1
0
Fork 0
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1101 lines
41 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "BufferLayer.h"
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/GLConsumer.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <renderengine/RenderEngine.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <cmath>
#include <cstdlib>
#include <mutex>
#include <sstream>
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "FrameTracer/FrameTracer.h"
#include "LayerRejecter.h"
#include "TimeStats/TimeStats.h"
#if RK_NV12_10_to_NV12_BY_RGA
#include <include/RockchipRga.h>
#endif
namespace android {
using gui::WindowInfo;
static constexpr float defaultMaxLuminance = 1000.0;
BufferLayer::BufferLayer(const LayerCreationArgs& args)
: Layer(args),
mTextureName(args.textureName),
mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
ALOGV("Creating Layer %s", getDebugName());
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
}
BufferLayer::~BufferLayer() {
if (!isClone()) {
// The original layer and the clone layer share the same texture. Therefore, only one of
// the layers, in this case the original layer, needs to handle the deletion. The original
// layer and the clone should be removed at the same time so there shouldn't be any issue
// with the clone layer trying to use the deleted texture.
mFlinger->deleteTextureAsync(mTextureName);
}
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
}
void BufferLayer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
}
}
void BufferLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool BufferLayer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
}
bool BufferLayer::isVisible() const {
return !isHiddenByPolicy() && getAlpha() > 0.0f &&
(mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
}
bool BufferLayer::isFixedSize() const {
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
bool BufferLayer::usesSourceCrop() const {
return true;
}
static constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
#if RK_NV12_10_to_NV12_BY_RGA
#define dstBufferMax 2
sp<GraphicBuffer> dstBufferRGA[dstBufferMax];
#define yuvTexUsage GraphicBuffer::USAGE_HW_TEXTURE /*| HDRUSAGE*/
#define yuvTexFormat HAL_PIXEL_FORMAT_YCrCb_NV12
const sp<GraphicBuffer> & rgaCopyBit(sp<GraphicBuffer> src_buf, const Rect& rect, int dst_width, int dst_height)
{
rga_info_t src, dst;
int src_l,src_t,src_r,src_b,src_h,src_stride,src_format;
int dst_l,dst_t,dst_r,dst_b,dst_h,dst_stride,dst_format;
RockchipRga& mRga = RockchipRga::get();
int rga_ret = 0;
static int yuvcnt;
int yuvIndex ;
yuvcnt ++;
yuvIndex = yuvcnt%dstBufferMax;
if((dstBufferRGA[yuvIndex] != NULL) &&
(dstBufferRGA[yuvIndex]->getWidth() != (uint32_t)dst_width ||
dstBufferRGA[yuvIndex]->getHeight() != (uint32_t)dst_height))
{
dstBufferRGA[yuvIndex] = NULL;
}
if(dstBufferRGA[yuvIndex] == NULL)
{
