Rockchip Android 14 GKI Developer Guide

ID: RK-KF-YF-778

Release Version: V1.1.1

Release Date: 2024-12-13

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2023. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n447
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

Overview

This document introduces the development process and attention points of Android 14 GKI.
Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Version Author
Wu
V1.0.0) .
Liangqing
Wu
VI.1.0) .
Liangqing
Wu
VI1.1.1

Liangqing

Date

2023-
11-16

2024-
04-15

2024-
12-13

Change Description

Initial version

Modify the GKI compilation method to no longer pre-compile

kernel modules

Add a reminder to update modules.load.

Contents

Rockehip Android 14 GKI Developer Guide
1. GKI Introduction

1.1 What is GKI

1.2 What products need GKI

1.3 The difference of GKI and non-GKI
Rockchip Android14 GKI Adaptation
Google upstream kernel download and compile
Introduction to GKI related directories of Rockchip SDK
Requirements for GKI Compilation Environment
Rockchip GKI Compile

6.1 Code Modify

6.2 Compile

IR

6.3 Firmware Flash
7. KO Compile and Modify
7.1 Method of adding new module drivers
8. Uboot log verification
8.1 uboot stage
8.2 Android stage
8.3 KO loading
8.4 KO loading error
8.5 bootemdline parsing error
8.6 Fail to load Mali KO
8.7 kernel compiling error
9. GKI compilation environment requirements
10. Debugging skills
10.1 Print more logs loaded by KO
10.2 Compile GKI boot.img in RK kernel package
10.3 Check the kernel interface published by google
11. How to submit the kernel interface to upstream
12. How to update boot.img published by AOSP
13. How to pack vendor_boot.img solely
13.1 Stepl: compile ko in kernel
13.2 Step2: copy ko file into mkcombinedroot directory
13.3 Step3: copy vendor boot.img into mkcombinedroot directory
13.4 Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to
vendor_boot.img

13.5 Step5: flash vendor boot.img to the device

1. GKI Introduction

1.1 What is GKI

GKI: Generic Kernel Image

One of the difficulties of Android 14 GMS and EDLA authentication is that google mandates to support GKI.
GKI is designed by google for solving the problem of kernel fragmentation by providing an unified core kernel
and moving SOC and board-level drivers from core kernel into the loadable modules. The core kernel provides a
stable kernel module interface for the driver module, and the driver and the kernel can be updated independently.
The kernel interface can by extended by upstream. SOC and board-level vendors need use the kernel interfaces
defined when developing, if you want to add core kernel interfaces, you need to submit to google, which will be

a long time, so you need to make preparation in advance.

Android ‘
Framework <::> HAL Implementation

i
KMI || Vendor
Modules

==

N GKI Modules

I

Generic Kernel

N

Legend:
I:> Stable Interfaces Vendor Specific
_____ 3
oo e e o .~ Unstable Interfaces AOSP

Stable Kernel Module Interface (KMI)
(between Android Platform Releases)

1.2 What products need GKI

¢ The products that use Android14 and require GMS and EDLA certifications

e The products that use Android13 and require GMS and EDLA certifications

¢ The products that use Android12 RK3588/RK3588S and require GMS and EDLA certifications
¢ The products without GMS and EDLA certifications are not forced to use GKI

1.3 The difference of GKI and non-GKI

¢ Generic Kernel boot.img

af://n500
af://n501
af://n504
af://n514

GKI

Google releases boot.img regularly, you

can not modify the code

e Driver Module

GKI

Load in the form of KO, and the kernel
interface invoked must be included in

boot.img published by google

e kernel code

GKI

Load in the form of KO, and the kernel
interface invoked must be included in
boot.img published by google

¢ uboot supports head4

e Partition difference

GKI adds vendor_boot. init_boot. resource partitions

e Enable AB partition

non-GKI

RK provides the kernel sources to compile, you can

modify by yourselves freely

non-GKI

Embedded in boot, RK provides the kernel
sources to compile, you can modify and add the

kernel interfaces freely

non-GKI

Embedded in boot, RK provides the kernel
sources to compile, you can modify and add the

kernel interfaces freely

2. Rockchip Android14 GKI Adaptation

The kernel version is 6.1.

Chipset Whether the adaptation is complete
RK3562 Yes
RK3568 Yes
RK3566 Yes
RK3588 Yes
RK3588S Yes
RK3326 Yes
PX30 Yes
RK3399 Yes

RK3576 Yes

af://n551

3. Google upstream kernel download and compile

The boot.img provided by google publishes regularly, and the time interval is relatively long. We can download

the google upstream kernel to compile boot.img by ourselves to verify and debug.

