
Rockchip Android 14.0 SDK开发指南
文件标识：RK-KF-YF-776

发布版本：V1.4.0

日期：2024-06-12

文件密级：□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按“现状”提供，瑞芯微电子股份有限公司（“本公司”，下同）不对本文档的任何陈述、信息和内
容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本
文档仅作为使用指导的参考。

由于产品版本升级或其他原因，本文档将可能在未经任何通知的情况下，不定期进行更新或修改。

商标声明

“Rockchip”、“瑞芯微”、“瑞芯”均为本公司的注册商标，归本公司所有。

本文档可能提及的其他所有注册商标或商标，由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴，非经本公司书面许可，任何单位和个人不得擅自摘抄、复制本文档内容的部分或全
部，并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址： 福建省福州市铜盘路软件园A区18号

网址： www.rock-chips.com

客户服务电话： +86-4007-700-590

客户服务传真： +86-591-83951833

客户服务邮箱： fae@rock-chips.com

前言

概述

本文提供一个标准模板供套用。后续模板以此份文档为基础改动。

读者对象

本文档（本指南）主要适用于以下工程师：

技术支持工程师

软件开发工程师

修订记录

af://n3714
http://www.rock-chips.com/
mailto:fae@rock-chips.com

版本号	作者	修改日期	修改说明
V1.0.0	吴良清	2023-10-31	发布支持RK3562的RKR1版本SDK
V1.1.0	吴良清	2024-01-08	发布支持RK3568和RK3566的RKR2版本SDK
V1.2.0	吴良清	2024-02-08	发布支持RK3326、RK3326-S、PX30、PX30-S的RKR3版本SDK
V1.3.0	吴良清	2024-04-22	发布支持RK3588的RKR4版本SDK
V1.4.0	吴良清	2024-06-12	发布支持RK3399的RKR5版本SDK

文档问题反馈：wlq@rock-chips.com

目录

Rockchip Android 14.0 SDK开发指南
Rockchip Android 14.0 SDK支持芯片
Rockchip Android 14.0 SDK代码下载编译

代码下载
下载地址
服务器镜像下载

搭建自己的repo代码服务器
环境
gitolite搭建

服务器端操作
客户端操作

repo镜像搭建
服务器端操作
客户端操作

客户端操作
代码管理

切换自己的代码分支
代码修改提交
同步RK的代码

kernel代码路径说明
代码编译

Lunch项说明
一键编译命令

各个平台编译命令汇总
GKI

其他编译说明
Android14.0不能直接烧写kernel.img和resource.img
单独编译kernel生成boot.img

固件烧写
固件烧写工具
固件说明
固件说明

Generic Kernel Image（GKI）
fastboot烧写动态分区

使用DTBO功能
修改fstab文件
修改parameter.txt
Android常用配置

新建产品lunch
Kernel dts说明

新建产品dts
补丁发布
文档说明

外设支持列表

mailto:wlq@rock-chips.com

Camera IQ Tool文档
rknn-toolkit2开发SDK和文档
RKDocs文档说明

工具使用
StressTest

模块相关
非模块相关

PCBA测试工具
DeviceTest
USB驱动
开发烧写工具

Windows版本
Linux版本

SD升级启动制作工具
写号工具
DDR焊接测试工具
efuse烧写工具
efuse/otp签名工具
工厂生产固件烧写工具
userdata分区数据预置工具
Camera IQ Tool

系统调试
ADB工具
概述

USB adb使用说明
ADB常用命令详解
Logcat工具

Logcat命令使用
常用的日志过滤方式
Procrank工具

使用procrank
检索指定内容信息
跟踪进程内存状态

Dumpsys工具
使用Dumpsys

Last log 开启
FIQ模式

常见问题
当前kernel和u-boot版本？
如何获取当前SDK对应的RK release版本
如何确认本地SDK已经完整更新RK发布的SDK状态
uboot和kernel阶段logo图片替换
如何修改Android系统仅支持64位系统
关机充电和低电预充
Uboot阶段充电图片打包和替换
HDMI IN配置
RM310 4G配置
WIFI休眠策略配置
Recovery旋转配置
Android Surface旋转
替换 AOSP 部分源代码的 remote
Data区读写速率的优化
userdata区文件系统换为EXT4
修改开关机动画和开关机铃声
APP设置性能模式
GPU相关问题排查方法
OTP和efuse说明
代码中如何判断设备的OTP/EFUSE是否已经烧写

芯片平台 是否支持 SDK版本

RK3562 支持 RKR1

RK3568 支持 RKR2

RK3566 支持 RKR2

RK3326 支持 RKR2

PX30 支持 RKR3

RK3326-S 支持 RKR3

PX30-S 支持 RKR3

RK3588 支持 RKR4

RK3588S 支持 RKR4

RK3399 支持 RKR5

开关selinux
开机弹出”Android系统出现问题”警告
如何打开设置中以太网的设置项
关于AVB和security boot的操作
IO命令无法使用
SN号的命令规则
Kernel编译报LZ4的错误
Android Samba功能
NFS启动
RK3528 DDR 4BIT Loader修改

多屏异显异触
多屏异声
附录 A 编译开发环境搭建 Compiling and development environment setup

Initializing a Build Environment
Choosing a Branch
Setting up a Linux build environment
Installing the JDK
Configuring USB Access

附录 B SSH公钥操作说明 SSH public key operation instruction
附录 B-1 SSH公钥生成 SSH public key generation
附录 B-2 使用key-chain管理密钥 Use key-chain to manage the key
附录 B-3 多台机器使用相同ssh公钥 Multiple devices use the same ssh public key
附录 B-4 一台机器切换不同ssh公钥 Switch different ssh public keys on one device
附录 B-5 密钥权限管理 Key authority management
附录 B-6 Git权限申请说明 Git authority application instruction

Rockchip Android 14.0 SDK支持芯片

Rockchip Android 14.0 SDK代码下载编译

af://n3751
af://n3799

代码下载

下载地址

如果申请的Express的权限，那么下载地址如下：

服务器镜像下载

如果申请的Express的权限，那么下载地址如下：

注，repo是google用Python脚本写的调用git的一个脚本，主要是用来下载、管理Android项目的软件
仓库，其下载地址如下：

为方便客户快速获取SDK源码，瑞芯微技术窗口通常会提供对应版本的SDK初始压缩包。以
Rockchip_Android14.0_SDK_RELEASE.tar.gz.*`为例，拷贝到该初始化包后，通过如下命令可检出源
码：

搭建自己的repo代码服务器

环境

安装 openssh-server 用于远程登录， git 用于管理工程， keychain 用于公私钥管理工具

gitolite搭建

repo init --repo-url https://gerrit.rock-chips.com:8443/repo-release/tools/repo

-u https://gerrit.rock-chips.com:8443/Android_U/manifests -b master -m

Android14.xml

repo init --repo-url https://gerrit.rock-chips.com:8443/repo-release/tools/repo

-u https://gerrit.rock-chips.com:8443/Android_U/manifests -b master -m

Android14_Express.xml

repo init --repo-url https://gerrit.rock-chips.com:8443/repo-release/tools/repo

-u https://gerrit.rock-chips.com:8443/Android_U/manifests -b master -m

Android14.xml --mirror

repo init --repo-url https://gerrit.rock-chips.com:8443/repo-release/tools/repo

-u https://gerrit.rock-chips.com:8443/Android_U/manifests -b master -m

Android14_Express.xml --mirror

git clone https://gerrit.rock-chips.com:8443/repo-release/tools/repo

mkdir Rockchip_Android14.0_SDK_RELEASE

cat Rockchip_Android14.0_SDK_RELEASE.tar.gz* | tar -zx -C

Rockchip_Android14.0_SDK_RELEASE

cd Rockchip_Android14.0_SDK_RELEASE

.repo/repo/repo sync -l

.repo/repo/repo sync -c

sudo apt-get install openssh-server git keychain

af://n3800
af://n3801
af://n3805
af://n3813
af://n3814
af://n3817

服务器端操作

（以服务器地址：10.10.10.206为例进行说明）

1. 创建git账户：

2. 以“git”账户登录服务器
3. 确保“~/.ssh/authorized_keys”为空或者不存在
4. 拷贝服务器管理员的公钥到“~/YourName.pub”
5. 下载gitolite源码

6. 在git用户目录下创建bin目录

7. 执行下列命令安装gitolite，不同版本安装方法不同，请参考源码中的文档：

8. 设置管理员

客户端操作

1. 克隆服务器的gitolite管理仓库：

2. 添加用户公钥到gitolite目录下

3. 添加管理员用户

repo镜像搭建

服务器端操作

1. 用git账号登入服务器
2. 在根目录下载repo工具

sudo adduser --system --shell /bin/bash --group git

sudo passwd git

git clone https://github.com/sitaramc/gitolite.git

mkdir -p ~/bin

gitolite/install -to ~/bin

~/bin/gitolite setup -pk YourName.pub

git clone ssh://git@10.10.10.206/gitolite-admin.git

cp username.pub keydir/username.pub

vi conf/gitolite.conf

@admin = admin1 admin2 admin3

repo gitolite-admin

RW+ = @admin

af://n3818
af://n3846
af://n3859
af://n3860

3. 新建RK_Android14_mirror目录

4. 进入 RK_Android14_mirror目录

5. 下载RK Android14 SDK镜像

6. 创建仓库组权限

客户端操作

1. 将服务器端的android_u.conf拷贝到客户端的·gitolite-admin/conf/·下
2. 添加组权限

3. 新建自己的manifests仓库

客户端操作

1. 在客户端下载manifests_xxx仓库
在其他客户端电脑上下载manifests_xxx.git仓库

2. 在客户端下载原始manifests仓库

git clone https://gerrit.rock-chips.com:8443/repo-release/tools/repo

mkdir RK_Android14_mirror

cd RK_Android14_mirror

repo init --repo-url https://gerrit.rock-chips.com:8443/repo-release/tools/repo

-u https://gerrit.rock-chips.com:8443/Android_U/manifests -b master -m

Android14.xml --mirror

.repo/repo/repo list -n > android_u.conf

sed -i 's/^/@android_u = RK_Android14_mirror\/&/g' android_u.conf

vi conf/android_u.conf

@usergroup = user1 user2 user3

repo @android_u

R = @usergroup

RW+ = @admin

vi conf/gitolite.conf

include "android_u.conf"

vi conf/android_u.conf

@android_u = Android_T/manifests_xxx

git clone ssh://git@10.10.10.206/Android_u/manifests_xxx.git

git clone ssh://git@10.10.10.206/Android_U/manifests.git

af://n3883
af://n3895

3. 提交manifest.xml文件到新建的manifest_xxx仓库中
将原始manifests下面的文件拷贝到的manifests_xxx内

查看拷贝文件

 本地提交

 push到远程分支

4. 创建自己的代码下载链接
在根目录下下载repo工具

按以上步骤操作后，自己的代码下载链接如下

其中：
//10.10.10.206 是你的服务器端地址

通过以上步骤就可以完成自己的repo服务器搭建了，可以把自己的代码服务器链接分享给同事们一起工
作了。

代码管理

通过以上步骤搭建代码服务器后大部分代码仓库都使用RK默认的分支，如果有仓库需要修改自己的代
码，可以参考下面的步骤进行操作。

切换自己的代码分支

cd manifests_xxx

cp -rf manifests/*.xml manifests_xxx/

git status

 Android14.xml

 Android14_Express.xml

 default.xml

 include/rk3562_repository.xml

 include/rk_checkout_from_aosp.xml

 include/rk_modules_repository.xml

 remote.xml

 remove_u.xml

 remove_unused.xml

 git add -A

 git commit -m "init xxx"

 git push origin master:master

git clone https://gerrit.rock-chips.com:8443/repo-release/tools/repo

mkdir Android14

cd Android14

~/repo/repo init -u ssh://git@10.10.10.206/Android_U/manifests_xxx.git -m

Android14.xml

af://n3921
af://n3923

1. 进入需要修改的代码仓库，以kernel目录为例进行说明

2. 切换一个本地分支

3. push xxx_branch分支到远程服务器

其中 rk29 是remote 可以直接tab键自动补全

4. 进入.repo/manifests目录修改manifest里面指定的分支
进入.repo/manifests目录通过grep kernel可以找到kernel仓库对应的manifest的位置

5. 提交修改的manifest到远程分支

提交manifests仓库后，其他同事就可以同步到你们自己的分支的kernel代码了。

代码修改提交

按上面步骤切换完分支后就可以在自己分支上提交自己的修改了， 提交直接push到xxx_branch分支上
面。

同步RK的代码

cd kernel-6.1

git checkout remotes/m/master -b xxx_branch

git push rk29 xxx_branch:xxx_branch

cd .repo/manifests

--- a/include/rk_modules_repository.xml

+++ b/include/rk_modules_repository.xml

@@ -10,7 +10,7 @@

 <project path="hardware/rockchip/libgraphicpolicy"

name="rk/hardware/rk29/libgraphicpolicy" remote="rk"

revision="refs/tags/android-1s.0-mid-rkr1" />

 <project path="hardware/rockchip/libhwjpeg" name="rk/hardware/rk29/libhwjpeg"

remote="rk" revision="refs/tags/android-14.0-mid-rkr1"/>

 <project path="u-boot" name="rk/u-boot" remote="rk"

revision="refs/tags/android-14.0-mid-rkr1"/>

- <project path="kernel" name="rk/kernel" remote="rk29"

revision="refs/tags/android-14.0-mid-rkr1"/>

+ <project path="kernel" name="rk/kernel" remote="rk29" revision="xxx_branch"/>

 <project path="bootable/recovery/rkupdate"

name="platform/bootable/recovery/rk_update" remote="rk"

revision="refs/tags/android-14.0-mid-rkr1"/>

 <project path="bootable/recovery/rkutility"

name="platform/bootable/recovery/rk_utility" remote="rk"

revision="refs/tags/android-14.0-mid-rkr1"/>

git add include/rk_modules_repository.xml

git commit -m "change kernel branch on xxx_branch"

git push origin default:master

af://n3947
af://n3949

1. 同步RK代码需要在服务器端进行sync操作

2. 客户端合并RK对manifests的修改

下载RK原始manifests仓库

使用对比工具对比manifests（RK原始）和manifests_xxx(自己的)，将RK修改的差异部分合并到自己的
仓库中（主要修改tag，增加删除仓库等）。