ALOGV("nv12_10: sf new GraphicBuffer w:%d h:%d f:0x%x u:0x%x\n",dst_width, dst_height, yuvTexFormat, yuvTexUsage);
dstBufferRGA[yuvIndex] = new GraphicBuffer(dst_width, dst_height, yuvTexFormat, yuvTexUsage);
}
memset(&src, 0, sizeof(rga_info_t));
memset(&dst, 0, sizeof(rga_info_t));
src.fd = -1;
dst.fd = -1;
src_stride = src_buf->getStride();
src_format = src_buf->getPixelFormat();
src_h = src_buf->getHeight();
dst_stride = dstBufferRGA[yuvIndex]->getStride();
dst_format = dstBufferRGA[yuvIndex]->getPixelFormat();
dst_h = dstBufferRGA[yuvIndex]->getHeight();
dst_l = src_l = rect.left;
dst_t = src_t = rect.top;
dst_r = src_r = rect.right;
dst_b = src_b = rect.bottom;
rga_set_rect(&src.rect, src_l, src_t, src_r - src_l, src_b - src_t, src_stride, src_h, src_format);
rga_set_rect(&dst.rect, dst_l, dst_t, dstBufferRGA[yuvIndex]->getWidth(), dstBufferRGA[yuvIndex]->getHeight(), dst_stride, dst_h, dst_format);
src.hnd = src_buf->handle;
dst.hnd = dstBufferRGA[yuvIndex]->handle;
rga_ret = mRga.RkRgaBlit(&src, &dst, NULL);
if(rga_ret) {
ALOGD_IF(1,"rgaCopyBit : src[x=%d,y=%d,w=%d,h=%d,ws=%d,hs=%d,format=0x%x],dst[x=%d,y=%d,w=%d,h=%d,ws=%d,hs=%d,format=0x%x]",
src.rect.xoffset, src.rect.yoffset, src.rect.width, src.rect.height, src.rect.wstride, src.rect.hstride, src.rect.format,
dst.rect.xoffset, dst.rect.yoffset, dst.rect.width, dst.rect.height, dst.rect.wstride, dst.rect.hstride, dst.rect.format);
ALOGD_IF(1,"rgaCopyBit : src hnd=%p,dst hnd=%p, src_format=0x%x ==> dst_format=0x%x\n",
(void*)src_buf->handle, (void*)(dstBufferRGA[yuvIndex]->handle), src_format, dst_format);
ALOGE("nv12_10: rgaCopyBit failed\n");
}
return dstBufferRGA[yuvIndex];
}
#endif
#if (RK_NV12_10_to_P010_BY_NEON | RK_NV12_10_to_NV12_BY_NEON)
#define HAL_PIXEL_FORMAT_YCrCb_NV12 0x15
#define HAL_PIXEL_FORMAT_YCrCb_NV12_10 0x17
//#define HAL_PIXEL_FORMAT_YCBCR_P010 0x36
//sp<GraphicBuffer> dstBuffer;
#define dstBufferMax 2
sp<GraphicBuffer> dstBufferCache[dstBufferMax];
#include <dlfcn.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
typedef signed char s8;
typedef signed short s16;
typedef signed int s32;
typedef void (*__rockchipxxx)(u8 *src, u8 *dst, int w, int h, int srcStride, int dstStride, int area);
#if RK_NV12_10_to_P010_BY_NEON
#define RK_XXX_PATH "/system/lib64/librockchipxxx.so"
#define dstBufferFormat HAL_PIXEL_FORMAT_YCBCR_P010 //HAL_PIXEL_FORMAT_YCrCb_NV12_10
#define dstBufferUsage GraphicBuffer::USAGE_HW_TEXTURE
void memcpy_to_p010(void * src_vaddr, void *dst_vaddr,int w,int h)
{
static void* dso = NULL;
static __rockchipxxx rockchipxxx = NULL;
if(dso == NULL)
dso = dlopen(RK_XXX_PATH, RTLD_NOW | RTLD_LOCAL);
if (dso == 0) {
ALOGE("nv12_10: can't not find %s ! error=%s \n",RK_XXX_PATH,dlerror());
return ;
}
if(rockchipxxx == NULL)
rockchipxxx = (__rockchipxxx)dlsym(dso, "_Z11rockchipxxxPhS_iiiii");
if(rockchipxxx == NULL)
{
ALOGE("nv12_10: can't not find target function in %s ! \n",RK_XXX_PATH);
dlclose(dso);
return ;