Google Upstream kernel download link:

repo init -u https://android.googlesource.com/kernel/manifest -b common-
androidl4-6.1

Need to link google server to download.

Compile:
tools/bazel run //common:kernel aarch64 dist -- --dist dir=out
Generate boot.img

out/boot.img

4. Introduction to GKI related directories of Rockchip SDK

¢ kernel KO file path

mkcombinedroot/vendor ramdisk/lib/modules/

¢ Google boot.img path

mkcombinedroot/prebuilts/boot-6.1.1img

¢ The protected KO file path published by Android AOSP
kernel/prebuilts/6.1/armé64/

¢ KO loading sequence configuration file compiled by Kernel-6.1 source
mkcombinedroot/res/vendor ramdisk modules.load

¢ KO loading sequence configuration file loaded during Android Init stage

mkcombinedroot/res/vendor modules.load

5. Requirements for GKI Compilation Environment

af://n584
af://n593
af://n614

¢ Ubuntu version needs to be 20.04 or higher.

e pahole version needs to be 1.25 or higher.

6. Rockchip GKI Compile

6.1 Code Modify

Configure the GKI options in the device products directory of Android.

~/a2_Androidl4 sdk/device/rockchip/rk35625 git diff

diff --git a/rk3562 u/BoardConfig.mk b/rk3562 u/BoardConfig.mk
old mode 100644

new mode 100755

index 50dab541..06da5£f3

--- a/rk3562 u/BoardConfig.mk

+++ b/rk3562 u/BoardConfig.mk

@@ -15,10 +15,21 @@

#

include device/rockchip/rk3562/BoardConfig.mk
BUILD WITH GO OPT := false

-BOARD BUILD GKI := fasle
+BOARD BUILD GKI := true

NOTE: the configuration of RK3562 UGO is enabling GKI by default, you needn't configure additionally.

If you compile uboot solely, you need to modify config to open AB configuration. If you compile fully by

build.sh, then no need to modify, which will add AB macro configuration automatically during compiling.

¢ uboot need open AB configuration

~/a2_Androidl3 sdk/u-boot$ git diff

diff --git a/configs/rk3568 defconfig b/configs/rk3568 defconfig
index fbd9820acc..e23e438792 100644

--- a/configs/rk3588 defconfig

+++ b/configs/rk3588 defconfig

@@ -207,6 +207,7 @@ CONFIG RSA N SIZE=0x200
CONFIG_RSA E SIZE=0x10

CONFIG_RSA C SIZE=0x20

CONFIG_SHA512=y

CONFIG LZ4=y

CONFIG_LZMA=y

CONFIG_SPL_GzIP=y

@@ -220,3 +221,4 @@ CONFIG RK AVB LIBAVB USER=y
CONFIG_OPTEE CLIENT=y

CONFIG_OPTEE V2=y
CONFIG_OPTEE ALWAYS USE SECURITY PARTITION=y
+CONFIG_ANDROID AB=y

6.2 Compile

af://n620
af://n621
af://n630

Full compilation mode is the same to that of non-GKI.

source build/envsetup.sh
lunch rk3562 ugo-userdebug
./build.sh -ACUKup

Note: The kernel compiled here is only for generating the resource.img. The kernel source code will be

compiled into KO files and packaged into vendor_boot.img. The kernel part uses the boot.img released by

Google, and the specific path is in mkcombinedroot/prebuilts/boot-6.1.img.
Flash directly after compiling: rockdev/Image-rk3562 ugo/update.img

Compiling vendor_boot.img solely is also supported during debugging.

Compile command:

make installclean;make vendorbootimage -3j12

Flash directly after compiling:

out/target/product/rk3562 ugo/vendor boot.img

6.3 Firmware Flash

There are 2 ways to flash the firmware:
¢ Complete package update.img

Firmware path:

rockdev/Image-rk3562 ugo/update.img

[BSRITETR 31 , <
1
THiER | HEEM | Z@m6
on
2 3
[E5(E57 7 12.0.00 Loader 7 1.0b AEE: RE3SES
it T:%a2_Android13_29_sdk‘rockdev\Image—k3588_t'update. img
BeAT R BB
|l o i rreror

You can flash through RK tools.

