
Rockchip Android 14 GKI Developer Guide

ID: RK-KF-YF-778

Release Version: V1.1.1

Release Date: 2024-12-13

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2023. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n447
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

Overview

This document introduces the development process and attention points of Android 14 GKI.

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Version Author Date Change Description

V1.0.0
Wu
Liangqing

2023-
11-16

Initial version

V1.1.0
Wu
Liangqing

2024-
04-15

Modify the GKI compilation method to no longer pre-compile
kernel modules

V1.1.1
Wu
Liangqing

2024-
12-13

Add a reminder to update modules.load.

Revision History

Contents

Rockchip Android 14 GKI Developer Guide
1. GKI Introduction

1.1 What is GKI
1.2 What products need GKI
1.3 The difference of GKI and non-GKI

2. Rockchip Android14 GKI Adaptation
3. Google upstream kernel download and compile
4. Introduction to GKI related directories of Rockchip SDK
5. Requirements for GKI Compilation Environment
6. Rockchip GKI Compile

6.1 Code Modify
6.2 Compile
6.3 Firmware Flash

7. KO Compile and Modify
7.1 Method of adding new module drivers

8. Uboot log verification
8.1 uboot stage
8.2 Android stage
8.3 KO loading
8.4 KO loading error
8.5 bootcmdline parsing error
8.6 Fail to load Mali KO
8.7 kernel compiling error

9. GKI compilation environment requirements
10. Debugging skills

10.1 Print more logs loaded by KO
10.2 Compile GKI boot.img in RK kernel package
10.3 Check the kernel interface published by google

11. How to submit the kernel interface to upstream
12. How to update boot.img published by AOSP
13. How to pack vendor_boot.img solely

13.1 Step1: compile ko in kernel
13.2 Step2: copy ko file into mkcombinedroot directory
13.3 Step3: copy vendor_boot.img into mkcombinedroot directory
13.4 Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to
vendor_boot.img
13.5 Step5: flash vendor_boot.img to the device

1. GKI Introduction

1.1 What is GKI

GKI：Generic Kernel Image

One of the difficulties of Android 14 GMS and EDLA authentication is that google mandates to support GKI.
GKI is designed by google for solving the problem of kernel fragmentation by providing an unified core kernel
and moving SOC and board-level drivers from core kernel into the loadable modules. The core kernel provides a
stable kernel module interface for the driver module, and the driver and the kernel can be updated independently.
The kernel interface can by extended by upstream. SOC and board-level vendors need use the kernel interfaces
defined when developing, if you want to add core kernel interfaces, you need to submit to google, which will be
a long time, so you need to make preparation in advance.

1.2 What products need GKI

The products that use Android14 and require GMS and EDLA certifications
The products that use Android13 and require GMS and EDLA certifications
The products that use Android12 RK3588/RK3588S and require GMS and EDLA certifications
The products without GMS and EDLA certifications are not forced to use GKI

1.3 The difference of GKI and non-GKI

Generic Kernel boot.img

af://n500
af://n501
af://n504
af://n514

Chipset Whether the adaptation is complete

RK3562 Yes

RK3568 Yes

RK3566 Yes

RK3588 Yes

RK3588S Yes

RK3326 Yes

PX30 Yes

RK3399 Yes

RK3576 Yes

GKI non-GKI

Google releases boot.img regularly, you
can not modify the code

RK provides the kernel sources to compile, you can
modify by yourselves freely

GKI non-GKI

Load in the form of KO, and the kernel
interface invoked must be included in
boot.img published by google

Embedded in boot, RK provides the kernel
sources to compile, you can modify and add the
kernel interfaces freely

Driver Module

GKI non-GKI

Load in the form of KO, and the kernel
interface invoked must be included in
boot.img published by google

Embedded in boot, RK provides the kernel
sources to compile, you can modify and add the
kernel interfaces freely

kernel code

uboot supports head4

Partition difference

GKI adds vendor_boot、init_boot、resource partitions

Enable AB partition

2. Rockchip Android14 GKI Adaptation

The kernel version is 6.1.

af://n551

3. Google upstream kernel download and compile

The boot.img provided by google publishes regularly, and the time interval is relatively long. We can download
the google upstream kernel to compile boot.img by ourselves to verify and debug.