}
const int dstPixelByte = 2; //P010_PixelByte = 2
rockchipxxx((u8*)src_vaddr, (u8*)dst_vaddr, w, h, (w*1.25+64), w*dstPixelByte, 0);
}
#endif
#if RK_NV12_10_to_NV12_BY_NEON
#define RK_XXX_PATH "/system/lib/librockchipxxx.so"
#define dstBufferFormat HAL_PIXEL_FORMAT_YCrCb_NV12 //HAL_PIXEL_FORMAT_YCrCb_NV12_10
#define dstBufferUsage GraphicBuffer::USAGE_HW_TEXTURE
void memcpy_to_NV12(void * src_vaddr, void *dst_vaddr,int w,int h)
{
static void* dso = NULL;
static __rockchipxxx rockchipxxx = NULL;
if(dso == NULL)
dso = dlopen(RK_XXX_PATH, RTLD_NOW | RTLD_LOCAL);
if (dso == 0) {
ALOGE("nv12_10: can't not find %s ! error=%s \n",RK_XXX_PATH,dlerror());
return ;
}
if(rockchipxxx == NULL)
rockchipxxx = (__rockchipxxx)dlsym(dso, "_Z15rockchipxxx3288PhS_iiiii");
if(rockchipxxx == NULL)
{
ALOGE("nv12_10: can't not find target function in %s ! \n",RK_XXX_PATH);
dlclose(dso);
return ;
}
rockchipxxx((u8*)src_vaddr, (u8*)dst_vaddr, w, h, (w*1.25+64), w, 0);
}
#endif
const sp<GraphicBuffer> & compatible_rk_nv12_10_format(const sp<GraphicBuffer>& srcBuffer,int dstWidth,int dstHeight)
{
ALOGV("nv12_10: srcBuffer w:%d h:%d dstWidth:%d dstHeight:%d\n",srcBuffer->getWidth(),srcBuffer->getHeight(),dstWidth,dstHeight);
static int yuvcnt;
int yuvIndex ;
yuvcnt ++;
yuvIndex = yuvcnt%dstBufferMax;
if((dstBufferCache[yuvIndex] != NULL) &&
(dstBufferCache[yuvIndex]->getWidth() != (uint32_t)dstWidth ||
dstBufferCache[yuvIndex]->getHeight() != (uint32_t)dstHeight))
{
dstBufferCache[yuvIndex] = NULL;
}
if(dstBufferCache[yuvIndex] == NULL)
{
ALOGV("nv12_10: sf new GraphicBuffer w:%d h:%d f:0x%x u:0x%x\n",dstWidth, dstHeight, dstBufferFormat, dstBufferUsage);
dstBufferCache[yuvIndex] = new GraphicBuffer(dstWidth, dstHeight, dstBufferFormat, dstBufferUsage);
}
void *src_vaddr;
void *dst_vaddr;
srcBuffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, &src_vaddr);
dstBufferCache[yuvIndex]->lock(GRALLOC_USAGE_SW_WRITE_OFTEN|GRALLOC_USAGE_SW_READ_OFTEN, &dst_vaddr);
//memset(dst_vaddr,0xEB,3840*2160);
//memset(((char *)dst_vaddr)+3840*2160,0x80,3840*2160/2);
#if RK_NV12_10_to_P010_BY_NEON
memcpy_to_p010(src_vaddr, dst_vaddr, dstWidth, dstHeight);
#endif
#if RK_NV12_10_to_NV12_BY_NEON
memcpy_to_NV12(src_vaddr, dst_vaddr, dstWidth, dstHeight);
#endif
srcBuffer->unlock();
dstBufferCache[yuvIndex]->unlock();
return dstBufferCache[yuvIndex];
}
#endif
std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
ATRACE_CALL();
std::optional<compositionengine::LayerFE::LayerSettings> result =
Layer::prepareClientComposition(targetSettings);
if (!result) {
return result;
}
if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
bool finished = false;
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
if (finished || layer == static_cast<BufferLayer const*>(this)) {
finished = true;
return;
}
under.orSelf(layer->getScreenBounds());
});
// if not everything below us is covered, we plug the holes!