¢ Dispersive package to flash

First, import the configuration files, method: right click on the space of the tool-import configuration-select

to import txt file-select parameter.txt.

af://n639

— —_—

\ R EIA TR V3.1 %
> A « roc.. > Image.. v C O T Image-rk3588 t REE | |
R BRI
[|0y R =~ m @
v | W ik | it | E&F
I soot0000 0 [EasE > IS = e

2 |[v 0x00000000 | Paramet o

3 | 0x00002000 | securi| > g 30BN 2023/3/3 21:52

4 |V 0x00004000 uboot | _

5 v 0:00006000 | wbeot, L+ TE

6 |V 0x00008000 trust, -

T Gx0000AD0 | trust] 0 O BF

8 v 0x0000C000 misc

s | 0000000 | resoure M SE

0 | v 0x00016000 resourc T,

— =7 Wind C

1 v 0x0001E000 vendor_be ’ indaws (C)

12 |[¥ 0200032000 vendor b9 ;5 pata (D)

13 |V 0x00046000 init_bog

14 | [v 9 0x0004A000 | init bos = wig (\\10.10.10.206) (T:)

Loader: AT ﬂ]’ﬁ* . vl AT 16 14 224N AALY

ClgHEinn S TR N): v | ParameterFile(*x) v

| BeAT R BB w

Then select the img files corresponded to rockdev/Image-rk3588 t/ one by one to flash, the firmwares

imported by partition A and B are the same.

I}
o
Q
)
0.
[0}
<
~
i
=
o))

Q
[}
al
o
w
[€)]
(o))
N
=

Q
¢}

baseparameter.img
boot.img

dtbo.img

init boot.img
MiniLoaderAll.bin
misc.img
parameter.txt
resource.img
super.img
uboot.img
update.img

vbmeta.img

[TTTTTTTTTTTT

vendor boot.img

o WCHITE TR v3.1 - X

THER HEEE SR

LR | Hrik | &F | B L. |
I~ I ||
2 ||« 000000000 Parameter | T:\a0_Androidl3_gki\IMAGE\RK3SS. ..
13 | v 000004000 uboot_a T:\a2_Androidl3_29_sdkhrockdev\. ..
4 |[v 000006000 uboot_b T:\a2_Androidl3_29_sdk\rockdev). ..
5 v 0x0000C000 mize T:\a0_Android13_gki \IMAGE\RK3SS. .
6 |Iv 0x0000E000 resource_a | T:\al_Androidl3_gki\kernel5.10...
7 |Iv 000016000 resource_b | T:\al_Androidl3_gkikernel-5.10...
g8 |[v 0x0001E000 vendor_boot_a T:%\a0_Androidl3_gkilout\targzet\. ..
s v 0200032000 vendor_boot_b T:\a0_Androidl3_gkilouthtargeth. .
0 v 0x00046000 init_boot_a | T:\al_Androidl3_gki\rockdeviIma. ..
|~ 0x0004A000 init_boot_b | T:\a_Androidi3_gkitrockdevilna. ..
12 v 0x0004E000 dtbo_a T:\al_Androidl3_gki‘rockdeviIma. ..
13 [V 0x00050000 dtbo_b | T:\aD_Androidl3_gkitrockdeviIna. .. SN
Loader Ver:1.0b $hiT N WERTER A

sz s

BATR BB A -

eSonremgiEw

7. KO Compile and Modify

7.1 Method of adding new module drivers

af://n656
af://n657

1. Put the driver codes into the corresponding directory of kernel-6.1, take adding touchscreen driver gtlx as

an example:

Put gtlx driver into drivers/input/touchscreen/ , and add corresponding Makefile and Kconfig .Here

we follow kernel standard method to do.

2. Add an own config file, and new-create a xxx_gki.config under arch/armé64/configs/, and add

CONFIG_TOUCHSCREEN GT1xX=m (m means being compiled into ko)to xxx gki.config.

3. Add the KO file names to mkcombinedroot/res/vendor _ramdisk_modules.load or

mkcombinedroot/res/vendor_modules.load.

Corresponding .
.load file name . makefile analysis
partition
vendor ramdisk modules.load vendor_boot vendor ramdisk gki.mk
vendor _modules.load vendor vendor_gki.mk
recovery _modules.load recovery recovery gki.mk

Load time

ramdisk init

stage

android

startup

recovery

stage

If the driver has no requirement for load time, it can be loaded in android stage, such as touchscreen driver,

sensor driver and so on, detailed modification is followed:

¢ Enter mkcombinedroot directory

cd mkcombinedroot

¢ Add the ko name which needs to be compiled into vendor to res/vendor _modules.load, such as xxx_tp.ko

diff --git a/res/vendor modules.load b/res/vendor modules.load
index e69de29..a53449f 100644

--- a/res/vendor modules.load

+++ b/res/vendor modules.load

@@ -0,0 +1,4 @@

pcie-dw-rockchip. ko

cfg80211.ko

+xxx tp.ko

e Compile and flash super.img after finishing addition.

