
Rockchip Android Multimedia FAQ

ID: RK-PC-YF-E07

Release Version: V1.0.3

Release Date: 2025-02-07

Security Level: □Secret □Internal □Public ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip's registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2025. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this
document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

Overview

This document primarily introduces common debugging methods for the Rockchip multimedia
platform and frequently encountered issues during the development process. Engineers
encountering issues related to those covered in this document are advised to attempt debugging
using the provided methods, converge on the problem, enhance troubleshooting efficiency, and
proceed to resolve the issues.

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chip Name Kernel Version

Support all chipsets Linux-4.19, Linux-5.10

Version Author Date Change Description

V1.0.0 Chen Jinsen 2022-03-03 Initial version release

V1.0.1 Chen Jinsen 2023-06-04 Updated format, added common issues

V1.0.2 Chen Jinsen 2023-03-19 Added support for RK3576

V1.0.3 Chen Jin Sen 2025-02-07 Added some common issues

Intended Audience

This document (this guide) is mainly intended for:

Technical Support Engineer

Software Development Engineer

Revision History

Contents

Rockchip Android Multimedia FAQ
1. General Media Category

1.1 Media Source Unable to Play
1.1.1 Check if the media sources are within the supported specifications of the chip
1.1.2 Check Whether Audio/Video Formats Involve Copyright Issues

1.2 Common Chip Codec Capabilities Specification Table
1.2.1 Decoding Capability Specification Table
1.2.2 Encoding Capability Specification Table

1.3 How to Increase VPU Frequency
1.3.1 VPU Frequency Query
1.3.2 VPU Frequency Modification

1.4 How to Capture Codec Input and Output
1.5 Multi-channel Encoding and Decoding Supported Channel Calculation
1.6 High CPU Usage in Multimedia Applications
1.7 Analysis of Memory Leak Issues in Multimedia Applications
1.8 Platform JPEG Hardware Codec Reference Demo

2. Video Encoding and Decoding Category
2.1 Media Source Stuttering\Audio-Video Synchronization Issues
2.2 Video/Screen Recording Output Blurry or Mosaic
2.3 MediaCodec Encoding Bitrate Configuration Overflow/Exceeding Bitrate
2.4 Codec Initialization Failed Log Indicates "MPP HAL xxx init failed"
2.5 MediaCodec BufferMode Decoding Efficiency Improvement

3. Application Usage Category
3.1 Kodi\Bilibili and other applications video playback not using hardware decoder
3.2 WebView Video Playback Failure or White Space at the Top
3.3 iQIYI APP Crashes During Video Playback Stress Test
3.4 The player application failed to retrieve thumbnails in real-time during playback
3.5 RK356X Screen Recording or Video Encoding Green Screen, Log Indicates RGA Error
3.6 Removal of Custom Audio-Video Format Support in Video Player Application
3.7 Camera 4K Video Recording Exhibits Reddish During Playback
3.8 Video Switching Displays Black Frame with the Player

3.9 Intermittent Artifact Distortion or Stuttering in Screen Mirroring Display
3.10 Player seek operation causes progress bar jump back
3.11 TikTok\Youku Video Browsing Encounter Android Reboot Issues

1. General Media Category

1.1 Media Source Unable to Play

1.1.1 Check if the media sources are within the supported specifications
of the chip

Using the MediaInfo tool provided by Windows or Linux allows querying the media parameters of
the source material, including encoding format, resolution, bitrate, scan method, bit depth, and
other basic information. Comparing with the platform-provided chip datasheet manuals or Codec
Benchmark can preliminarily determine if the source material is supported.

Note: Datesheet manuals and Codec Benchmark calibrated chip codec capabilities are
essential prerequisites for troubleshooting chip support issues. To obtain these documents,
please submit a request via email (sw.fae@rock-chips.com).

1.1.2 Check Whether Audio/Video Formats Involve Copyright Issues

The audio/video formats that the platform is explicitly known to not support due to copyright
reasons include:

Audio: mlp, ac3, eac3, dts, dsp, heaac, other Dolby-related

Video: DivX, Xvid, RMVB, VP6, VC-1, SVQ, ISO Blue-ray

af://n64
af://n65
af://n66
mailto:sw.fae@rock-chips.com
af://n71

 H264 H265 VP9 JPEG

RK3588 7680x4320@30f 7680x4320@60f 7680x4320@60f 1920x1080@280f

RK3576 4096x2304@60f 7680x4320@30f 7680x4320@30f 3840x2160@90f

RK3562 1920x1080@60f 4096x2304@30f 4096x2304@30f 1920x1080@60f

RK3528 4096x2304@30f 4096x2304@60f 4096x2304@60f 1920x1080@120f

RK356X 4096x2304@30f 4096x2304@60f 4096x2304@60f 1920x1080@80f

RK3399 4096x2304@30f 4096x2304@60f 4096x2304@60f 1920x1080@30f

RK3328 4096x2304@30f 4096x2304@60f 4096x2304@60f 1920x1080@30f

RK3288 3840x2160@30f 4096x2304@60f N/A 1920x1080@30f

RK3368/PX5 4096x2160@25f 4096x2304@60f N/A 1920x1080@30f

RK3326/PX30 1920x1080@60f 1920x1080@60f N/A 1920x1080@30f

RK312X 1920x1080@60f 1920x1080@60f N/A 1920x1080@30f

1.2 Common Chip Codec Capabilities Specification Table

The codec specifications for chips can be queried and obtained in Datasheet or Codec
Benchmark. The following section includes the calibrated specification tables for common chip
codec capabilities on the platform, facilitating quick query and confirmation.

The actual measured encoding and decoding capabilities are correlated with the system
load at the time of testing. For instance, when the CPU\DDR load is relatively high, the
encoding and decoding capabilities may slightly fall below the specifications stated in the
Datasheet.

1.2.1 Decoding Capability Specification Table

Other points to note:

1. RK3588 supports AVS2(7680x4320@60f) and AV1(3840x2160@60f) decoding.
2. RK3528 supports AVS2 (4096x2160@60f) decoding.
3. RK3562 does not support decoding formats such as mpeg1/2/4, vp8, h263, etc.
4. Except for RK3562, other chips support MPEG1/2/4, VP8, H263 decoding, with maximum

specification of 1080P.