对比确认后将修改push到manifests_xxx上。

这步也可以确认自己修改了哪些仓库，在下一步中将进行修改仓库的合并。

3. 有自己切分支的目录需要手动把RK的修改merge到自己的分支上面
以kernel为例：

查看当前指向的远程分支

可以看到当前指向的是： remotes/m/master -> rk29/xxx_branch

创建本地分支（从自己的远程分支上切）

确认当前RK发布的最新TAG

cd RK_Android14_mirror

.repo/repo/repo sync -c

git clone //10.10.10.206/wlq/test/manifests.git

wlq@wlq:~/home1/test2/kernel-6.1$ git branch -av

* android-11.0-mid-rkr7 0bde59fad73a ARM: configs: rockchip_defconfig enable

ION_CMA_HEAP

 xxx_branch 0bde59fad73a ARM: configs: rockchip_defconfig enable

ION_CMA_HEAP

 remotes/m/master -> rk29/xxx_branch

 remotes/rk29/xxx_branch 0bde59fad73a ARM: configs: rockchip_defconfig enable

ION_CMA_HEAP

git checkout remotes/m/xxx_branch -b local_xxx_branch

wlq@wlq:~/home1/test2/kernel$ git tag | grep rkr

android-10.0-mid-rkr1

android-10.0-mid-rkr10

android-10.0-mid-rkr11

android-10.0-mid-rkr13

android-10.0-mid-rkr2

android-10.0-mid-rkr3

android-10.0-mid-rkr4

android-10.0-mid-rkr5

android-10.0-mid-rkr6

android-10.0-mid-rkr7

android-10.0-mid-rkr8

android-10.0-mid-rkr9

android-11.0-ebook-rkr1

可以看到当前最新的Android14的tag是 android-14.0-mid-rkr1

合并 android-14.0-mid-rkr1 到本地分支

查看是否有冲突，如果有冲突先解决冲突，没有冲突在执行下一步

push合并完的代码到远程分支

其他切分的目录都按这个方式进行合并提交即可

kernel代码路径说明

Android14支持6.1 版本的kernel，kernel源码在工程中kernel-6.1目录下，

代码编译

Lunch项说明

android-11.0-ebook-rkr2

android-11.0-ebook-rkr3

android-11.0-ebook-rkr4

android-11.0-ebook-rkr5

android-11.0-ebook-rkr6

android-11.0-mid-rkr1

android-11.0-mid-rkr2

android-11.0-mid-rkr3

android-11.0-mid-rkr4

android-11.0-mid-rkr4.1

android-11.0-mid-rkr5

android-11.0-mid-rkr6

android-11.0-mid-rkr7

android-11.0-mid-rkr7-prev

android-11.0-mid-rkr8

android-14.0-mid-rkr1

git merge android-14.0-mid-rkr1

git push rk29 local_xxx_branch:xxx_branch

af://n3996
af://n3998
af://n3999

lunch项 适应芯片 其他说明

rk3588_u-
user

RK3588
适用于Android14的产品，适配RK3588开发板硬件，默认
启用GKI，编译的是user版本，生产时使用，Android系统
仅支持64位

rk3588_u-
userdebug

RK3588
适用于Android14的产品，硬件适配RK3588开发板，默认
启用GKI，编译的是userdebug版本，开发调试时使用，
Android系统仅支持64位

rk3588s_u-
user

RK3588s
适用于Android14的产品，适配RK3588s开发板硬件，默
认启用GKI，编译的是user版本，生产时使用，Android系
统仅支持64位

rk3588s_u-
userdebug

RK3588s
适用于Android14的产品，硬件适配RK3588s开发板，默
认启用GKI，编译的是userdebug版本，开发调试时使
用，Android系统仅支持64位

rk3562_u-
user

RK3562
适用于Android14的产品，适配RK3562开发板硬件，默认
启用GKI，编译的是user版本，生产时使用，Android系统
仅支持64位

rk3562_u-
userdebug

RK3562
适用于Android14的产品，硬件适配RK3562开发板，默认
启用GKI，编译的是userdebug版本，开发调试时使用，
Android系统仅支持64位

rk3562_ugo-
user

RK3562
适用于Android14的产品，适用于2G内存的硬件，默认启
用GKI，默认配置打开GO配置，编译的是user版本，生产
时使用，Android系统仅支持64位

rk3562_ugo-
userdebug

RK3562
适用于Android14的产品，适用于2G内存的硬件，默认启
用GKI，默认配置打开GO配置，编译的是userdebug版
本，开发调试时使用，Android系统仅支持64位

rk3566_ugo-
userdebug

RK3566
适用于Android14的产品，适用于2G内存的硬件，默认启
用GKI，默认配置打开GO配置，编译的是userdebug版
本，开发调试时使用，Android系统仅支持64位

rk3566_ugo-
user

RK3566
适用于Android14的产品，适用于2G内存的硬件，默认启
用GKI，默认配置打开GO配置，编译的是user版本，生产
时使用，Android系统仅支持64位

rk3566_u-
user

RK3566
适用于Android14的产品，硬件适配RK3566开发板，默认
启用GKI，编译的是user版本，生产时使用，Android系统
仅支持64位

rk3566_u-
userdebug

RK3566
适用于Android14的产品，硬件适配RK3566开发板，默认
启用GKI，编译的是userdebug版本，开发调试时使用，
Android系统仅支持64位

rk3568_u-
user

RK3568
适用于Android14的产品，硬件适配RK3568开发板，默认
启用GKI，编译的是user版本，生产时使用，Android系统
仅支持64位

lunch项 适应芯片 其他说明

rk3568_u-
userdebug

RK3568
适用于Android14的产品，硬件适配RK3568开发板，默认
启用GKI，编译的是userdebug版本，开发调试时使用，
Android系统仅支持64位

rk3326_ugo-
userdebug

RK3326/rk3326-
s

适用于Android14的产品，硬件适配RK3326和RK3326-S
开发板，默认启用GKI，编译的是userdebug版本，开发
调试时使用，Android系统仅支持64位

rk3326_ugo-
user

RK3326/RK3326-
S

适用于Android14的产品，适用于2G内存的硬件，默认启
用GKI，默认配置打开GO配置，编译的是user版本，生产
时使用，Android系统仅支持64位

rk3326_u-
userdebug

RK3326/rk3326-
s

适用于Android14的产品，硬件适配RK3326和RK3326-S
开发板，默认启用GKI，编译的是userdebug版本，开发
调试时使用，Android系统仅支持64位

rk3326_u-
user

RK3326/RK3326-
S

适用于Android14的产品，硬件适配RK3326和RK3326-S
开发板，默认启用GKI，默认配置打开GO配置，编译的是
user版本，生产时使用，Android系统仅支持64位

PX30_u-
userdebug

PX30/PX30-S
适用于Android14的产品，硬件适配PX30和PX30-S开发
板，默认启用GKI，编译的是user版本，生产时使用，
Android系统仅支持64位

PX30_u-user PX30/PX30-S
适用于Android14的产品，硬件适配PX30和PX30-S开发
板，默认启用GKI，编译的是user版本，生产时使用，
Android系统仅支持64位

rk3399_u-
userdebug

RK3399
适用于Android14的产品，硬件适配RK3399行业开发板和
挖掘机，默认启用GKI，user版本，生产时使用，Android
系统仅支持64位

rk3399_u-
user

RK3399
适用于Android14的产品，硬件适配RK3399行业开发板和
挖掘机，默认启用GKI，编译的是user版本，生产时使
用，Android系统仅支持64位

一键编译命令

./build.sh -UKAup

（ WHERE: -U = build uboot

 -C = build kernel with Clang

 -K = build kernel

 -A = build android

 -p = will build packaging in IMAGE

 -o = build OTA package

 -u = build update.img

 -v = build android with 'user' or 'userdebug'

 -d = huild kernel dts name

 -V = build version

 -J = build jobs

 ------------大家可以按需使用，不用记录uboot/kernel编译命令了------------------

 ）

==

af://n4094

Soc
类
型

参考机型 Android 一键编译 kernel编译
uboot编
译

RK3562
开
发
板

rk3562-
evb1-lp4x-
v10

build/envsetup.sh;lunch
rk3562_u-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3562
平
板

样机
build/envsetup.sh;lunch
rk3562_ugo-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3566
平
板

样机
build/envsetup.sh;lunch
rk3566_ugo-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3566
开
发
板

EVB2-LP4X-
V10

build/envsetup.sh;lunch
rk3566_u-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3568
开
发
板

EVB1-
DDR4-V10

build/envsetup.sh;lunch
rk3568_u-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3326/RK3326-
S

开
发
板

EVB-V12
build/envsetup.sh;lunch
rk3326_u-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3326/RK3326-
S

样
机

平板
build/envsetup.sh;lunch
rk3326_ugo-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

PX30/PX30-S
开
发
板

MINI EVB
build/envsetup.sh;lunch
PX30_u-userdebug

./build.sh -
AUCKu

./build.sh -K
./build.sh
-U

RK3399

行
业
开
发
板

rk3399-
evb-ind-
lpddr4-v13-
android-
avb

build/envsetup.sh;lunch
rk3399_u-userdebug

./build.sh -
AUCKu

./build.sh -K
./make.sh
rk3399

RK3399
挖
掘
机

rk3399-
sapphire-
excavator-
edp-avb

build/envsetup.sh;lunch
rk3399_u-userdebug

./build.sh -
AUCKu -d
rk3399-
sapphire-
excavator-
edp-avb

./build.sh -K
-d rk3399-
sapphire-
excavator-
edp-avb

./make.sh
rk3399

各个平台编译命令汇总

GKI

RK3566/RK3568/RK3562 Android14 SDK默认开启GKI，且默认启用AB功能。如需要关掉GKI功能可以
按如下修改：（以RK3562平台为例说明）

请注意使用一键编译命令之前需要设置环境变量，选择好自己需要编译的平台，举例：

source build/envsetup.sh

lunch rk3588_u-userdebug

==

wlq@sys2206:~/b0_A14_bringup/device/rockchip/rk3562$ git diff

diff --git a/rk3562_u/BoardConfig.mk b/rk3562_u/BoardConfig.mk

index dc9cc50..a6657dd 100644

--- a/rk3562_u/BoardConfig.mk

+++ b/rk3562_u/BoardConfig.mk

@@ -16,7 +16,7 @@

 BUILD_WITH_GO_OPT := true

 PRODUCT_KERNEL_DTS := rk3562-rk817-tablet-v10

af://n4096
af://n4187

BOARD_BUILD_GKI := false后会自动关掉AB功能。

关于GKI的kernel编译、ko更新等说明可以参考文档
RKDocs/android/《Rockchip_Developer_Guide_Android14_GKI_CN》

其他编译说明

Android14.0不能直接烧写kernel.img和resource.img

以下编译仅适用于非GKI，GKI的请参考文档RKDocs/android/
《Rockchip_Developer_Guide_Android14_GKI_CN》
Android14.0的kernel.img和resource.img包含在boot.img中，需要使用build.sh -AK 命令来编译
kernel。编译后烧写rockdev下面的boot.img。也可以使用如下方法单独编译kernel。这个过程会重新
编译Android，所以编译时间会比较长，建议用下面单独编译kernel的方式的编译。

单独编译kernel生成boot.img

编译的原理：在kernel目录下将编译生成的 kernel.img 和 resource.img 替换到旧的 boot.img 中。

以 RK3562 样机为例，编译时替换对应的boot.img及dts：

其中 BOOT_IMG=../rockdev/Image-rk3562_u/boot.img 这里指定的是旧的boot.img的路径，命令如

下：

导clang到环境

编译后可以直接烧写kernel-6.1目录下的boot.img到机器的boot位置，烧写时请先加载分区表
（parameter.txt），以免烧写位置错误。

固件烧写

固件烧写工具

Android14的USB驱动DriverAssitant需要更新到V5.1.1版本，可以参考下面的工具章节进行更新。
Windows烧写工具：（工具是时刻更新，请及时同步更新）

 CAMERA_SUPPORT_AUTOFOCUS := true

-BOARD_BUILD_GKI := true

+BOARD_BUILD_GKI := false

 include device/rockchip/rk3562/BoardConfig.mk

 DEVICE_IS_64BIT_ONLY := true

cd kernel-6.1

export PATH=../prebuilts/clang/host/linux-x86/clang-r487747c/bin:$PATH

alias msk='make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1'

rk3562:

msk ARCH=arm64 rockchip_defconfig android-14.config rk356x.config && msk

ARCH=arm64 BOOT_IMG=../rockdev/Image-rk3562_t/boot.img rk3562-evb1-lp4x-v10.img

-j32

RKTools/windows/AndroidTool/AndroidTool_Release_v3.28

af://n4192
af://n4193
af://n4195
af://n4201
af://n4202

在下文工具说明章节有详细说明

固件说明

完整编译后会生成如下文件：

工具烧写如下文件即可：

也可以直接烧写 update.img

RKTools/linux/Linux_Upgrade_Tool/Linux_Upgrade_Tool_v2.30

rockdev/Image-rk3562_u/

├── boot-debug.img

├── boot.img

├── config.cfg

├── dtbo.img

├── MiniLoaderAll.bin

├── misc.img

├── parameter.txt

├── pcba_small_misc.img

├── pcba_whole_misc.img

├── recovery.img

├── resource.img

├── super.img

├── uboot.img

├── update.img

└── vbmeta.img

rockdev/Image-rk3562_u/

├── boot.img

├── dtbo.img

├── MiniLoaderAll.bin

├── misc.img

├── parameter.txt

├── recovery.img

├── super.img

├── uboot.img

└── vbmeta.img

af://n4208

固件 说明

boot.img 包含ramdis、kernel、dtb

boot-debug.img
与boot.img的差别是user固件可以烧写这个boot.img进行root权限操
作

dtbo.img Device Tree Overlays 参考下面的dtbo章节说明

config.cfg 烧写工具的配置文件 ，可以直接导入烧写工具显示需要烧写的选项

MiniLoaderAll.bin 包含一级loader

misc.img 包含recovery-wipe开机标识信息，烧写后会进行recovery

parameter.txt 包含分区信息

固件 说明

------------------- ---

pcba_small_misc.img 包含pcba开机标识信息，烧写后会进入简易版pcba模式

pcba_whole_misc.img 包含pcba开机标识信息，烧写后会进入完整版pcba模式

recovery.img 包含recovery-ramdis、kernel、dtb

super.img 包含odm、product、vendor、system、system_ext分区内容

trust.img 包含BL31、BL32 RK3566/RK3568没有生成这个固件，不需要烧写

uboot.img 包含uboot固件

vbmeta.img 包含avb校验信息，用于AVB校验

update.img 包含以上需要烧写的img文件，可以用于工具直接烧写整个固件包

固件说明

Generic Kernel Image（GKI）

Android14过GMS和EDLA认证的产品都强制kernel使用GKI，GKI的配置和编译具体参考文档
RKDocs/android/Rockchip_Developer_Guide_Android14_GKI_CN.pdf

fastboot烧写动态分区

R的新设备支持动态分区，已经移除了system/vendor/odm/product/system_ext分区，请烧写
super.img，单独烧写system/vendor/odm等（可以在out下面找到对应img文件）可以用
fastbootd ，要求adb和fastboot版本均为最新，SDK提供了编译好的工具包：