When adding KO files to res/vendor modules.load, they will be compiled into the

vendor dlkm/lib/modules/ directory. Therefore, during debugging, you can directly push the

compiled KO files to the vendor dlkm/lib/modules/ directory on the device. Afterward, reboot the

device, and the KO files will be automatically loaded during boot.

Note : The mkcombinedroot/res/vendor_ramdisk _modules.load file is crucial for the loading order of

drivers. Please do not modify the original order, as it may cause the system to fail to boot!!! New KO files

are not recommended to be placed here unless absolutely necessary, as loading more KO files through

vendor_ramdisk_modules.load will slow down the system startup. It is recommended to add new KO files

to mkcombinedroot/res/vendor_modules.load, which is loaded during the Android boot stage and has a

relatively minor impact on boot time.

4. Compile

For kernel modifications, it's advisable to use the build.sh -K script for compilation. When using build.sh -K, the
script automatically copies KO files to the temporary directory mkcombinedroot/vendor ramdisk/lib/modules
during kernel compilation. In a complete compilation, the KO files from this directory will be packaged into
vendor boot.img or super.img.

If you compile the kernel separately in the kernel directory, the generated KO files will not be automatically
copied to mkcombinedroot/vendor ramdisk/lib/modules. In this case, you will need to manually navigate to the

mkcombinedroot directory and execute the ./copy modules.sh script to copy the KO files.

5. Compile vendor_boot.img in the project root directory, the command is as followed. This step is to pack

KO file to vendor_boot.img, then flash it into the device.

make installclean;make vendorbootimage -3j12
Flash vendor boot.img solely, and the vendor boot.img path after finishing compiling is followed:

out/target/product/rk3562 ugo/vendor boot.img
NOTE: If the ko is compiled to vendor, then you need to compile super.img completely and flash
super.img.

6. Verity

e Flash out/target/product/rk3562 ugo/vendor boot.img file to the device for boot verifying.
¢ If the ko is put in vendor partition, then it can be push into the vendor partition of device directly after
system boot, and mount manually to verify.

o [fit's related to the modification of dts, then you need flash resource.img under kernel-6.1.

Attach: Various ko loading stages defined byy AOSP

Boot NFC/Wi-

- Storage Display Keypad Battery PMIC TP T Sensors Camera
Recovery Y Y Y Y Y N N N N
Charger Y Y Y Y Y N N N N
Android Y Y Y Y Y Y Y Y Y

8. Uboot log verification

8.1 uboot stage

Content header version
vendor ramdisk(v-ramdisk) V3+

bootconfig V4+

https://source.android.google.cn/docs/core/architecture/kernel/loadable-kernel-modules#file-locations
af://n769
af://n770

Booting Android Image at 0x003£f£f000

Kernel: 0x00400000 - 0x03088ffc (45604 KiB)
v-ramdisk: 0x0a200000 - 0x0a6944c8 (4690 KiB)
ramdisk: 0x0a6944c8 - 0x0a7e54df (1349 KiB)
bootconfig: 0x0a7e54df - 0x0a7e559c (1 KiB)
0x0a7e759¢c

bootparams: 0x0a7e559c

8.2 Android stage

GKI version: Linux version 5.10.117-android13-9-00037-gbc08447eb7bd

[0.0000007 [TO] Booting Linux on physical CPU 0x0000000000 [0x412£d050]

[0.0000007 [TO] Linux version 5.10.117-androidl2-9-00037-gbc08447eb7bd
(build-user@build-host) (Android (7284624, based on r416183b) clang version
12.0.5 (https://android.googlesource.com/toolchain/llvm-project
c935d99d7c£2016289302412d708641d52d2f7ee), LLD 12.0.5
(/buildbot/src/android/1llvm-toolchai

n/out/llvm-project/11d ¢935d99d7¢cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT

Thu Aug 25 15:24:20 UTC 2022

Kernel command line: Command line parameter such as androidboot.xxx can not exist in Header V4, this kind

of parameters should be in bootconfig, which can be verified by cat /proc/bootconfig.