Google Upstream kernel download link:

Need to link google server to download.

Compile:

Generate boot.img

4. Introduction to GKI related directories of Rockchip SDK

kernel KO file path

Google boot.img path

The protected KO file path published by Android AOSP

KO loading sequence configuration file compiled by Kernel-6.1 source

KO loading sequence configuration file loaded during Android Init stage

5. Requirements for GKI Compilation Environment

repo init -u https://android.googlesource.com/kernel/manifest -b common-

android14-6.1

tools/bazel run //common:kernel_aarch64_dist -- --dist_dir=out

out/boot.img

mkcombinedroot/vendor_ramdisk/lib/modules/

mkcombinedroot/prebuilts/boot-6.1.img

kernel/prebuilts/6.1/arm64/

mkcombinedroot/res/vendor_ramdisk_modules.load

mkcombinedroot/res/vendor_modules.load

af://n584
af://n593
af://n614

Ubuntu version needs to be 20.04 or higher.
pahole version needs to be 1.25 or higher.

6. Rockchip GKI Compile

6.1 Code Modify

Configure the GKI options in the device products directory of Android.

NOTE: the configuration of RK3562 UGO is enabling GKI by default, you needn't configure additionally.

If you compile uboot solely, you need to modify config to open AB configuration. If you compile fully by
build.sh, then no need to modify, which will add AB macro configuration automatically during compiling.

uboot need open AB configuration

6.2 Compile

~/a2_Android14_sdk/device/rockchip/rk3562$ git diff

diff --git a/rk3562_u/BoardConfig.mk b/rk3562_u/BoardConfig.mk

old mode 100644

new mode 100755

index 50da541..06da5f3

--- a/rk3562_u/BoardConfig.mk

+++ b/rk3562_u/BoardConfig.mk

@@ -15,10 +15,21 @@

 #

 include device/rockchip/rk3562/BoardConfig.mk

 BUILD_WITH_GO_OPT := false

-BOARD_BUILD_GKI := fasle

+BOARD_BUILD_GKI := true

~/a2_Android13_sdk/u-boot$ git diff

diff --git a/configs/rk3568_defconfig b/configs/rk3568_defconfig

index fbd9820acc..e23e438792 100644

--- a/configs/rk3588_defconfig

+++ b/configs/rk3588_defconfig

@@ -207,6 +207,7 @@ CONFIG_RSA_N_SIZE=0x200

CONFIG_RSA_E_SIZE=0x10

CONFIG_RSA_C_SIZE=0x20

CONFIG_SHA512=y

CONFIG_LZ4=y

CONFIG_LZMA=y

CONFIG_SPL_GZIP=y

@@ -220,3 +221,4 @@ CONFIG_RK_AVB_LIBAVB_USER=y

CONFIG_OPTEE_CLIENT=y

CONFIG_OPTEE_V2=y

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y

+CONFIG_ANDROID_AB=y

af://n620
af://n621
af://n630

Full compilation mode is the same to that of non-GKI.

Note: The kernel compiled here is only for generating the resource.img. The kernel source code will be
compiled into KO files and packaged into vendor_boot.img. The kernel part uses the boot.img released by
Google, and the specific path is in mkcombinedroot/prebuilts/boot-6.1.img.

Flash directly after compiling: rockdev/Image-rk3562_ugo/update.img

Compiling vendor_boot.img solely is also supported during debugging.
Compile command：

Flash directly after compiling:

6.3 Firmware Flash

There are 2 ways to flash the firmware:

Complete package update.img

Firmware path:

You can flash through RK tools.

