android-5.10/android-base.config

+++ b/android-5.10/android-base.config

af://n938
af://n941
af://n944

@@ -2,7 +2,6 @@
CONFIG_ANDROID_LOW_MEMORY_KILLER 1is not set
CONFIG_ANDROID_PARANOID_NETWORK is not set
CONFIG_BPFILTER is not set
-# CONFIG_DEVMEM 1is not set
CONFIG_FHANDLE is not set
CONFIG_FW_CACHE 1is not set
CONFIG_IP6_NF_NAT is not set
diff --git a/s/android-4.19/android-base-conditional.xml b/s/android-
4.19/android-base-conditional.xml
index c7de80c..fbalafa 100644
--- a/s/android-4.19/android-base-conditional.xml
+++ b/s/android-4.19/android-base-conditional.xml
@@ -17,10 +17,6 @@
<key>CONFIG_CPU_SW_DOMAIN_PAN</key>
<value type="bool">y</value>
</config>
- <config>
= <key>CONFIG_DEVKMEM</key>
- <value type="bool">n</value>
- </config>
<config>
<key>CONFIG_OABI_COMPAT</key>
<value type="bool">n</value>
@@ -77,10 +73,6 @@
<value type="bool">y</value>
</config>
</conditions>
- <config>
= <key>CONFIG_DEVKMEM</key>
- <value type="bool">n</value>
</config>
<config>
<key>CONFIG_PAGE_TABLE_ISOLATION</key>
<value type="bool">y</value>
diff --git a/s/android-4.19/android-base.config b/s/android-4.19/android-
base.config
index d2bb2ad..8f23882 100644
--- a/s/android-4.19/android-base.config
+++ b/s/android-4.19/android-base.config
@@ -2,7 +2,6 @@
CONFIG_ANDROID_LOW_MEMORY_KILLER 1is not set
CONFIG_ANDROID_PARANOID_NETWORK 1is not set
CONFIG_BPFILTER is not set
-# CONFIG_DEVMEM is not set
CONFIG_FHANDLE is not set
CONFIG_FW_CACHE is not set
CONFIG_IP6_NF_NAT is not set
diff --git a/s/android-5.10/android-base-conditional.xml b/s/android-
5.10/android-base-conditional.xml
index aael847..2dc3e25 100644
--- a/s/android-5.10/android-base-conditional.xml
+++ b/s/android-5.10/android-base-conditional.xml
@@ -17,10 +17,6 @@
<key>CONFIG_CPU_SW_DOMAIN_PAN</key>
<value type="bool">y</value>
</config>
- <config>

B3

= <key>CONFIG_DEVKMEM</key>
- <value type="bool">n</value>
- </config>
<config>
<key>CONFIG_OABI_COMPAT</key>
<value type="bool">n</value>
@@ -101,10 +97,6 @@
<value type="bool">y</value>
</config>
</conditions>
- <config>
= <key>CONFIG_DEVKMEM</key>
- <value type="bool">n</value>
- </config>
<config>
<key>CONFIG_KFENCE</key>
<value type="bool">y</value>
diff --git a/s/android-5.10/android-base.config b/s/android-5.10/android-
base.config
index d6elf5a..d7078da 100644
--- a/s/android-5.10/android-base.config
+++ b/s/android-5.10/android-base.config
@@ -2,7 +2,6 @@
CONFIG_ANDROID_LOW_MEMORY_KILLER 1is not set
CONFIG_ANDROID_PARANOID_NETWORK 1is not set
CONFIG_BPFILTER is not set
-# CONFIG_DEVMEM is not set
CONFIG_FHANDLE is not set
CONFIG_FW_CACHE is not set
CONFIG_IP6_NF_NAT is not set

The SN command rules

The SN must begin with a letter and be no more than 14 bytes.

RK3288 build failer about LZ4

af://n953
af://n955

RK3288 build kernel fail log as:

SORTEX vmlinux
SYSMAP System.map
OBJCOPY arch/arm/boot/Image
Kernel: arch/arm/boot/Image is ready
SHIPPED arch/arm/boot/compressed/hyp-stub.S
SHIPPED arch/arm/boot/compressed/fdt_rw.c
SHIPPED arch/arm/boot/compressed/fdt.h
SHIPPED arch/arm/boot/compressed/libfdt.h
SHIPPED arch/arm/boot/compressed/libfdt_internal.h
SHIPPED arch/arm/boot/compressed/fdt_ro.c
SHIPPED arch/arm/boot/compressed/fdt_wip.c
SHIPPED arch/arm/boot/compressed/fdt.c
SHIPPED arch/arm/boot/compressed/liblfuncs.S
SHIPPED arch/arm/boot/compressed/ashldi3.s
SHIPPED arch/arm/boot/compressed/bswapsdi2.s
LDS arch/arm/boot/compressed/vmlinux.lds
AS arch/arm/boot/compressed/head.o
Lzg arch/arm/boot/compressed/piggy_data
Incorrect parameters
Usage :
1z4 [arg] [input] [output]

