You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3426 lines
50 KiB
3426 lines
50 KiB
name: "MOBILENET_V2"
|
|
# transform_param {
|
|
# scale: 0.017
|
|
# mirror: false
|
|
# crop_size: 224
|
|
# mean_value: [103.94,116.78,123.68]
|
|
# }
|
|
layer {
|
|
name: "data"
|
|
type: "Input"
|
|
top: "data"
|
|
input_param {
|
|
shape {
|
|
dim: 1
|
|
dim: 3
|
|
dim: 224
|
|
dim: 224
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv1"
|
|
type: "Convolution"
|
|
bottom: "data"
|
|
top: "conv1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv1/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv1"
|
|
top: "conv1/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv1/scale"
|
|
type: "Scale"
|
|
bottom: "conv1/bn"
|
|
top: "conv1/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu1"
|
|
type: "ReLU"
|
|
bottom: "conv1/bn"
|
|
top: "conv1/bn"
|
|
}
|
|
layer {
|
|
name: "conv2_1/expand"
|
|
type: "Convolution"
|
|
bottom: "conv1/bn"
|
|
top: "conv2_1/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_1/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv2_1/expand"
|
|
top: "conv2_1/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_1/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv2_1/expand/bn"
|
|
top: "conv2_1/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu2_1/expand"
|
|
type: "ReLU"
|
|
bottom: "conv2_1/expand/bn"
|
|
top: "conv2_1/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv2_1/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv2_1/expand/bn"
|
|
top: "conv2_1/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 32
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_1/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv2_1/dwise"
|
|
top: "conv2_1/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_1/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv2_1/dwise/bn"
|
|
top: "conv2_1/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu2_1/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv2_1/dwise/bn"
|
|
top: "conv2_1/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv2_1/linear"
|
|
type: "Convolution"
|
|
bottom: "conv2_1/dwise/bn"
|
|
top: "conv2_1/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 16
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_1/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv2_1/linear"
|
|
top: "conv2_1/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_1/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv2_1/linear/bn"
|
|
top: "conv2_1/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/expand"
|
|
type: "Convolution"
|
|
bottom: "conv2_1/linear/bn"
|
|
top: "conv2_2/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 96
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv2_2/expand"
|
|
top: "conv2_2/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv2_2/expand/bn"
|
|
top: "conv2_2/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu2_2/expand"
|
|
type: "ReLU"
|
|
bottom: "conv2_2/expand/bn"
|
|
top: "conv2_2/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv2_2/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv2_2/expand/bn"
|
|
top: "conv2_2/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 96
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 96
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv2_2/dwise"
|
|
top: "conv2_2/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv2_2/dwise/bn"
|
|
top: "conv2_2/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu2_2/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv2_2/dwise/bn"
|
|
top: "conv2_2/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv2_2/linear"
|
|
type: "Convolution"
|
|
bottom: "conv2_2/dwise/bn"
|
|
top: "conv2_2/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 24
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv2_2/linear"
|
|
top: "conv2_2/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv2_2/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv2_2/linear/bn"
|
|
top: "conv2_2/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/expand"
|
|
type: "Convolution"
|
|
bottom: "conv2_2/linear/bn"
|
|
top: "conv3_1/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 144
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv3_1/expand"
|
|
top: "conv3_1/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv3_1/expand/bn"
|
|
top: "conv3_1/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu3_1/expand"
|
|
type: "ReLU"
|
|
bottom: "conv3_1/expand/bn"
|
|
top: "conv3_1/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv3_1/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv3_1/expand/bn"
|
|
top: "conv3_1/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 144
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 144
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv3_1/dwise"
|
|
top: "conv3_1/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv3_1/dwise/bn"
|
|
top: "conv3_1/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu3_1/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv3_1/dwise/bn"
|
|
top: "conv3_1/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv3_1/linear"
|
|
type: "Convolution"
|
|
bottom: "conv3_1/dwise/bn"
|
|
top: "conv3_1/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 24
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv3_1/linear"
|
|
top: "conv3_1/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_1/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv3_1/linear/bn"
|
|
top: "conv3_1/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_3_1"
|
|
type: "Eltwise"
|
|
bottom: "conv2_2/linear/bn"
|
|
bottom: "conv3_1/linear/bn"
|
|
top: "block_3_1"
|
|
}
|
|
layer {
|
|
name: "conv3_2/expand"
|
|
type: "Convolution"
|
|
bottom: "block_3_1"
|
|
top: "conv3_2/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 144
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_2/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv3_2/expand"
|
|
top: "conv3_2/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_2/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv3_2/expand/bn"
|
|
top: "conv3_2/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu3_2/expand"
|
|
type: "ReLU"
|
|