使用命令烧写动态分区：

RKTools/linux/Linux_adb_fastboot (Linux_x86版本)

RKTools/windows/adb_fastboot (Windows_x86版本)

af://n4214
af://n4270
af://n4272

注：进入fastbootd模式后，屏幕上会显示相关设备信息，如图所示：

注：非动态分区使用fastboot，请进入bootloader:

烧写GSI的方法：

确认机器解锁后，进入fastbootd，只需要烧写GSI中的system.img及固件中的misc.img，烧写后
会进入recovery进行恢复出厂设置。下面附上整个烧写流程：

1. 重启至bootloader，未解锁->机器解锁：

2. 恢复出厂设置，重启至fastbootd：

3. 开始烧写GSI

adb reboot fastboot

fastboot flash vendor vendor.img

fastboot flash system system.img

fastboot flash odm odm.img

adb reboot bootloader

adb reboot bootloader

fastboot oem at-unlock-vboot ## 对于烧写过avb公钥的客户，请参考对应的文档解锁。

fastboot flash misc misc.img

fastboot reboot fastboot ## 此时将进入fastbootd

注：也可以使用DSU(Dynamic System Updates)烧写GSI，目前Rockchip平台已经默认支持
DSU。由于该功能需要消耗大量内存，不建议1G DDR及以下的设备使用，有关DSU的说明和使
用，请参考Android官网：
https://source.android.com/devices/tech/ota/dynamic-system-updates
注1：VTS测试时，需要同时烧写编译出的boot-debug.img到boot分区；
注2：CTS-ON-GSI测试时则不需要烧boot-debug.img；
注3：测试时请使用Google官方发布的，带有-signed结尾的GSI镜像；

使用DTBO功能

Android 10.0及以上支持Device Tree Overlays功能，开发过程体现在需要烧写dtbo.img，用于多个产
品间的兼容等。
修改方法：

1. 找到(或指定)模板文件：

例如：

2. 添加或修改需要的节点：
例如：

fastboot delete-logical-partition product ## (可选)对于分区空间紧张的设备，可以先执行

本条命令删除product分区后再烧写GSI

fastboot flash system system.img

fastboot reboot ## 烧写成功后，重启

get_build_var PRODUCT_DTBO_TEMPLATE

PRODUCT_DTBO_TEMPLATE := $(LOCAL_PATH)/dt-

overlay.in(device/rockchip/rk388/rk3588_u/dt-overlay.in)

/dts-v1/;

/plugin/;

&chosen {

 bootargs_ext = "androidboot.boot_devices=${_boot_device}";

};

&firmware_android {

 vbmeta {

 status = "disabled";

 };

 fstab {

 status = "disabled";

 };

};

&reboot_mode {

 mode-bootloader = <0x5242C309>;

 mode-charge = <0x5242C30B>;

 mode-fastboot = <0x5242C303>;

 mode-loader = <0x5242C301>;

 mode-normal = <0x5242C300>;

 mode-recovery = <0x5242C303>;

https://source.android.com/devices/tech/ota/dynamic-system-updates
af://n4307

注: 使用dtbo时一定要确保dts中存在alias，否则无法成功overlay

修改fstab文件

1. 找到(或指定)模板文件：

例如：

2. 修改：添加分区挂载、修改swap_zram参数，修改data分区格式等

修改parameter.txt

Android 14添加了生成parameter.txt的工具，支持根据配置参数编译出parameter.txt。如果没有配置
模板文件，则会寻找添加修改好的parameter.txt文件。

1. 找到(或指定)模板文件：

例如：

2. 修改配置分区大小(例如)：

3. 不使用parameter生成工具：
添加一个parameter.txt文件到你的device目录下即可：
例如：device/rockchip/rk3326/rk3326_u/parameter.txt

4. 仅使用工具生成parameter.txt(例如)：

注: 如果需要大版本OTA升级，请直接使用之前版本的parameter.txt

};

get_build_var PRODUCT_FSTAB_TEMPLATE

PRODUCT_FSTAB_TEMPLATE := device/rockchip/common/scripts/fstab_tools/fstab.in

get_build_var PRODUCT_PARAMETER_TEMPLATE

PRODUCT_PARAMETER_TEMPLATE :=

device/rockchip/common/scripts/parameter_tools/parameter.in

BOARD_SUPER_PARTITION_SIZE := 2688548864

BOARD_DTBOIMG_PARTITION_SIZE := xxxx

BOARD_BOOTIMAGE_PARTITION_SIZE := xxxxx

BOARD_CACHEIMAGE_PARTITION_SIZE := xxxx

parameter_tools --input

device/rockchip/common/scripts/parameter_tools/parameter.in --firmware-version

14.0 --machine-model rk3326 --manufacturer rockchip --machine rk3326_u --

partition-list

uboot_a:4096K,trust_a:4M,misc:4M,dtbo_a:4M,vbmeta_a:4M,boot_a:33554432,backup:30

0M,security:4M,cache:300M,metadata:4096,frp:512K,super:2G --output

parameter_new.txt

af://n4321
af://n4330

5. 新加一个分区
以新建baseparameter分区为例进行说明：

在产品的BoardConfig.mk中定义：BOARD_WITH_SPECIAL_PARTITIONS
like: BOARD_WITH_SPECIAL_PARTITIONS := baseparameter:1M,logo:16M

在RebuildParameter.mk中添加BOARD_WITH_SPECIAL_PARTITIONS

Android常用配置

新建产品lunch

以RK3562平台新建rk3562_new_u产品为例，分以下步骤：
1）修改device/rockchip/rk3562/AndroidProducts.mk增加rk3562_new_u的lunch

2）在device/rockchip/rk3562目录下新建rk3562_new_u目录
参考device/rockchip/rk3562下已有的rk3562_u产品目录新建，可以先直接拷贝rk3562_u为
rk3562_new_u，然后将rk3562_new_u目录下的所有 rk3562_u 字符改为 rk3562_new_u

Kernel dts说明

新建产品dts

产品新建dts可以根据下表的配置选择对应的dts作为参考。

device/rockchip/rk356x/rk3566_u/BoardConfig.mk

+++ b/BoardConfig.mk

@@ -494,4 +494,11 @@ ifeq ($(strip $(BOARD_TWRP_ENABLE)), true)

+BOARD_WITH_SPECIAL_PARTITIONS := baseparameter:1M

device/rockchip/common/build/rockchip/RebuildParameter.mk

+ifneq ($(strip $(BOARD_WITH_SPECIAL_PARTITIONS)),)

+partition_list := $(partition_list),$(BOARD_WITH_SPECIAL_PARTITIONS)

+endif

--- a/AndroidProducts.mk

+++ b/AndroidProducts.mk

@@ -17,10 +17,14 @@

 PRODUCT_MAKEFILES := \

 $(LOCAL_DIR)/rk3562_u/rk3562_u.mk \

+ $(LOCAL_DIR)/rk3562_new_u/rk3562_new_u.mk \

 COMMON_LUNCH_CHOICES := \

 rk3562_u-userdebug \

 rk3562_u-user \

+ rk3562_new_u-userdebug \

+ rk3562_new_u-user \

af://n4361
af://n4362
af://n4366
af://n4367

Soc PMIC
开发
板类
型

机型 DTS

RK3588
双PMIC:
RK806 * 2

开发
板

RK3588 EVB1
rk3588-evb1-lp4-
v10

RK3588
单PMIC:
RK806+RK860

开发
板

RK3588硬件参考设计对应的
软件配置

rk3588-evb7-v11

RK3588S
双PMIC:
RK806 * 2

开发
板

RK3588S EVB1
rk3588s-evb1-
lp4x-v10

RK3588S
单PMIC:
RK806+RK860

平板
RK3588S平板硬件设计参考
图对应的软件配置

rk3588s-tablet-
v11

RK3588S
双PMIC:
RK806 * 2

平板 样机
rk3588s-tablet-
v10

RK3588
单PMIC:
RK860

box
开发
板

RK3588_NVR_DEMO1_LP4X
rk3588-nvr-demo-
v10-android

RK3566 RK817 平板 样机
rk3566-rk817-
tablet

RK3566 RK809
开发
板

RK3566 EVB2
rk3566-evb2-lp4x-
v10

RK3566 分立
开发
板

RK3566 BOX DEMO
rk3566-box-demo-
v10

RK3568 RK809
开发
板

RK3568 EVB1
rk3568-evb1-ddr4-
v10

RK3562 RK817
开发
板

RK3562 EVB1
rk3562-evb1-lp4x-
v10

RK3562 RK809
开发
板

RK3562 EVB2
rk3562-evb2-ddr4-
v10

RK3562 RK817 平板 样机
rk3562-rk817-
tablet-v10

RK3528 分立 BOX RK3528 EVB1
rk3528-evb1-ddr4-
v10

RK3326 RK817
开发
板

evb
rk3326-evb-lp3-
v10-avb

Soc PMIC
开发
板类
型

机型 DTS

PX30 RK809
开发
板

evb
px30-mini-evb-
ddr3-v11-avb

RK3326 RK817 平板 样机
rk3326-863-lp3-
v10-rkisp1

RK3326 RK809
人工
智能
语音

EVB
rk3326-evb-ai-va-
v12

RK3399 RK808
开发
板

挖掘机
rk3399-sapphire-
excavator-edp-avb

RK3399 RK809
开发
板

IND开发板
rk3399-evb-ind-
lpddr4-android-
avb

补丁发布

在redmine系统上面会不定期发布一些重要的补丁，链接如下：

可以通过订阅的方式实时获取补丁发布的邮件通知，订阅方式如下：
第一步 登入redmine系统
使用已经在Rockchip注册的redmine账号登入redmine系统。

第二步 进入我的账号

第三步 选择邮件通知类型
如下图在邮件通知中下拉选择收取选中项目的所有通知

https://redmine.rock-chips.com/projects/rockchip_patch/issues

af://n4496

第四步 选择项目
如下图勾选补丁发布项目，并点击保存

以上操作即完成补丁发布的订阅。
订阅成功后当Rockchip有补丁发布时即可通过在redmine上面登记的邮箱接收到邮件通知。

文档说明

外设支持列表

DDR/EMMC/NAND FLASH/WIFI/3G/CAMERA的支持列表实时更新在redmine上，链接如下：

Camera IQ Tool文档

rknn-toolkit2开发SDK和文档

https://redmine.rockchip.com.cn/projects/fae/documents

external/camera_engine_rkaiq/rkisp2x_tuner/doc/

├── Rockchip_Color_Optimization_Guide_ISP2x_CN_v2.0.0.pdf

├── Rockchip_IQ_Tools_Guide_ISP2x_CN_v2.0.0.pdf

└── Rockchip_Tuning_Guide_ISP21_CN_v2.0.0.pdf

hardware/rockchip/rknn-toolkit2/doc/

af://n4502
af://n4503
af://n4506
af://n4508

RKDocs文档说明

RKDocs/
├── android
│ ├── Android11 异显开发说明.zip
│ ├── audio
│ │ └── Rockchip_Developer_Guide_Android_Multi_Audio_CN.pdf
│ ├── bt
│ │ └── Rockchip_Introduction_Android9.0_BT_Configuration_CN.pdf
│ ├── patches
│ │ └── root
│ │ ├── android11_root.pdf
│ │ └── RootChecker.apk
│ ├── Rockchip_Android14_GKI_Developer_Guide_CN.pdf
│ ├── Rockchip_Android14_SDK_Developer_Guide_CN.pdf
│ ├── Rockchip_Android14_SDK_Developer_Guide_EN.pdf
│ ├── Rockchip_Android_Remote_key_Provisioning_Guide.pdf
│ ├── Rockchip_Developer_Guide_Android11_Optimization_CN.pdf
│ ├── Rockchip_Developer_Guide_Android_AB_System_Upgrading_CN.pdf
│ ├── Rockchip_Developer_Guide_Android_Recovery_CN.pdf
│ ├── Rockchip_Developer_Guide_Android_SELinux(Sepolicy)CN.pdf
│ ├── Rockchip_Developer_Guide_PCBA_Test_Tool_V1.3_CN&EN.pdf
│ ├── Rockchip_Firmware_Upgrade_Failed_Analyze_Method_CN.pdf
│ ├── Rockchip_Introduction_Android_Application_Preinstallation_CN&EN.pdf
│ ├── Rockchip_Introduction_Android_Boot_Video_CN.pdf
│ ├── Rockchip_Introduction_Android_BOX_Display_Framework_Configuration_CN.pdf
│ ├── Rockchip_Introduction_Android_Factory_Reset_Protection_CN&EN.pdf
│ ├── Rockchip_Introduction_Android_Log_System.pdf
│ ├── Rockchip_Introduction_Android_Performance_Mode_CN&EN.pdf
│ ├──
Rockchip_Introduction_Android_Power_On_Off_Animation_and_Tone_Customization_CN&EN.pdf
│ ├── Rockchip_Introduction_Android_Samba_CN.pdf
│ ├── Rockchip_Introduction_Android_Widevine_Project_Start_Preparation_CN.pdf
│ ├── Rockchip_Introduction_Box_Media_Application_CN&EN.pdf
│ ├── Rockchip-Parameter-File-Format-Version1.4-CN.pdf
│ ├── Rockchip_User_Guide_Android_GMS_Configuration_CN.pdf
│ ├── Rockchip_User_Guide_Android_GMS_Configuration_EN.pdf
│ ├── Rockchip_User_Guide_Box_FactoryTestTool_V3.0_CN.pdf
│ ├── Rockchip_User_Guide_Dr.G_CN&EN.pdf
│ ├── Rockchip_User_Guide_Magisk_Installation_EN.pdf
│ ├── video
│ │ └── Rockchip_Android_Multimedia_FAQ_CN.pdf
│ └── wifi
│ ├── Rockchip_Introduction_REALTEK_WIFI_Driver_Porting_CN&EN.pdf
│ └── Rockchip_Introduction_WIFI_Configuration_CN&EN.pdf
└── common
 ├── Audio
 │ ├── Rockchip_Developer_Guide_Android_EQ_DRC_CN.pdf
 │ ├── Rockchip_Developer_Guide_Android_Multi_Audio_CN.pdf
 │ ├──
Rockchip_Developer_Guide_Audio_Call_3A_Algorithm_Integration_and_Parameter_Debugging_CN.pdf
 │ ├── Rockchip_Developer_Guide_Audio_CN.pdf