Dispersive package to flash

First, import the configuration files, method: right click on the space of the tool-import configuration-select
to import txt file-select parameter.txt.

source build/envsetup.sh

lunch rk3562_ugo-userdebug

./build.sh -ACUKup

make installclean;make vendorbootimage -j12

out/target/product/rk3562_ugo/vendor_boot.img

rockdev/Image-rk3562_ugo/update.img

af://n639

Then select the img files corresponded to rockdev/Image-rk3588_t/ one by one to flash, the firmwares
imported by partition A and B are the same.

7. KO Compile and Modify

7.1 Method of adding new module drivers

rockdev/Image-rk3562_ugo

├── baseparameter.img

├── boot.img

├── dtbo.img

├── init_boot.img

├── MiniLoaderAll.bin

├── misc.img

├── parameter.txt

├── resource.img

├── super.img

├── uboot.img

├── update.img

├── vbmeta.img

└── vendor_boot.img

af://n656
af://n657

.load file name
Corresponding
partition

makefile analysis Load time

vendor_ramdisk_modules.load vendor_boot vendor_ramdisk_gki.mk
ramdisk init
stage

vendor_modules.load vendor vendor_gki.mk
android
startup

recovery_modules.load recovery recovery_gki.mk
recovery
stage

1. Put the driver codes into the corresponding directory of kernel-6.1, take adding touchscreen driver gt1x as
an example:

Put gtlx driver into drivers/input/touchscreen/ , and add corresponding Makefile and Kconfig .Here
we follow kernel standard method to do.

2. Add an own config file, and new-create a xxx_gki.config under arch/arm64/configs/ , and add
CONFIG_TOUCHSCREEN_GT1X=m (m means being compiled into ko)to xxx_gki.config .

3. Add the KO file names to mkcombinedroot/res/vendor_ramdisk_modules.load or
mkcombinedroot/res/vendor_modules.load.

If the driver has no requirement for load time, it can be loaded in android stage, such as touchscreen driver,
sensor driver and so on, detailed modification is followed:

Enter mkcombinedroot directory

Add the ko name which needs to be compiled into vendor to res/vendor_modules.load, such as xxx_tp.ko

Compile and flash super.img after finishing addition.

When adding KO files to res/vendor_modules.load , they will be compiled into the
vendor_dlkm/lib/modules/ directory. Therefore, during debugging, you can directly push the
compiled KO files to the vendor_dlkm/lib/modules/ directory on the device. Afterward, reboot the
device, and the KO files will be automatically loaded during boot.

Note : The mkcombinedroot/res/vendor_ramdisk_modules.load file is crucial for the loading order of
drivers. Please do not modify the original order, as it may cause the system to fail to boot!!! New KO files
are not recommended to be placed here unless absolutely necessary, as loading more KO files through
vendor_ramdisk_modules.load will slow down the system startup. It is recommended to add new KO files
to mkcombinedroot/res/vendor_modules.load, which is loaded during the Android boot stage and has a
relatively minor impact on boot time.

4. Compile

cd mkcombinedroot

diff --git a/res/vendor_modules.load b/res/vendor_modules.load

index e69de29..a53449f 100644

--- a/res/vendor_modules.load

+++ b/res/vendor_modules.load

@@ -0,0 +1,4 @@

pcie-dw-rockchip.ko

cfg80211.ko

+xxx_tp.ko

Boot
mode

Storage Display Keypad Battery PMIC TP
NFC/Wi-
Fi/BT

Sensors Camera

Recovery Y Y Y Y Y N N N N

Charger Y Y Y Y Y N N N N

Android Y Y Y Y Y Y Y Y Y

Content header version

vendor_ramdisk(v-ramdisk) V3+

bootconfig V4+

For kernel modifications, it's advisable to use the build.sh -K script for compilation. When using build.sh -K, the
script automatically copies KO files to the temporary directory mkcombinedroot/vendor_ramdisk/lib/modules
during kernel compilation. In a complete compilation, the KO files from this directory will be packaged into
vendor_boot.img or super.img.
If you compile the kernel separately in the kernel directory, the generated KO files will not be automatically
copied to mkcombinedroot/vendor_ramdisk/lib/modules. In this case, you will need to manually navigate to the
mkcombinedroot directory and execute the ./copy_modules.sh script to copy the KO files.