bottom: "conv3_2/expand/bn"
|
|
top: "conv3_2/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv3_2/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv3_2/expand/bn"
|
|
top: "conv3_2/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 144
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 144
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_2/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv3_2/dwise"
|
|
top: "conv3_2/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_2/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv3_2/dwise/bn"
|
|
top: "conv3_2/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu3_2/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv3_2/dwise/bn"
|
|
top: "conv3_2/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv3_2/linear"
|
|
type: "Convolution"
|
|
bottom: "conv3_2/dwise/bn"
|
|
top: "conv3_2/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_2/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv3_2/linear"
|
|
top: "conv3_2/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3_2/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv3_2/linear/bn"
|
|
top: "conv3_2/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/expand"
|
|
type: "Convolution"
|
|
bottom: "conv3_2/linear/bn"
|
|
top: "conv4_1/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 192
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_1/expand"
|
|
top: "conv4_1/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_1/expand/bn"
|
|
top: "conv4_1/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_1/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_1/expand/bn"
|
|
top: "conv4_1/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_1/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_1/expand/bn"
|
|
top: "conv4_1/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 192
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 192
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_1/dwise"
|
|
top: "conv4_1/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_1/dwise/bn"
|
|
top: "conv4_1/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_1/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_1/dwise/bn"
|
|
top: "conv4_1/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_1/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_1/dwise/bn"
|
|
top: "conv4_1/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_1/linear"
|
|
top: "conv4_1/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_1/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_1/linear/bn"
|
|
top: "conv4_1/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_4_1"
|
|
type: "Eltwise"
|
|
bottom: "conv3_2/linear/bn"
|
|
bottom: "conv4_1/linear/bn"
|
|
top: "block_4_1"
|
|
}
|
|
layer {
|
|
name: "conv4_2/expand"
|
|
type: "Convolution"
|
|
bottom: "block_4_1"
|
|
top: "conv4_2/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 192
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_2/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_2/expand"
|
|
top: "conv4_2/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_2/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_2/expand/bn"
|
|
top: "conv4_2/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_2/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_2/expand/bn"
|
|
top: "conv4_2/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_2/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_2/expand/bn"
|
|
top: "conv4_2/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 192
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 192
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_2/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_2/dwise"
|
|
top: "conv4_2/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_2/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_2/dwise/bn"
|
|
top: "conv4_2/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_2/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_2/dwise/bn"
|
|
top: "conv4_2/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_2/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_2/dwise/bn"
|
|
top: "conv4_2/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_2/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_2/linear"
|
|
top: "conv4_2/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_2/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_2/linear/bn"
|
|
top: "conv4_2/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_4_2"
|
|
type: "Eltwise"
|
|
bottom: "block_4_1"
|
|
bottom: "conv4_2/linear/bn"
|
|
top: "block_4_2"
|
|
}
|
|
layer {
|
|
name: "conv4_3/expand"
|
|
type: "Convolution"
|
|
bottom: "block_4_2"
|
|
top: "conv4_3/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 192
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_3/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_3/expand"
|
|
top: "conv4_3/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_3/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_3/expand/bn"
|
|
top: "conv4_3/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_3/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_3/expand/bn"
|
|
top: "conv4_3/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_3/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_3/expand/bn"
|
|
top: "conv4_3/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 192
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 192
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_3/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_3/dwise"
|
|
top: "conv4_3/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_3/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_3/dwise/bn"
|
|
top: "conv4_3/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_3/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_3/dwise/bn"
|
|
top: "conv4_3/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_3/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_3/dwise/bn"
|
|
top: "conv4_3/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_3/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_3/linear"
|
|
top: "conv4_3/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_3/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_3/linear/bn"