input : a filename
with no FILE, or when FILE is - or stdin, read standard input
Arguments :
-1 : Fast compression (default)
-9 : High compression
—-d : decompression (default for .lzU extension)
=7 : force compression
=47 : overwrite output without prompting
-h/-H : display help/long help and exit
arch/arm/boot/compressed/Makefile:191: recipe for target 'arch/arm/boot/compressed/piggy_data' failed
make[2]: *** [arch/arm/boot/compressed/piggy_data] Error 1
arch/arm/boot/Makefile:71: recipe for target 'arch/arm/boot/compressed/vmlinux' failed
make[1]: **x [arch/arm/boot/compressed/vmlinux] Error 2
arch/arm/Makefile:351: recipe for target 'zImage' failed
make: *** [zImage] Error 2

problem:

The LZ4 version of the system is too low, and the version 1.8.3 or above is required

wlg@ubuntu:~$ 1z4 -v
Lz4 command Tline interface 64-bits v1.8.3, by Yann Collet **¥*
refusing to read from a console

solution:
copy the LZ4 compiled by Android to override the LZ4 of the system

sudo cp out/host/1inux-x86/bin/1z4 /usr/bin/1z4

Android Samba function

reference file

RKDocs/android/Rockchip_Introduction_Android_Samba_CN.pdf

NFS boot

Refer to the documents and patches:

RKDocs/android/patches/customized_functions/nfs_boot_patch_v1.1.0.zip

Multi-screen display and touch
Referenced document

RKDocs\android\patches\customized_functions/Androidl1%EHF Kk .zip

Different screen different sound

af://n960
af://n963
af://n966
af://n969

Referenced document

RKDocs/android/patches/customized_functions/Dual_Audio_v1.0.zip

APPENDIX A Compiling and
development environment setup

Initializing a Build Environment

This section describes how to set up your local work environment to build the Android source
files. You must use Linux or Mac OS; building under Windows is not currently supported.

For an overview of the entire code-review and code-update process, see Life of a Patch.

Note: All commands in this site are preceded by a dollar sign ($) to differentiate them from
output or entries within files. You may use the Click to copy feature at the top right of each
command box to copy all lines without the dollar signs or triple-click each line to copy it
individually without the dollar sign.

Choosing a Branch

Some requirements for the build environment are determined by the version of the source code
you plan to compile. For a full list of available branches, see Build Numbers. You can also choose
to download and build the latest source code (called master), in which case you will simply omit
the branch specification when you initialize the repository.

After you have selected a branch, follow the appropriate instructions below to set up your build
environment.

Setting up a Linux build environment

These instructions apply to all branches, including master.

The Android build is routinely tested in house on recent versions of Ubuntu LTS (14.04) and
Debian testing. Most other distributions should have the required build tools available.

For Gingerbread (2.3.x) and newer versions, including the master branch, a 64-bit environment is
required. Older versions can be compiled on 32-bit systems.

Note: See Requirements for the complete list of hardware and software requirements, then
follow the detailed instructions for Ubuntu and Mac OS below.

Installing the JDK

The master branch of Android in the Android Open Source Project (AOSP) comes with prebuilt
versions of OpenJDK below prebuilts/jdk/ so no additional installation is required.

Older versions of Android require a separate installation of the JDK. On Ubuntu, use Open]DK.
See JDK Requirements for precise versions and the sections below for instructions.

For Ubuntu >= 15.04

Run the following:

sudo apt-get update
sudo apt-get install openjdk-8-jdk

af://n972
af://n973
af://n975
af://n977
af://n979

For Ubuntu LTS 14.04

There are no available supported Open]DK 8 packages for Ubuntu 14.04. The Ubuntu 15.04
OpenJDK 8 packages have been used successfully with Ubuntu 14.04. Newer package versions
(e.g. those for 15.10, 16.04) were found not to work on 14.04 using the instructions below.