5. Compile vendor_boot.img in the project root directory, the command is as followed. This step is to pack
KO file to vendor_boot.img, then flash it into the device.

Flash vendor_boot.img solely, and the vendor_boot.img path after finishing compiling is followed:

NOTE: If the ko is compiled to vendor, then you need to compile super.img completely and flash
super.img.

6. Verify

Flash out/target/product/rk3562_ugo/vendor_boot.img file to the device for boot verifying.
If the ko is put in vendor partition, then it can be push into the vendor partition of device directly after
system boot, and mount manually to verify.
If it's related to the modification of dts, then you need flash resource.img under kernel-6.1.

Attach：Various ko loading stages defined by AOSP

8. Uboot log verification

8.1 uboot stage

make installclean;make vendorbootimage -j12

out/target/product/rk3562_ugo/vendor_boot.img

https://source.android.google.cn/docs/core/architecture/kernel/loadable-kernel-modules#file-locations
af://n769
af://n770

8.2 Android stage

GKI version： Linux version 5.10.117-android13-9-00037-gbc08447eb7bd

Kernel command line：Command line parameter such as androidboot.xxx can not exist in Header V4, this kind
of parameters should be in bootconfig, which can be verified by cat /proc/bootconfig .

8.3 KO loading

When starting to load ko, you can see the log:

8.4 KO loading error

Use an unexported symbol, and restart with errors:

Booting Android Image at 0x003ff000 ...

Kernel: 0x00400000 - 0x03088ffc (45604 KiB)

v-ramdisk: 0x0a200000 - 0x0a6944c8 (4690 KiB)

ramdisk: 0x0a6944c8 - 0x0a7e54df (1349 KiB)

bootconfig: 0x0a7e54df - 0x0a7e559c (1 KiB)

bootparams: 0x0a7e559c - 0x0a7e759c

[0.000000][T0] Booting Linux on physical CPU 0x0000000000 [0x412fd050]

[0.000000][T0] Linux version 5.10.117-android12-9-00037-gbc08447eb7bd

(build-user@build-host) (Android (7284624, based on r416183b) clang version

12.0.5 (https://android.googlesource.com/toolchain/llvm-project

c935d99d7cf2016289302412d708641d52d2f7ee), LLD 12.0.5

(/buildbot/src/android/llvm-toolchai

n/out/llvm-project/lld c935d99d7cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT

Thu Aug 25 15:24:20 UTC 2022

[0.000000][T0] Kernel command line: stack_depot_disable=on

kasan.stacktrace=off kvm-arm.mode=protected cgroup_disable=pressure

cgroup.memory=nokme

m storagemedia=emmc console=ttyFIQ0 firmware_class.path=/vendor/etc/firmware

init=/init rootwait ro loop.max_part=7 bootconfig buildvariant=userdebug earl

ycon=uart8250,mmio32,0xfeb50000 irqchip.gicv3_pseudo_nmi=0

[1.034730][T1] Run /init as init process

[1.036190][T1] init: init first stage started!

[1.040534][T1] init: Loading module /lib/modules/io-domain.ko with args

''

[1.042038][T1] init: Loaded kernel module /lib/modules/io-domain.ko

af://n782
af://n787
af://n790

NOTE: Normally, this problem doesn't occur, please refer to Noun explanation phase - ABI .

