233 lines
13 KiB
233 lines
13 KiB
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/graph.h"
|
|
#include "support/ToolchainSupport.h"
|
|
#include "utils/CommonGraphOptions.h"
|
|
#include "utils/GraphUtils.h"
|
|
#include "utils/Utils.h"
|
|
|
|
using namespace arm_compute::utils;
|
|
using namespace arm_compute::graph::frontend;
|
|
using namespace arm_compute::graph_utils;
|
|
|
|
/** Example demonstrating how to implement Squeezenet's network using the Compute Library's graph API */
|
|
class GraphSqueezenetExample : public Example
|
|
{
|
|
public:
|
|
GraphSqueezenetExample()
|
|
: cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1")
|
|
{
|
|
}
|
|
bool do_setup(int argc, char **argv) override
|
|
{
|
|
// Parse arguments
|
|
cmd_parser.parse(argc, argv);
|
|
cmd_parser.validate();
|
|
|
|
// Consume common parameters
|
|
common_params = consume_common_graph_parameters(common_opts);
|
|
|
|
// Return when help menu is requested
|
|
if(common_params.help)
|
|
{
|
|
cmd_parser.print_help(argv[0]);
|
|
return false;
|
|
}
|
|
|
|
// Print parameter values
|
|
std::cout << common_params << std::endl;
|
|
|
|
// Get trainable parameters data path
|
|
std::string data_path = common_params.data_path;
|
|
|
|
// Create a preprocessor object
|
|
const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
|
|
std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
|
|
|
|
// Create input descriptor
|
|
const auto operation_layout = common_params.data_layout;
|
|
const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, operation_layout);
|
|
TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
|
|
|
|
// Set weights trained layout
|
|
const DataLayout weights_layout = DataLayout::NCHW;
|
|
|
|
graph << common_params.target
|
|
<< common_params.fast_math_hint
|
|
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
|
|
<< ConvolutionLayer(
|
|
7U, 7U, 96U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_b.npy"),
|
|
PadStrideInfo(2, 2, 0, 0))
|
|
.set_name("conv1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv1")
|
|
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool1")
|
|
<< ConvolutionLayer(
|
|
1U, 1U, 16U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire2/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire2/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U).set_name("fire2/concat");
|
|
graph << ConvolutionLayer(
|
|
1U, 1U, 16U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire3/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire3/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U).set_name("fire3/concat");
|
|
graph << ConvolutionLayer(
|
|
1U, 1U, 32U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire4/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire4/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U).set_name("fire4/concat");
|
|
graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool4")
|
|
<< ConvolutionLayer(
|
|
1U, 1U, 32U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire5/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire5/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U).set_name("fire5/concat");
|
|
graph << ConvolutionLayer(
|
|
1U, 1U, 48U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire6/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire6/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U).set_name("fire6/concat");
|
|
graph << ConvolutionLayer(
|
|
1U, 1U, 48U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire7/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire7/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U).set_name("fire7/concat");
|
|
graph << ConvolutionLayer(
|
|
1U, 1U, 64U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire8/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire8/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U).set_name("fire8/concat");
|
|
graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool8")
|
|
<< ConvolutionLayer(
|
|
1U, 1U, 64U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("fire9/squeeze1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire9/relu_squeeze1x1");
|
|
graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U).set_name("fire9/concat");
|
|
graph << ConvolutionLayer(
|
|
1U, 1U, 1000U,
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name("conv10")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv10")
|
|
<< PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool10")
|
|
<< FlattenLayer().set_name("flatten")
|
|
<< SoftmaxLayer().set_name("prob")
|
|
<< OutputLayer(get_output_accessor(common_params, 5));
|
|
|
|
// Finalize graph
|
|
GraphConfig config;
|
|
config.num_threads = common_params.threads;
|
|
config.use_tuner = common_params.enable_tuner;
|
|
config.tuner_mode = common_params.tuner_mode;
|
|
config.tuner_file = common_params.tuner_file;
|
|
config.convert_to_uint8 = (common_params.data_type == DataType::QASYMM8);
|
|
|
|
graph.finalize(common_params.target, config);
|
|
|
|
return true;
|
|
}
|
|
void do_run() override
|
|
{
|
|
// Run graph
|
|
graph.run();
|
|
}
|
|
|
|
private:
|
|
CommandLineParser cmd_parser;
|
|
CommonGraphOptions common_opts;
|
|
CommonGraphParams common_params;
|
|
Stream graph;
|
|
|
|
ConcatLayer get_expand_fire_node(const std::string &data_path, std::string &¶m_path, DataLayout weights_layout,
|
|
unsigned int expand1_filt, unsigned int expand3_filt)
|
|
{
|
|
std::string total_path = "/cnn_data/squeezenet_v1.0_model/" + param_path + "_";
|
|
SubStream i_a(graph);
|
|
i_a << ConvolutionLayer(
|
|
1U, 1U, expand1_filt,
|
|
get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
|
|
PadStrideInfo(1, 1, 0, 0))
|
|
.set_name(param_path + "/expand1x1")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand1x1");
|
|
|
|
SubStream i_b(graph);
|
|
i_b << ConvolutionLayer(
|
|
3U, 3U, expand3_filt,
|
|
get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
|
|
get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
|
|
PadStrideInfo(1, 1, 1, 1))
|
|
.set_name(param_path + "/expand3x3")
|
|
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand3x3");
|
|
|
|
return ConcatLayer(std::move(i_a), std::move(i_b));
|
|
}
|
|
};
|
|
|
|
/** Main program for Squeezenet v1.0
|
|
*
|
|
* Model is based on:
|
|
* https://arxiv.org/abs/1602.07360
|
|
* "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
|
|
* Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
|
|
*
|
|
* Provenance: https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.0/squeezenet_v1.0.caffemodel
|
|
*
|
|
* @note To list all the possible arguments execute the binary appended with the --help option
|
|
*
|
|
* @param[in] argc Number of arguments
|
|
* @param[in] argv Arguments
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
return arm_compute::utils::run_example<GraphSqueezenetExample>(argc, argv);
|
|
}
|