1.2.2 Encoding Capability Specification Table

af://n74
af://n78
af://n162

 H264 H265 VP8 JPEG

RK3588 7680x4320@30f 7680x4320@30f 1920x1080@30f 3840x2160@30f

RK3576 3840x2160@60f 3840x2160@60f N/A 3840x2160@160f

RK3562 1920x1080@30f N/A N/A N/A

RK3528 1920x1080@60f 1920x1080@60f N/A 3840x2160@30f

RK356X 1920x1080@60f 1920x1080@60f 1920x1080@30f 1920x1080@60f

RK3399 1920x1080@30f N/A 1920x1080@30f 1920x1080@30f

RK3328 1920x1080@30f 1920x1080@30f 1920x1080@30f 1920x1080@30f

RK3288 1920x1080@30f N/A 1920x1080@30f 1920x1080@30f

RK3368/PX5 1920x1080@30f N/A 1920x1080@30f 1920x1080@30f

RK3326/PX30 1920x1080@30f N/A 1920x1080@30f 1920x1080@30f

RK312X 1920x1080@30f N/A 1920x1080@30f 1920x1080@30f

1.3 How to Increase VPU Frequency

VPU (Video Processing Unit) is a hardware video processing unit. Evaluating the hardware codec
performance issues often requires adjusting the VPU frequency.

It is generally considered that when the performance reaches a bottleneck, increasing the
frequency of VPU and DDR can improve the hardware's codec capabilities. However,
overloaded frequencies may impact the system stability of the device. It is recommended
that customers conduct thorough testing prior to integration.

To increase DDR frequency please refer to the documentation under SDK
RKDocs/common/DDR/Rockchip-Developer-Guide-DDR/ directory. This section primarily
introduces VPU frequency operations based on the platform.

1.3.1 VPU Frequency Query

The VPU frequency can be queried through the system clock tree table (cat /d/clk/clk_summary).
The following lists the clock tree frequency node names for common codecs, which can be cross-
referenced in the clk_summary output.

af://n236
af://n241

 h264_dec h265_dec vp9_dec jpeg_dec h264_enc h265_enc

RK3588 rkvdec rkvdec rkvdec jpeg_decoder rkvenc rkvenc

RK3576 rkvdec rkvdec rkvdec jpeg vepu vepu

RK3562 rkvdec rkvdec rkvdec jdec rkvenc ×

RK3528 rkvdec rkvdec rkvdec jpeg_decoder rkvenc rkvenc

RK356X rkvdec rkvdec rkvdec jdec rkvenc rkvenc

RK3399 vdu vdu vdu vcodec vcodec ×

RK3328 rkvdec rkvdec rkvdec vpu h264 h265

RK3288 vcodec hevc × × vcodec ×

RK3368/PX5 video video × video video ×

RK3326/PX30 vpu vpu × vpu vpu ×

RK312X vdpu vdpu × vdpu vdpu ×

Examples - Required frequency for the following scenarios:

1. RK3588 H264 Decoding

2. RK3288 h264 Decoding

3. RK3328 H.265 Encoding

1.3.2 VPU Frequency Modification

4.4 Kernel (Android 7.1 ~ 9.0) frequency modification can be referenced as follows: configure VPU
frequency to run at 500MHz for testing. The 4.4 kernel driver version does not support to
configure individual IP frequency.

4.19/5.10 kernel (>=Android 10.0) frequency configuration can be referenced as follows: configure
the rkvdec frequency to 500M for testing.

cat /d/clk/clk_summary | grep rkvdec // <aclk_rkvdec0> <aclk_rkvdec1>

cat /d/clk/clk_summary | grep vcodec // <aclk_vcodec>

cat /d/clk/clk_summary | grep h265 // <aclk_h265>

--- a/drivers/video/rockchip/vcodec/vcodec_service.c

+++ b/drivers/video/rockchip/vcodec/vcodec_service.c

@@ -2307,6 +2307,7 @@ static void vcodec_set_freq_default(struct vpu_service_info

*pservice,

 {

 enum VPU_FREQ curr = atomic_read(&pservice->freq_status);

+ reg->freq = VPU_FREQ_500M;

 if (curr == reg->freq)

 return;

af://n353

1. mpp_service driver uses dtsi format to configure frequency information

The chip codec configuration can be queried in the dtsi file. The following example is to configure
the RK3399 decoder to boost the frequency to 500M when decoding resolutions over 4K.

2. Using debugfs node to modify frequency

For temporary testing to evaluate the impact of frequency on the codec, the following approach
can be used:

1.4 How to Capture Codec Input and Output

For flowering screen, green screen, and similar issues, capturing the input and output of encoding
and decoding facilitates rapid problem localization and narrowing down the problem scope.

The following introduces the switch for saving decoding input and output on the platform.

[Application Layer]

[Framework Layer]

<rk3399.dtsi>

rkvdec: rkvdec@ff660000{

 clock-names = "aclk_vcodec", "hclk_vcodec",

 "clk_cabac", "clk_core",;

 rockchip,normal-rates = <297000000>, <0>,

 <297000000>, <297000000>, ;

 rockchip,advanced-rates = <500000000>, <0>,

 <500000000>, <500000000>;

 rockchip,default-max-load = <2088960>; // 1920x1088

};

rockchip,normal-rates is the clock rate set when the resolution is less than

1920x1088.

rockchip,advanced-rates is the clock rate set when the resolution exceeds

1920x1088.

echo 500000000 > /proc/mpp_service/rkvdec/aclk

echo 500000000 > /proc/mpp_service/rkvdec/clk_core

echo 500000000 > /proc/mpp_service/rkvdec/clk_cabac

1. Using the MediaCodec API

 a) Encoding Status

 - Input: queueInputBuffer Save file before input buffer

 - Output: After dequeueOutputBuffer, the encoded output buffer can be read

and written.

 b) Decoding Status

 - Input: queueInputBuffer Save file before input buffer

 - Output: When the Surface is unconfigured, the decoded output buffer can

be read and written after dequeueOutputBuffer.

setenforce 0

mkdir /data/video/

af://n363

If the above command fails to generate files in the /data/video/ path, you can use the switch of
the underlying system codec library to capture.

1.5 Multi-channel Encoding and Decoding Supported Channel
Calculation

The calculation of the maximum supported channel count for the chip hardware codec involves
hardware pixel computing capability, illustrated with a specific example:

Other codecs may refer to similar calculations. It should be noted that the above calculations are
based on high-bitrate extreme source materials, thus ensuring support for H264 4-channel
1080P@30fps decoding under any circumstances.

1) Android 12 and above versions use the Codec2 framework. Follow the commands

below to capture.

setprop vendor.dump.c2.log 0x000000f0

2) Android 11 and earlier versions use the OMX framework. Execute the following

command(s) to capture.

// Decode dec_in*.bin

setprop vendor.omx.vdec.debug 0x01000000

setprop record_omx_dec_in 1

// Encode enc_in*.bin enc_out*.bin

setprop vendor.omx.venc.debug 0x03000000

setprop record_omx_enc_in 1

setprop record_omx_enc_out 1

setenforce 0

mkdir /data/video/

setprop mpp_dump_in /data/video/mpp_dec_in.bin

setprop mpp_dump_out /data/video/mpp_dec_out.bin

setprop vendor.mpp_dump_in /data/video/mpp_dec_in.bin

setprop vendor.mpp_dump_out /data/video/mpp_dec_out.bin

setprop mpp_debug 0x600 && setprop vendor.mpp_debug 0x600

Question: What is the maximum number of H264 1080P@30fps decoding streams

supported by RK3399?