[0.0000007 [TO] Kernel command line: stack depot disable=on
kasan.stacktrace=off kvm-arm.mode=protected cgroup disable=pressure

cgroup.memory=nokme
m storagemedia=emmc console=ttyFIQ0 firmware class.path=/vendor/etc/firmware

init=/init rootwait ro loop.max part=7 bootconfig buildvariant=userdebug earl

ycon=uart8250,mmio32, 0xfeb50000 irgchip.gicv3 pseudo nmi=0

8.3 KO loading

When starting to load ko, you can see the log:

[1.034730] [T1l] Run /init as init process

[1.036190] [T1l] init: init first stage started!

[1.040534] [T1] init: Loading module /lib/modules/io-domain.ko with args

[1.042038] [T1l] init: Loaded kernel module /lib/modules/io-domain.ko
8.4 KO loading error

Use an unexported symbol, and restart with errors:

af://n782
af://n787
af://n790

[0.805736] [T1l] cryptodev: Unknown symbol crypto ahash final (err -2)

[0.806383] [Tl] cryptodev: Unknown symbol sg nents (err -2)

[0.800972]1 [T1l] cryptodev: Unknown symbol crypto alloc_akcipher (err -2)
[0.819768] [T1l] Kernel panic - not syncing: Attempted to kill init!

exitcode=0x00007£00

NOTE: Normally, this problem doesn't occur, please refer to Noun explanation phase - ABI .

8.5 bootcmdline parsing error

Error log
Failed to parse bootconfig: Value is redefined at 416.

Phenomenon: unable to boot or boot into recovery.

Reason: The fields in cmdline are duplicated, resulting in a parsing cmdline error. You can press crtl+p in the
serial port when booting to uboot, and all cmdline information will be printed, and check which field is
duplicated from the printed cmdline information. Then find the corresponding definition in the codes and delete
the corresponding field. cmdline is defined in the dts of device and kernel, so you can search for the duplicated

field in both directories.

8.6 Fail to load Mali KO

The performance of Mali KO loading failure is unable to boot and the boot screen locking in the logo of

'Rockcehip kernel'. You can fine the surfaceflinger crash in logcat.

04-27 22:45:27.653 366 366 F DEBUG B il Bitid Rt R it it fedtd RIS bt
Xk ok kxk kkk Kkk kkKk kkx Kkk

04-27 22:45:27.653 366 366 F DEBUG : Build fingerprint:

'rockchip/rk3562 t/rk3562 t:13/TQ2A.230305.008.F1/eng.wlq.20230427.101925:userde

bug/release-keys'

04-27 22:45:27.653 366 366 F DEBUG : Revision: '0'

04-27 22:45:27.653 366 366 F DEBUG : ABI: 'arm64'

04-27 22:45:27.653 366 366 F DEBUG : Timestamp: 2023-04-27
22:45:27.509738048+0000

04-27 22:45:27.653 366 366 F DEBUG : Process uptime: 2s

04-27 22:45:27.653 366 366 F DEBUG : Cmdline: /system/bin/surfaceflinger
04-27 22:45:27.653 366 366 F DEBUG : pid: 335, tid: 360, name:
surfaceflinger >>> /system/bin/surfaceflinger <<<

04-27 22:45:27.653 366 366 F DEBUG : uid: 1000

04-27 22:45:27.653 366 366 F DEBUG : tagged addr ctrl: 0000000000000001
(PR_TAGGED ADDR_ENABLE)

04-27 22:45:27.653 366 366 F DEBUG : signal 6 (SIGABRT), code -1
(SI_QUEUE), fault addr --------

04-27 22:45:27.653 366 366 F DEBUG : Abort message: 'no suitable EGLConfig
found, giving up'

04-27 22:45:27.653 366 366 F DEBUG H x0 0000000000000000 =x1
0000000000000168 x2 0000000000000006 x3 000000710899d340

04-27 22:45:27.654 366 366 F DEBUG : x4 7568661f2b636d74 x5

7568661f2b636d74 x6 7568661f2b636d74 x7 TE£TETETETETETETE

af://n794
af://n798

04-27 22:45:27.654 366 366 F DEBUG 2 x8 00000000000000f0 x9
000000739bcbdal00 x10 0000000000000001 x11 000000739bcff6al

04-27 22:45:27.654 366 366 F DEBUG 8 x12 000000710899d310 x13
0000000000000027 x14 000000710899d4e0 x15 00000000197bladf

04-27 22:45:27.654 366 366 F DEBUG g x16 000000739%0d6dd58 x17
000000739pd48770 x18 0000007108812000 x19 00000000000000ac

04-27 22:45:27.654 366 366 F DEBUG g x20 00000000000000b2 x21
000000000000014f x22 0000000000000168 x23 O00O0O0COOQffffffff

