
Rockchip Android Libhwjpeg Interface
Introduction

ID: RK-SM-YF-E19

Release Version: V1.0.0

Release Date: 2024-08-20

Security Level: □Secret □Internal □Public ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip's registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this
document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

Overview

This document primarily introduces the interfaces and usage methods of the JPEG hardware
codec package library libhwjpeg. Developers can integrate the hardware-based JPEG encoding
and decoding functionality into their applications according to the interface descriptions provided
in this document.

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chip Name Kernel Version

Supports all chipsets Linux-4.19, Linux-5.10

Version Author Date Change Description

V1.0.0 Chen Jinsen 2024-08-20 Initial version release

Intended Audience

This document (this guide) is mainly intended for

Technical Support Engineer

Software Development Engineer

Revision History

Contents

Rockchip Android Libhwjpeg Interface Introduction
1. Overview
2. MpiJpegDecoder
3. MpiJpegEncoder

1. Overview

The libhwjpeg library is used to support hardware JPEG encoding and decoding on Rockchip
platforms, encapsulating the JPEG encoding and decoding logic of the platform's MPP (Media
Process Platform) library.

The MpiJpegEncoder class encapsulates hardware encoding-related interfaces, while the
MpiJpegDecoder class encapsulates hardware decoding-related interfaces, supporting the
decoding of images or MJPEG streams.

The project contains main directories:

The project code is organized using bp files and can be directly compiled and used in the
Android SDK environment.

2. MpiJpegDecoder

- inc: libhwjpeg header file

- src: libhwjpeg implementation code

- test: libhwjpeg test instance

af://n49
af://n56

The MpiJpegDecoder class is an encapsulation of platform-specific JPEG hardware decoding. It
supports input of JPG images and MJPEG streams, and provides both synchronous and
asynchronous decoding methods.

decodePacket & decodeFile are synchronous decoding methods. Synchronous decoding methods
are simple to use and block until the decoding output is available. OutputFrame_t is the
encapsulation of decoding output, which includes information such as the width, height, physical
address, and virtual address of the output frame.

sendpacket & getoutframe are used in conjunction to implement asynchronous decoding output.
The application launches two threads, one thread sends input via sendpacket, and the other
thread asynchronously retrieves output via getoutframe.

Notes:

1. Decoding defaults to output RAW NV12 data
2. Hardware decoder characteristics, the decoding output YUV is aligned by default. When

actually used before display, the real image must be cropped from the buffer based on its
virtual width and virtual height, otherwise, issues like green edges may occur. libhwjpeg
provides a channel to implement the internal self-cropping, through setting the property -
setprop hwjpeg_dec_debug 0x10.

3. The OutFrame buffer encapsulates the decoding output dmaBuffer and is reused internally
within the decoding library. After the decoding display is completed, the memory is released
using deinitOutputFrame.

4. By default, the output buffer uses the internally allocated buffer rotation pool, but it also
allows external transmission of dmaBuffer fd, the additionally transmitted dmaBuffer fd is
passed via the parameter of the decodePacket function OutputFrame_t->outputPhyAddr.

Decoding Usage Example:

- decodePacket(char* data, size_t size, OutputFrame_t *frameOut);

- decodeFile(const char *inputFile, const char *outputFile);

- sendpacket(char* data, size_t size);

- getoutframe(OutputFrame_t *frameOut);

 MpiJpegDecoder decoder;

 MpiJpegDecoder::OutputFrame_t frameOut;

 memset(&frameOut, 0, sizeof(frameOut));

 err = decoder.prepareDecoder();

 if (!err) {

 ALOGE("failed to prepare JPEG decoder");

 goto cleanUp;

 }

 err = decoder.decodePacket(data, size, &frameOut);

 if (!err) {

 ALOGE("failed to decode packet");

 goto cleanUp;

 }

 /* TODO - Get diaplay for the frameOut.

 * - frame address: frameOut.MemVirAddr

3. MpiJpegEncoder

The MpiJpegEncoder class is an encapsulation of platform-specific JPEG hardware encoding. The
primary interfaces currently provided include:

encodeFrame & encodeFile are synchronous blocking encoding methods. OutputPacket_t is the
encapsulation for encoding output, containing memory address information of the output data.

The encode interface is a encoding scheme designed for the camera HAL, which receives user-
provided input/output dmaBuffer fd. The output JPEG includes encoding thumbnails, APP1 EXIF
header information, and other related information.

Notes:

1. OutputPacket_t is the encapsulation for encoding output. The buffer is reused internally
within the encoding library and should be released using deinitOutputPacket after the
encoding process is completed.

Encoding Usage Example:

 * - frame size: frameOut.OutputSize */

 /* output buffer count within limits, so release frame buffer if one

 frame has been display successfully. */

 decoder.deinitOutputFrame(&frameOut);

 decoder.flushBuffer();

- encodeFrame(char *data, OutputPacket_t *packetOut);

- encodeFile(const char *inputFile, const char *outputFile);

- encode(EncInInfo *inInfo, EncOutInfo *outInfo);

 MpiJpegEncoder encoder;

 MpiJpegEncoder::OutputPacket_t pktOut;

 memset(&pktOut, 0, sizeof(pktOut));

 err = encoder.prepareEncoder();

 if (!err) {

 ALOGE("failed to prepare JPEG encoder");

 goto cleanUp;

 }

 err = encoder.updateEncodeCfg(

 720 /*width*/, 1080 /*height*/, MpiJpegEncoder::INPUT_FMT_YUV420SP);

 if (!err) {

 ALOGE("failed to update encode config");

 goto cleanUp;

 }

 err = encoder.encodeFrame(data, &pktOut);

 if (!err) {

af://n74

 ALOGE("failed to encode packet");

 goto cleanUp;

 }

 /* TODO - Get diaplay for the PacketOut.

 * - Pakcet address: pktOut.data

 * - Pakcet size: pktOut.size */

 /* output buffer count within limits, so release frame buffer if one

 frame has been display successful. */

 encoder.deinitOutputPacket(&pktOut);

 encoder.flushBuffer();

	Rockchip Android Libhwjpeg Interface Introduction
	Overview
	MpiJpegDecoder
	MpiJpegEncoder