According to the RK3399 specifications, the H.264 decoding capability is:

4096x2304@30fps.

1) Hardware pixer computing capability: 4096x2304x30f per second

2) Conversion of 1080P@30fps, calculation method:

 (4096x2304x30) / (1920x1088x30) = 4.5

3) The greater the number of channels, the larger the calculated loss. Generally,

the final value is rounded down to the nearest integer, hence supporting 4

channels of 1080P@30fps

af://n372

RK3588, RK356X, RK3399, RK3328 built with high-performance decoder rkvdec (H264, H265, VP9),
decoding H264\H265\VP9, under extreme conditions, ordinary test source materials have the
opportunity to exceed the computing limits.

As the RK3399 may have the potential to achieve 1080P@30fps 8-channel decoding, the
specific evaluation methods are as follows:

Prerequisite: Non-high bitrate video source

1) Decoding Performance Metrics: VPU-driven kernel single-frame decoding time

The required single-frame decoding time for supporting 8-channel 1080P@30fps is (time / total
frames):

Ignoring time overhead from the decoding pipeline, a decoding time within 4ms per frame meets
the requirement. If current testing shows the single-frame decoding time does not meet the
requirement, evaluate and improve the frequency-related parameters as follows: increasing VPU
frequency or DDR frequency typically provides some performance improvement for the hardware
codec.

2) Frequency Information

It is commonly believed that increasing the frequency of VPU and DDR can improve the hardware
codec capabilities when the performance reaches a bottleneck. Therefore, check the VPU
frequency and DDR frequency during testing. If the frequencies still have room for improvement,
it is recommended to attempt increasing the frequencies and then proceed to step 2 to check
whether the kernel decoding time meets the requirements.

3) Increasing VPU Frequency

Refer to the introduction in Section 1.3 to increase the VPU frequency.

4) Increasing DDR Frequency

For specific instructions on increasing the DDR frequency, refer to the documentation in
RKDocs/common/DDR/Rockchip-Developer-Guide-DDR/.

4.19/5.10 Kernel (Android 10.0 and above versions)

$ echo 0x0100 > /sys/module/rk_vcodec/parameters/mpp_dev_debug

$ cat /proc/kmsg

4.4 Kernel (Android 7.1 to 9.0 versions)

$ echo 0x0100 > /sys/module/rk_vcodec/parameters/debug

$ cat /proc/kmsg

 -> (1 x 1000) / (8 * 30) ≈ 4.16 ms

/* VPU Frequency */

$ cat /d/clk/clk_summary | grep vdu <aclk_vdu> rk3399

$ cat /d/clk/clk_summary | grep rkvdec <aclk_rkvdec> rk3588\rk3328\rk356x

/* DDR Frequency */

$ cat /sys/class/devfreq/dmc/cur_freq

echo performance > /sys/class/devfreq/dmc/governor // Set DDR frequency to

performance

1.6 High CPU Usage in Multimedia Applications

[Problem Description]

The customer's customized multimedia codecs application experiences high overall CPU usage
during runtime, leading to system unresponsiveness.

[Problem Analysis]

Media applications involve extensive read/write operations that also consume CPU resources.
Therefore, the first step is to decouple responsibilities, requiring a breakdown to identify exactly
which process and which thread is abnormally occupying CPU. The following steps can be
referenced for analysis, progressively narrowing the scope from process->thread->function step
by step.

1. Determine the distribution of system CPU usage

In problem scenarios, use the system adb shell busybox top to real-time display the CPU usage
of each process.

As shown in the figure below, the application process com.quectel.quecencdectester occupies
47.8% of CPU usage and is the process requiring focused analysis.

2. Verify CPU Usage Distribution Among Threads in Abnormal Processes

In problem scenarios, use the system command top -H -p $(pidof
com.quectel.quecencdectester) to view the CPU usage of individual threads within the
application process. If the CPU usage is primarily from threads within the application, the
customer should conduct their own analysis. If the CPU usage is from system framework threads,
it should be reported to Redmine for RK handling.

As shown in the figure below, CodecLooper is the encoding and decoding processing thread for
the MediaCodec framework. During multi-decoding tests conducted by the Sample program, this
framework's encoding and decoding thread consumes the most of CPU usage.

3. Analysis of CPU Usage for Functions

Android CPU performance analysis tools are numerous, with integrated tools such as
TraceView\Systrace available via the Android Studio IDE. This chapter introduces the simpleperf
tool bundled with the SDK to perform statistical analysis of CPU usage.

af://n392

Following the analysis of the Sample program above, in multi-decoding applications the
framework thread CodecLooper exhibits relatively high CPU usage. We can use the simpleperf
tool to determine CPU usage percentage distribution across individual functions.

/sdcard/perfdata contains the generated analysis report, as shown in the figure below.
CodecLooper is the thread with the highest CPU usage, accounting for 15.31% of CPU processing
time. Within this thread, the majority of time is concentrated on processing the
libyuv::X420ToI420 function.

This function serves to copy the framework's decoded output to the application's external space
under the MediaCodec Buffer Mode decoding mode. Since the application cannot process the
framework's DMA decoded output, this CPU copy operation is unavoidable. In the chapter
<MediaCodec BufferMode Decoding Efficiency Improvement> of this document, replacing the
CPU copy with platform hardware RGA copy can improve the CPU usage issue in this scenario.

The same analytical steps can be used to troubleshoot other CPU usage issues in the
application.

1.7 Analysis of Memory Leak Issues in Multimedia
Applications

[Problem Description]

Multimedia applications running process leads to gradually decreasing system available memory,
eventually causing Out-of-Memory (OOM) and system reboot.

[Problem Analysis]

Memory leak issues can be troubleshooted following the steps below:

1. Confirm which process is experiencing a memory leak.

1. Use the following command to record CPU events in real-time, where 1349 is

the process PID, and duration 10 specifies a recording duration of 10 seconds

simpleperf record -o /sdcard/perf.data -g -p 1349 --duration 10

2. After recording ends, use the following command to generate the analysis

report

simpleperf report -i /sdcard/perf.data -g caller > /sdcard/perfdata

af://n414

The first step is to determine whether the leak originates from a customized application or a
system process. This can be achieved by verifying the meminfo information before and after the
issue occurs, comparing the RSS\PSS memory usage across all processes to identify which process
exhibits consistently increasing memory consumption, thereby indicating a potential memory leak
in that process.

