You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.8 KiB
133 lines
4.8 KiB
/*
|
|
* Copyright (c) 2017-2019 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_GC
|
|
#error "This example needs to be built with -DARM_COMPUTE_GC"
|
|
#endif /* ARM_COMPUTE_GC */
|
|
|
|
#include "arm_compute/runtime/GLES_COMPUTE/GCFunctions.h"
|
|
#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
|
|
#include "half/half.hpp"
|
|
#include "utils/Utils.h"
|
|
|
|
using namespace arm_compute;
|
|
using namespace utils;
|
|
|
|
class GCDCExample : public Example
|
|
{
|
|
public:
|
|
bool do_setup(int argc, char **argv) override
|
|
{
|
|
ARM_COMPUTE_UNUSED(argc);
|
|
ARM_COMPUTE_UNUSED(argv);
|
|
|
|
// init instance
|
|
GCScheduler::get().default_init();
|
|
|
|
const TensorShape src_shape = TensorShape{ 11U /* W */, 13U /* H */, 4U /* C */, 3U /* N */ };
|
|
const unsigned int kernel_size = 3;
|
|
const int stride_x = 1;
|
|
const int stride_y = 1;
|
|
const int pad_x = 0;
|
|
const int pad_y = 0;
|
|
const unsigned int num_kernels = 256;
|
|
const DataType data_type = DataType::F16;
|
|
|
|
// generate shape
|
|
const TensorShape weights_shape(kernel_size, kernel_size, src_shape.z(), num_kernels);
|
|
const TensorShape bias_shape(num_kernels);
|
|
const PadStrideInfo pad_info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR);
|
|
|
|
// output shape should be 9*11*256*3 (W*H*C*N)
|
|
const TensorShape dst_shape = get_output_shape(src_shape, weights_shape, pad_info);
|
|
|
|
// create tensors
|
|
src.allocator()->init(TensorInfo(src_shape, 1, data_type));
|
|
weights.allocator()->init(TensorInfo(weights_shape, 1, data_type));
|
|
bias.allocator()->init(TensorInfo(bias_shape, 1, data_type));
|
|
dst.allocator()->init(TensorInfo(dst_shape, 1, data_type));
|
|
|
|
// configure layer
|
|
conv.configure(&src, &weights, &bias, &dst, pad_info);
|
|
|
|
// allocate tensors
|
|
src.allocator()->allocate();
|
|
weights.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
// To demonstrate how to fill tensor with some values...
|
|
src.map();
|
|
Window window;
|
|
window.use_tensor_dimensions(src_shape);
|
|
Iterator it(&src, window);
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
*reinterpret_cast<half_float::half *>(it.ptr()) = half_float::half(1.f);
|
|
});
|
|
src.unmap();
|
|
|
|
return true;
|
|
}
|
|
void do_run() override
|
|
{
|
|
// run the layer
|
|
conv.run();
|
|
}
|
|
void do_teardown() override
|
|
{
|
|
// check result
|
|
dst.map();
|
|
// do something
|
|
dst.unmap();
|
|
}
|
|
|
|
private:
|
|
GCTensor src{}, weights{}, bias{}, dst{};
|
|
GCDirectConvolutionLayer conv{};
|
|
|
|
TensorShape get_output_shape(TensorShape in_shape, TensorShape kernel_shape, const PadStrideInfo &info)
|
|
{
|
|
TensorShape out_shape(in_shape);
|
|
const std::pair<unsigned int, unsigned int> scaled_dims = scaled_dimensions(in_shape.x(),
|
|
in_shape.y(),
|
|
kernel_shape.x(),
|
|
kernel_shape.y(),
|
|
info);
|
|
out_shape.set(0, scaled_dims.first);
|
|
out_shape.set(1, scaled_dims.second);
|
|
out_shape.set(2, kernel_shape[3]);
|
|
return out_shape;
|
|
}
|
|
};
|
|
|
|
/** Main program for directconvolution test
|
|
*
|
|
* @param[in] argc Number of arguments
|
|
* @param[in] argv Arguments
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
return utils::run_example<GCDCExample>(argc, argv);
|
|
}
|