Region holes(targetSettings.clip.subtract(under));
if (!holes.isEmpty()) {
targetSettings.clearRegion.orSelf(holes);
}
if (mSidebandStream != nullptr) {
// For surfaceview of tv sideband, there is no activeBuffer
// in bufferqueue, we need return LayerSettings.
return result;
} else {
return std::nullopt;
}
}
const bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
((isSecure() || isProtected()) && !targetSettings.isSecure);
const bool bufferCanBeUsedAsHwTexture =
mBufferInfo.mBuffer->getBuffer()->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
compositionengine::LayerFE::LayerSettings& layer = *result;
if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
mName.c_str());
prepareClearClientComposition(layer, true /* blackout */);
return layer;
}
const State& s(getDrawingState());
#if (RK_NV12_10_to_P010_BY_NEON | RK_NV12_10_to_NV12_BY_RGA | RK_NV12_10_to_NV12_BY_NEON)
if(mBufferInfo.mBuffer && (mBufferInfo.mBuffer)->getBuffer()->getPixelFormat() == HAL_PIXEL_FORMAT_YCrCb_NV12_10)
{
ALOGV("nv12_10: layer name:%s f:0x%x\n",layer.name.c_str(),(mBufferInfo.mBuffer)->getBuffer()->getPixelFormat());
std::shared_ptr<renderengine::ExternalTexture> mmBuffer ;
#if (RK_NV12_10_to_P010_BY_NEON | RK_NV12_10_to_NV12_BY_NEON)
sp<GraphicBuffer> dstGraphicBuffer = compatible_rk_nv12_10_format((mBufferInfo.mBuffer)->getBuffer(),
mBufferInfo.mCrop.getWidth(),mBufferInfo.mCrop.getHeight());
#endif
#if RK_NV12_10_to_NV12_BY_RGA
sp<GraphicBuffer> dstGraphicBuffer = rgaCopyBit(mBufferInfo.mBuffer->getBuffer(), mBufferInfo.mCrop,
mBufferInfo.mCrop.getWidth(), mBufferInfo.mCrop.getHeight());
#endif
mmBuffer= std::make_shared<renderengine::ExternalTexture>(dstGraphicBuffer,
mFlinger->getCompositionEngine().getRenderEngine(),
renderengine::ExternalTexture::Usage::READABLE);
layer.source.buffer.buffer = mmBuffer;
}else{
layer.source.buffer.buffer = mBufferInfo.mBuffer;
}
#else
layer.source.buffer.buffer = mBufferInfo.mBuffer;
#endif
layer.source.buffer.isOpaque = isOpaque(s);
layer.source.buffer.fence = mBufferInfo.mFence;
layer.source.buffer.textureName = mTextureName;
layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
layer.source.buffer.isY410BT2020 = isHdrY410();
bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
float maxLuminance = 0.f;
if (hasSmpte2086 && hasCta861_3) {
maxLuminance = std::min(mBufferInfo.mHdrMetadata.smpte2086.maxLuminance,
mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel);
} else if (hasSmpte2086) {
maxLuminance = mBufferInfo.mHdrMetadata.smpte2086.maxLuminance;
} else if (hasCta861_3) {
maxLuminance = mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel;
} else {
switch (layer.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
case HAL_DATASPACE_TRANSFER_ST2084:
case HAL_DATASPACE_TRANSFER_HLG:
// Behavior-match previous releases for HDR content
maxLuminance = defaultMaxLuminance;
break;
}
}
layer.source.buffer.maxLuminanceNits = maxLuminance;
layer.frameNumber = mCurrentFrameNumber;
layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()->getId() : 0;
const bool useFiltering =
targetSettings.needsFiltering || mNeedsFiltering || bufferNeedsFiltering();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
getDrawingTransformMatrix(useFiltering, textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
const Rect win{getBounds()};
#if (RK_NV12_10_to_P010_BY_NEON | RK_NV12_10_to_NV12_BY_RGA | RK_NV12_10_to_NV12_BY_NEON)
float bufferWidth ;
if(mBufferInfo.mBuffer && (mBufferInfo.mBuffer)->getBuffer()->getPixelFormat() == HAL_PIXEL_FORMAT_YCrCb_NV12_10)
bufferWidth = mBufferInfo.mCrop.getWidth();
else
bufferWidth = getBufferSize(s).getWidth();
#else
float bufferWidth = getBufferSize(s).getWidth();
#endif
float bufferHeight = getBufferSize(s).getHeight();
// BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
// ignore them.