af://n4510

 │ └── Rockchip_Developer_Guide_RK817_RK809_Codec_CN.pdf
 ├── camera
 │ ├── common
 │ │ └── Camera_External_FAQ_v1.0 .pdf
 │ ├── HAL1
 │ │ ├── README_CN.txt
 │ │ ├── README_EN.txt
 │ │ ├── RK312x_Camera_User_Manual_v1.4(3288&3368).pdf
 │ │ ├── RK_ISP10_Camera_User_Manual_v2.3.pdf
 │ │ ├── RKISPV1_Camera_Module_AVL_v1.7.pdf
 │ │ ├── Rockchip_Camera_AVL_v2.0_Package_20180515.7z
 │ │ ├── Rockchip_Introduction_RKISPV1_Camera_Driver_Debugging_Method_CN.pdf
 │ │ ├── Rockchip_Introduction_RKISPV1_Camera_FAQ_CN.pdf
 │ │ ├── Rockchip SOFIA 3G-R_PMB8018(x3_C3230RK)Camera_Module_AVL_v1.6_20160226.pdf
 │ │ └── Rockchip_Trouble_Shooting_Android_CameraHAL1_CN_EN.pdf
 │ ├── HAL3
 │ │ ├── camera_engine_rkisp_user_manual_v2.2.pdf
 │ │ ├── camera_hal3_user_manual_v2.3.pdf
 │ │ ├── README_CN.txt
 │ │ ├── RKCIF_Driver_User_Manual_v1.0.pdf
 │ │ ├── RKISP1_IQ_Parameters_User_Guide_v1.2.pdf
 │ │ ├── RKISP_Driver_User_Manual_v1.3.pdf
 │ │ ├── Rockchip_Color_Optimization_Guide_ISP
 │ │ │ ├── ISP21
 │ │ │ │ └── CN
 │ │ │ │ └── Rockchip_Color_Optimization_Guide_ISP21_CN_v2.0.1.pdf
 │ │ │ ├── ISP30
 │ │ │ │ └── CN
 │ │ │ │ └── Rockchip_Color_Optimization_Guide_ISP30_CN_v3.0.0.pdf
 │ │ │ └── ISP32-lite
 │ │ │ └── CN
 │ │ │ └── Rockchip_Color_Optimization_Guide_ISP32_Lite_CN_v3.1.0.pdf
 │ │ ├── Rockchip_Development_Guide_3A_ISP
 │ │ │ └── ISP30
 │ │ │ └── CN
 │ │ │ └── Rockchip_Development_Guide_3A_ISP30_v1.1.0.pdf
 │ │ ├── Rockchip_Development_Guide_ISP
 │ │ │ ├── ISP21
 │ │ │ │ └── CN
 │ │ │ │ └── Rockchip_Development_Guide_ISP21_CN_v2.1.0.pdf
 │ │ │ ├── ISP30
 │ │ │ │ └── CN
 │ │ │ │ └── Rockchip_Development_Guide_ISP30_CN_v1.2.3.pdf
 │ │ │ └── ISP32-lite
 │ │ │ └── CN
 │ │ │ └── Rockchip_Development_Guide_ISP32_Lite_CN_v1.0.0.pdf
 │ │ ├── Rockchip_Driver_Guide_VI
 │ │ │ ├── CN
 │ │ │ │ └── Rockchip_Driver_Guide_VI_CN_v1.1.4.pdf
 │ │ │ └── EN
 │ │ │ └── Rockchip_Driver_Guide_VI_EN_v1.0.7.pdf
 │ │ ├── Rockchip_IQ_Tools_Guide_ISP

 │ │ │ ├── ISP21
 │ │ │ │ └── Rockchip_IQ_Tools_Guide_ISP2x_CN_v2.0.3.pdf
 │ │ │ ├── ISP30
 │ │ │ │ └── Rockchip_IQ_Tools_Guide_ISP21_ISP30_CN_v2.0.4.pdf
 │ │ │ └── ISP32-lite
 │ │ │ └── CN
 │ │ │ └── Rockchip_IQ_Tools_Guide_v2.0.7_CN.pdf
 │ │ ├── Rockchip_Trouble_Shooting_CameraHAL3_CN_EN.pdf
 │ │ ├── Rockchip_Tuning_Guide_ISP
 │ │ │ ├── ISP21
 │ │ │ │ └── CN
 │ │ │ │ └── Rockchip_Tuning_Guide_ISP21_CN_v2.1.0.pdf
 │ │ │ ├── ISP30
 │ │ │ │ └── CN
 │ │ │ │ └── Rockchip_Tuning_Guide_ISP30_CN_v1.1.0.pdf
 │ │ │ └── ISP32-lite
 │ │ │ └── CN
 │ │ │ └── Rockchip_Tuning_Guide_ISP32-lite_CN_v1.0.0.pdf
 │ │ └── USB_UVC_Integrated_Cameras.pdf
 │ ├── README.txt
 │ └── vehicle
 │ └── Rockchip_Android_Fast_Reverse_Image_System_Developer_Guide_CN_V1.0.3.pdf
 ├── Can
 │ ├── Rockchip_Developer_Guide_Can_CN.pdf
 │ └── Rockchip_Developer_Guide_CAN_FD_CN.pdf
 ├── CLK
 │ ├── Rockchip_Developer_Guide_Clock_CN.pdf
 │ ├── Rockchip_Developer_Guide_Gpio_Output_Clocks_CN.pdf
 │ ├── Rockchip_Develop_Guide_Pll_Ssmod_Clock_CN.pdf
 │ └── Rockchip_RK3399_Developer_Guide_Clock_CN.pdf
 ├── CRU
 │ ├── Rockchip_Developer_Guide_Linux3.10_Clock_CN.pdf
 │ ├── Rockchip_Developer_Guide_Linux4.4_4.19_Clock_CN.pdf
 │ ├── Rockchip_Develop_Guide_Pll_Ssmod_Clock_CN.pdf
 │ ├── Rockchip_RK3399_Developer_Guide_Clock_CN.pdf
 │ └── Rockchip_RK3399_Developer_Guide_Linux4.4_Clock_CN.pdf
 ├── CRYPTO
 │ ├── Rockchip_Developer_Guide_Crypto_HWRNG_CN.pdf
 │ └── Rockchip_Developer_Guide_Crypto_HWRNG_EN.pdf
 ├── DDR
 │ ├── DDR_bandwidth_statistics_tool
 │ │ ├── rk-msch-probe-for-user-32bit
 │ │ ├── rk-msch-probe-for-user-64bit
 │ │ └── Rockchip_Introduction_DDR_Bandwidth_Tool_CN.pdf
 │ ├── Rockchip-Developer-Guide-DDR-CN.pdf
 │ ├── Rockchip-Developer-Guide-DDR-EN.pdf
 │ ├── Rockchip-Developer-Guide-DDR-Problem-Solution-CN.pdf
 │ ├── Rockchip-Developer-Guide-DDR-Problem-Solution-EN.pdf
 │ ├── Rockchip-Developer-Guide-DDR-Verification-Process-CN.pdf
 │ ├── Rockchip_Developer_Guide_DDR_Verification_Process_EN.pdf
 │ ├── Rockchip_Developer_Guide_HAL_DDR_ECC_CN.pdf
 │ └── Rockchip-User-Guide-DDR-DQ-Eye-Tool-CN.pdf

 ├── debug
 │ ├── RK3399-LOG-EXPLANATION.pdf
 │ ├── Rockchip_Developer_Guide_DS5_CN.pdf
 │ ├── Rockchip_Quick_Start_Linux_Perf.pdf
 │ ├── Rockchip_Quick_Start_Linux_Streamline.pdf
 │ ├── Rockchip_Quick_Start_Linux_Systrace.pdf
 │ ├── Rockchip_RK3399_JTAG_Configuration_CN.pdf
 │ └── Rockchip_User_Guide_J-Link_CN.pdf
 ├── display
 │ ├── Rockchip_BT656_TX_AND_BT1120_TX_Developer_Guide_CN.pdf
 │ ├── Rockchip_Developer_Guide_Baseparameter_Format_Define_And_Use_CN.pdf
 │ ├── Rockchip_Developer_Guide_DRM_Display_Driver_CN.pdf
 │ ├── Rockchip_Developer_Guide_DRM_Panel_Porting_CN&EN.pdf
 │ ├── Rockchip_Developer_Guide_DRM_Panel_Porting_CN.pdf
 │ ├── Rockchip_Developer_Guide_Dual_Display_Rotation_Direction_Debugging_CN.pdf
 │ ├── Rockchip_Developer_Guide_HDMI_Based_on_DRM_Framework_CN&EN.pdf
 │ ├── Rockchip_Developer_Guide_HDMI-CEC_CN.pdf
 │ ├── Rockchip_Developer_Guide_HDMI_CN.pdf
 │ ├── Rockchip_Develop_Guide_DRM_Direct_Show_CN.pdf
 │ ├── Rockchip_Display_Issues_FAQ_V1.1.pdf
 │ ├── Rockchip_DRM_RK628_Porting_Guide_CN.pdf
 │ ├── Rockchip FAQ DRM Hardware Composer V1.00-20181213.pdf
 │ ├── Rockchip_Introduction_DisplayAdjust_APK_CN.pdf
 │ ├── Rockchip_Introduction_DRM_Integration_Helper_CN.pdf
 │ ├── Rockchip_RK3588_Developer_Guide_DisplayPort_CN.pdf
 │ ├── Rockchip_RK3588_Developer_Guide_MIPI_DSI2_CN.pdf
 │ ├── Rockchip_RK3588_Developer_Guide_Vsync_Adjust_CN.pdf
 │ ├── Rockchip_RK3588_User_Guide_DP_CN.pdf
 │ ├── Rockchip_RK3588_User_Guide_eDP_CN.pdf
 │ └── Rockchip_Trouble_Shooting_Graphics
 ├── DVFS
 │ ├── Rockchip_Developer_Guide_CPUFreq_CN.pdf
 │ ├── Rockchip_Developer_Guide_CPUFreq_EN.pdf
 │ ├── Rockchip_Developer_Guide_Devfreq_CN.pdf
 │ ├── Rockchip_Developer_Guide_Devfreq_EN.pdf
 │ ├── Rockchip_Developer_Guide_Linux4.4_CPUFreq_CN.pdf
 │ └── Rockchip_Developer_Guide_Linux4.4_Devfreq_CN.pdf
 ├── Ebook
 │ ├── Rockchip_RK3566_Introduction_EBOOK_Display_Mode_CN.pdf
 │ └── Rockchip_RK3566_Introduction_EBOOK_Sleep_Mode_CN.pdf
 ├── GMAC
 │ ├── Rockchip_Developer_Guide_Ethernet_CN.pdf
 │ ├── Rockchip_Developer_Guide_Linux_GMAC_CN.pdf
 │ ├── Rockchip_Developer_Guide_Linux_GMAC_Mode_Configuration_CN.pdf
 │ ├── Rockchip_Developer_Guide_Linux_GMAC_RGMII_Delayline_CN.pdf
 │ └── Rockchip_Developer_Guide_Linux_GMAC_RGMII_Delayline_EN.pdf
 ├── hdmi-in
 │ ├── apk
 │ │ ├── HdmiInDemo_based_on_CameraHal1_2020.06.11_v1.2.tar.gz
 │ │ └── rkCamera2_based_on_CameraHal3_V1.3.tar.gz
 │ ├── Rockchip_Developer_Guide_HDMI_IN_Based_On_CameraHal1_CN.pdf
 │ ├── Rockchip_Developer_Guide_HDMI_IN_Based_On_CameraHal3_CN.pdf

 │ └── Rockchip_Developer_Guide_HDMI_RX_CN.pdf
 ├── I2C
 │ ├── Rockchip_Developer_Guide_I2C_CN.pdf
 │ └── Rockchip_Developer_Guide_I2C_EN.pdf
 ├── IO-Domain
 │ ├── Rockchip_Developer_Guide_Linux_IO_DOMAIN_CN.pdf
 │ ├── Rockchip_PX30_Introduction_IO_Power_Domains_Configuration.pdf
 │ ├── Rockchip_RK3288_Introduction_IO_Power_Domains_Configuration.pdf
 │ ├── Rockchip_RK3326_Introduction_IO_Power_Domains_Configuration.pdf
 │ ├── Rockchip_RK3399_Introduction_IO_Power_Domains_Configuration.pdf
 │ ├── Rockchip_RK3399Pro_Introduction_IO_Power_Domains_Configuration.pdf
 │ └── Rockchip_RK356X_Introduction_IO_Power_Domains_Configuration.pdf
 ├── IOMMU
 │ ├── Rockchip_Developer_Guide_Linux_IOMMU_CN.pdf
 │ └── Rockchip_Developer_Guide_Linux_IOMMU_EN.pdf
 ├── Leds
 │ └── Rockchip_Introduction_Leds_GPIO_Configuration_for_Linux4.4_CN.pdf
 ├── MCU
 │ ├── Rockchip_RK3399_Developer_Guide_MCU_CN.pdf
 │ └── Rockchip_RK3399_Developer_Guide_MCU_EN.pdf
 ├── Memory
 │ └── Rockchip_Developer_Guide_Linux_CMA_CN.pdf
 ├── MMC
 │ ├── Rockchip_Developer_Guide_SD_Boot_CN.pdf
 │ └── Rockchip_Developer_Guide_SDMMC_SDIO_eMMC_CN.pdf
 ├── mobile-net
 │ ├── Rockchip_Introduction_3G_Data_Card_USB_File_Conversion_CN.pdf
 │ ├── Rockchip_Introduction_3G_Dongle_Configuration_CN&EN.pdf
 │ └── Rockchip_Introduction_4G_Module_Configuration_CN&EN.pdf
 ├── MPP
 │ ├── Rockchip_Developer_Guide_MPP_CN.pdf
 │ └── Rockchip_Developer_Guide_MPP_EN.pdf
 ├── NVM
 │ ├── Rockchip_Application_Notes_Storage_CN.pdf
 │ ├── Rockchip_Developer_FAQ_Storage_CN.pdf
 │ ├── Rockchip_Developer_Guide_OTP_CN.pdf
 │ ├── Rockchip_Developer_Guide_OTP_EN.pdf
 │ ├── Rockchip_Developer_Guide_SATA_CN.pdf
 │ ├── Rockchip_Introduction_Partition_CN.pdf
 │ ├── Rockchip_Introduction_Partition_EN.pdf
 │ └── Rockchip_RK356X_Developer_Guide_SATA_CN.pdf
 ├── PCie
 │ ├── Rockchip-Developer-Guide-linux4.4-PCIe.pdf
 │ ├── Rockchip_Developer_Guide_PCIe_CN.pdf
 │ ├── Rockchip_PCIe_Virtualization_Developer_Guide_CN.pdf
 │ └── Rockchip_RK3399_Developer_Guide_PCIe_CN.pdf
 ├── perf
 │ ├── perf使用说明.pdf
 │ ├── Rockchip_Developer_FAQ_FileSystem_CN.pdf
 │ ├── Rockchip_Optimize_Tutorial_Linux_IO_CN.pdf
 │ ├── Rockchip_Quick_Start_Linux_Performance_Analyse_CN.pdf
 │ └── systrace使用说明.pdf

