1
0
Fork 0
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

734 lines
17 KiB

// SPDX-License-Identifier: GPL-2.0
/*
* Framework for userspace DMA-BUF allocations
*
* Copyright (C) 2011 Google, Inc.
* Copyright (C) 2019 Linaro Ltd.
* Copyright (C) 2022 Rockchip Electronics Co. Ltd.
* Author: Simon Xue <xxm@rock-chips.com>
*/
#include <linux/cma.h>
#include <linux/cdev.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-buf.h>
#include <linux/dma-resv.h>
#include <linux/dma-map-ops.h>
#include <linux/err.h>
#include <linux/xarray.h>
#include <linux/list.h>
#include <linux/proc_fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <uapi/linux/rk-dma-heap.h>
#include "rk-dma-heap.h"
#define DEVNAME "rk_dma_heap"
#define NUM_HEAP_MINORS 128
static LIST_HEAD(rk_heap_list);
static DEFINE_MUTEX(rk_heap_list_lock);
static dev_t rk_dma_heap_devt;
static struct class *rk_dma_heap_class;
static DEFINE_XARRAY_ALLOC(rk_dma_heap_minors);
struct proc_dir_entry *proc_rk_dma_heap_dir;
#define K(size) ((unsigned long)((size) >> 10))
static int rk_vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
{
struct rk_vmap_pfn_data *data = private;
*pte = pte_mkspecial(pfn_pte(data->pfn++, data->prot));
return 0;
}
void *rk_vmap_contig_pfn(unsigned long pfn, unsigned int count, pgprot_t prot)
{
struct rk_vmap_pfn_data data = { .pfn = pfn, .prot = pgprot_nx(prot) };
struct vm_struct *area;
area = get_vm_area_caller(count * PAGE_SIZE, VM_MAP,
__builtin_return_address(0));
if (!area)
return NULL;
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
count * PAGE_SIZE, rk_vmap_pfn_apply, &data)) {
free_vm_area(area);
return NULL;
}
return area->addr;
}
int rk_dma_heap_set_dev(struct device *heap_dev)
{
int err = 0;
if (!heap_dev)
return -EINVAL;
dma_coerce_mask_and_coherent(heap_dev, DMA_BIT_MASK(64));
if (!heap_dev->dma_parms) {
heap_dev->dma_parms = devm_kzalloc(heap_dev,
sizeof(*heap_dev->dma_parms),
GFP_KERNEL);
if (!heap_dev->dma_parms)
return -ENOMEM;
err = dma_set_max_seg_size(heap_dev, (unsigned int)DMA_BIT_MASK(64));
if (err) {
devm_kfree(heap_dev, heap_dev->dma_parms);
dev_err(heap_dev, "Failed to set DMA segment size, err:%d\n", err);
return err;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(rk_dma_heap_set_dev);
struct rk_dma_heap *rk_dma_heap_find(const char *name)
{
struct rk_dma_heap *h;
mutex_lock(&rk_heap_list_lock);
list_for_each_entry(h, &rk_heap_list, list) {
if (!strcmp(h->name, name)) {
kref_get(&h->refcount);
mutex_unlock(&rk_heap_list_lock);
return h;
}
}
mutex_unlock(&rk_heap_list_lock);
return NULL;
}
EXPORT_SYMBOL_GPL(rk_dma_heap_find);
void rk_dma_heap_buffer_free(struct dma_buf *dmabuf)
{
dma_buf_put(dmabuf);
}
EXPORT_SYMBOL_GPL(rk_dma_heap_buffer_free);
struct dma_buf *rk_dma_heap_buffer_alloc(struct rk_dma_heap *heap, size_t len,
unsigned int fd_flags,
unsigned int heap_flags,
const char *name)
{
struct dma_buf *dmabuf;
if (fd_flags & ~RK_DMA_HEAP_VALID_FD_FLAGS)
return ERR_PTR(-EINVAL);
if (heap_flags & ~RK_DMA_HEAP_VALID_HEAP_FLAGS)
return ERR_PTR(-EINVAL);
/*
* Allocations from all heaps have to begin
* and end on page boundaries.