if (!getBufferSize(s).isValid()) {
bufferWidth = float(win.right) - float(win.left);
bufferHeight = float(win.bottom) - float(win.top);
}
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
const float translateY = float(win.top) / bufferHeight;
const float translateX = float(win.left) / bufferWidth;
// Flip y-coordinates because GLConsumer expects OpenGL convention.
mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
mat4::translate(vec4(-.5, -.5, 0, 1)) *
mat4::translate(vec4(translateX, translateY, 0, 1)) *
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
layer.source.buffer.useTextureFiltering = useFiltering;
layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
return layer;
}
bool BufferLayer::isHdrY410() const {
// pixel format is HDR Y410 masquerading as RGBA_1010102
return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
}
sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
return asLayerFE();
}
compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
return mCompositionState.get();
}
const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
return mCompositionState.get();
}
void BufferLayer::preparePerFrameCompositionState() {
Layer::preparePerFrameCompositionState();
// Sideband layers
auto* compositionState = editCompositionState();
if (compositionState->sidebandStream.get()) {
compositionState->compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
return;
} else {
// Normal buffer layers
compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
compositionState->compositionType = mPotentialCursor
? Hwc2::IComposerClient::Composition::CURSOR
: Hwc2::IComposerClient::Composition::DEVICE;
}
compositionState->buffer = getBuffer();
compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
? 0
: mBufferInfo.mBufferSlot;
compositionState->acquireFence = mBufferInfo.mFence;
}
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferInfo.mBuffer != nullptr) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
}
mRefreshPending = false;
return hasReadyFrame();
}
namespace {
TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
const auto frameRateCompatibility = [frameRate] {
switch (frameRate.type) {
case Layer::FrameRateCompatibility::Default:
return FrameRateCompatibility::Default;
case Layer::FrameRateCompatibility::ExactOrMultiple:
return FrameRateCompatibility::ExactOrMultiple;
default:
return FrameRateCompatibility::Undefined;
}
}();
const auto seamlessness = [frameRate] {
switch (frameRate.seamlessness) {
case scheduler::Seamlessness::OnlySeamless:
return Seamlessness::ShouldBeSeamless;
case scheduler::Seamlessness::SeamedAndSeamless:
return Seamlessness::NotRequired;
default:
return Seamlessness::Undefined;
}
}();
return TimeStats::SetFrameRateVote{.frameRate = frameRate.rate.getValue(),
.frameRateCompatibility = frameRateCompatibility,
.seamlessness = seamlessness};
}
} // namespace
bool BufferLayer::onPostComposition(const DisplayDevice* display,
const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mBufferInfo.mFrameLatencyNeeded) return false;
// Update mFrameEventHistory.
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
compositorTiming);
finalizeFrameEventHistory(glDoneFence, compositorTiming);
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const int32_t layerId = getSequence();
mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer && outputLayer->requiresClientComposition()) {
nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
clientCompositionTimestamp,
FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
// Update the SurfaceFrames in the drawing state
if (mDrawingState.bufferSurfaceFrameTX) {
mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
}
for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
surfaceFrame->setGpuComposition();
}
}
std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (display) {
const Fps refreshRate = display->refreshRateConfigs().getCurrentRefreshRate().getFps();
const std::optional<Fps> renderRate =
mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
if (presentFence->isValid()) {
mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
refreshRate, renderRate,
frameRateToSetFrameRateVotePayload(
mDrawingState.frameRate),
getGameMode());
mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
presentFence,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t actualPresentTime = display->getRefreshTimestamp();
mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
refreshRate, renderRate,
frameRateToSetFrameRateVotePayload(
mDrawingState.frameRate),
getGameMode());
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(),
mCurrentFrameNumber, actualPresentTime,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
}
mFrameTracker.advanceFrame();
mBufferInfo.mFrameLatencyNeeded = false;
return true;
}
void BufferLayer::gatherBufferInfo() {
mBufferInfo.mPixelFormat =
!mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getBuffer()->format;
mBufferInfo.mFrameLatencyNeeded = true;
}
bool BufferLayer::shouldPresentNow(nsecs_t expectedPresentTime) const {
// If this is not a valid vsync for the layer's uid, return and try again later
const bool isVsyncValidForUid =
mFlinger->mScheduler->isVsyncValid(expectedPresentTime, mOwnerUid);
if (!isVsyncValidForUid) {
ATRACE_NAME("!isVsyncValidForUid");
return false;
}
// AutoRefresh layers and sideband streams should always be presented
if (getSidebandStreamChanged() || getAutoRefresh()) {
return true;
}
// If this layer doesn't have a frame is shouldn't be presented
if (!hasFrameUpdate()) {
return false;
}
// Defer to the derived class to decide whether the next buffer is due for
// presentation.