1. Download the .deb packages for 64-bit architecture from old-releases.ubuntu.com:

openjdk-8-jre-headless_8u45-b1l4-1_amd64.deb with SHA256
0f5aba8db39088283b51e00054813063173a4d8809f70033976183e214ab56c0
openjdk-8-jre_8u45-bl4-1_amd64.deb with SHA256
9ef76c4562d39432b69baf6c18f199707c5c56a5b4566847d908b7d74e15849
openjdk-8-jdk_8u45-b14-1_amd64.deb with SHA256
6€47215cf6205aa829e6a0a64985075bd29d1f428a4006a80c9db371c2fc3c4c

2. Optionally, confirm the checksums of the downloaded files against the SHA256 string listed
with each package above. For example, with the sha256sum tool:

sha256sum {downloaded.deb file}

3. Install the packages:

sudo apt-get update

Run dpkg for each of the .deb files you downloaded. It may produce errors due to missing
dependencies:

sudo dpkg -i {downloaded.deb file}

To fix missing dependencies:

sudo apt-get -f install

Update the default Java version - optional
Optionally, for the Ubuntu versions above update the default Java version by running:

sudo update-alternatives --config javasudo update-alternatives --config javac

Note: If, during a build, you encounter version errors for Java, see Wrong Java version for likely
causes and solutions.

Installing required packages (Ubuntu 14.04)

You will need a 64-bit version of Ubuntu. Ubuntu 14.04 is recommended.

sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl
z1liblg-dev gcc-multilib g++-multilib 1ibc6-dev-i386 Tib32ncurses5-dev xllproto-
core-dev 1libx1ll-dev 1ib32z-dev ccache Tlibgll-mesa-dev Tibxm12-utils xsltproc
unzip python-pyelftools python3-pyelftools device-tree-compiler Tlibfdt-dev
Tibfdtl

Note: To use SELinux tools for policy analysis, also install the python-networkx package. Note: If
you are using LDAP and want to run ART host tests, also install the libnss-sss:i386 package.

af://n1004

Configuring USB Access

Under GNU/linux systems (and specifically under Ubuntu systems), regular users can't directly
access USB devices by default. The system needs to be configured to allow such access.

The recommended approach is to create a file /etc/udev/rules.d/51-android.rules (as the root
user) and to copy the following lines in it. must be replaced by the actual username of the user
who is authorized to access the phones over USB.

adb protocol on passion (Rockchip products)
SUBSYSTEM=="usb", ATTR{idvendor}=="2207", ATTR{idProduct}=="0010", MODE="0600",
OWNER="<username>"

Those new rules take effect the next time a device is plugged in. It might therefore be necessary
to unplug the device and plug it back into the computer.

This is known to work on both Ubuntu Hardy Heron (8.04.x LTS) and Lucid Lynx (10.04.x LTS).
Other versions of Ubuntu or other variants of GNU/linux might require different configurations.
References : http://source.android.com/source/initializing.html

APPENDIX B SSH public key operation
instruction

APPENDIX B-1 SSH public key generation

Use the following command to generate:
ssh-keygen -t rsa -C "user@host"
Please replace user@host with your email address.
It will generate the key file in your directory after the command is executed successfully.

Please keep carefully the generated private key file id_rsa and password, and send id_rsa.pub to
SDK release server admin through email.

APPENDIX B-2 Use key-chain to manage the key

Recommend you use the simple tool keychain to manage the key.
The detailed usage is as follows:

1. Install keychain software package:
$sudo aptitude install keychain
2. Configure to use the key:

$vim ~/.bashrc

Add the following command:

af://n1004
http://source.android.com/source/initializing.html
af://n1008
af://n1009
af://n1013

eval “keychain --eval ~/.ssh/id_rsa’

Among which, id_rsa is the file name of the private key.

Log in the console again after configuring as above, and it will prompt to input the password.
Only need to input the password used for generating the key if there is one.

Besides, please avoid using sudo or root user unless you know clearly how to deal with,
otherwise it will cause the authority and key management problems.

APPENDIX B-3 Multiple devices use the same ssh
public key

In order to use on different devices, you can copy ssh private key file id_rsa to the target device
“~/.ssh/id_rsa".
Below hint will show up if using the wrong private key. Please replace with the correct private key.
After adding the correct private key, you can use git to clone code, shown as below picture:
Below error may occur when adding ssh private key:

Agent admitted failture to sign using the key

Input the following command at console can fix it.

ssh-add ~/.ssh/id_rsa

APPENDIX B-4 Switch different ssh public keys on
one device

You can refer to ssh_config document to configure ssh.

~$ man ssh_config

Use the following commands to configure ssh for current user.

~$ cp /etc/ssh/ssh_config ~/.ssh/config
~$ vi .ssh/config

As below picture, identify another directory ssh file "~/.ssh1/id_rsa” as certificate private key. In
this way, you can switch different keys.

APPENDIX B-5 Key authority management

The server can real-time monitor for the specific key the download times, IP and other
information. If any abnormal case is found, it will prohibit the download authority of the
corresponding key.