|
|
top: "conv4_3/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/expand"
|
|
type: "Convolution"
|
|
bottom: "conv4_3/linear/bn"
|
|
top: "conv4_4/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_4/expand"
|
|
top: "conv4_4/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_4/expand/bn"
|
|
top: "conv4_4/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_4/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_4/expand/bn"
|
|
top: "conv4_4/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_4/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_4/expand/bn"
|
|
top: "conv4_4/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 384
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_4/dwise"
|
|
top: "conv4_4/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_4/dwise/bn"
|
|
top: "conv4_4/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_4/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_4/dwise/bn"
|
|
top: "conv4_4/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_4/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_4/dwise/bn"
|
|
top: "conv4_4/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_4/linear"
|
|
top: "conv4_4/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_4/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_4/linear/bn"
|
|
top: "conv4_4/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_4_4"
|
|
type: "Eltwise"
|
|
bottom: "conv4_3/linear/bn"
|
|
bottom: "conv4_4/linear/bn"
|
|
top: "block_4_4"
|
|
}
|
|
layer {
|
|
name: "conv4_5/expand"
|
|
type: "Convolution"
|
|
bottom: "block_4_4"
|
|
top: "conv4_5/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_5/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_5/expand"
|
|
top: "conv4_5/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_5/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_5/expand/bn"
|
|
top: "conv4_5/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_5/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_5/expand/bn"
|
|
top: "conv4_5/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_5/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_5/expand/bn"
|
|
top: "conv4_5/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 384
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_5/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_5/dwise"
|
|
top: "conv4_5/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_5/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_5/dwise/bn"
|
|
top: "conv4_5/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_5/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_5/dwise/bn"
|
|
top: "conv4_5/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_5/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_5/dwise/bn"
|
|
top: "conv4_5/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_5/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_5/linear"
|
|
top: "conv4_5/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_5/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_5/linear/bn"
|
|
top: "conv4_5/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_4_5"
|
|
type: "Eltwise"
|
|
bottom: "block_4_4"
|
|
bottom: "conv4_5/linear/bn"
|
|
top: "block_4_5"
|
|
}
|
|
layer {
|
|
name: "conv4_6/expand"
|
|
type: "Convolution"
|
|
bottom: "block_4_5"
|
|
top: "conv4_6/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_6/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_6/expand"
|
|
top: "conv4_6/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_6/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_6/expand/bn"
|
|
top: "conv4_6/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_6/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_6/expand/bn"
|
|
top: "conv4_6/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_6/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_6/expand/bn"
|
|
top: "conv4_6/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 384
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_6/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_6/dwise"
|
|
top: "conv4_6/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_6/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_6/dwise/bn"
|
|
top: "conv4_6/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_6/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_6/dwise/bn"
|
|
top: "conv4_6/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_6/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_6/dwise/bn"
|
|
top: "conv4_6/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_6/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_6/linear"
|
|
top: "conv4_6/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_6/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_6/linear/bn"
|
|
top: "conv4_6/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_4_6"
|
|
type: "Eltwise"
|
|
bottom: "block_4_5"
|
|
bottom: "conv4_6/linear/bn"
|
|
top: "block_4_6"
|
|
}
|
|
layer {
|
|
name: "conv4_7/expand"
|
|
type: "Convolution"
|
|
bottom: "block_4_6"
|
|
top: "conv4_7/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_7/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_7/expand"
|
|
top: "conv4_7/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_7/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_7/expand/bn"
|
|
top: "conv4_7/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_7/expand"
|
|
type: "ReLU"
|
|
bottom: "conv4_7/expand/bn"
|
|
top: "conv4_7/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_7/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv4_7/expand/bn"
|
|
top: "conv4_7/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 384
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 384
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_7/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_7/dwise"
|
|
top: "conv4_7/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_7/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_7/dwise/bn"
|
|
top: "conv4_7/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_7/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv4_7/dwise/bn"
|
|
top: "conv4_7/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv4_7/linear"