04-27 22:45:27.654 366 366 F DEBUG g x24 b4000071bbcab0b0 x25
000000710899dcb0 x26 000000710899dff8 x27 00000000000£e000

04-27 22:45:27.654 366 366 F DEBUG g %28 000000710899daf0 x29
000000710899d3c0

04-27 22:45:27.654 366 366 F DEBUG g lr 000000739bcef3f4 sp

00000071089ndroid.runtime/1ib64/bionic/libc.so (_ pthread start (void*)+208)
(BuildId: e2429c64ab29f2d0ffc5a8f42c0clb80)

04-27 22:45:27.655 366 366 F DEBUG : #09 pc 0000000000054c50
/apex/com.android.runtime/1lib64/bionic/libc.so (_ start thread+64) (BuildId:
€2429c64ab29£2d0f£fc5a8£42c0cl1b80)

This is because the ko of GPU is not match, you need recompile the ko file of GPU, and copy to the

corresponding directory under vendor/rockchip/common/gpu, the detail is as followed:

Modify kernel config in the product directory of device: PRODUCT KERNEL CONFIG := gki defconfig
rockchip_gki.config. And add the GPU configuration corresponding to the chip:

RK3588:

PRODUCT KERNEL CONFIG := gki defconfig rockchip gki.config
RK356X/RK3562:
PRODUCT KERNEL CONFIG
RK3326/RK3326-S:
PX30/PX30-S:

gki defconfig rockchip gki.config rk356x.config

PRODUCT KERNEL CONFIG := gki defconfig rockchip gki.config rk3326.config
RK3399:
PRODUCT KERNEL CONFIG := gki defconfig rockchip gki.config rk3399.config

rk3399.config should be modified as followed:

wlg@sys2 206:~/a0 Androidl3 gki/mkcombinedroot$ git diff configs/
diff --git a/configs/rk3399.config b/configs/rk3399.config
old mode 100644

new mode 100755

index 0d66674..a003bab

-—-- a/configs/rk3399.config

+++ b/configs/rk3399.config

@@ -1,4 +1,11 qa

-CONFIG MALI MIDGARD=y

+CONFIG MALI MIDGARD=m

+CONFIG MALI PLATFORM THIRDPARTY NAME="rk"

+CONFIG MALI PLATFORM THIRDPARTY=y

+CONFIG MALI DEBUG=y

+CONFIG MALI DEVFREQ=y

+CONFIG_MALI DT=y

+CONFIG MALI EXPERT=y

+CONFIG MALI SHARED INTERRUPTS=y

Then execute./build.sh -CK to compile kernel.

After finishing compiling, copy the corresponding mali ko to the vendor, please refer to above sections for

specific path.

8.7 kernel compiling error

Compiling error log:

BTF btf.vmlinux.bin.o

Segmentation fault (core dumped)

LD .tmp vmlinux.kallsymsl
KSYMS .tmp vmlinux.kallsymsl.S
AS .tmp vmlinux.kallsymsl.S
LD .tmp vmlinux.kallsyms2
KSYMS .tmp vmlinux.kallsyms2.S
AS .tmp vmlinux.kallsyms2.S
LD vmlinux

BTFIDS vmlinux

FAILED: load BTF from vmlinux: Unknown error -22Makefile:1293: recipe for target
'vmlinux' failed

make[1l]: *** [vmlinux] Error 255

arch/arm64/Makefile:214: recipe for target 'rk3588-evbl-lp4-v10.img' failed
make: *** [rk3588-evbl-1p4-v10.img] Error 2

failed to build some targets (21 seconds)

Resolution:

¢ Update latest pahole

git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.git
e Compile pahole
Install and compile dependency librariy.

sudo apt-get install cmake

sudo apt-get install libdw-dev

If you have installed pahole before, you need to uninstall it first.

sudo apt-get --purge remove dwarves
e Begin to compile

Execute in the ahole directory.

mkdir build

cd build/

cmake -D LIB=1ib -DBUILD SHARED LIBS=OFF .. Configure static compilation

sudo make install

pahole --version to check the version to make sure that it is installed sucessfully.