2. Identify the type of memory leak

Identifying the leak type helps better locate the issue. The primary potential leak types for video
playback are malloc or dmabuf. Dmabuf is used for decoding output and display, serving as the
foundation of zero-copy video playback, allocated through dma buffer interfaces
(ION\DRM\dmaBufferHeap). Malloc refers to memory allocated via alloc or malloc functions.

The Linux showmap command is used to locate the memory map allocated by a process.

Among these, RSS\PSS represents the memory occupied by the process, in units of K. Identify
larger memory blocks in use and determine the memory leak type. If the leak is of the dmaBuf
type, primarily inspect buffer allocation and release during video playback initialization,
destruction, and info-change events. If it is a malloc-type memory leak, the Android Malloc Debug
tool can be used to locate the leaking stack trace.

3. Locating the Stack of Memory Leak Growth Points with Android Malloc Debug

Malloc Debug is a tool natively provided by Android for debugging native memory issues such as
memory leaks\memory corruption\memory release issues. The relevant instruction
documentation is located in the SDK bionic/libc/malloc_debug/README.md.

The following is an example, assuming the program name for memory detection is myTest.

The default captured memory snapshot is saved at the path:
/data/local/tmp/backtrace_heap.3302.txt, where 3302 is the process pid of the myTest program.

The generated memory snapshot can be parsed using the SDK native_heapdump_viewer.py tool
to generate leak stacks.

dumpsys meminfo

showmap $(pidof xxx)

Map Memory Object Type:

 - /dmabuf: DMA buffer type memory

 - malloc or anon:scudo malloc-type memory

adb shell stop

adb shell setprop libc.debug.malloc.program myTest

adb shell setprop libc.debug.malloc.options backtrace

adb shell start

Start Testing and Reproducing Issues...

kill -9 $(pidof myTest)

Fix the memory leak points based on the code indicated by the out_heap memory stack
information.

1.8 Platform JPEG Hardware Codec Reference Demo

Google's native MediaCodec pipeline does not support JPEG encoding and decoding. The MPP
JPEG encapsulation library libhwjpeg can be used to integrate JPEG hardware encoding and
decoding functionality into system multimedia applications.

Related code is located in the SDK path: hardware/rockchip/libhwjpeg

libhwjpeg is used to support JPEG hardware encoding and decoding on the Rockchip platform and
serves as the encapsulation of the JPEG encoding and decoding logic within the platform's MPP
(Media Process Platform) library.

The MpiJpegEncoder class encapsulates hardware encoding-related operations, while the
MpiJpegDecoder class encapsulates hardware decoding-related operations, supporting image or
MJPEG stream decoding. The main directories of the project:

Specific usage instructions can be found in the readme.txt file located in the directory.

2. Video Encoding and Decoding Category

2.1 Media Source Stuttering\Audio-Video Synchronization
Issues

Video playback stuttering, audio stuttering, audio-video desynchronization, etc., can be
categorized as smoothness issues. The analysis of smoothness issues relies on display frame rate
(FPS) and kernel single-frame decoding time.

python development/scripts/native_heapdump_viewer.py --symbols $(OUT)/symbols b

acktrace_heap.3378.txt > out_heap.txt

- src: Library Implementation Code

- inc: application interface header file

- test: User test instance

// Display Frame Rate FPS

setprop debug.sf.fps 1

logcat -c ;logcat | grep mFps

// Kernel single-frame decoding time

4.19/5.10 Kernel (Android 10.0 and above)

echo 0x0100 > /sys/module/rk_vcodec/parameters/mpp_dev_debug

cat /proc/kmsg

4.4 Kernel (Android 7.1 to 9.0 versions)

echo 0x0100 > /sys/module/rk_vcodec/parameters/debug

cat /proc/kmsg

af://n437
af://n445
af://n446

For video playback not being smooth, the main reasons can be attributed to the following points,
and engineers encountering related issues can refer to the following methods for
troubleshooting:

1. Verify if platform hardware decoding is being used

Some video websites or applications may use software decoding to decode video formats due to
unknown code and API usage. Therefore, if stuttering occurs in such cases, the corresponding
video format should first be identified in the Logcat logs. If the video format and specifications are
confirmed to be within the chip's decoding capabilities but platform hardware decoding is not
being used, please first check whether the program or website contains the configurations that
control whether hardware decoding is used.

Determine whether platform hardware decoding is used by entering a command to query the
kernel's single-frame decoding time. If processed by kernel hardware, a value will be printed,
indicating hardware decoding is currently in use, otherwise, software decoding is being used.

2. Confirm whether the issue lies in decoding or display

Video playback involves two operations: decoding and rendering. The decoded output is
submitted to the display component for rendering. Therefore, please first refer to the chip codec
capability specification table in Section 1.2 to determine whether the video sources fall within the
decoding capability range. For such sources, use the commands mentioned above to query the
per-frame decoding time of the kernel and the display frame rate.

If the single-frame decoding time is sufficient (30 fps source within 33 ms / 60 fps source within 16
ms), it can first be categorized as insufficient display synthesis efficiency, and troubleshooting
should refer to Section 3.

3. Insufficient Display Synthesis Efficiency

Abnormal configuration of the display refresh rate can lead to inefficient HWC synthesis
efficiency, therefore, the first step is to verify whether the display refresh rate is correctly
configured in the DTS.

The screen refresh rate is generally configured to 60 fps. If issues occur, correct the panel-timing
settings corresponding to the display panel in the DTS configuration using the following formula.

For Non-screen parameter configuration issues, the common causes are typically the following:

The video display output has an angular orientation, i.e., rotated screen output.
Scenario has excessive Surface layer count with multiple layers present.
Video format is not supported.

rk3566_r:/ # cat /d/dri/0/summary

Video Port0: DISABLED

Video Port1: ACTIVE

 Connector: DSI-1

 bus_format[100a]: RGB888_1X24

 overlay_mode[0] output_mode[0] color_space[0]

 Display mode: 1080x1920p60

 clk[132000] real_clk[132000] type[48] flag[a]

 H: 1080 1095 1097 1127

clock-frequency = (hactive + hback-porch + hfront-porch + hsync-len) * (vactive +

vback-porch + vfrontporch + vsync-len) * fps

The following logs can be captured and submitted to Redmine for assignment to the
corresponding engineer(s) to handle.

4. Decoding Errors in the Video Decoding Process

If logs contain prints related to "error frame", it indicates that the hardware decoding process has
failed and dropped frames have occurred. For such issues, first verify that the bitstream provided
to the decoder is correct and contains no dropped frames. The media framework provides several
dump methods for decoding inputs. Please refer to the commands in Chapter 4 for operations.