 ├── PIN-Ctrl
 │ ├── Rockchip_Developer_Guide_Linux_Pinctrl_CN.pdf
 │ └── Rockchip_Developer_Guide_Linux_Pinctrl_EN.pdf
 ├── PMIC
 │ ├── Rockchip_Developer_Guide_FreeRTOS_PMIC_CHARGER_POWERKEY_CN.pdf
 │ ├── Rockchip_Developer_Guide_Power_Discrete_DCDC_EN.pdf
 │ ├── Rockchip_Developer_Guide_RK817_RK809_Fuel_Gauge_CN&EN.pdf
 │ ├── Rockchip_RK805_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK806_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK808_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK809_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK816_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK817_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK818_Developer_Guide_CN.pdf
 │ ├── Rockchip_RK818_RK816_Developer_Guide_Fuel_Gauge_CN.pdf
 │ └── Rockchip_RK818_RK816_Introduction_Fuel_Gauge_Log_CN.pdf
 ├── power
 │ ├── Rockchip_Developer_Guide_Power_Analysis_EN.pdf
 │ └── Rockchip_Developer_Guide_Sleep_and_Resume_CN.pdf
 ├── PWM
 │ ├── Rockchip_Developer_Guide_Linux_PWM_CN.pdf
 │ ├── Rockchip_Developer_Guide_Linux_PWM_EN.pdf
 │ └── Rockchip_Developer_Guide_PWM_IR_CN.pdf
 ├── RGA
 │ ├── Rockchip_Developer_Guide_RGA_CN.pdf
 │ ├── Rockchip_Developer_Guide_RGA_EN.pdf
 │ ├── Rockchip_FAQ_RGA_CN.pdf
 │ └── Rockchip_FAQ_RGA_EN.pdf
 ├── RK628
 │ ├── Rockchip_RK628D_Application_Notes_CN.pdf
 │ └── Rockchip_RK628D_For_All_Porting_Guide_CN.pdf
 ├── RKTools manuals
 │ ├── RKIQTool_User_Manual_v1.5-CH.pdf
 │ ├── RKIQTool_User_Manual_v1.5-EN.pdf
 │ ├── RK_Platform_apache_tomcat_ota_Server_Setup_Introduction.rar
 │ ├── Rockchip_Box_Factory_Test_Tool_V2.0.rar
 │ ├── Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf
 │ ├── Rockchip_Introduction_Image_Upgrading_Failure_Analysis_CN.pdf
 │ ├── Rockchip_Introduction_MP_Tool_Upgrading_and_Related_Issues_Debugging_CN.pdf
 │ ├── Rockchip_Introduction_REPO_Mirror_Server_Build_and_Management_CN.pdf
 │ ├── Rockchip_Introduction_Stresstest_for_VR_CN.pdf
 │ ├── Rockchip_Introduction_WNpctool_Write_Tool_CN.pdf
 │ ├── Rockchip_User_Guide_Box_Factory_Test_Tool_CN.pdf
 │ ├── Rockchip_User_Guide_Keybox_Burning_EN.pdf
 │ ├── Rockchip_User_Guide_KeyWrite_CN.pdf
 │ ├── Rockchip_User_Guide_MP_Flashing_v1.2_CN.pdf
 │ ├── Rockchip_User_Guide_Production_For_Firmware_Download_CN.pdf
 │ ├── Rockchip_User_Guide_RKDevInfoWriteTool_CN.pdf
 │ ├── Rockchip_User_Guide_RKDevInfoWriteTool_EN.pdf
 │ ├── Rockchip_User_Guide_RK_Platform_MP_Upgrading_CN.pdf
 │ ├── Rockchip_User_Manual_Android_Development_Tool_CN.pdf
 │ ├── Rockchip_User_Manual_RKIQTool_CN.pdf

 │ ├── Rockchip_User_Manual_RKIQTool_EN.pdf
 │ ├── Rockchip_User_Manual_RKUpgrade_Dll_CN.pdf
 │ └── SecureBootTool_UserManual.pdf
 ├── SARADC
 │ ├── Rockchip_Developer_Guide_Linux_SARADC_CN.pdf
 │ └── Rockchip_Developer_Guide_Linux_SARADC_EN.pdf
 ├── security
 │ ├── patch
 │ │ └── u-boot
 │ │ └── 0001-avb-add-embedded-key.patch
 │ ├── RK3399_Efuse_Operation_Instructions_V1.00_EN.pdf
 │ ├── RK356X_SecurityBoot_And_AVB_instructions_CN.pdf
 │ ├── RK356X_SecurityBoot_And_AVB_instructions_EN.pdf
 │ ├── RK3588_SecurityBoot_And_AVB_instructions_CN.pdf
 │ ├── RK3588_SecurityBoot_And_AVB_instructions_EN.pdf
 │ ├── Rockchip_Developer_Guide_Crypto_HWRNG_CN.pdf
 │ ├── Rockchip_Developer_Guide_Secure_Boot_Application_Note_EN.pdf
 │ ├── Rockchip_Developer_Guide_Secure_Boot_for_UBoot_Next_Dev_CN.pdf
 │ ├── Rockchip_Developer_Guide_Secure_Boot_for_UBoot_Next_Dev_EN.pdf
 │ ├── Rockchip_Developer_Guide_TEE_SDK_CN.pdf
 │ ├── Rockchip_RK3399_User_Guide_SecurityBoot_And_AVB_CN.pdf
 │ └── Rockchip Vendor Storage Application Note.pdf
 ├── Sensors
 │ └── Rockchip_Developer_Guide_Sensors_CN.pdf
 ├── SPI
 │ ├── Rockchip_Developer_Guide_Linux_SPI_CN.pdf
 │ └── Rockchip_Developer_Guide_Linux_SPI_EN.pdf
 ├── Thermal
 │ ├── Rockchip_Developer_Guide_Thermal_CN.pdf
 │ └── Rockchip_Developer_Guide_Thermal_EN.pdf
 ├── TRUST
 │ ├── Rockchip_Developer_Guide_Trust_CN.pdf
 │ ├── Rockchip_Developer_Guide_Trust_EN.pdf
 │ └── Rockchip_RK3588_Developer_Guide_System_Suspend_CN.pdf
 ├── Tutorial
 │ ├── RK3399-CPUINFO.pdf
 │ ├── RK3399-LOG-EXPLANATION.pdf
 │ ├── Rockchip_Developer_FAQ_FileSystem_CN.pdf
 │ ├── Rockchip_Introduction_Browser_FAQ_CN.pdf
 │ └── Rockchip_Trouble_Shooting_Firmware_Upgrade_Issue_CN.pdf
 ├── UART
 │ ├── Rockchip-Developer-Guide-RT-Thread-UART.pdf
 │ ├── Rockchip_Developer_Guide_UART_CN.pdf
 │ ├── Rockchip_Developer_Guide_UART_EN.pdf
 │ └── Rockchip_Developer_Guide_UART_FAQ_CN.pdf
 ├── u-boot
 │ ├── Rockchip-Developer-Guide-Linux-AB-System.pdf
 │ ├── Rockchip-Developer-Guide-Uboot-mmc-device-driver-analysis.pdf
 │ └── Rockchip_Developer_Guide_UBoot_Nextdev_CN.pdf
 ├── usb
 │ ├── Rockchip_Developer_Guide_Linux_USB_Initialization_Log_Analysis_CN_V1.1.1.pdf
 │ ├── Rockchip_Developer_Guide_Linux_USB_Performance_Analysis_CN_V1.1.1.pdf

 │ ├── Rockchip_Developer_Guide_Linux_USB_PHY_CN.pdf
 │ ├── Rockchip_Developer_Guide_USB_CN.pdf
 │ ├── Rockchip_Developer_Guide_USB_EN.pdf
 │ ├── Rockchip_Developer_Guide_USB_FFS_Test_Demo_CN.pdf
 │ ├── Rockchip_Developer_Guide_USB_FFS_Test_Demo_CN_V1.2.1.pdf
 │ ├── Rockchip_Developer_Guide_USB_Gadget_UAC_CN.pdf
 │ ├── Rockchip_Developer_Guide_USB_Gadget_UAC_CN_V1.1.1.pdf
 │ ├── Rockchip_Developer_Guide_USB_SQ_Test_CN.pdf
 │ ├── Rockchip_Introduction_USB_SQ_Tool_CN.pdf
 │ ├── Rockchip_RK3399_Developer_Guide_USB_CN.pdf
 │ ├── Rockchip_RK356x_Developer_Guide_USB_CN.pdf
 │ ├── Rockchip_RK356X_User_Guide_USB_CN.pdf
 │ ├── Rockchip_RK3588_Developer_Guide_USB_CN.pdf
 │ └── Rockchip_User_Guide_USB_PHY_Tuning_CN.pdf
 └── watchdog
 ├── Rockchip_Developer_Guide_Linux_WDT_CN.pdf
 └── Rockchip_Developer_Guide_Linux_WDT_EN.pdf

工具使用

StressTest

设备上使用Stresstest 工具，对待测设备的各项功能进行压力测试，确保整个系统运行的稳定性。SDK
通过打开计算器应用，输入 “83991906=” 暗码，可启动StressTest应用，进行各功能压力测试。

Stresstest 测试工具测试的内容主要包括：

模块相关

Camera 压力测试：包括Camera 打开关闭，Camera 拍照以及Camera 切换。
Bluetooth 压力测试：包括Bluetooth 打开关闭。
Wi-Fi 压力测试： 包括Wi-Fi 打开关闭，（ ping 测试以及iperf 测试待加入）。

非模块相关

飞行模式开关测试
休眠唤醒拷机测试
视频拷机测试
重启拷机测试
恢复出厂设置拷机测试
Arm 变频测试
Gpu 变频测试
DDR 变频测试

PCBA测试工具

PCBA 测试工具用于帮助在量产的过程中快速地甄别产品功能的好坏，提高生产效率。目前包括屏幕
（LCD）、无线（Wi-Fi）、蓝牙（bluetooth）、DDR/EMMC 存储、SD 卡（sdcard）、USB HOST、
按键（KEY），喇叭耳机（Codec）测试项目。
这些测试项目包括自动测试项和手动测试项，无线网络、DDR/EMMC、以太网为自动测试项，按键、
SD卡、USB HOST、Codec、为手动测试项目。
具体PCBA功能配置及使用说明，请参考：

af://n4513
af://n4514
af://n4516
af://n4523
af://n4541

DeviceTest

DeviceTest 用于工厂整机测试，主要测试装成整机以后外围器件是否正常。SDK 通过打开计算器，输
入暗码“000.=”进入 DeviceTest，如下所示：

在产线可以根据这个界面进行对应外设的测试，测试时点击“TEST CHECKED”对所测项目
逐项进行测试，测试如果成功点击 pass，失败点击 failed，最终结果会显示在界面上，如下图所示，
红色为 failed 项，其余为通过项，工厂可根据测试结果进行相应的维修。另外，如果客户需要对该
工具进行定制，请联系 FAE 窗口申请对应的源码。

USB驱动

Rockchip USB驱动安装包，包括ADB、固件烧写驱动

开发烧写工具

Windows版本

RKDocs/android/Rockchip_Developer_Guide_PCBA_Test_Tool_CN&EN.pdf_V1.1_20171222.p

df。

RKTools\windows\DriverAssitant_v5.1.1.zip

af://n4545
af://n4547
af://n4550
af://n4551

RKTools/windows/AndroidTool/AndroidTool_Release_v3.28.zip，工具版本会时刻更新，请及时同步
更新

Linux版本

RKTools/linux/Linux_Upgrade_Tool/Linux_Upgrade_Tool_v2.30.zip

Linux_Upgrade_Tool_v2.26$ sudo ./upgrade_tool -h

Program Data in /home/wlq/.config/upgrade_tool

---------------------Tool Usage ---------------------

Help: H

Quit: Q

Version: V

Clear Screen: CS

------------------Upgrade Command ------------------

ChooseDevice: CD

ListDevice: LD

SwitchDevice: SD

UpgradeFirmware: UF <Firmware> [-noreset]

UpgradeLoader: UL <Loader> [-noreset]

DownloadImage: DI <-p|-b|-k|-s|-r|-m|-u|-t|-re image>

DownloadBoot: DB <Loader>

EraseFlash: EF <Loader|firmware> [DirectLBA]

PartitionList: PL

WriteSN: SN <serial number>

ReadSN: RSN

----------------Professional Command -----------------

TestDevice: TD

ResetDevice: RD [subcode]

ResetPipe: RP [pipe]

ReadCapability: RCB

ReadFlashID: RID

ReadFlashInfo: RFI

ReadChipInfo: RCI

ReadSector: RS <BeginSec> <SectorLen> [-decode] [File]

WriteSector: WS <BeginSec> <File>

ReadLBA: RL <BeginSec> <SectorLen> [File]

WriteLBA: WL <BeginSec> <File>

EraseLBA: EL <BeginSec> <EraseCount>

EraseBlock: EB <CS> <BeginBlock> <BlokcLen> [--Force]

af://n4553

SD升级启动制作工具

用于制作SD卡升级、SD卡启动、SD卡PCBA测试

写号工具

RKTools\windows\RKDevInfoWriteTool-1.3.0.7z
解压RKDevInfoWriteTool-1.3.0.7z后安装
以管理员权限打开软件