*/
len = PAGE_ALIGN(len);
if (!len)
return ERR_PTR(-EINVAL);
dmabuf = heap->ops->allocate(heap, len, fd_flags, heap_flags, name);
if (IS_ENABLED(CONFIG_DMABUF_RK_HEAPS_DEBUG) && !IS_ERR(dmabuf))
dma_buf_set_name(dmabuf, name);
return dmabuf;
}
EXPORT_SYMBOL_GPL(rk_dma_heap_buffer_alloc);
int rk_dma_heap_bufferfd_alloc(struct rk_dma_heap *heap, size_t len,
unsigned int fd_flags,
unsigned int heap_flags,
const char *name)
{
struct dma_buf *dmabuf;
int fd;
dmabuf = rk_dma_heap_buffer_alloc(heap, len, fd_flags, heap_flags,
name);
if (IS_ERR(dmabuf))
return PTR_ERR(dmabuf);
fd = dma_buf_fd(dmabuf, fd_flags);
if (fd < 0) {
dma_buf_put(dmabuf);
/* just return, as put will call release and that will free */
}
return fd;
}
EXPORT_SYMBOL_GPL(rk_dma_heap_bufferfd_alloc);
struct page *rk_dma_heap_alloc_contig_pages(struct rk_dma_heap *heap,
size_t len, const char *name)
{
if (!heap->support_cma) {
WARN_ON(!heap->support_cma);
return ERR_PTR(-EINVAL);
}
len = PAGE_ALIGN(len);
if (!len)
return ERR_PTR(-EINVAL);
return heap->ops->alloc_contig_pages(heap, len, name);
}
EXPORT_SYMBOL_GPL(rk_dma_heap_alloc_contig_pages);
void rk_dma_heap_free_contig_pages(struct rk_dma_heap *heap,
struct page *pages, size_t len,
const char *name)
{
if (!heap->support_cma) {
WARN_ON(!heap->support_cma);
return;
}
return heap->ops->free_contig_pages(heap, pages, len, name);
}
EXPORT_SYMBOL_GPL(rk_dma_heap_free_contig_pages);
void rk_dma_heap_total_inc(struct rk_dma_heap *heap, size_t len)
{
mutex_lock(&rk_heap_list_lock);
heap->total_size += len;
mutex_unlock(&rk_heap_list_lock);
}
void rk_dma_heap_total_dec(struct rk_dma_heap *heap, size_t len)
{
mutex_lock(&rk_heap_list_lock);
if (WARN_ON(heap->total_size < len))
heap->total_size = 0;
else
heap->total_size -= len;
mutex_unlock(&rk_heap_list_lock);
}
static int rk_dma_heap_open(struct inode *inode, struct file *file)
{
struct rk_dma_heap *heap;
heap = xa_load(&rk_dma_heap_minors, iminor(inode));
if (!heap) {
pr_err("dma_heap: minor %d unknown.\n", iminor(inode));
return -ENODEV;
}
/* instance data as context */
file->private_data = heap;
nonseekable_open(inode, file);
return 0;
}
static long rk_dma_heap_ioctl_allocate(struct file *file, void *data)
{
struct rk_dma_heap_allocation_data *heap_allocation = data;
struct rk_dma_heap *heap = file->private_data;
int fd;
if (heap_allocation->fd)
return -EINVAL;
fd = rk_dma_heap_bufferfd_alloc(heap, heap_allocation->len,
heap_allocation->fd_flags,
heap_allocation->heap_flags, NULL);
if (fd < 0)
return fd;
heap_allocation->fd = fd;
return 0;
}
static unsigned int rk_dma_heap_ioctl_cmds[] = {
RK_DMA_HEAP_IOCTL_ALLOC,
};
static long rk_dma_heap_ioctl(struct file *file, unsigned int ucmd,
unsigned long arg)
{
char stack_kdata[128];
char *kdata = stack_kdata;
unsigned int kcmd;
unsigned int in_size, out_size, drv_size, ksize;
int nr = _IOC_NR(ucmd);
int ret = 0;
if (nr >= ARRAY_SIZE(rk_dma_heap_ioctl_cmds))
return -EINVAL;
/* Get the kernel ioctl cmd that matches */
kcmd = rk_dma_heap_ioctl_cmds[nr];
/* Figure out the delta between user cmd size and kernel cmd size */
drv_size = _IOC_SIZE(kcmd);
out_size = _IOC_SIZE(ucmd);
in_size = out_size;
if ((ucmd & kcmd & IOC_IN) == 0)
in_size = 0;
if ((ucmd & kcmd & IOC_OUT) == 0)
out_size = 0;
ksize = max(max(in_size, out_size), drv_size);
/* If necessary, allocate buffer for ioctl argument */
if (ksize > sizeof(stack_kdata)) {
kdata = kmalloc(ksize, GFP_KERNEL);
if (!kdata)
return -ENOMEM;
}
if (copy_from_user(kdata, (void __user *)arg, in_size) != 0) {
ret = -EFAULT;
goto err;
}
/* zero out any difference between the kernel/user structure size */
if (ksize > in_size)
memset(kdata + in_size, 0, ksize - in_size);
switch (kcmd) {
case RK_DMA_HEAP_IOCTL_ALLOC:
ret = rk_dma_heap_ioctl_allocate(file, kdata);
break;
default:
ret = -ENOTTY;
goto err;
}
if (copy_to_user((void __user *)arg, kdata, out_size) != 0)
ret = -EFAULT;
err:
if (kdata != stack_kdata)
kfree(kdata);
return ret;
}
static const struct file_operations rk_dma_heap_fops = {
.owner = THIS_MODULE,
.open = rk_dma_heap_open,
.unlocked_ioctl = rk_dma_heap_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = rk_dma_heap_ioctl,
#endif
};
/**
* rk_dma_heap_get_drvdata() - get per-subdriver data for the heap
* @heap: DMA-Heap to retrieve private data for
*
* Returns:
* The per-subdriver data for the heap.