return isBufferDue(expectedPresentTime);
}
bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
nsecs_t expectedPresentTime) {
ATRACE_CALL();
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
if (refreshRequired) {
return refreshRequired;
}
if (!hasReadyFrame()) {
return false;
}
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return false;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!fenceHasSignaled()) {
ATRACE_NAME("!fenceHasSignaled()");
mFlinger->signalLayerUpdate();
return false;
}
// Capture the old state of the layer for comparisons later
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
BufferInfo oldBufferInfo = mBufferInfo;
status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
if (err != NO_ERROR) {
return false;
}
err = updateActiveBuffer();
if (err != NO_ERROR) {
return false;
}
err = updateFrameNumber(latchTime);
if (err != NO_ERROR) {
return false;
}
gatherBufferInfo();
mRefreshPending = true;
if (oldBufferInfo.mBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
(mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
(mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
(mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
recomputeVisibleRegions = true;
}
if (oldBufferInfo.mBuffer != nullptr) {
uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
if (bufWidth != uint32_t(oldBufferInfo.mBuffer->getBuffer()->width) ||
bufHeight != uint32_t(oldBufferInfo.mBuffer->getBuffer()->height)) {
recomputeVisibleRegions = true;
}
}
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
return true;
}
bool BufferLayer::hasReadyFrame() const {
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}
uint32_t BufferLayer::getEffectiveScalingMode() const {
return mBufferInfo.mScaleMode;
}
bool BufferLayer::isProtected() const {
return (mBufferInfo.mBuffer != nullptr) &&
(mBufferInfo.mBuffer->getBuffer()->getUsage() & GRALLOC_USAGE_PROTECTED);
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool BufferLayer::getOpacityForFormat(uint32_t format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
bool BufferLayer::needsFiltering(const DisplayDevice* display) const {
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer == nullptr) {
return false;
}
// We need filtering if the sourceCrop rectangle size does not match the
// displayframe rectangle size (not a 1:1 render)
const auto& compositionState = outputLayer->getState();
const auto displayFrame = compositionState.displayFrame;
const auto sourceCrop = compositionState.sourceCrop;
return sourceCrop.getHeight() != displayFrame.getHeight() ||
sourceCrop.getWidth() != displayFrame.getWidth();
}
bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display,
const ui::Transform& inverseParentTransform) const {
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer == nullptr) {
return false;
}
// We need filtering if the sourceCrop rectangle size does not match the
// viewport rectangle size (not a 1:1 render)
const auto& compositionState = outputLayer->getState();
const ui::Transform& displayTransform = display->getTransform();
const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
// Undo the transformation of the displayFrame so that we're back into
// layer-stack space.
const Rect frame = inverseTransform.transform(compositionState.displayFrame);
const FloatRect sourceCrop = compositionState.sourceCrop;
int32_t frameHeight = frame.getHeight();
int32_t frameWidth = frame.getWidth();
// If the display transform had a rotational component then undo the
// rotation so that the orientation matches the source crop.
if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
std::swap(frameHeight, frameWidth);
}
return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
}
uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const {
if (hasFrameUpdate()) {
return getFrameNumber(expectedPresentTime);
} else {
return mCurrentFrameNumber;
}
}
Rect BufferLayer::getBufferSize(const State& s) const {
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return Rect(getActiveWidth(s), getActiveHeight(s));
}
if (mBufferInfo.mBuffer == nullptr) {
return Rect::INVALID_RECT;
}
uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
// Undo any transformations on the buffer and return the result.