工具说明请参考：

DDR焊接测试工具

用于测试DDR的硬件连接，排查虚焊等硬件问题

efuse烧写工具

用于efuse的烧写，适用于RK3288W/RK3368/RK3399平台

efuse/otp签名工具

用于固件的efuse/otp签名

工厂生产固件烧写工具

用于工厂批量烧写固件

userdata分区数据预置工具

用于制作userdata分区预置数据包的工具

Camera IQ Tool

RKTools\windows\SDDiskTool_v1.74.zip

RKDocs\common\RKTools manuals\Rockchip_User_Guide_RKDevInfoWriteTool_CN.pdf

RKTools\windows\Rockchip_Platform_DDR_Test_Tool_V1.38_Release_Annoucement_CN.7z

RKTools\windows\Rockchip_Platform_DDR_Test_Tool_V1.38_Release_Annoucement_EN.7z

RKTools\windows\efuse_v1.37.rar

RKTools\windows\SecureBootTool_v1.94.zip

RKTools\windows\FactoryTool-1.72.9.7z

RKTools\windows\OemTool_v1.3.rar

af://n4556
af://n4559
af://n4562
af://n4565
af://n4568
af://n4571
af://n4574
af://n4577

用于调试ISP图像效果

系统调试

ADB工具

概述

ADB（Android Debug Bridge）是 Android SDK里的一个工具，用这个工具可以操作管理 Android 模
拟器或真实的 Android 设备。主要功能有：

运行设备的 shell（命令行）
管理模拟器或设备的端口映射
计算机和设备之间上传/下载文件
将本地 apk软件安装至模拟器或 Android 设备
ADB 是一个“客户端－服务器端”程序，其中客户端主要是指PC，服务器端是Android 设备的实体
机器或者虚拟机。根据PC连接Android设备的方式不同，ADB 可以分为两类：
网络 ADB：主机通过有线/无线网络（同一局域网）连接到STB设备
USB ADB：主机通过 USB 线连接到STB设备

USB adb使用说明

USB adb 使用有以下限制：

只支持 USB OTG 口
不支持多个客户端同时使用（如 cmd 窗口，eclipse等）
只支持主机连接一个设备，不支持连接多个设备
连接步骤如下：
1、Android设备已经运行 Android 系统，设置->开发者选项->已连接到计算机 打开，usb调试开
关打开。
2、PC主机只通过 USB 线连接到机器 USB otg 口，然后电脑通过如下命令与Android设备相连。

3、测试是否连接成功，运行”adb devices”命令，如果显示机器的序列号，表示连接成功。

ADB常用命令详解

（1）查看设备情况
查看连接到计算机的 Android 设备或者模拟器：

返回的结果为连接至开发机的 Android 设备的序列号或是IP和端口号（Port）、状态。
（2）安装apk
将指定的 apk 文件安装到设备上：

示例如下：

external/camera_engine_rkaiq/rkisp2x_tuner

adb shell

adb devices

adb install <apk文件路径>

af://n4580
af://n4581
af://n4582
af://n4596
af://n4608

重新安装应用：

（3）卸载apk
完全卸载：

示例如下：

（4）使用 rm移除 apk 文件：

示例如下：

示例说明：移除“system/app”目录下的“WishTV.apk”文件。
（5）进入设备和模拟器的shell
进入设备或模拟器的 shell 环境：

（6）从电脑上传文件到设备
用 push 命令可以把本机电脑上的任意文件或者文件夹上传到设备。本地路径一般指本机电脑；远程路
径一般指 adb 连接的单板设备。
adb push <本地路径> <远程路径>
示例如下：

示例说明：将本地“WishTV.apk”文件上传到 Android 系统的“system/app”目录下。
（7）从设备下载文件到电脑
pull 命令可以把设备上的文件或者文件夹下载到本机电脑中。

示例如下：

adb install “F:\WishTV\WishTV.apk”

adb install –r “F:\WishTV\WishTV.apk”

adb uninstall <package>

adb uninstall com.wishtv

adb shell rm <filepath>

adb shell rm “system/app/WishTV.apk”

adb shell

adb push “F:\WishTV\WishTV.apk” “system/app”

adb pull <远程路径> <本地路径>

adb pull system/app/Contacts.apk F:\

示例说明：将 Android 系统“system/app”目录下的文件或文件夹下载到本地“F:\”目录下。
（8）查看 bug报告
需要查看系统生成的所有错误消息报告，可以运行 adb bugreport指令来实现，该指令会将 Android 系
统的dumpsys、dumpstate 与 logcat 信息都显示出来。
（9）查看设备的系统信息
在 adb shell下查看设备系统信息的具体命令。

Logcat工具

Android 日志系统提供了记录和查看系统调试信息的功能。日志都是从各种软件和一些系统的缓冲区中
记录下来的，缓冲区可以通过 Logcat 来查看和使用。Logcat 是调试程序用的最多的功能。该功能主要
是通过打印日志来显示程序的运行情况。由于要打印的日志量非常大，需要对其进行过滤等操作。

Logcat命令使用

用 logcat 命令来查看系统日志缓冲区的内容：
基本格式：

示例如下：

常用的日志过滤方式

控制日志输出的几种方式：

控制日志输出优先级
示例如下：

示例说明：显示优先级为 warning 或更高的日志信息。

控制日志标签和输出优先级
示例如下：

示例说明：支持所有的日志信息，除了那些标签为“ActivityManager”和优先级为“Info”以上的、标签为
“MyApp”和优先级为“Debug”以上的。

只输出特定标签的日志
示例如下：

adb shell getprop

[adb] logcat [<option>] [<filter-spec>]

adb shell

logcat

adb shell

logcat *:W

adb shell

logcat ActivityManager:I MyApp:D *:S

adb shell

logcat WishTV:* *:S

af://n4635
af://n4637
af://n4642

或者

示例说明：只输出标签为 WishTV的日志。

只输出指定优先级和标签的日志
示例如下：

示例说明：只输出优先级为 I，标签为 WishTV的日志。

Procrank工具

Procrank 是 Android 自带的一款调试工具，运行在设备侧的 shell 环境下，用来输出进程的内存快
照，便于有效的观察进程的内存占用情况。
包括如下内存信息：

VSS：Virtual Set Size 虚拟耗用内存大小（包含共享库占用的内存）
RSS：Resident Set Size 实际使用物理内存大小（包含共享库占用的内存）
PSS：Proportional Set Size 实际使用的物理内存大小（比例分配共享库占用的内存）
USS：Unique Set Size 进程独自占用的物理内存大小（不包含共享库占用的内存）
注意：
USS 大小代表只属于本进程正在使用的内存大小，进程被杀死后会被完整回收；
VSS/RSS 包含了共享库使用的内存，对查看单一进程内存状态没有参考价值；
PSS 是按照比例将共享内存分割后，某单一进程对共享内存区的占用情况。

使用procrank

执行procrank前需要先让终端获取到root权限
su
命令格式：

常用指令说明：
 -v：按照 VSS 排序
 -r：按照 RSS 排序
 -p：按照 PSS 排序
 -u：按照 USS 排序
 -R：转换为递增[递减]方式排序
 -w：只显示 working set 的统计计数
 -W：重置 working set 的统计计数
 -h：帮助
示例：
 输出内存快照：

 按照 VSS 降序排列输出内存快照：

adb shell

logcat –s WishTV

adb shell

logcat WishTV:I *:S

procrank [-W] [-v | -r | -p | -u | -h]

procrank

af://n4666
af://n4683

默认procrank输出是通过PSS排序。

检索指定内容信息

查看指定进程的内存占用状态，命令格式如下：

其中 cmdline 表示需要查找的应用程序名，PID 表示需要查找的应用进程。
输出 systemUI 进程的内存占用状态：

或者：

跟踪进程内存状态

通过跟踪内存的占用状态，进而分析进程中是否存在内存泄露场景。使用编写脚本的方式，连续输出进
程的内存快照，通过对比 USS 段，可以了解到此进程是否有内存泄露。
示例：输出进程名为 com.android.systemui 的应用内存占用状态，查看是否有泄露：
1、编写脚本 test.sh

2、通过 adb 工具连接到设备后，运行此脚本：./test.sh

Dumpsys工具

Dumpsys 工具是 Android系统中自带的一款调试工具，运行在设备侧的 shell 环境下，提供系统中正在
运行的服务状态信息功能。正在运行的服务是指 Android binder机制中的服务端进程。
dumpsys 输出打印的条件：
1、只能打印已经加载到 ServiceManager中的服务；
2、如果服务端代码中的 dump 函数没有被实现，则没有信息输出。

使用Dumpsys

查看Dumpsys帮助
作用：输出dumpsys帮助信息。

查看Dumpsys包含服务列表
作用：输出dumpsys所有可打印服务信息，开发者可以关注需要调试服务的名称。

procrank –v

procrank | grep [cmdline | PID]

procrank | grep “com.android.systemui”

procrank | grep 3396

#!/bin/bash

while true;do

adb shell procrank | grep “com.android.systemui”

sleep 1

done

 dumpsys -help

af://n4691
af://n4698
af://n4702
af://n4704

输出指定服务的信息
作用：输出指定的服务的 dump 信息。
格式：dumpsys [servicename]
示例：输出服务 SurfaceFlinger的信息，可执行命令：

输出指定服务和应有进程的信息
作用：输出指定服务指定应用进程信息。
格式：dumpsys [servicename] [应用名]
示例：输出服务名为 meminfo，进程名为 com.android.systemui 的内存信息，执行命令：

注意：服务名称是大小写敏感的，并且必须输入完整服务名称。

Last log 开启

在dts文件里面添加下面两个节点

使用方法：

FIQ模式

 dumpsys -l

dumpsys SurfaceFlinger

dumpsys meminfo com.android.systemui

ramoops_mem: ramoops_mem {

 reg = <0x0 0x110000 0x0 0xf0000>;

 reg-names = "ramoops_mem";

};

ramoops {

 compatible = "ramoops";

 record-size = <0x0 0x20000>;

 console-size = <0x0 0x80000>;

 ftrace-size = <0x0 0x00000>;

 pmsg-size = <0x0 0x50000>;

 memory-region = <&ramoops_mem>;

};

- 在机器中查看last log

130|root@rk3399:/sys/fs/pstore # ls

dmesg-ramoops-0 上次内核panic后保存的log。

pmsg-ramoops-0 上次用户空间的log，android的log。

ftrace-ramoops-0 打印某个时间段内的function trace。

console-ramoops-0 last_log 上次启动的kernel log，但只保存了优先级比默认log level 高的

log。

cat dmesg-ramoops-0

cat console-ramoops-0

logcat -L （pmsg-ramoops-0） 通过logcat 取出来并解析pull out by logcat and parse

cat ftrace-ramoops-0

af://n4722
af://n4732

当设备死机或者卡住的时候可以在串口输入fiq命令查看系统的状态，具体命令如下：

常见问题

当前kernel和u-boot版本？

如何获取当前SDK对应的RK release版本

Rockchip Android14.0 SDK包括AOSP原始代码和RK修改的代码两部分，其中RK修改的仓库包含
在 .repo/manifests/include 目录下面的xml中，AOSP默认的仓库

在 .repo/manifests/default.xml 。

版本确认：

RK修改部分

说明RK的版本是android-14.0-mid-rkr1

AOSP部分

说明AOSP的版本是android-14.0.0_r11
当需要提供版本信息的时候提供以上两个版本信息即可。
单个仓库可以直接通过如下命令获取tag信息

127|console:/ $ fiq

debug> help

FIQ Debugger commands:

 pc PC status

 regs Register dump

 allregs Extended Register dump

 bt Stack trace

 reboot [<c>] Reboot with command <c>

 reset [<c>] Hard reset with command <c>

 irqs Interupt status

 kmsg Kernel log

 version Kernel version

 sleep Allow sleep while in FIQ

 nosleep Disable sleep while in FIQ

 console Switch terminal to console

 cpu Current CPU

 cpu <number> Switch to CPU<number>

 ps Process list

 sysrq sysrq options

 sysrq <param> Execute sysrq with <param>

Android14.0 对应的kernel大版本版本为：6.1，u-boot的分支为next-dev分支

vim .repo/manifests/include/rk_checkout_from_aosp.xml

<project groups="pdk" name="platform/build" path="build/make" remote="rk"

revision="refs/tags/android-14.0-mid-rkr1">

vim .repo/manifests/default.xml

<default revision="refs/tags/android-14.0.0_r11"...>

af://n4735
af://n4736
af://n4738

RK的版本是以android-14.0-mid-rkrxx的格式递增的，所以当前的最新tag是android-14.0-mid-rkr1

如何确认本地SDK已经完整更新RK发布的SDK状态

RK发布SDK版本时会在.repo/manifests/commit/目录下对应提交该版本的commit信息，客户可以通过
对比这个commit信息来确认是否有完整更新SDK，具体操作如下：

按“如何获取当前SDK对应的RK release版本”的说明先确认SDK的RK版本，下面以RK版本是RKR1
为例进行说明；
用如下命令保存本地的commit信息

通过比较.repo/manifests/commit/commit_release_rkr1.xml和
release_manifest_rkr1_local.xml，即可确认SDK代码是否更新完整，
其中.repo/manifests/commit/commit_release_rkr1.xml为RK版本RKR6发布的commit信息。

uboot和kernel阶段logo图片替换

uboot和kernel阶段的logo分别为开机显示的第一张和第二张logo图片，可以根据产品需求进行修改替
换。
uboot logo源文件： kernel-6.1/logo.bmp

kernel logo源文件： kernel-6.1/logo_kernel.bmp

如果需要更换某一张，只需用同名的bmp替换掉，重新编译内核即可，编译后的文件在boot.img中。
说明：Logo图片大小目前只支持到8M以内大小的bmp格式图片，支持8、16、24、32位的bmp。

如何修改Android系统仅支持64位系统

Android14开始过GMS和EDLA认证的产品要求配置为仅支持64位的系统，不再支持32位的。修改为仅
支持64位的系统，可以可以减少内存占用，具体修改如下(以rk3562_ugo为例说明)：
在产品目录的BoardConfig.mk中修改对应的配置，如下

关机充电和低电预充

kernel-6.1$ git tag

android-14.0-mid-rkr1

.repo/repo/repo manifest -r -o release_manifest_rkr1_local.xml

diff --git a/rk3562_ugo/BoardConfig.mk b/rk3562_ugo/BoardConfig.mk

index c06433e..dc9cc50 100644

--- a/rk3562_ugo/BoardConfig.mk

+++ b/rk3562_ugo/BoardConfig.mk

@@ -18,3 +18,11 @@ PRODUCT_KERNEL_DTS := rk3562-rk817-tablet-v10

 CAMERA_SUPPORT_AUTOFOCUS := true

 BOARD_BUILD_GKI := true

 include device/rockchip/rk3562/BoardConfig.mk

+

+DEVICE_IS_64BIT_ONLY := true

+

+TARGET_2ND_ARCH :=

+TARGET_2ND_ARCH_VARIANT :=

+TARGET_2ND_CPU_ABI :=

+TARGET_2ND_CPU_ABI2 :=

+TARGET_2ND_CPU_VARIANT :=

af://n4752
af://n4762
af://n4765
af://n4768

关机充电和低电预充可以在dts中配置，具体如下：

其中：
rockchip,uboot-charge-on ：uboot关机充电，与android关机充电互斥
rockchip,android-charge-on ：android关机充电，与uboot关机充电互斥
rockchip,uboot-low-power-voltage ：配置低电预充到开机的电压，可以根据实际需求进行配置
rockchip,screen-on-voltage：配置低电预充到亮屏的电压，可以根据实际需求进行配置