*/
void *rk_dma_heap_get_drvdata(struct rk_dma_heap *heap)
{
return heap->priv;
}
static void rk_dma_heap_release(struct kref *ref)
{
struct rk_dma_heap *heap = container_of(ref, struct rk_dma_heap, refcount);
int minor = MINOR(heap->heap_devt);
/* Note, we already holding the rk_heap_list_lock here */
list_del(&heap->list);
device_destroy(rk_dma_heap_class, heap->heap_devt);
cdev_del(&heap->heap_cdev);
xa_erase(&rk_dma_heap_minors, minor);
kfree(heap);
}
void rk_dma_heap_put(struct rk_dma_heap *h)
{
/*
* Take the rk_heap_list_lock now to avoid racing with code
* scanning the list and then taking a kref.
*/
mutex_lock(&rk_heap_list_lock);
kref_put(&h->refcount, rk_dma_heap_release);
mutex_unlock(&rk_heap_list_lock);
}
/**
* rk_dma_heap_get_dev() - get device struct for the heap
* @heap: DMA-Heap to retrieve device struct from
*
* Returns:
* The device struct for the heap.
*/
struct device *rk_dma_heap_get_dev(struct rk_dma_heap *heap)
{
return heap->heap_dev;
}
/**
* rk_dma_heap_get_name() - get heap name
* @heap: DMA-Heap to retrieve private data for
*
* Returns:
* The char* for the heap name.
*/
const char *rk_dma_heap_get_name(struct rk_dma_heap *heap)
{
return heap->name;
}
struct rk_dma_heap *rk_dma_heap_add(const struct rk_dma_heap_export_info *exp_info)
{
struct rk_dma_heap *heap, *err_ret;
unsigned int minor;
int ret;
if (!exp_info->name || !strcmp(exp_info->name, "")) {
pr_err("rk_dma_heap: Cannot add heap without a name\n");
return ERR_PTR(-EINVAL);
}
if (!exp_info->ops || !exp_info->ops->allocate) {
pr_err("rk_dma_heap: Cannot add heap with invalid ops struct\n");
return ERR_PTR(-EINVAL);
}
/* check the name is unique */
heap = rk_dma_heap_find(exp_info->name);
if (heap) {
pr_err("rk_dma_heap: Already registered heap named %s\n",
exp_info->name);
rk_dma_heap_put(heap);
return ERR_PTR(-EINVAL);
}
heap = kzalloc(sizeof(*heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
kref_init(&heap->refcount);
heap->name = exp_info->name;
heap->ops = exp_info->ops;
heap->priv = exp_info->priv;
heap->support_cma = exp_info->support_cma;
INIT_LIST_HEAD(&heap->dmabuf_list);
INIT_LIST_HEAD(&heap->contig_list);
mutex_init(&heap->dmabuf_lock);
mutex_init(&heap->contig_lock);
/* Find unused minor number */
ret = xa_alloc(&rk_dma_heap_minors, &minor, heap,
XA_LIMIT(0, NUM_HEAP_MINORS - 1), GFP_KERNEL);
if (ret < 0) {
pr_err("rk_dma_heap: Unable to get minor number for heap\n");
err_ret = ERR_PTR(ret);
goto err0;
}
/* Create device */
heap->heap_devt = MKDEV(MAJOR(rk_dma_heap_devt), minor);
cdev_init(&heap->heap_cdev, &rk_dma_heap_fops);
ret = cdev_add(&heap->heap_cdev, heap->heap_devt, 1);
if (ret < 0) {
pr_err("dma_heap: Unable to add char device\n");
err_ret = ERR_PTR(ret);
goto err1;
}
heap->heap_dev = device_create(rk_dma_heap_class,
NULL,
heap->heap_devt,
NULL,
heap->name);
if (IS_ERR(heap->heap_dev)) {
pr_err("rk_dma_heap: Unable to create device\n");
err_ret = ERR_CAST(heap->heap_dev);
goto err2;
}
heap->procfs = proc_rk_dma_heap_dir;