The captured input is a pure video track. PC tools can be used to view and analyze the stream. For
H264 format, use eseye or Vega H264 Analyzer. For H265 format, use HEVCAnalyzer. These tools
typically can determine whether the bitstream itself has issues or frame dropping. As shown in
the following Vega analysis tool preview, if the POC values are consecutive and the preview shows
no errors, it indicates the bitstream is normal and no frames are dropped.

After confirming the decoding input is correct, it indicates that the current decoding framework
has compatibility issues with the specific bitstream. You may submit the corresponding bitstream
along with the Logcat logs to Redmine for assignment to the relevant engineer for handling.

2.2 Video/Screen Recording Output Blurry or Mosaic

[Problem Description]

Video/Screen recording output file blurred\mosaic\unclear

[Problem Analysis]

1. Platform encoding falls under lossy compression encoding. During the encoding process,
there is a loss of image data, thus resulting in differences between the encoded output and

// Check if the synthesis strategy is functioning properly via SurfaceFlinger

Services.

dumpsys SurfaceFlinger

// If abnormal, print the HWC log to identify the cause of the issue

adb shell "setprop sys.hwc.log 51”

adb shell "logcat -c ;logcat" > hwc

af://n476

the original image.
2. Blurry or mosaic artifacts are usually caused by low local encoding quality. QP is the

quantization parameter for encoding quality, with a range from 1 to 51. The lower the QP
value, the higher the encoding quality.

In cases where the user interface does not restrict the QP range, the QP range is determined by
the user-set bitrate. The higher the bitrate, the higher the encoding quality, and the smaller the
QP value per frame. Therefore, the typical troubleshooting steps for encoding mosaic issues are
as follows:

1. Check the QP Range of the Encoded Output

eseye or Vega H264 Analyzer and other PC tools provide single-frame image quality queries. As
shown in the figure below, the QP range of this frame is 16~29. Macroblocks with QP values
exceeding 40 may cause blurriness or mosaic artifacts. If QP quality values in the 40s appear,
further investigation is required to determine if bitrate and encoding quality strategies need
adjustment. If the image QP range is normal but mosaic artifacts still occur, the encoded input
must be captured to verify whether the input itself contains mosaic patterns.

2. Check the Bitrate Parameters Rationality

The compression performance of different encoders varies significantly, and there is no standard
bitrate reference table. Determining whether a bitrate is reasonable can be done by comparing
against the output image quality from encoding.

3. Adjust Image QP Strategy

- a) If the actual bitrate >= the application-set bitrate and blurred images

occur with excessively high QP values

 Determined that the user-specified bitrate is too low. Recommend increasing

the bitrate for testing.

- b) If the actual bitrate < the application-set bitrate, and image blurring

occurs with excessively high QP values

 Verify whether the application interface has set the variable bitrate mode

BITRATE_MODE_VBR.

- c) If the actual bitrate matches the bitrate set by the application, manual

adjustment of the image QP strategy may be required.

Firstly, if the current configuration is using the baseline encoding, switching to the high
profile may be considered. The high profile uses CABAC entropy encoding, which results in
a higher overall compression ratio and better image quality at the same bitrate.

In Android 12 and later versions, MediaCodec supports image quality control, allowing the user
interface to define the QP range. Setting Max QP not greater than 40 can effectively mitigate
blurry and mosaic issues.

The application layer MediaCodec interface code can be configured as follows (where qp-i-min
represents the minimum QP value for I-frames, and qp-p-max represents the maximum QP value
for P-frames):

It should be noted that adjusting the QP range may lead to bitrate overflow. Extra caution is
required to monitor the encoded output bitrate.

Android 11 and earlier versions currently do not support QP range control via the user interface.
The QP range can be limited by modifying the MPP parameter configuration interface.

2.3 MediaCodec Encoding Bitrate Configuration
Overflow/Exceeding Bitrate

[Problem Description]

In Android versions >= 12, the actual encoded bitrate consistently exceeds the configured value.
The typical scenario occurs when the configured bitrate is set too low, such as setting a bitrate of
1Mbps for 1080P resolution encoding, but the actual encoded bitrate exceeds 4Mbps.

[Problem Reason]

Android 12 introduces the newly enabled media format shaping feature to correct unreasonable
configurations such as QP and bitrate settings.

format->setInt32("video-qp-i-min", 10);

format->setInt32("video-qp-i-max", 40);

format->setInt32("video-qp-p-min", 10);

format->setInt32("video-qp-p-max", 40);

diff --git a/mpp/legacy/vpu_api_legacy.cpp b/mpp/legacy/vpu_api_legacy.cpp

index 33d08ccb..b937f0bc 100644

--- a/mpp/legacy/vpu_api_legacy.cpp

+++ b/mpp/legacy/vpu_api_legacy.cpp

@@ -173,9 +173,9 @@ static MPP_RET vpu_api_set_enc_cfg(MppCtx mpp_ctx, MppApi

*mpi, MppEncCfg enc_cf

 mpp_enc_cfg_set_s32(enc_cfg, "h264:cabac_idc", 0);

 mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_init", is_fix_qp ? qp : -1);

 mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_min", is_fix_qp ? qp : 10);

- mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_max", is_fix_qp ? qp : 51);

+ mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_max", is_fix_qp ? qp : 40);

 mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_min_i", 10);

- mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_max_i", 51);

+ mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_max_i", 40);

 mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_step", 4);

 mpp_enc_cfg_set_s32(enc_cfg, "h264:qp_delta_ip", 3);

 } break;

af://n500

1Mbps bitrate is deemed unreasonable for 1080P resolution by the framework. The VQApply
module of the framework calculates a reference bitrate based on user-set bitrate, width, height,
bpp and other parameters, then corrects and assigns this value to the encoder for use. This
corrected value is typically greater than (whbpp).

The logs typically include the following VQApply printout, indicating that the user-configured
bitrate of 1258291 bps was corrected by the VQApply framework to 4727808 bps, which is then
assigned to the encoder as the actual bitrate for use. This results in scenarios where the actual
bitrate is significantly higher than expected.

[Issue Resolution]

Google provides the property value debug.stagefright.enableshaping to disable the framework's
format shaping correction. If this feature is not required, the property can be set to disable it
using setprop debug.stagefright.enableshaping 0.

Similarly, it can be disabled directly in the code.

Path: frameworks/av

2.4 Codec Initialization Failed Log Indicates "MPP HAL xxx
init failed"

[Problem Description]

Codec initialization failure in scenarios such as video playback\recording\screen
capture\photography, and the log indicates "mpp hal xxx init failed"

[Issue Analysis]

D VQApply : minquality/target bitrate raised from 1258291 to 4727808 bps

diff --git a/media/libstagefright/MediaCodec.cpp

b/media/libstagefright/MediaCodec.cpp

index 382324a91c..dd1dfa062f 100644

--- a/media/libstagefright/MediaCodec.cpp

+++ b/media/libstagefright/MediaCodec.cpp

@@ -2054,7 +2054,7 @@ status_t

MediaCodec::setOnFirstTunnelFrameReadyNotification(const sp<AMessage> &

 * MediaFormat Shaping forward declarations

 * including the property name we use for control.