8.5 bootcmdline parsing error

Error log

Phenomenon: unable to boot or boot into recovery.
Reason: The fields in cmdline are duplicated, resulting in a parsing cmdline error. You can press crtl+p in the
serial port when booting to uboot, and all cmdline information will be printed, and check which field is
duplicated from the printed cmdline information. Then find the corresponding definition in the codes and delete
the corresponding field. cmdline is defined in the dts of device and kernel, so you can search for the duplicated
field in both directories.

8.6 Fail to load Mali KO

The performance of Mali KO loading failure is unable to boot and the boot screen locking in the logo of
'Rockchip kernel'. You can fine the surfaceflinger crash in logcat.

[0.805736][T1] cryptodev: Unknown symbol crypto_ahash_final (err -2)

[0.806383][T1] cryptodev: Unknown symbol sg_nents (err -2)

[0.806972][T1] cryptodev: Unknown symbol crypto_alloc_akcipher (err -2)

[0.819768][T1] Kernel panic - not syncing: Attempted to kill init!

exitcode=0x00007f00

Failed to parse bootconfig: Value is redefined at 416.

04-27 22:45:27.653 366 366 F DEBUG : *** *** *** *** *** *** *** *** ***

*** *** *** *** *** *** ***

04-27 22:45:27.653 366 366 F DEBUG : Build fingerprint:

'rockchip/rk3562_t/rk3562_t:13/TQ2A.230305.008.F1/eng.wlq.20230427.101925:userde

bug/release-keys'

04-27 22:45:27.653 366 366 F DEBUG : Revision: '0'

04-27 22:45:27.653 366 366 F DEBUG : ABI: 'arm64'

04-27 22:45:27.653 366 366 F DEBUG : Timestamp: 2023-04-27

22:45:27.509738048+0000

04-27 22:45:27.653 366 366 F DEBUG : Process uptime: 2s

04-27 22:45:27.653 366 366 F DEBUG : Cmdline: /system/bin/surfaceflinger

04-27 22:45:27.653 366 366 F DEBUG : pid: 335, tid: 360, name:

surfaceflinger >>> /system/bin/surfaceflinger <<<

04-27 22:45:27.653 366 366 F DEBUG : uid: 1000

04-27 22:45:27.653 366 366 F DEBUG : tagged_addr_ctrl: 0000000000000001

(PR_TAGGED_ADDR_ENABLE)

04-27 22:45:27.653 366 366 F DEBUG : signal 6 (SIGABRT), code -1

(SI_QUEUE), fault addr --------

04-27 22:45:27.653 366 366 F DEBUG : Abort message: 'no suitable EGLConfig

found, giving up'

04-27 22:45:27.653 366 366 F DEBUG : x0 0000000000000000 x1

0000000000000168 x2 0000000000000006 x3 000000710899d340

04-27 22:45:27.654 366 366 F DEBUG : x4 7568661f2b636d74 x5

7568661f2b636d74 x6 7568661f2b636d74 x7 7f7f7f7f7f7f7f7f

af://n794
af://n798

This is because the ko of GPU is not match, you need recompile the ko file of GPU, and copy to the
corresponding directory under vendor/rockchip/common/gpu, the detail is as followed:

Modify kernel config in the product directory of device: PRODUCT_KERNEL_CONFIG := gki_defconfig
rockchip_gki.config. And add the GPU configuration corresponding to the chip:

Then execute./build.sh -CK to compile kernel.

04-27 22:45:27.654 366 366 F DEBUG : x8 00000000000000f0 x9

000000739bcbda00 x10 0000000000000001 x11 000000739bcff6a0

04-27 22:45:27.654 366 366 F DEBUG : x12 000000710899d310 x13

0000000000000027 x14 000000710899d4e0 x15 00000000197b1a4f

04-27 22:45:27.654 366 366 F DEBUG : x16 000000739bd6dd58 x17

000000739bd48770 x18 0000007108812000 x19 00000000000000ac

04-27 22:45:27.654 366 366 F DEBUG : x20 00000000000000b2 x21

000000000000014f x22 0000000000000168 x23 00000000ffffffff

04-27 22:45:27.654 366 366 F DEBUG : x24 b4000071bbca60b0 x25

000000710899dcb0 x26 000000710899dff8 x27 00000000000fe000

04-27 22:45:27.654 366 366 F DEBUG : x28 000000710899daf0 x29

000000710899d3c0

04-27 22:45:27.654 366 366 F DEBUG : lr 000000739bcef3f4 sp

00000071089ndroid.runtime/lib64/bionic/libc.so (__pthread_start(void*)+208)