/* Make sure it doesn't disappear on us */
heap->heap_dev = get_device(heap->heap_dev);
/* Add heap to the list */
mutex_lock(&rk_heap_list_lock);
list_add(&heap->list, &rk_heap_list);
mutex_unlock(&rk_heap_list_lock);
return heap;
err2:
cdev_del(&heap->heap_cdev);
err1:
xa_erase(&rk_dma_heap_minors, minor);
err0:
kfree(heap);
return err_ret;
}
static char *rk_dma_heap_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "rk_dma_heap/%s", dev_name(dev));
}
static int rk_dma_heap_dump_dmabuf(const struct dma_buf *dmabuf, void *data)
{
struct rk_dma_heap *heap = (struct rk_dma_heap *)data;
struct rk_dma_heap_dmabuf *buf;
struct dma_buf_attachment *a;
phys_addr_t size;
int attach_count;
int ret;
if (!strcmp(dmabuf->exp_name, heap->name)) {
seq_printf(heap->s, "dma-heap:<%s> -dmabuf", heap->name);
mutex_lock(&heap->dmabuf_lock);
list_for_each_entry(buf, &heap->dmabuf_list, node) {
if (buf->dmabuf->file->f_inode->i_ino ==
dmabuf->file->f_inode->i_ino) {
seq_printf(heap->s,
"\ti_ino = %ld\n",
dmabuf->file->f_inode->i_ino);
size = buf->end - buf->start + 1;
seq_printf(heap->s,
"\tAlloc by (%-20s)\t[%pa-%pa]\t%pa (%lu KiB)\n",
dmabuf->name, &buf->start,
&buf->end, &size, K(size));
seq_puts(heap->s, "\t\tAttached Devices:\n");
attach_count = 0;
ret = dma_resv_lock_interruptible(dmabuf->resv,
NULL);
if (ret)
goto error_unlock;
list_for_each_entry(a, &dmabuf->attachments,
node) {
seq_printf(heap->s, "\t\t%s\n",
dev_name(a->dev));
attach_count++;
}
dma_resv_unlock(dmabuf->resv);
seq_printf(heap->s,
"Total %d devices attached\n\n",
attach_count);
}
}
mutex_unlock(&heap->dmabuf_lock);
}
return 0;
error_unlock:
mutex_unlock(&heap->dmabuf_lock);
return ret;
}
static int rk_dma_heap_dump_contig(void *data)
{
struct rk_dma_heap *heap = (struct rk_dma_heap *)data;
struct rk_dma_heap_contig_buf *buf;
phys_addr_t size;
mutex_lock(&heap->contig_lock);
list_for_each_entry(buf, &heap->contig_list, node) {
size = buf->end - buf->start + 1;
seq_printf(heap->s, "dma-heap:<%s> -non dmabuf\n", heap->name);
seq_printf(heap->s, "\tAlloc by (%-20s)\t[%pa-%pa]\t%pa (%lu KiB)\n",
buf->orig_alloc, &buf->start, &buf->end, &size, K(size));
}
mutex_unlock(&heap->contig_lock);
return 0;
}
static ssize_t rk_total_pools_kb_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct rk_dma_heap *heap;
u64 total_pool_size = 0;
mutex_lock(&rk_heap_list_lock);
list_for_each_entry(heap, &rk_heap_list, list)
if (heap->ops->get_pool_size)
total_pool_size += heap->ops->get_pool_size(heap);
mutex_unlock(&rk_heap_list_lock);
return sysfs_emit(buf, "%llu\n", total_pool_size / 1024);
}
static struct kobj_attribute rk_total_pools_kb_attr =
__ATTR_RO(rk_total_pools_kb);
static struct attribute *rk_dma_heap_sysfs_attrs[] = {
&rk_total_pools_kb_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(rk_dma_heap_sysfs);
static struct kobject *rk_dma_heap_kobject;
static int rk_dma_heap_sysfs_setup(void)
{
int ret;
rk_dma_heap_kobject = kobject_create_and_add("rk_dma_heap",
kernel_kobj);
if (!rk_dma_heap_kobject)
return -ENOMEM;