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return Rect(bufWidth, bufHeight);
}
FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
const State& s(getDrawingState());
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
}
if (mBufferInfo.mBuffer == nullptr) {
return parentBounds;
}
uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
// Undo any transformations on the buffer and return the result.
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return FloatRect(0, 0, bufWidth, bufHeight);
}
void BufferLayer::latchAndReleaseBuffer() {
mRefreshPending = false;
if (hasReadyFrame()) {
bool ignored = false;
latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
}
releasePendingBuffer(systemTime());
}
PixelFormat BufferLayer::getPixelFormat() const {
return mBufferInfo.mPixelFormat;
}
bool BufferLayer::getTransformToDisplayInverse() const {
return mBufferInfo.mTransformToDisplayInverse;
}
Rect BufferLayer::getBufferCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
if (!mBufferInfo.mCrop.isEmpty()) {
// if the buffer crop is defined, we use that
return mBufferInfo.mCrop;
} else if (mBufferInfo.mBuffer != nullptr) {
// otherwise we use the whole buffer
return mBufferInfo.mBuffer->getBuffer()->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
return Rect();
}
}
uint32_t BufferLayer::getBufferTransform() const {
return mBufferInfo.mTransform;
}
ui::Dataspace BufferLayer::getDataSpace() const {
return mBufferInfo.mDataspace;
}
ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
ui::Dataspace updatedDataspace = dataspace;
// translate legacy dataspaces to modern dataspaces
switch (dataspace) {
case ui::Dataspace::SRGB:
updatedDataspace = ui::Dataspace::V0_SRGB;
break;
case ui::Dataspace::SRGB_LINEAR:
updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
break;
case ui::Dataspace::JFIF:
updatedDataspace = ui::Dataspace::V0_JFIF;
break;
case ui::Dataspace::BT601_625:
updatedDataspace = ui::Dataspace::V0_BT601_625;
break;
case ui::Dataspace::BT601_525:
updatedDataspace = ui::Dataspace::V0_BT601_525;
break;
case ui::Dataspace::BT709:
updatedDataspace = ui::Dataspace::V0_BT709;
break;
default:
break;
}
return updatedDataspace;
}
sp<GraphicBuffer> BufferLayer::getBuffer() const {
return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
}
void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
GLConsumer::computeTransformMatrix(outMatrix,
mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()
: nullptr,
mBufferInfo.mCrop, mBufferInfo.mTransform, filteringEnabled);
}
void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
Layer::setInitialValuesForClone(clonedFrom);
sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
mPotentialCursor = bufferClonedFrom->mPotentialCursor;
mProtectedByApp = bufferClonedFrom->mProtectedByApp;
updateCloneBufferInfo();
}
void BufferLayer::updateCloneBufferInfo() {
if (!isClone() || !isClonedFromAlive()) {
return;
}
sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
mBufferInfo = clonedFrom->mBufferInfo;
mSidebandStream = clonedFrom->mSidebandStream;
surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
// After buffer info is updated, the drawingState from the real layer needs to be copied into
// the cloned. This is because some properties of drawingState can change when latchBuffer is
// called. However, copying the drawingState would also overwrite the cloned layer's relatives
// and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
// the cloned drawingState again.
wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
WindowInfo tmpInputInfo = mDrawingState.inputInfo;
cloneDrawingState(clonedFrom.get());
mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
mDrawingState.zOrderRelatives = tmpZOrderRelatives;
mDrawingState.inputInfo = tmpInputInfo;
}
void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
mTransformHint = getFixedTransformHint();
if (mTransformHint == ui::Transform::ROT_INVALID) {
mTransformHint = displayTransformHint;
}
}
bool BufferLayer::bufferNeedsFiltering() const {
return isFixedSize();
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"