Uboot阶段充电图片打包和替换

充电图片路径，可以直接替换同名文件，格式要求与原文件一样。

如果打开uboot充电，但是没有显示充电图片，可能是图片没有打包到resource.img中，可以按如下命
令打包

执行以上命令后uboot充电图片会打包到kernel目录的resource.img中，此时需要再将resource.img打
包到boot.img中，可以在android根目录执行./mkiamge.sh，然后烧写rockdev/下面的boot.img即可。

HDMI IN配置

hdmi in功能SDK默认是关闭的，如需打开，按以下操作：

RM310 4G配置

4G功能SDK默认是关闭的，如需打开，按以下操作：

charge-animation {

 compatible = "rockchip,uboot-charge";

 rockchip,uboot-charge-on = <1>;

 rockchip,android-charge-on = <0>;

 rockchip,uboot-low-power-voltage = <3400>;

 rockchip,screen-on-voltage = <3500>;

 status = "okay";

 };

u-boot/tools/images/

├── battery_0.bmp

├── battery_1.bmp

├── battery_2.bmp

├── battery_3.bmp

├── battery_4.bmp

├── battery_5.bmp

└── battery_fail.bmp

cd u-boot

./scripts/pack_resource.sh ../kernel-6.1/resource.img

cp resource.img ../kernel/resource.img

vim device/rockchip/rk3588/BoardConfig.mk

+BOARD_HDMI_IN_SUPPORT := true

af://n4772
af://n4778
af://n4781

WIFI休眠策略配置

wifi默认休眠策略是休眠一直保持连接，如需休眠断开，按以下操作：

Recovery旋转配置

支持Recovery旋转0/90/180/270度，默认不旋转（即旋转0度），旋转配置说明如下：

Android Surface旋转

Android系统显示旋转，可以修改如下配置，配置参数为0/90/180/270

替换 AOSP 部分源代码的 remote

客户下载RK的release代码时速度较慢，可以将AOSP的remote修改为国内镜像源，国外的客户可以修
改为Google的镜像源。这样可以提高下载速度。具体操作方法如下：
执行repo init（或者解压base包）后，修改.repo/manifests/remote.xml，把其中的 AOSP 这个
remote 的 fetch 从

改为
国内客户：（国内以清华大学镜像源为例，可以根据需要修改为其他国内镜像源)

vim device/rockchip/common/BoardConfig.mk

#for rk 4g modem

-BOARD_HAS_RK_4G_MODEM ?= false

+BOARD_HAS_RK_4G_MODEM ?= true

a/rk3566_rgo/overlay/frameworks/base/packages/SettingsProvider/res/values/defaul

ts.xml

+++

b/rk3566_rgo/overlay/frameworks/base/packages/SettingsProvider/res/values/defaul

ts.xml

@@ -24,5 +24,5 @@

 You can configure persist.wifi.sleep.delay.ms to delay closing wifi.

 The default is 15 minutes, 0 means that the wifi is turned off

 immediately after the screen is off. -->

- <integer name="def_wifi_sleep_policy">2</integer>

+ <integer name="def_wifi_sleep_policy">0</integer>

 </resources>

vim device/rockchip/common/BoardConfig.mk

#0: ROTATION_NONE 旋转0度

#90: ROTATION_RIGHT 旋转90度

#180: ROTATION_DOWN 旋转180度

#270: ROTATION_LEFT 旋转270度

For Recovery Rotation

TARGET_RECOVERY_DEFAULT_ROTATION ?= ROTATION_NONE

For Surface Flinger Rotation

SF_PRIMARY_DISPLAY_ORIENTATION ?= 0

< remote name="aosp" fetch="./" review="https://10.10.10.29" />

af://n4784
af://n4787
af://n4790
af://n4793

国外的客户：（Google镜像源）

Data区读写速率的优化

针对带电池的设备，建议fstab的data分区挂载参数加上‘fsync_mode=nobarrier’，可以较大的提升存
储读写速率，提升性能。这个参数对不带电池的设备存在掉电数据损害的风险，所以不建议不带电池的
设备加这个参数。修改补丁如下：

< remote name="aosp" fetch="https://aosp.tuna.tsinghua.edu.cn" />;

< remote name="aosp" fetch="https://android.googlesource.com" />

cd device/rockchip/common

diff --git a/scripts/fstab_tools/fstab.in b/scripts/fstab_tools/fstab.in

index 2ec6c265..c890cc84 100755

--- a/scripts/fstab_tools/fstab.in

+++ b/scripts/fstab_tools/fstab.in

@@ -23,6 +23,6 @@ ${_block_prefix}odm /odm ext4 ro,barrier=1

${_flags},first_stage_mount

 # For sdmmc

 /devices/platform/${_sdmmc_device}/mmc_host* auto auto defaults

 voldmanaged=sdcard1:auto

 # Full disk encryption has less effect on rk3326, so default to enable this.

-/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard,reserve_root=32768,resgid=1065

latemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,keydirectory=/metadata/vold/metadata_encryption,quo

ta,formattable,reservedsize=128M,checkpoint=fs

+/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard,reserve_root=32768,resgid=1065,fsync_mode=nobarrier

latemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,keydirectory=/metadata/vold/metadata_encryption,quo

ta,formattable,reservedsize=128M,checkpoint=fs

 # for ext4

 #/dev/block/by-name/userdata /data ext4

discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1

latemount,wait,formattable,check,fileencryption=software,quota,reservedsize=128M

,checkpoint=block

diff --git a/scripts/fstab_tools/fstab_go.in b/scripts/fstab_tools/fstab_go.in

index 582557f2..05c7653c 100755

--- a/scripts/fstab_tools/fstab_go.in

+++ b/scripts/fstab_tools/fstab_go.in

@@ -17,6 +17,6 @@ ${_block_prefix}odm /odm ext4 ro,barrier=1

${_flags},first_stage_mount

 # For sdmmc

 /devices/platform/${_sdmmc_device}/mmc_host* auto auto defaults

 voldmanaged=sdcard1:auto

 # Full disk encryption has less effect on rk3326, so default to enable this.

-/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard,reserve_root=32768,resgid=1065

latemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,keydirectory=/metadata/vold/metadata_encryption,quo

ta,formattable,reservedsize=128M,checkpoint=fs

af://n4800

userdata区文件系统换为EXT4

默认data分区的文件系统为f2fs，建议不带电池的产品可以将data区的文件系统改为ext4，可以减小异
常掉电后数据丢失的概率。修改方法如下：
以rk3566_r为例说明：

+/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard,reserve_root=32768,resgid=1065i,fsync_mode=nobarrie

r latemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,keydirectory=/metadata/vold/metadata_encryption,quo

ta,formattable,reservedsize=128M,checkpoint=fs

 # for ext4

 #/dev/block/by-name/userdata /data ext4

discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1

latemount,wait,formattable,check,fileencryption=software,quota,reservedsize=128M

,checkpoint=block

device/rockchip/common$ git diff

diff --git a/scripts/fstab_tools/fstab.in b/scripts/fstab_tools/fstab.in

index 6e78b00..a658332 100755

--- a/scripts/fstab_tools/fstab.in

+++ b/scripts/fstab_tools/fstab.in

@@ -20,6 +20,6 @@ ${_block_prefix}system_ext /system_ext ext4 ro,barrier=1

${_flags},first_stage_

 # For sdmmc

 /devices/platform/${_sdmmc_device}/mmc_host* auto auto defaults

 voldmanaged=sdcard1:auto

 # Full disk encryption has less effect on rk3326, so default to enable this.

-/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard,reserve_root=32768,resgid=1065

latemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,quota,formattable,reservedsize=128M,checkpoint=fs

+#/dev/block/by-name/userdata /data f2fs

noatime,nosuid,nodev,discard,reserve_root=32768,resgid=1065

latemount,wait,check,fileencryption=aes-256-xts:aes-256-

cts:v2+inlinecrypt_optimized,quota,formattable,reservedsize=128M,checkpoint=fs

 # for ext4

-#/dev/block/by-name/userdata /data ext4

discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1

latemount,wait,formattable,check,fileencryption=software,quota,reservedsize=128M

,checkpoint=block

+/dev/block/by-name/userdata /data ext4

discard,noatime,nosuid,nodev,noauto_da_alloc,data=ordered,user_xattr,barrier=1

latemount,wait,formattable,check,fileencryption=software,quota,reservedsize=128M

,checkpoint=block

device/rockchip/rk356x$ git diff

diff --git a/rk3566_r/recovery.fstab b/rk3566_r/recovery.fstab

index 7532217..cf789ac 100755

--- a/rk3566_r/recovery.fstab

+++ b/rk3566_r/recovery.fstab

@@ -7,7 +7,7 @@

 /dev/block/by-name/odm /odm ext4

defaults defaults

 /dev/block/by-name/cache /cache ext4

defaults defaults

af://n4803

修改开关机动画和开关机铃声

参考文档：

APP设置性能模式

device/rockchip/rk3xxx/下配置文件：package_performance.xml，在其中的节点中加入需要使用性
能模式的包名：（使用 aapt dump badging (file_path.apk)获取包名）

例如针对安兔兔的参考如下：

编译时会将文件打包进固件。

GPU相关问题排查方法

参考下面文档，可以做初步的问题排查

OTP和efuse说明

OTP支持芯片

RK3326
PX30
RK3566
RK3568
RK3588
EFUSE支持芯片
RK3288

 /dev/block/by-name/metadata /metadata ext4

defaults defaults

-/dev/block/by-name/userdata /data f2fs

defaults defaults

+/dev/block/by-name/userdata /data ext4

defaults defaults

 /dev/block/by-name/cust /cust ext4

defaults defaults

 /dev/block/by-name/custom /custom ext4

defaults defaults

 /dev/block/by-name/radical_update /radical_update ext4

defaults defaults

RKDocs\android\Rockchip_Introduction_Android_Power_On_Off_Animation_and_Tone_Cus

tomization_CN&EN.pdf

< app package="包名" mode="是否启用加速，启用为 1，关闭为 0"/>

< app package="com.antutu.ABenchMark"mode="1"/>

< app package="com.antutu.benchmark.full"mode="1"\/>

< app package="com.antutu.benchmark.full"mode="1"\/>

RKDocs\android\Rockchip_User_Guide_Dr.G_CN&EN.pdf

af://n4807
af://n4810
af://n4816
af://n4819

RK3368
RK3399
固件签名和otp/efuse烧写参考文档

代码中如何判断设备的OTP/EFUSE是否已经烧写

 OTP/EFUSE的状态会通过kernel的cmdline进行传递，cmdline中的fuse.programmed用来标识
OTP/EFUSE状态，具体如下：

"fuse.programmed=1"：软件固件包已经进行了secure-boot签名，硬件设备的efuse/otp已经被
烧写。
"fuse.programmed=0"：软件固件包已经进行了secure-boot签名，硬件设备的efuse/otp没有被
烧写。
cmdline中没有fuse.programmed：软件固件包没有进行secure-boot签名（Miniloader不传
递），或者Miniloader太旧没有支持传递。

开关selinux

如下修改，false为关闭，true为打开

开机弹出”Android系统出现问题”警告

出现警告框的原因有两种：

1. 固件不匹配，system/boot/vendor三个fingerprint不一致，不是同一套固件。
2. 机器打开支持了IO调试功能的config，编译时，使用文档前面所说的内核编译命令即可关闭。
3. 对于需要使用IO调试功能的项目，可以直接不管上述两种原因，直接合入frameworks/base下的

patch去掉弹窗：

RKDocs\common\security\Rockchip-Secure-Boot-Application-Note-V1.9.pdf

device/rockchip/common$

--- a/BoardConfig.mk

+++ b/BoardConfig.mk

@@ -67,7 +67,7 @@ endif

 # Enable android verified boot 2.0

 BOARD_AVB_ENABLE ?= false

-BOARD_SELINUX_ENFORCING ?= false

+BOARD_SELINUX_ENFORCING ?= true

diff --git

a/services/core/java/com/android/server/wm/ActivityTaskManagerService.java

b/services/core/java/com/android/server/wm/ActivityTaskManagerService.java

index 595c340..d4e495a 100644

--- a/services/core/java/com/android/server/wm/ActivityTaskManagerService.java

+++ b/services/core/java/com/android/server/wm/ActivityTaskManagerService.java

@@ -6555,7 +6555,7 @@ public class ActivityTaskManagerService extends

IActivityTaskManager.Stub {

 } catch (RemoteException e) {

 }

- if (!Build.isBuildConsistent()) {

+ if (0 && !Build.isBuildConsistent()) {

af://n4839
af://n4848
af://n4851

如何打开设置中以太网的设置项

 系统设置中默认没有以太网设置的选项，如果项目中需要以太网可以按如下配置打开：

关于AVB和security boot的操作

AVB和security boot的操作参考文档

IO命令无法使用

IO命令需要依赖DEVMEM，而DEVMEM默认是关闭的，所以导致IO默认无法使用，如果调试需要使用
IO命令可以按如下修改：

如果是GO的产品则需要修改：

删除掉下面这行：

如果要编译Android，则还需要修改如下代码

 Slog.e(TAG, "Build fingerprint is not consistent, warning

user");

 mUiHandler.post(() -> {

 if (mShowDialogs) {

--- a/BoardConfig.mk

+++ b/BoardConfig.mk

@@ -146,3 +146,6 @@ endif

 ifeq ($(strip $(BOARD_USES_AB_IMAGE)), true)