 */

-static int enableMediaFormatShapingDefault = 1;

+static int enableMediaFormatShapingDefault = 0;

 static const char enableMediaFormatShapingProperty[] =

"debug.stagefright.enableshaping";

 static void mapFormat(AString componentName, const sp<AMessage> &format, const

char *kind,

 bool reverse);

E HAL_JPEG_VDPU2: hal_jpegd_vdpu2_init mpp_dev_init failed. ret: -1

E mpp_hal : mpp_hal_init hal jpegd init failed ret -1

af://n513

Codec initialization failed, and the problem log indicates "mpp hal xxx init failed". This issue is
typically caused by incorrect configuration in the customer's DTS, which has not enabled the
corresponding codec node(s). Adding and enabling the corresponding node(s) in the customer's
DTS file will resolve the issue.

The above log hal_jpegd_vdpu2 indicates two key pieces of information:

1. jpegd, i.e., JPEG decoder initialization failed.
2. vdpu is the corresponding nodes to be enabled.

Verify if the vdpu node is correctly enabled under the MPP driver device directory.

If disabled is confirmed, refer to the corresponding chip's dtsi configuration under the kernel,
such as rk3588-evb.dtsi \ rk3399-android.dtsi.

The corresponding configurations added for the aforementioned issue log are as follows:

Another similar error log entry:

h264e (i.e., the 264 encoder) initialization failed. The enabled node name to be added is vepu.
Thus, the corresponding configurations to be added are:

2.5 MediaCodec BufferMode Decoding Efficiency
Improvement

[Problem Description]

The application interface uses MediaCodec Buffer Mode without configuring a surface for
decoding, which results in increased single-frame decoding time and higher CPU usage. When the
issue occurs, the application scenario typically has a relatively high CPU load by itself.

ls -al /proc/mpp_service/

&mpp_srv {

 status = "okay";

};

&vdpu {

 status = "okay";

};

E hal_h264e_vepu541: hal_h264e_vepu541_init mpp_dev_init failed. ret: -1

E mpp_enc_hal: mpp_enc_hal_init hal hal_h264e init failed ret -1

E mpp_enc_hal: mpp_enc_hal_init could not found coding type 7

&mpp_srv {

 status = "okay";

};

&vepu {

 status = "okay";

};

af://n538

[Problem Reason]

The application interface MediaCodec does not configure a Surface for decoding, meaning that
the external application interface needs to retrieve the decoded output buffer for additional
processing. Since the framework's decoding output is in dmaBuffer format which cannot be
directly provided to the application, an additional copy operation is required in Buffer Mode. The
decoded output must be copied from the framework to the application interface.

The corresponding Surface Mode refers to the scenario of configuring Surface for decoding and
display, which is commonly known as the zero-copy scenario. In this mode, decoding and display
do not require any copying and directly use dmaBuffer transfer, which is more efficient than
Buffer Mode.

Buffer Mode decoding mode, due to an additional CPU copying process, results in increased
decoding processing time per single frame and higher CPU usage.

[Solution]

Using the system RGA hardware copy instead of CPU-based copy can significantly improve
decoding time and reduce CPU usage in the scenario.

For specific modification patches, please refer to the rk patch bulletin: https://redmine.rock-chips.
com/issues/418670

3. Application Usage Category

3.1 Kodi\Bilibili and other applications video playback not
using hardware decoder

[Problem Description]

In versions above Android 12, applications using the GitHub ijkmedia playback framework
(currently known to affect Kodi and Bilibili applications) are unable to use the hardware decoders
during video playback.

[Problem Reason]

The ijkmedia framework only filters codec names starting with 'OMX.' as hardware decoders when
selecting a MediaCodec decoder. However, Andorid 12 uses the codec2 new framework, where
the hardware decoder's codec name is c2.rk.avc.decoder, thus failing to select the platform's
hardware decoder.

[Solution]

Modified to add the "OMX.c2" decoder to support adaptation to the ijkmedia framework, such as
redirecting c2.rk.avc.decoder to OMX.c2.rk.avc.decoder.

Apart from applications such as Kodi\Bilibili, custom client applications using the ijkmedia media
framework also fail to use hardware decoding. This can be confirmed by checking if the logs
contain the "IJKMEDIA" label.

Specific modification patches can be found in the rk patch bulletin: https://redmine.rock-chips.co
m/issues/396998

https://redmine.rock-chips.com/issues/418670
af://n548
af://n549
https://redmine.rock-chips.com/issues/396998

This issue has been identified as a problem within the ijkmedia framework. However, the
formal resolution will still require modifications to the framework's codebase. Therefore, a
temporary patch is provided as an interim solution without submission to the official
version.

3.2 WebView Video Playback Failure or White Space at the
Top

[Problem Description]

On SoC chips with AFBC decoding output functionality (rk3566\rk3568\rk3588\rk3528), client
applications or web pages experience video playback failure or a white margin appears at the top
when using WebView.

[Issue Cause]

Background: Under the fbc decoding format, the hardware outputs a fixed expansion of 4
upwards, resulting in a height offset of 4 lines in the decoded output.

WebView video playback ultimately uses ImageReader\NdkImageReader to acquire the video
surface's buffer for rendering. In fbc mode, the video buffer has a 4-line height offset, so proper
handling of the buffer's crop is required during display. Otherwise, the 4-line offset height will
manifest as white borders when rendered.

[Solution]

The fbc mode is only enabled for video playback with resolutions above 1080P. Therefore, the
following patch is applicable to rk356x\rk3588\rk3528 webview video playback scenarios with
resolutions exceeding 1080P.

1. Regarding WebView Video Playback Failure

Error log:

In the default code, the ImageReader imposes a restriction on the buffer's left-top corner, which is
fixed at 0. However, the decoding output under fbc mode includes a 4-line height offset, resulting
in the top corner being set to 4. Removing this restriction can resolve the playback failure issue.