Please keep carefully the private key file. DO NOT re-authorize it to the third party.

af://n1026
af://n1031
af://n1037
af://n1039

APPENDIX B-6 Git authority application instruction

Refer to above chapters, generate the public key file, and send email to fae@rock-chips.com
applying for SDK code download authority.

af://n1039
mailto:fae@rock-chips.com

	RK3588 Android 12.0 SDK Developer Guide
	DISCLAIMER
	Trademark Statement
	All rights reserved. ©2022. Rockchip Electronics Co., Ltd.
	RK3588 Android 12.0 SDK Chipset support
	RK3588 Android 12.0 SDK code download and compile
	Code download
	Download address
	Download server mirroring

	Set up your own repo code server
	Environment
	Set up gitolite
	Server-side operation
	Client-side operation

	Set up repo mirror
	Server-side operation
	Client-side operation
	Client-side operation

	Code management
	Switch your own code branches
	Code modification submittal
	Synchronize RK codes

	kernel Code path description

	Code compiling
	One key compiling command
	Compiling command summary
	Other compiling instruction
	Android12.0 cannot directly flash kernel.img and resource.img
	Only compile kernel to generate boot.img

	Image flashing
	Image flashing tool
	Image instruction
	Image instruction

	Use fastboot to flash dynamic partition
	DTBO function
	Modify fstab file
	Modify parameter.txt

	Android common configuration
	Create product lunch

	Kernel dts instruction
	Create new product dts

	Document instruction
	Peripheral support list
	Android document
	Android_SELinux(Sepolicy) developer guide
	Android 12 System Optimization developer guide
	Wi-Fi document
	3G/4G module instruction document
	Kernel document
	DDR related document
	Audio module document
	CRU module document
	GMAC module document
	PCie module document
	I2C module document
	PIN-Ctrl GPIO module document
	SPI module document
	Sensor module document
	IO-Domain module document
	Leds module document
	Thermal control module document
	PMIC power management module document
	MCU module document
	Power consumption and sleep module document
	UART module document
	DVFS CPU/GPU/DDR frequency scaling related document
	EMMC/SDMMC/SDIO module document
	PWM module document
	USB module document
	HDMI-IN function document
	Security module document
	uboot introduction document
	Trust introduction document
	Camera document
	Camera IQ Tool document
	Tool document
	PCBA development and usage document
	Panel driver debugging guide
	HDMI debugging guide
	Graphic display DRM Hardware Composer（HWC） issue analyzing
	DRM display developer guide
	RGA related issues analyzing
	Graphic display framework common issue analysis
	rknn-toolkit2 Develop SDK and documentation

	Tool usage
	StressTest
	Module related
	Non module related

	PCBA test tool
	DeviceTest
	USB driver
	Development flashing tool
	Windows version
	Linux version

	Tool to implement SD upgrading and boot
	Write SN tool
	DDR welding test tool
	efuse flashing tool
	efuse/otp sign tool
	Factory production image flashing tool
	Image update tool
	userdata partition data prebuilt tool

	System debugging
	ADB tool
	Overview
	USB adb usage
	ADB commonly used command elaboration

	Logcat tool
	Logcat command usage
	The commonly used logcat filter method

	Procrank tool
	Use procrank
	Search the specific content information
	Trace the process memory status

	Dumpsys tool
	Use Dumpsys

	Last log enable
	FIQ mode

	Common issues
	What is current kernel version and u-boot version?
	How to acquire the corresponding RK release version for current SDK
	How to confirm if local SDK is already updated to the latest SDK version released by RK
	Replace uboot and kernel logo picture
	Power off charging and low battery precharging
	Uboot charging logo package and replace
	HDMI IN configuration

	RM310 4G configuration
	Recovery rotation configuration
	Android Surface rotation
	Replace some remote of AOSP source code
	Data area read and write performance optimization

	Change userdata partition file system to EXT4
	Modify power on/off animation and tones
	APP performance mode setting
	Debugging method of GPU related issues
	OTP and efuse instruction
	How to judge from the code whether OTP/EFUSE of the device is already flashed or not
	Enable/disable selinux
	Warning “There's an internal problem with your device.” pops up after boot up

	How to enable the setting options for Ethernet in Settings
	About AVB and security boot
	Cannot use IO commands
	The SN command rules
	RK3288 build failer about LZ4
	Android Samba function
	NFS boot
	Multi-screen display and touch
	Different screen different sound

	APPENDIX A 	Compiling and development environment setup
	Initializing a Build Environment
	Choosing a Branch
	Setting up a Linux build environment
	Installing the JDK
	Configuring USB Access

	APPENDIX B SSH public key operation instruction
	APPENDIX B-1 SSH public key generation
	APPENDIX B-2 Use key-chain to manage the key
	APPENDIX B-3 Multiple devices use the same ssh public key
	APPENDIX B-4 Switch different ssh public keys on one device
	APPENDIX B-5 Key authority management
	APPENDIX B-6 Git authority application instruction