|
|
type: "Convolution"
|
|
bottom: "conv4_7/dwise/bn"
|
|
top: "conv4_7/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 96
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_7/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv4_7/linear"
|
|
top: "conv4_7/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv4_7/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv4_7/linear/bn"
|
|
top: "conv4_7/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/expand"
|
|
type: "Convolution"
|
|
bottom: "conv4_7/linear/bn"
|
|
top: "conv5_1/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 576
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_1/expand"
|
|
top: "conv5_1/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_1/expand/bn"
|
|
top: "conv5_1/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu5_1/expand"
|
|
type: "ReLU"
|
|
bottom: "conv5_1/expand/bn"
|
|
top: "conv5_1/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv5_1/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv5_1/expand/bn"
|
|
top: "conv5_1/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 576
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 576
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_1/dwise"
|
|
top: "conv5_1/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_1/dwise/bn"
|
|
top: "conv5_1/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu5_1/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv5_1/dwise/bn"
|
|
top: "conv5_1/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv5_1/linear"
|
|
type: "Convolution"
|
|
bottom: "conv5_1/dwise/bn"
|
|
top: "conv5_1/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 96
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_1/linear"
|
|
top: "conv5_1/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_1/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_1/linear/bn"
|
|
top: "conv5_1/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_5_1"
|
|
type: "Eltwise"
|
|
bottom: "conv4_7/linear/bn"
|
|
bottom: "conv5_1/linear/bn"
|
|
top: "block_5_1"
|
|
}
|
|
layer {
|
|
name: "conv5_2/expand"
|
|
type: "Convolution"
|
|
bottom: "block_5_1"
|
|
top: "conv5_2/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 576
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_2/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_2/expand"
|
|
top: "conv5_2/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_2/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_2/expand/bn"
|
|
top: "conv5_2/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu5_2/expand"
|
|
type: "ReLU"
|
|
bottom: "conv5_2/expand/bn"
|
|
top: "conv5_2/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv5_2/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv5_2/expand/bn"
|
|
top: "conv5_2/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 576
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 576
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_2/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_2/dwise"
|
|
top: "conv5_2/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_2/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_2/dwise/bn"
|
|
top: "conv5_2/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu5_2/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv5_2/dwise/bn"
|
|
top: "conv5_2/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv5_2/linear"
|
|
type: "Convolution"
|
|
bottom: "conv5_2/dwise/bn"
|
|
top: "conv5_2/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 96
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_2/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_2/linear"
|
|
top: "conv5_2/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_2/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_2/linear/bn"
|
|
top: "conv5_2/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_5_2"
|
|
type: "Eltwise"
|
|
bottom: "block_5_1"
|
|
bottom: "conv5_2/linear/bn"
|
|
top: "block_5_2"
|
|
}
|
|
layer {
|
|
name: "conv5_3/expand"
|
|
type: "Convolution"
|
|
bottom: "block_5_2"
|
|
top: "conv5_3/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 576
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_3/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_3/expand"
|
|
top: "conv5_3/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_3/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_3/expand/bn"
|
|
top: "conv5_3/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu5_3/expand"
|
|
type: "ReLU"
|
|
bottom: "conv5_3/expand/bn"
|
|
top: "conv5_3/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv5_3/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv5_3/expand/bn"
|
|
top: "conv5_3/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 576
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 576
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_3/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_3/dwise"
|
|
top: "conv5_3/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_3/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_3/dwise/bn"
|
|
top: "conv5_3/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu5_3/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv5_3/dwise/bn"
|
|
top: "conv5_3/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv5_3/linear"
|
|
type: "Convolution"
|
|
bottom: "conv5_3/dwise/bn"
|
|
top: "conv5_3/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 160
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_3/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv5_3/linear"
|
|
top: "conv5_3/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5_3/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv5_3/linear/bn"
|
|
top: "conv5_3/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/expand"
|
|
type: "Convolution"
|
|
bottom: "conv5_3/linear/bn"
|
|
top: "conv6_1/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 960
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_1/expand"
|
|
top: "conv6_1/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_1/expand/bn"
|
|
top: "conv6_1/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_1/expand"
|
|
type: "ReLU"
|
|
bottom: "conv6_1/expand/bn"