9. GKI compilation environment requirements

e Ubuntu version requires 20.04 and above

¢ pahole version requires 1.25

af://n806
af://n823

10. Debugging skills

10.1 Print more logs loaded by KO

Modify the value of ratelimit to print more logs of init, in order to debug the problems. If init informations are

few, the error informations loaded by ko will be hided.

xxx@sys2 206:~/a0_ Androidl3 gki/device/rockchip/common$ vim BoardConfig.mk
xxx@sys2 206:~/a0 Androidl3 gki/device/rockchip/commons$ git diff
diff --git a/BoardConfig.mk b/BoardConfig.mk
index 0d1c886..1761led0 100755
--- a/BoardConfig.mk
+++ b/BoardConfig.mk
@@ -392,3 +392,5 @@ ifeq ($(strip $(BOARDiBASEPARAMETERisUPPORT)), true)
endif
BOARD WITH_SPECIAL PARTITIONS := baseparameter:1M
endif
+
+BOARD KERNEL CMDLINE += printk.devkmsg=on

10.2 Compile GKI boot.img in RK kernel package

Compile kernel according to normal steps first, then generate arch/arm64/boot/Image.
Pack boot.img by following commands:
mkbootimg --kernel arch/arm64/boot/Image --header_version 4 --output ../mkcombinedroot/prebuilts/boot-

6.1.img

10.3 Check the kernel interface published by google

The standard kernel interface definition is in the android directory:

:~/a5 _google kenrel/common$ tree a
android/ arch/

wlg@sys2 206:~/a5 google kenrel/common$ tree android/
android/

abi gki aarcho64

abi gki aarch64 core

abi gki aarch64 db845c

abi gki aarch64 exynos

abi gki aarch64 fips140

abi gki aarch64 galaxy

abi gki aarch64 generic

abi gki aarch64 hikey960

abi gki aarch64 rockchip

abi gki aarch64 type visibility
abi gki aarch64 virtual device
abi gki aarch64.xml

abi gki modules_ exports

TTTTTTTTTTTTTT

abi gki modules protected

af://n829
af://n830
af://n833
af://n835

F— gki_aarch64 fipsl140 modules
F—— gki aarch64 modules
L— gki system dlkm modules

11. How to submit the kernel interface to upstream

If you need to add a new kernel interface, you can generate the corresponding patch, and submit the patch to

rockchip redmine to be examined and then submit it to google uniformly.

diff --git a/android/abi gki aarché64 rockchip b/android/abi_ gki aarch64 rockchip
index 85bd8bcl34cf..3344cf064e06 100644
--- a/android/abi gki aarché4 rockchip
+++ b/android/abi gki aarché64 rockchip
@@ -2144,6 +2144,15 @@
mmc_pwrseq register

mmc_pwrseq unregister

+
ES

required by r8168.ko
pci set mwi

pci clear mwi
proc_get parent data
skb checksum help
__skb gso segment
remove proc_subtree

pci choose state

+ o+ o+ o+ + o+ o+ o+

S

required by reboot-mode.ko
devres release

kernel kobj

12. How to update boot.img published by AOSP

Android AOSP updates boot.img and corresponding protected KO file regularly, the Android release link is as

followed:

https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds

After openning the link, find the latest release version of Android14-6.1, and then click corresponding boot-

6.1.img to download, as the picture shows:

af://n838
af://n841
https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds

Release build Debug build

Kernel
Release Tag / Source / . .
.g artifacts Certified GKI
date Licenses
0
2023-10- android14-6.1-2823-10_r1 kernel boot-6.1.1img
31 SHA1: 835b6458fa548d62264f boot-6.1 -gz.img
LICENSES boot-6.1-1z4.1img
2023-10- android14-6.1-2823-10_r2 kernel [boot—6.1.img(
31 SHA1: fffe3966fa735fa5b94b boot-6.1-gz.img
LICENSES boot-6.1-1z4.1img

After downloading the boot-6.1.img, copy it to:

mkcombinedroot/prebuilts/boot-6.1.1img

From Android14, AOSP publishes protected ko module synchronously, which needs to be download together,

and this ko file need to match with boot.img to load correctly.

Click the kernel link in the following picture to download system_dlkm_staging_archive.tar.gz.

Release build Debug build
Kernel
Release Tag / Source / . -
.g artifacts Certified GKI
date Licenses
0
2023-10- android14-6.1-2023-106_r1 kernel boot-6.1.img
31 SHAT: 835b6458fa548d62264f boot-6.1-gz.img
LICENSES 1 boot-6.1-1z4.img
2023-10- android14-6.1-2023-18_r2 kernel boot-6.1.img
31 SHA1: fffe3966fa735fa5b94b boot-6.1-gz.img
LICENSES boot-6.1-1z4.1img

Download and unzip system_dlkm_staging archive.tar.gz, and copy the unzipped ko file in flatten\lib\modules\

to:
kernel/prebuilts/6.1/arm64/

Note: Do not update the kernel/prebuilts/6.1/arm64/modules.load file, as doing so may cause the ko
modules to fail to load. The modules.load file might be overwritten when decompressing and replacing ko

modules. Be sure to check it after replacing.