(BuildId: e2429c64ab29f2d0ffc5a8f42c0c1b80)

04-27 22:45:27.655 366 366 F DEBUG : #09 pc 0000000000054c50

/apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64) (BuildId:

e2429c64ab29f2d0ffc5a8f42c0c1b80)

RK3588：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config

RK356X/RK3562：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk356x.config

RK3326/RK3326-S：

PX30/PX30-S：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk3326.config

RK3399：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk3399.config

rk3399.config should be modified as followed:

wlq@sys2_206:~/a0_Android13_gki/mkcombinedroot$ git diff configs/

diff --git a/configs/rk3399.config b/configs/rk3399.config

old mode 100644

new mode 100755

index 0d66674..a003ba5

--- a/configs/rk3399.config

+++ b/configs/rk3399.config

@@ -1,4 +1,11 @@

-CONFIG_MALI_MIDGARD=y

+CONFIG_MALI_MIDGARD=m

+CONFIG_MALI_PLATFORM_THIRDPARTY_NAME="rk"

+CONFIG_MALI_PLATFORM_THIRDPARTY=y

+CONFIG_MALI_DEBUG=y

+CONFIG_MALI_DEVFREQ=y

+CONFIG_MALI_DT=y

+CONFIG_MALI_EXPERT=y

+CONFIG_MALI_SHARED_INTERRUPTS=y

After finishing compiling, copy the corresponding mali ko to the vendor, please refer to above sections for
specific path.

8.7 kernel compiling error

Compiling error log：

Resolution:

Update latest pahole

git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.git

Compile pahole

Install and compile dependency librariy.
sudo apt-get install cmake

sudo apt-get install libdw-dev

If you have installed pahole before, you need to uninstall it first.
sudo apt-get --purge remove dwarves

Begin to compile

Execute in the ahole directory.
mkdir build

cd build/

cmake -D__LIB=lib -DBUILD_SHARED_LIBS=OFF .. Configure static compilation

sudo make install

pahole --version to check the version to make sure that it is installed sucessfully.

9. GKI compilation environment requirements

Ubuntu version requires 20.04 and above
pahole version requires 1.25

BTF .btf.vmlinux.bin.o

Segmentation fault (core dumped)

LD .tmp_vmlinux.kallsyms1

KSYMS .tmp_vmlinux.kallsyms1.S

AS .tmp_vmlinux.kallsyms1.S

LD .tmp_vmlinux.kallsyms2

KSYMS .tmp_vmlinux.kallsyms2.S

AS .tmp_vmlinux.kallsyms2.S

LD vmlinux

BTFIDS vmlinux

FAILED: load BTF from vmlinux: Unknown error -22Makefile:1293: recipe for target

'vmlinux' failed

make[1]: *** [vmlinux] Error 255

arch/arm64/Makefile:214: recipe for target 'rk3588-evb1-lp4-v10.img' failed

make: *** [rk3588-evb1-lp4-v10.img] Error 2

failed to build some targets (21 seconds)

af://n806
af://n823

10. Debugging skills

10.1 Print more logs loaded by KO

Modify the value of ratelimit to print more logs of init, in order to debug the problems. If init informations are
few, the error informations loaded by ko will be hided.