Patch path: frameworks/av

E NdkImageReader: Crop left top corner [0, 4] not at origin

diff --git a/media/ndk/NdkImageReader.cpp b/media/ndk/NdkImageReader.cpp

index 067c8f4ae5..6df40cc975 100644

--- a/media/ndk/NdkImageReader.cpp

+++ b/media/ndk/NdkImageReader.cpp

@@ -455,7 +455,7 @@ AImageReader::acquireImageLocked(/*out*/AImage** image,

/*out*/int* acquireFence

 Point lt = buffer->mCrop.leftTop();

 if (lt.x != 0 || lt.y != 0) {

 ALOGE("Crop left top corner [%d, %d] not at origin", lt.x, lt.y);

- return AMEDIA_ERROR_UNKNOWN;

+ // return AMEDIA_ERROR_UNKNOWN;

 }

af://n560

2. Regarding white borders appearing during WebView video playback

For devices already applied with the aforementioned restrictions removal patches, videos played
in webview with resolutions greater than 1080P exhibit white borders at the top.

The reason for no white borders in local player playback lies in the autonomous controllability of
source crop at the player end, enabling the transmission of the desired selection and cropping
area to the surface.

WebView rendering obtains the surface buffer through ImageReader, and the application
framework subsequently calls getHardwareBuffer to directly acquire the GraphicBuffer. As a
result, the cropping processing is transferred to the WebView application code, and the
framework is currently unable to resolve the white margins. If the customer cannot accept the
white margins, the FBC decoding mode can be disabled in the codec component, with the result
that non-FBC mode decoding may experience a slight performance degradation.

Patches for Android 11 and earlier versions (hardware/rockchip/omx_il):

Patches for Android 12 and later versions (vendor/rockchip/hardware/interfaces/codec2):

3.3 iQIYI APP Crashes During Video Playback Stress Test

[Problem Description]

In Android 10.0 and later versions, when performing video playback stress test using the iQIYI
app, memory leaks caused lowmem (low memory), eventually resulting in system anomalies and
APP crashes.

diff --git a/osal/Rockchip_OSAL_Android.cpp b/osal/Rockchip_OSAL_Android.cpp

index 5950cd0..ac599cf 100755

--- a/osal/Rockchip_OSAL_Android.cpp

+++ b/osal/Rockchip_OSAL_Android.cpp

@@ -317,6 +317,7 @@ OMX_BOOL Rockchip_OSAL_Check_Use_FBCMode(OMX_VIDEO_CODINGTYPE

codecId, int32_t d

 OMX_U32 pValue;

 OMX_U32 width, height;

+ return OMX_FALSE;

 if (pPort->bufferProcessType != BUFFER_SHARE) {

 return OMX_FALSE;

 }

diff --git a/component/osal/C2RKChipCapDef.cpp

b/component/osal/C2RKChipCapDef.cpp

index 78659ab..b66fb31 100644

--- a/component/osal/C2RKChipCapDef.cpp

+++ b/component/osal/C2RKChipCapDef.cpp

@@ -297,6 +297,7 @@ uint32_t C2RKChipCapDef::getGrallocVersion() {

 uint32_t C2RKChipCapDef::getFbcOutputMode(MppCodingType codecId) {

 uint32_t fbcMode = 0;

+ return 0;

 for (int i = 0; i < mChipCapInfo->fbcCapNum; i++) {

 if (mChipCapInfo->fbcCaps[i].codecId == codecId) {

af://n582

[Problem Reason]

Leak type is DMA buffer memory. The leak occurs during the advertisement playback when the
application uses the MediaPlayer interface with relatively late surface setup timing. The player
initially decodes using buffer mode before the surface setup request arrives, which triggers a
surface change event. The player needs to allocate new decoding buffers for the new surface and
synchronously release the old decoding buffers.

In this scenario, the reference count of the old decoding output buffer was not reset to zero,
leading to these buffers not being fully released.

[Solution]

Since the leak type is a DMA buffer, it can be determined through the system's dma_buf status
information. If, during stress test, the number of DMA buffers mapped to the VPU continues to
increase without being released, the issue can ultimately be confirmed.

The specific modification patches can be found in the rk patch bulletin: https://redmine.rock-chip
s.com/issues/423914

3.4 The player application failed to retrieve thumbnails in
real-time during playback

[Problem Description]

The player application failed to retrieve thumbnails using MediaMetadataRetriever during video
playback. Log indicates:

[Problem Reason]

Currently, within the player framework, to save bandwidth and ensure that thumbnail parsing in
the background does not affect foreground video playback, the thumbnail functionality is
disabled by default during video playback, resulting in the failure to use thumbnails during the
playback process.

[Solution]

Versions above Android 12 provide an attribute switch to enable this restriction. If required by the
customer application development, the following attribute can be added to the system prop file.
For versions below Android 12, please submit a Redmine ticket to the corresponding engineer to
update the library.

cat /d/dma_buf/bufinfo

MediaMetadataRetrieverJNI(1574): getFrameAtTime: videoFrame is a NULL pointer

setprop rt_retriever_enable 1

https://redmine.rock-chips.com/issues/423914
af://n592

3.5 RK356X Screen Recording or Video Encoding Green
Screen, Log Indicates RGA Error

[Problem Description]

RK356X device screen recording or video encoding green screen, log shows RGA error, indicating
unsupported buffers outside the 4GB address space.

[Problem Reason]

1. The RK356X uses hardware RGA2 for image processing. The RGA2 hardware design can only
handle a 32-bit address space, therefore buffers sent to RGA for processing must be
allocated within 4G space.

2. The RK356X encoder can only process aligned buffers, so the Codec component relies on
RGA for pre-processing before encoding. The encoding input buffer is aligned before being
sent to the hardware VPU encoder.

The cause of the error is that the address space of the src or dst buffer in the RGA preprocessing
of the Codec component exceeds 4G. Since Android framework's Dma buffer allocations
ultimately go through Gralloc, this scenario requires Gralloc to allocate buffers within the 4G
address space.

[Solution]

The dts buffer of RGA preprocessing is eventually sent into the hardware encoder. Modify to use
GraphicBufferAllocator and pass the GRALLOC_USAGE_WITHIN_4G flag, which requires to allocate
a 4G buffer, to Gralloc.

The src buffer for the Codec component's RGA preprocessing originates from the surface. The
scenario falls under the BufferQueue producer-consumer model, where the Codec component
acts as the consumer end and the Surface serves as the producer end.

The Surface buffer is controlled by the producer end but the usage set by the consumer end will
ultimately be applied to the producer end's Surface buffer allocation. In the Codec component,
the usage GRALLOC_USAGE_HW_VIDEO_ENCODER is used to indicate the current scenario is a
hardware encoder.

Therefore, this usage is used for differentiation. When allocating the buffer, if the usage includes
GRALLOC_USAGE_HW_VIDEO_ENCODER and the platform is RK356X, then control Gralloc to
allocate a 4G buffer for this scenario.

The specific modification patches please refer to rk patch bulletin: https://redmine.rock-chips.co
m/issues/425094

E/rga_mm (0): RGA_MMU unsupported Memory larger than 4G!

E/rga_mm (0): scheduler core[4] unsupported mm_flag[0x0]!