13. How to pack vendor_boot.img solely

af://n851

e Stepl: compile the corresponding ko file in kernel.
e Step2: copy ko file into mkcombinedroot directory.
e Step3: copy vendor_boot.img into mkcombinedroot directory.

¢ Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to

vendor boot.img.
e Step5: flash vendor _boot.img to the device.

Now we introduce each steps in the following:

13.1 Step1: compile ko in kernel

¢ Enter kernel directory

Android14 + kernel6.1
cd kernel-6.1
e Export clang to the environment
export PATH=../prebuilts/clang/host/linux-x86/clang-r487747c/bin:SPATH
¢ Compile KO

make CROSS COMPILE=aarch64-linux-gnu- LLVM=1 LLVM IAS=1 ARCH=arm64 gki defconfig
rockchip gki.config && make CROSS COMPILE=aarch64-linux-gnu- LLVM=1 LLVM IAS=1
ARCH=arm64 rk3562-rk817-tablet-v10.img -j32

13.2 Step2: copy ko file into mkcombinedroot directory

llvm-objcopy --strip-debug drivers/xxx.ko

. ./mkcombinedroot/vendor ramdisk/lib/modules/xxx.ko

13.3 Step3: copy vendor_boot.img into mkcombinedroot directory

Compiling vendor_boot.img solely needs to copy a vendor_boot.img base pack, just like that compiling
boot.img solely needs a boot_sample.img. This vendor_boot.img needs to be the same with the vendor_boot.img

in the device you prepare to update, which can be copied from GKI firmware.

13.4 Step4: enter the mkcombinedroot directory and execute
mkgki4.sh script, then update ko and compile it to vendor_boot.img

cd ../mkcombinedroot/

Compile vendor boot.img, thereinto:

af://n864
af://n878
af://n880
af://n882

¢ DTS=board-level dts name, dts needs to use the load name defined in res/board/.
./mkgkid.sh DTS=rk3568-evbl-ddrd-v10

After compiling, there will be new_vendor boot.img generated in the mkcombinedroot root directory.

13.5 StepS: flash vendor_boot.img to the device

¢ Flash mkcombinedroot/new vendor boot.img file to the device and boot to verify.
Generally, GKI firmware is AB firmware, so when flashing new_vendor_boot.img, you need update
vendor_boot a and vendor_boot b partitions at the same time. If the device has been in fastboot mode due
to multiple abnormal restarts before flashing, you need to flash misc.img at the same time. Only the mark
in misc partition is cleaned, can the device boot, the reference commands of flash tools in ubuntu are as

followed:

sudo ./upgrade tool di -vendor boot a
mkcombinedroot/new vendor boot.img/vendor boot.img
sudo ./upgrade tool di -vendor boot b
mkcombinedroot/new vendor boot.img/vendor boot.img;

sudo ./upgrade tool rd

¢ If the ko is put in vendor partition, then it can be pushed to the vendor partition of device directly after
system enabled, and mount manually to verify.

o Ifit's related to dts modification, you need to flash resource.img in kernel-6.1.

af://n890

	Rockchip Android 14 GKI Developer Guide
	GKI Introduction
	What is GKI
	What products need GKI
	The difference of GKI and non-GKI

	Rockchip Android14 GKI Adaptation
	Google upstream kernel download and compile
	Introduction to GKI related directories of Rockchip SDK
	Requirements for GKI Compilation Environment
	Rockchip GKI Compile
	Code Modify
	Compile
	Firmware Flash

	KO Compile and Modify
	Method of adding new module drivers

	Uboot log verification
	uboot stage
	Android stage
	KO loading
	KO loading error
	bootcmdline parsing error
	Fail to load Mali KO
	kernel compiling error

	GKI compilation environment requirements
	Debugging skills
	Print more logs loaded by KO
	Compile GKI boot.img in RK kernel package
	Check the kernel interface published by google

	How to submit the kernel interface to upstream
	How to update boot.img published by AOSP
	How to pack vendor_boot.img solely
	Step1: compile ko in kernel
	Step2: copy ko file into mkcombinedroot directory
	Step3: copy vendor_boot.img into mkcombinedroot directory
	Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to vendor_boot.img
	Step5: flash vendor_boot.img to the device