10.2 Compile GKI boot.img in RK kernel package

Compile kernel according to normal steps first, then generate arch/arm64/boot/Image.
Pack boot.img by following commands:
mkbootimg --kernel arch/arm64/boot/Image --header_version 4 --output ../mkcombinedroot/prebuilts/boot-
6.1.img

10.3 Check the kernel interface published by google

The standard kernel interface definition is in the android directory:

xxx@sys2_206:~/a0_Android13_gki/device/rockchip/common$ vim BoardConfig.mk

xxx@sys2_206:~/a0_Android13_gki/device/rockchip/common$ git diff

diff --git a/BoardConfig.mk b/BoardConfig.mk

index 0d1c886..1761ed0 100755

--- a/BoardConfig.mk

+++ b/BoardConfig.mk

@@ -392,3 +392,5 @@ ifeq ($(strip $(BOARD_BASEPARAMETER_SUPPORT)), true)

 endif

 BOARD_WITH_SPECIAL_PARTITIONS := baseparameter:1M

 endif

+

+BOARD_KERNEL_CMDLINE += printk.devkmsg=on

:~/a5_google_kenrel/common$ tree a

android/ arch/

wlq@sys2_206:~/a5_google_kenrel/common$ tree android/

android/

├── abi_gki_aarch64

├── abi_gki_aarch64_core

├── abi_gki_aarch64_db845c

├── abi_gki_aarch64_exynos

├── abi_gki_aarch64_fips140

├── abi_gki_aarch64_galaxy

├── abi_gki_aarch64_generic

├── abi_gki_aarch64_hikey960

├── abi_gki_aarch64_rockchip

├── abi_gki_aarch64_type_visibility

├── abi_gki_aarch64_virtual_device

├── abi_gki_aarch64.xml

├── abi_gki_modules_exports

├── abi_gki_modules_protected

af://n829
af://n830
af://n833
af://n835

11. How to submit the kernel interface to upstream

If you need to add a new kernel interface, you can generate the corresponding patch, and submit the patch to
rockchip redmine to be examined and then submit it to google uniformly.

12. How to update boot.img published by AOSP

Android AOSP updates boot.img and corresponding protected KO file regularly, the Android release link is as
followed:

https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds

After openning the link, find the latest release version of Android14-6.1, and then click corresponding boot-
6.1.img to download, as the picture shows:

├── gki_aarch64_fips140_modules

├── gki_aarch64_modules

└── gki_system_dlkm_modules

diff --git a/android/abi_gki_aarch64_rockchip b/android/abi_gki_aarch64_rockchip

index 85bd8bc134cf..3344cf064e06 100644

--- a/android/abi_gki_aarch64_rockchip

+++ b/android/abi_gki_aarch64_rockchip

@@ -2144,6 +2144,15 @@

 mmc_pwrseq_register

 mmc_pwrseq_unregister

+# required by r8168.ko

+ pci_set_mwi

+ pci_clear_mwi

+ proc_get_parent_data

+ skb_checksum_help

+ __skb_gso_segment

+ remove_proc_subtree

+ pci_choose_state

+

 # required by reboot-mode.ko

 devres_release

 kernel_kobj

af://n838
af://n841
https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds

After downloading the boot-6.1.img, copy it to:

From Android14, AOSP publishes protected ko module synchronously, which needs to be download together,
and this ko file need to match with boot.img to load correctly.

Click the kernel link in the following picture to download system_dlkm_staging_archive.tar.gz.

Download and unzip system_dlkm_staging_archive.tar.gz, and copy the unzipped ko file in flatten\lib\modules\
to:

Note: Do not update the kernel/prebuilts/6.1/arm64/modules.load file, as doing so may cause the ko
modules to fail to load. The modules.load file might be overwritten when decompressing and replacing ko
modules. Be sure to check it after replacing.

13. How to pack vendor_boot.img solely

mkcombinedroot/prebuilts/boot-6.1.img

 kernel/prebuilts/6.1/arm64/

af://n851

Step1: compile the corresponding ko file in kernel.

