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Preface
Overview

This document primarily introduces the interfaces and usage methods of the JPEG hardware
codec package library libhwjpeg. Developers can integrate the hardware-based JPEG encoding
and decoding functionality into their applications according to the interface descriptions provided
in this document.
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1. Overview

The Tibhwjpeg library is used to support hardware JPEG encoding and decoding on Rockchip
platforms, encapsulating the JPEG encoding and decoding logic of the platform's MPP (Media
Process Platform) library.

The MpiJpegEncoder class encapsulates hardware encoding-related interfaces, while the
MpiJpegDecoder class encapsulates hardware decoding-related interfaces, supporting the
decoding of images or MJPEG streams.

The project contains main directories:

- inc: Tibhwjpeg header file
- src: Tibhwjpeg implementation code
- test: Tibhwjpeg test instance

The project code is organized using bp files and can be directly compiled and used in the
Android SDK environment.

2. MpijpegDecoder
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The MpijpegDecoder class is an encapsulation of platform-specific JPEG hardware decoding. It
supports input of JPG images and MJPEG streams, and provides both synchronous and
asynchronous decoding methods.

- decodePacket(char* data, size_t size, OutputFrame_t *frameout);
- decodeFile(const char *inputFile, const char *outputFile);

decodePacket & decodeFile are synchronous decoding methods. Synchronous decoding methods
are simple to use and block until the decoding output is available. OutputFrame_t is the
encapsulation of decoding output, which includes information such as the width, height, physical
address, and virtual address of the output frame.

- sendpacket(char* data, size_t size);
- getoutframe(outputFrame_t *frameout);

sendpacket & getoutframe are used in conjunction to implement asynchronous decoding output.
The application launches two threads, one thread sends input via sendpacket, and the other
thread asynchronously retrieves output via getoutframe.

Notes:

1. Decoding defaults to output RAW NV12 data

2. Hardware decoder characteristics, the decoding output YUV is aligned by default. When
actually used before display, the real image must be cropped from the buffer based on its
virtual width and virtual height, otherwise, issues like green edges may occur. libhwjpeg
provides a channel to implement the internal self-cropping, through setting the property -
setprop hwjpeg_dec_debug 0x10.

3. The OutFrame buffer encapsulates the decoding output dmaBuffer and is reused internally
within the decoding library. After the decoding display is completed, the memory is released
using deinitOutputFrame.

4. By default, the output buffer uses the internally allocated buffer rotation pool, but it also
allows external transmission of dmaBuffer fd, the additionally transmitted dmaBuffer fd is
passed via the parameter of the decodePacket function OutputFrame_t->outputPhyAddr.

Decoding Usage Example:

MpiJpegbDecoder decoder;
Mp1iJpegDecoder: :OutputFrame_t frameout;

memset (&frameout, 0, sizeof(frameout));

err = decoder.preparebecoder();

if (lerr) {
ALOGE("failed to prepare JPEG decoder");
goto cleanup;

err = decoder.decodePacket(data, size, &frameout);
if (lerr) {

ALOGE("failed to decode packet");

goto cleanup;

/* TODO - Get diaplay for the frameout.
* - frame address: frameout.MemvirAddr



* - frame size: frameout.OutputSize */

/* output buffer count within Timits, so release frame buffer if one
frame has been display successfully. */
decoder.deinitoutputFrame (&frameout) ;

decoder. flushBuffer();

3. MpijpegEncoder

The MpiJpegEncoder class is an encapsulation of platform-specific JPEG hardware encoding. The
primary interfaces currently provided include:

- encodeFrame(char *data, OutputPacket_t *packetout);
- encodeFile(const char *inputFile, const char *outputFile);

encodeFrame & encodeFile are synchronous blocking encoding methods. OutputPacket_t is the
encapsulation for encoding output, containing memory address information of the output data.

- encode(EncInInfo *inInfo, EncoutInfo *outInfo);

The encode interface is a encoding scheme designed for the camera HAL, which receives user-
provided input/output dmaBuffer fd. The output JPEG includes encoding thumbnails, APP1 EXIF
header information, and other related information.

Notes:

1. OutputPacket_t is the encapsulation for encoding output. The buffer is reused internally
within the encoding library and should be released using deinitOutputPacket after the
encoding process is completed.

Encoding Usage Example:

MpiJpegEncoder encoder;
MpiJpegEncoder: :outputPacket_t pktout;

memset (&pktout, 0, sizeof(pktout));

err = encoder.prepareeEncoder();

if (lerr) {
ALOGE("failed to prepare JPEG encoder");
goto cleanup;

err = encoder.updateEncodeCfg(
720 /*width*/, 1080 /*height*/, MpilpegEncoder::INPUT_FMT_YUV420SP);
if (lerr) {
ALOGE("failed to update encode config");
goto cleanup;

err = encoder.encodeFrame(data, &pktout);
if (lerr) {
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ALOGE("failed to encode packet");
goto cleanup;

/* TODO - Get diaplay for the Packetout.
* - pPakcet address: pktout.data
* - pPakcet size: pktout.size */

/* output buffer count within Timits, so release frame buffer if one
frame has been display successful. */

encoder.deinitoutputPacket (&pktout);

encoder.flushBuffer();
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