 DEVICE_MANIFEST_FILE :=

device/rockchip/$(TARGET_BOARD_PLATFORM)/manifest_ab.xml

 endif

+# for ethernet

+BOARD_HS_ETHERNET := true

RKDocs/common/security/RK356X_SecurityBoot_And_AVB_instructions_CN.pdf

wlq@ubuntu:~/rk3562_Android14.0/$ vim mkcombinedroot/configs/android-14.config

wlq@ubuntu:~/rk3562_Android14.0$ vim mkcombinedroot/configs/android-14-go.config

CONFIG_DEVMEM is not set

cd rk3562_Android14.0/kernel/configs

diff --git a/android-6.1/android-base.config b/android-6.1/android-base.config

index 5de76f0..6dcdf86 100644

--- a/android-6.1/android-base.config

+++ b/android-6.1/android-base.config

@@ -2,7 +2,6 @@

 # CONFIG_ANDROID_LOW_MEMORY_KILLER is not set

 # CONFIG_ANDROID_PARANOID_NETWORK is not set

 # CONFIG_BPFILTER is not set

af://n4861
af://n4864
af://n4867

SN号的命令规则

SN号必须以字母开头，长度14个字节以内。

Kernel编译报LZ4的错误

Kernel编译l的时候报如下错误：

问题原因：
系统自带的lz4版本太低，要求1.8.3及以上版本

解决方法：
直接拷贝android编译出来的lz4覆盖系统的lz4

-# CONFIG_DEVMEM is not set

 # CONFIG_FHANDLE is not set

 # CONFIG_FW_CACHE is not set

 # CONFIG_IP6_NF_NAT is not set

wlq@sys2206:~/rk3562_Android14.0/kernel/configs$ git diff

diff --git a/u/android-6.1/android-base.config b/u/android-6.1/android-

base.config

index 29b9e98..c1b21cf 100644

--- a/u/android-6.1/android-base.config

+++ b/u/android-6.1/android-base.config

@@ -2,7 +2,6 @@

 # CONFIG_ANDROID_LOW_MEMORY_KILLER is not set

 # CONFIG_ANDROID_PARANOID_NETWORK is not set

 # CONFIG_BPFILTER is not set

-# CONFIG_DEVMEM is not set

 # CONFIG_FHANDLE is not set

 # CONFIG_FW_CACHE is not set

 # CONFIG_IP6_NF_NAT is not set

wlq@ubuntu:~$ lz4 -v

*** LZ4 command line interface 64-bits v1.8.3, by Yann Collet ***

refusing to read from a console

af://n4876
af://n4878

Android Samba功能

参考文档

NFS启动

参考文档及补丁：

RK3528 DDR 4BIT Loader修改

多屏异显异触

 参考文档

多屏异声

 参考文档

附录 A 编译开发环境搭建 Compiling and development
environment setup

Initializing a Build Environment

This section describes how to set up your local work environment to build the Android source
files. You must use Linux or Mac OS; building under Windows is not currently supported.
For an overview of the entire code-review and code-update process, see Life of a Patch.
Note: All commands in this site are preceded by a dollar sign ($) to differentiate them from
output or entries within files. You may use the Click to copy feature at the top right of each

sudo cp out/host/linux-x86/bin/lz4 /usr/bin/lz4

RKDocs/android/Rockchip_Introduction_Android_Samba_CN.pdf

RKDocs/android/patches/customized_functions/nfs_boot_patch_v1.1.0.zip

diff --git a/RKBOOT/RK3528MINIALL.ini b/RKBOOT/RK3528MINIALL.ini

index a7e3779..6a952cf 100644

--- a/RKBOOT/RK3528MINIALL.ini

+++ b/RKBOOT/RK3528MINIALL.ini

@@ -14,7 +14,7 @@ Path1=bin/rk35/rk3528_usbplug_v1.03.bin

 NUM=2

 LOADER1=FlashData

 LOADER2=FlashBoot

-FlashData=bin/rk35/rk3528_ddr_1056MHz_v1.05.bin

+FlashData=bin/rk35/rk3528_ddr_1056MHz_4BIT_PCB_v1.05.bin

 RKDocs\android\patches\customized_functions/Android11异显开发说明.zip

 RKDocs/android/patches/customized_functions/Dual_Audio_v1.0.zip

af://n4883
af://n4886
af://n4889
af://n4891
af://n4894
af://n4897
af://n4898

command box to copy all lines without the dollar signs or triple-click each line to copy it
individually without the dollar sign.

Choosing a Branch

Some requirements for the build environment are determined by the version of the source code
you plan to compile. For a full list of available branches, see Build Numbers. You can also choose
to download and build the latest source code (called master), in which case you will simply omit
the branch specification when you initialize the repository.
After you have selected a branch, follow the appropriate instructions below to set up your build
environment.

Setting up a Linux build environment

These instructions apply to all branches, including master.
The Android build is routinely tested in house on recent versions of Ubuntu LTS (14.04) and
Debian testing. Most other distributions should have the required build tools available.
For Gingerbread (2.3.x) and newer versions, including the master branch, a 64-bit environment is
required. Older versions can be compiled on 32-bit systems.
Note: See Requirements for the complete list of hardware and software requirements, then
follow the detailed instructions for Ubuntu and Mac OS below.

Installing the JDK

The master branch of Android in the Android Open Source Project (AOSP) comes with prebuilt
versions of OpenJDK below prebuilts/jdk/ so no additional installation is required.
Older versions of Android require a separate installation of the JDK. On Ubuntu, use OpenJDK.
See JDK Requirements for precise versions and the sections below for instructions.
For Ubuntu >= 15.04
Run the following:

For Ubuntu LTS 14.04
There are no available supported OpenJDK 8 packages for Ubuntu 14.04. The Ubuntu 15.04
OpenJDK 8 packages have been used successfully with Ubuntu 14.04. Newer package versions
(e.g. those for 15.10, 16.04) were found not to work on 14.04 using the instructions below.

1. Download the .deb packages for 64-bit architecture from old-releases.ubuntu.com:

2. Optionally, confirm the checksums of the downloaded files against the SHA256 string listed
with each package above. For example, with the sha256sum tool:

sudo apt-get update

sudo apt-get install openjdk-8-jdk

openjdk-8-jre-headless_8u45-b14-1_amd64.deb with SHA256

0f5aba8db39088283b51e00054813063173a4d8809f70033976f83e214ab56c0

openjdk-8-jre_8u45-b14-1_amd64.deb with SHA256

9ef76c4562d39432b69baf6c18f199707c5c56a5b4566847df908b7d74e15849

openjdk-8-jdk_8u45-b14-1_amd64.deb with SHA256

6e47215cf6205aa829e6a0a64985075bd29d1f428a4006a80c9db371c2fc3c4c

 sha256sum {downloaded.deb file}

af://n4900
af://n4902
af://n4904

3. Install the packages:

Run dpkg for each of the .deb files you downloaded. It may produce errors due to missing
dependencies:

To fix missing dependencies:

Update the default Java version - optional
Optionally, for the Ubuntu versions above update the default Java version by running:

Note: If, during a build, you encounter version errors for Java, see Wrong Java version for likely
causes and solutions.
Installing required packages (Ubuntu 14.04)
You will need a 64-bit version of Ubuntu. Ubuntu 14.04 is recommended.

Note: To use SELinux tools for policy analysis, also install the python-networkx package. Note: If
you are using LDAP and want to run ART host tests, also install the libnss-sss:i386 package.

Configuring USB Access

Under GNU/linux systems (and specifically under Ubuntu systems), regular users can't directly
access USB devices by default. The system needs to be configured to allow such access.
The recommended approach is to create a file /etc/udev/rules.d/51-android.rules (as the root
user) and to copy the following lines in it. must be replaced by the actual username of the user
who is authorized to access the phones over USB.

Those new rules take effect the next time a device is plugged in. It might therefore be necessary
to unplug the device and plug it back into the computer.
This is known to work on both Ubuntu Hardy Heron (8.04.x LTS) and Lucid Lynx (10.04.x LTS).
Other versions of Ubuntu or other variants of GNU/linux might require different configurations.
References : http://source.android.com/source/initializing.html

 sudo apt-get update

 sudo dpkg -i {downloaded.deb file}

sudo apt-get -f install

sudo update-alternatives --config javasudo update-alternatives --config javac

sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl

zlib1g-dev gcc-multilib g++-multilib libc6-dev-i386 lib32ncurses5-dev x11proto-

core-dev libx11-dev lib32z-dev ccache libgl1-mesa-dev libxml2-utils xsltproc

unzip python-pyelftools python3-pyelftools device-tree-compiler libfdt-dev

libfdt1 libssl-dev liblz4-tool python-dev

adb protocol on passion (Rockchip products)

SUBSYSTEM=="usb", ATTR{idVendor}=="2207", ATTR{idProduct}=="0010", MODE="0600",

OWNER="<username>"

af://n4929
http://source.android.com/source/initializing.html
af://n4933

附录 B SSH公钥操作说明 SSH public key operation
instruction

附录 B-1 SSH公钥生成 SSH public key generation

使用如下命令生成：

请将user@host替换成您的邮箱地址。

命令运行完成会在你的目录下生成key文件。

请妥善保存生成的私钥文件id_rsa和密码，并将id_rsa.pub发邮件给SDK发布服务器的管理员。

附录 B-2 使用key-chain管理密钥 Use key-chain to manage the
key

推荐您使用比较简易的工具keychain管理密钥。
具体使用方法如下：

1. 安装keychain软件包：

2. 配置使用密钥：

ssh-keygen -t rsa -C "user@host"

$sudo aptitude install keychain

af://n4933
af://n4934
af://n4938

增加下面这行：

其中，id_rsa是私钥文件名称。
以上配置以后，重新登录控制台，会提示输入密码，只需输入生成密钥时使用的密码即可，若无密码可
不输入。
另外，请尽量不要使用sudo或root用户，除非您知道如何处理，否则将导致权限以及密钥管理混乱。

附录 B-3 多台机器使用相同ssh公钥 Multiple devices use the
same ssh public key

在不同机器使用，可以将你的ssh私钥文件id_rsa拷贝到要使用的机器的“~/.ssh/id_rsa”即可。
在使用错误的私钥会出现如下提示，请注意替换成正确的私钥。

添加正确的私钥后，就可以使用git 克隆代码，如下图。

添加ssh私钥可能出现如下提示错误。

在console输入如下命令即可解决。

附录 B-4 一台机器切换不同ssh公钥 Switch different ssh public
keys on one device

可以参考ssh_config文档配置ssh。

$vim ~/.bashrc

eval `keychain --eval ~/.ssh/id_rsa`

Agent admitted failture to sign using the key

ssh-add ~/.ssh/id_rsa

~$ man ssh_config

af://n4951
af://n4956

通过如下命令，配置当前用户的ssh配置。

如图，将ssh使用另一个目录的文件“~/.ssh1/id_rsa”作为认证私钥。通过这种方法，可以切换不同的密
钥。

附录 B-5 密钥权限管理 Key authority management

~$ cp /etc/ssh/ssh_config ~/.ssh/config

~$ vi .ssh/config

af://n4962

服务器可以实时监控某个key的下载次数、IP等信息，如果发现异常将禁用相应的key的下载权限。
请妥善保管私钥文件。并不要二次授权与第三方使用。

附录 B-6 Git权限申请说明 Git authority application instruction

参考上述章节，生成公钥文件，发邮件至 fae@rock-chips.com，申请开通SDK代码下载权限。

af://n4964
mailto:fae@rock-chips.com

	Rockchip Android 14.0 SDK开发指南
	Rockchip Android 14.0 SDK支持芯片
	Rockchip Android 14.0 SDK代码下载编译
	代码下载
	下载地址
	服务器镜像下载

	搭建自己的repo代码服务器
	环境
	gitolite搭建
	服务器端操作
	客户端操作

	repo镜像搭建
	服务器端操作
	客户端操作

	客户端操作

	代码管理
	切换自己的代码分支
	代码修改提交
	同步RK的代码

	kernel代码路径说明
	代码编译
	Lunch项说明
	一键编译命令

	各个平台编译命令汇总
	GKI
	其他编译说明
	Android14.0不能直接烧写kernel.img和resource.img
	单独编译kernel生成boot.img

	固件烧写
	固件烧写工具
	固件说明
	固件说明

	Generic Kernel Image（GKI）
	fastboot烧写动态分区

	使用DTBO功能
	修改fstab文件
	修改parameter.txt
	Android常用配置
	新建产品lunch

	Kernel dts说明
	新建产品dts

	补丁发布
	文档说明
	外设支持列表
	Camera IQ Tool文档
	rknn-toolkit2开发SDK和文档
	RKDocs文档说明

	工具使用
	StressTest
	模块相关
	非模块相关

	PCBA测试工具
	DeviceTest
	USB驱动
	开发烧写工具
	Windows版本
	Linux版本

	SD升级启动制作工具
	写号工具
	DDR焊接测试工具
	efuse烧写工具
	efuse/otp签名工具
	工厂生产固件烧写工具
	userdata分区数据预置工具
	Camera IQ Tool

	系统调试
	ADB工具
	概述
	USB adb使用说明

	ADB常用命令详解
	Logcat工具
	Logcat命令使用

	常用的日志过滤方式
	Procrank工具
	使用procrank
	检索指定内容信息
	跟踪进程内存状态

	Dumpsys工具
	使用Dumpsys

	Last log 开启
	FIQ模式

	常见问题
	当前kernel和u-boot版本？
	如何获取当前SDK对应的RK release版本
	如何确认本地SDK已经完整更新RK发布的SDK状态
	uboot和kernel阶段logo图片替换
	如何修改Android系统仅支持64位系统
	关机充电和低电预充
	Uboot阶段充电图片打包和替换
	HDMI IN配置
	RM310 4G配置
	WIFI休眠策略配置
	Recovery旋转配置
	Android Surface旋转
	替换 AOSP 部分源代码的 remote
	Data区读写速率的优化
	userdata区文件系统换为EXT4
	修改开关机动画和开关机铃声
	APP设置性能模式
	GPU相关问题排查方法
	OTP和efuse说明
	代码中如何判断设备的OTP/EFUSE是否已经烧写
	开关selinux
	开机弹出”Android系统出现问题”警告
	如何打开设置中以太网的设置项
	关于AVB和security boot的操作
	IO命令无法使用
	SN号的命令规则
	Kernel编译报LZ4的错误
	Android Samba功能
	NFS启动
	RK3528 DDR 4BIT Loader修改

	多屏异显异触
	多屏异声
	附录 A 	编译开发环境搭建 Compiling and development environment setup
	Initializing a Build Environment
	Choosing a Branch
	Setting up a Linux build environment
	Installing the JDK
	Configuring USB Access

	附录 B 	SSH公钥操作说明 SSH public key operation instruction
	附录 B-1 	SSH公钥生成 SSH public key generation
	附录 B-2 	使用key-chain管理密钥 Use key-chain to manage the key
	附录 B-3 	多台机器使用相同ssh公钥 Multiple devices use the same ssh public key
	附录 B-4 	一台机器切换不同ssh公钥 Switch different ssh public keys on one device
	附录 B-5 	密钥权限管理 Key authority management
	附录 B-6 	Git权限申请说明 Git authority application instruction