ret = sysfs_create_groups(rk_dma_heap_kobject,
rk_dma_heap_sysfs_groups);
if (ret) {
kobject_put(rk_dma_heap_kobject);
return ret;
}
return 0;
}
static void rk_dma_heap_sysfs_teardown(void)
{
kobject_put(rk_dma_heap_kobject);
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *rk_dma_heap_debugfs_dir;
static int rk_dma_heap_debug_show(struct seq_file *s, void *unused)
{
struct rk_dma_heap *heap;
unsigned long total = 0;
mutex_lock(&rk_heap_list_lock);
list_for_each_entry(heap, &rk_heap_list, list) {
heap->s = s;
get_each_dmabuf(rk_dma_heap_dump_dmabuf, heap);
rk_dma_heap_dump_contig(heap);
total += heap->total_size;
}
seq_printf(s, "\nTotal : 0x%lx (%lu KiB)\n", total, K(total));
mutex_unlock(&rk_heap_list_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(rk_dma_heap_debug);
static int rk_dma_heap_init_debugfs(void)
{
struct dentry *d;
int err = 0;
d = debugfs_create_dir("rk_dma_heap", NULL);
if (IS_ERR(d))
return PTR_ERR(d);
rk_dma_heap_debugfs_dir = d;
d = debugfs_create_file("dma_heap_info", 0444,
rk_dma_heap_debugfs_dir, NULL,
&rk_dma_heap_debug_fops);
if (IS_ERR(d)) {
dma_heap_print("rk_dma_heap : debugfs: failed to create node bufinfo\n");
debugfs_remove_recursive(rk_dma_heap_debugfs_dir);
rk_dma_heap_debugfs_dir = NULL;
err = PTR_ERR(d);
}
return err;
}
#else
static inline int rk_dma_heap_init_debugfs(void)
{
return 0;
}
#endif
static int rk_dma_heap_proc_show(struct seq_file *s, void *unused)
{
struct rk_dma_heap *heap;
unsigned long total = 0;
mutex_lock(&rk_heap_list_lock);
list_for_each_entry(heap, &rk_heap_list, list) {
heap->s = s;
get_each_dmabuf(rk_dma_heap_dump_dmabuf, heap);
rk_dma_heap_dump_contig(heap);
total += heap->total_size;
}
seq_printf(s, "\nTotal : 0x%lx (%lu KiB)\n", total, K(total));
mutex_unlock(&rk_heap_list_lock);
return 0;
}
static int rk_dma_heap_info_proc_open(struct inode *inode,
struct file *file)
{
return single_open(file, rk_dma_heap_proc_show, NULL);
}
static const struct proc_ops rk_dma_heap_info_proc_fops = {
.proc_open = rk_dma_heap_info_proc_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = single_release,
};
static int rk_dma_heap_init_proc(void)
{
proc_rk_dma_heap_dir = proc_mkdir("rk_dma_heap", NULL);
if (!proc_rk_dma_heap_dir) {
pr_err("create rk_dma_heap proc dir error\n");
return -ENOENT;
}
proc_create("dma_heap_info", 0644, proc_rk_dma_heap_dir,
&rk_dma_heap_info_proc_fops);
return 0;
}
static int rk_dma_heap_init(void)
{
int ret;
ret = rk_dma_heap_sysfs_setup();
if (ret)
return ret;
ret = alloc_chrdev_region(&rk_dma_heap_devt, 0, NUM_HEAP_MINORS,
DEVNAME);
if (ret)
goto err_chrdev;
rk_dma_heap_class = class_create(THIS_MODULE, DEVNAME);
if (IS_ERR(rk_dma_heap_class)) {
ret = PTR_ERR(rk_dma_heap_class);
goto err_class;
}
rk_dma_heap_class->devnode = rk_dma_heap_devnode;
rk_dma_heap_init_debugfs();
rk_dma_heap_init_proc();
return 0;
err_class:
unregister_chrdev_region(rk_dma_heap_devt, NUM_HEAP_MINORS);
err_chrdev:
rk_dma_heap_sysfs_teardown();
return ret;
}
subsys_initcall(rk_dma_heap_init);