Step2: copy ko file into mkcombinedroot directory.

Step3: copy vendor_boot.img into mkcombinedroot directory.

Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to
vendor_boot.img.

Step5: flash vendor_boot.img to the device.

Now we introduce each steps in the following:

13.1 Step1: compile ko in kernel

Enter kernel directory

Android14 + kernel6.1

Export clang to the environment

Compile KO

13.2 Step2: copy ko file into mkcombinedroot directory

13.3 Step3: copy vendor_boot.img into mkcombinedroot directory

Compiling vendor_boot.img solely needs to copy a vendor_boot.img base pack, just like that compiling
boot.img solely needs a boot_sample.img. This vendor_boot.img needs to be the same with the vendor_boot.img
in the device you prepare to update, which can be copied from GKI firmware.

13.4 Step4: enter the mkcombinedroot directory and execute
mkgki4.sh script, then update ko and compile it to vendor_boot.img

Compile vendor_boot.img, thereinto:

cd kernel-6.1

export PATH=../prebuilts/clang/host/linux-x86/clang-r487747c/bin:$PATH

make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1 ARCH=arm64 gki_defconfig

rockchip_gki.config && make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1

ARCH=arm64 rk3562-rk817-tablet-v10.img -j32

llvm-objcopy --strip-debug drivers/xxx.ko

../mkcombinedroot/vendor_ramdisk/lib/modules/xxx.ko

cd ../mkcombinedroot/

af://n864
af://n878
af://n880
af://n882

DTS=board-level dts name, dts needs to use the load name defined in res/board/.

After compiling, there will be new_vendor_boot.img generated in the mkcombinedroot root directory.

13.5 Step5: flash vendor_boot.img to the device

Flash mkcombinedroot/new_vendor_boot.img file to the device and boot to verify.
Generally, GKI firmware is AB firmware, so when flashing new_vendor_boot.img, you need update
vendor_boot_a and vendor_boot_b partitions at the same time. If the device has been in fastboot mode due
to multiple abnormal restarts before flashing, you need to flash misc.img at the same time. Only the mark
in misc partition is cleaned, can the device boot, the reference commands of flash tools in ubuntu are as
followed:

If the ko is put in vendor partition, then it can be pushed to the vendor partition of device directly after
system enabled, and mount manually to verify.
If it's related to dts modification, you need to flash resource.img in kernel-6.1.

./mkgki4.sh DTS=rk3568-evb1-ddr4-v10

sudo ./upgrade_tool di -vendor_boot_a

mkcombinedroot/new_vendor_boot.img/vendor_boot.img

sudo ./upgrade_tool di -vendor_boot_b

mkcombinedroot/new_vendor_boot.img/vendor_boot.img;

sudo ./upgrade_tool rd

af://n890

	Rockchip Android 14 GKI Developer Guide
	GKI Introduction
	What is GKI
	What products need GKI
	The difference of GKI and non-GKI

	Rockchip Android14 GKI Adaptation
	Google upstream kernel download and compile
	Introduction to GKI related directories of Rockchip SDK
	Requirements for GKI Compilation Environment
	Rockchip GKI Compile
	Code Modify
	Compile
	Firmware Flash

	KO Compile and Modify
	Method of adding new module drivers

	Uboot log verification
	uboot stage
	Android stage
	KO loading
	KO loading error
	bootcmdline parsing error
	Fail to load Mali KO
	kernel compiling error

	GKI compilation environment requirements
	Debugging skills
	Print more logs loaded by KO
	Compile GKI boot.img in RK kernel package
	Check the kernel interface published by google

	How to submit the kernel interface to upstream
	How to update boot.img published by AOSP
	How to pack vendor_boot.img solely
	Step1: compile ko in kernel
	Step2: copy ko file into mkcombinedroot directory
	Step3: copy vendor_boot.img into mkcombinedroot directory
	Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to vendor_boot.img
	Step5: flash vendor_boot.img to the device