|
|
top: "conv6_1/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv6_1/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv6_1/expand/bn"
|
|
top: "conv6_1/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 960
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 960
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_1/dwise"
|
|
top: "conv6_1/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_1/dwise/bn"
|
|
top: "conv6_1/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_1/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv6_1/dwise/bn"
|
|
top: "conv6_1/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv6_1/linear"
|
|
type: "Convolution"
|
|
bottom: "conv6_1/dwise/bn"
|
|
top: "conv6_1/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 160
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_1/linear"
|
|
top: "conv6_1/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_1/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_1/linear/bn"
|
|
top: "conv6_1/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_6_1"
|
|
type: "Eltwise"
|
|
bottom: "conv5_3/linear/bn"
|
|
bottom: "conv6_1/linear/bn"
|
|
top: "block_6_1"
|
|
}
|
|
layer {
|
|
name: "conv6_2/expand"
|
|
type: "Convolution"
|
|
bottom: "block_6_1"
|
|
top: "conv6_2/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 960
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_2/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_2/expand"
|
|
top: "conv6_2/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_2/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_2/expand/bn"
|
|
top: "conv6_2/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_2/expand"
|
|
type: "ReLU"
|
|
bottom: "conv6_2/expand/bn"
|
|
top: "conv6_2/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv6_2/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv6_2/expand/bn"
|
|
top: "conv6_2/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 960
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 960
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_2/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_2/dwise"
|
|
top: "conv6_2/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_2/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_2/dwise/bn"
|
|
top: "conv6_2/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_2/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv6_2/dwise/bn"
|
|
top: "conv6_2/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv6_2/linear"
|
|
type: "Convolution"
|
|
bottom: "conv6_2/dwise/bn"
|
|
top: "conv6_2/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 160
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_2/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_2/linear"
|
|
top: "conv6_2/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_2/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_2/linear/bn"
|
|
top: "conv6_2/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "block_6_2"
|
|
type: "Eltwise"
|
|
bottom: "block_6_1"
|
|
bottom: "conv6_2/linear/bn"
|
|
top: "block_6_2"
|
|
}
|
|
layer {
|
|
name: "conv6_3/expand"
|
|
type: "Convolution"
|
|
bottom: "block_6_2"
|
|
top: "conv6_3/expand"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 960
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_3/expand/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_3/expand"
|
|
top: "conv6_3/expand/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_3/expand/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_3/expand/bn"
|
|
top: "conv6_3/expand/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_3/expand"
|
|
type: "ReLU"
|
|
bottom: "conv6_3/expand/bn"
|
|
top: "conv6_3/expand/bn"
|
|
}
|
|
layer {
|
|
name: "conv6_3/dwise"
|
|
type: "Convolution"
|
|
bottom: "conv6_3/expand/bn"
|
|
top: "conv6_3/dwise"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 960
|
|
bias_term: false
|
|
pad: 1
|
|
kernel_size: 3
|
|
group: 960
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
engine: CAFFE
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_3/dwise/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_3/dwise"
|
|
top: "conv6_3/dwise/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_3/dwise/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_3/dwise/bn"
|
|
top: "conv6_3/dwise/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_3/dwise"
|
|
type: "ReLU"
|
|
bottom: "conv6_3/dwise/bn"
|
|
top: "conv6_3/dwise/bn"
|
|
}
|
|
layer {
|
|
name: "conv6_3/linear"
|
|
type: "Convolution"
|
|
bottom: "conv6_3/dwise/bn"
|
|
top: "conv6_3/linear"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 320
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_3/linear/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_3/linear"
|
|
top: "conv6_3/linear/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_3/linear/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_3/linear/bn"
|
|
top: "conv6_3/linear/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_4"
|
|
type: "Convolution"
|
|
bottom: "conv6_3/linear/bn"
|
|
top: "conv6_4"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 1280
|
|
bias_term: false
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_4/bn"
|
|
type: "BatchNorm"
|
|
bottom: "conv6_4"
|
|
top: "conv6_4/bn"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
batch_norm_param {
|
|
use_global_stats: true
|
|
eps: 1e-5
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv6_4/scale"
|
|
type: "Scale"
|
|
bottom: "conv6_4/bn"
|
|
top: "conv6_4/bn"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 0
|
|
}
|
|
scale_param {
|
|
bias_term: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu6_4"
|
|
type: "ReLU"
|
|
bottom: "conv6_4/bn"
|
|
top: "conv6_4/bn"
|
|
}
|
|
layer {
|
|
name: "pool6"
|
|
type: "Pooling"
|
|
bottom: "conv6_4/bn"
|
|
top: "pool6"
|
|
pooling_param {
|
|
pool: AVE
|
|
global_pooling: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "fc7"
|
|
type: "Convolution"
|
|
bottom: "pool6"
|
|
top: "fc7"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 1000
|
|
kernel_size: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "prob"
|
|
type: "Softmax"
|
|
bottom: "fc7"
|
|
top: "prob"
|
|
}
|