E/rga_mm (0): rga_mm_map_buffer map dma_buf error!

E/rga_mm (0): job buffer map failed!

E/rga_mm (0): src channel map job buffer failed!

E/rga_mm (0): failed to map buffer

af://n601
https://redmine.rock-chips.com/issues/425094

3.6 Removal of Custom Audio-Video Format Support in Video
Player Application

[Problem Description]

Local application players or other MediaPlayer players need to exclude support for certain audio
and video formats. For example, the VP9 video format has copyright issues abroad, so support for
VP9 video format must be excluded, while domestic devices are unaffected.

[Solution]

Providing configuration file to support customer to exclude custom audio and video formats. If it
is required to exclude VC1\VP9 video formats and AAC\MP3 audio format support on RK3588
devices, modify the SDK with the following patch (path: device/rockchip/common):

Manually modify and verify: Update the rt_audio_config.xml/rt_video_config.xml configuration
files under the /system/etc path, then re-initiate playback to confirm effectiveness.

Other disableable audio and video formats:

diff --git a/rt_video_config.xml b/rt_video_config.xml

index 067b81a8..46ec980b 100644

--- a/rt_video_config.xml

+++ b/rt_video_config.xml

@@ -224,6 +224,7 @@

 <chip name="RK3566,RK3567,RK3568">

 <include

name="mpeg1,mpeg2,mpeg4,vp8,h264_8k_10bit_high422,hevc_8k_10bit"/>

 <include name="vp9_4k_10bit"/>

+ <forbid name="vc1,vp9"/>

 </chip>

 <chip name="RK3528">

diff --git a/rt_audio_config.xml b/rt_audio_config.xml

index 182e2a83..af645673 100644

--- a/rt_audio_config.xml

+++ b/rt_audio_config.xml

@@ -34,4 +34,10 @@

 <formats>

 </formats>

 </bitstream>

+ <forbid>

+ <formats>

+ <format>AAC</format>

+ <format>MP3</format>

+ </formats>

+ </forbid>

 </sound>

af://n618

3.7 Camera 4K Video Recording Exhibits Reddish During
Playback

[Issue Description]

In devices supporting 4K encoding, when recording video using Camera or CameraRecorder for
video capture, the recorded video playback does not match the actual image and exhibits a
reddish and overly vibrant appearance.

[Issue Cause]

1. The Android native encoding framework configures a default color gamut for instances
without explicitly defined colorAspect color gamut information. When the resolution is
greater than or equal to 4K, the framework defaults to configuring the BT2020 color gamut.

2. Devices supporting HDR will enable HDR display when decoding and playing video sources
configured with BT2020.

[Solution]

The HDR display effect produces more vivid colors, which is a positive enhancement for display. If
concerned about this effect, the default configuration of the framework can be modified to set
the 4K default color gamut to BT709.

Modify default color gamut configuration function setDefaultCodecColorAspectsIfNeeded in
frameworks/av:

Video optional formats: mpeg1, mpeg2, h263, mpeg4, wmv1, wmv2, wmv3, h264, vp8,

vp9, hevc, vc1, avs, avs+, avs2, flv1, av1, MVC

Audio optional formats: AAC, APE, MP3, WMALOSSLESS, WMAPRO, WMAV1, WMAV2,

ADPCM_IMA_QT, VORBIS, PCM_S16LE, PCM_S24LE, FLAC, MP1, MP2, AMR_WB, AMR_NB, G279,

OPUS, PCM_ALAW,

PCM_MULAW, ADPCM_G722, ADPCM_G726

diff --git a/media/libstagefright/foundation/ColorUtils.cpp

b/media/libstagefright/foundation/ColorUtils.cpp

index fa722b5572..f253b68780 100644

--- a/media/libstagefright/foundation/ColorUtils.cpp

+++ b/media/libstagefright/foundation/ColorUtils.cpp

@@ -377,8 +377,8 @@ void ColorUtils::setDefaultCodecColorAspectsIfNeeded(

 // Default to BT2020, BT709 or BT601 based on size. Allow 2.35:1 aspect

ratio. Limit BT601

 // to PAL or smaller, BT2020 to 4K or larger, leaving BT709 for all

resolutions in between.

 if (width >= 3840 || height >= 3840 || width * (int64_t)height >= 3840 *

1634) {

- primaries = ColorAspects::PrimariesBT2020;

- coeffs = ColorAspects::MatrixBT2020;

+ primaries = ColorAspects::PrimariesBT709_5;

+ coeffs = ColorAspects::MatrixBT709_5;

 } else if ((width <= 720 && height > 480 && height <= 576)

 || (height <= 720 && width > 480 && width <= 576)) {

 primaries = ColorAspects::PrimariesBT601_6_625;

af://n628

3.8 Video Switching Displays Black Frame with the Player

[Problem Description]

By default, when switching videos, the last frame of the previous video is maintained until the
decoded output image of the next video displayed. This mode is called still-frame mode.
Correspondingly, if the last frame of the previous video should not be maintained when playing a
new video, a black frame is injected into the surface at the end of playback. This mode is called
black-frame mode.

[Solution]

In the player using Android MediaPlayer interface, setting the following property can enable black
frame mode. If the application development requires black frame mode, these properties should
be added to the system prop file.

3.9 Intermittent Artifact Distortion or Stuttering in Screen
Mirroring Display

[Problem Description]

When in-vehicle or other P2P screen-mirroring devices mirror to RK devices, screen artifacts or
stuttering may occur intermittently. Logs indicate the decoder is proactively dropping frames due
to internal error frames.

[Problem Analysis]

The reason is network packet loss. The current decoder adopts a dropping strategy for corrupted
frames. Network packet loss causes the entire corresponding GOP sequence of that frame to be
marked as error. Therefore, excessive packet loss may manifest as stuttering. Excessive packet
loss leading to the POC reference sequence becoming disordered and unrecoverable will
manifest as color artifacts.

Refer to the following steps for troubleshooting:

1. Check the packet loss condition of the hardware Wi-Fi P2P connection and ensure the
stability of the hardware connection.

2. If the encoding end is autonomously controllable, modifications such as adjusting to use TCP
transmission or reducing the GOP interval can be attempted based on specific
circumstances.

3. When dealing with real-time streaming transmission scenarios, packet loss and frame
dropping in the bitstream caused by network instability can be addressed by the decoder
internally supporting the disabling of POC (Picture Order Count) continuity checks.
Leveraging the decoder's internal error correction functionality, minor packet loss and frame
drops can be recovered without affecting overall playback smoothness. Refer to the
following user configurations.

adb shell setprop media.rockit.video.black_frame 1

C2RKMpiDec: skip error frame with pts 0

af://n641
af://n647

MediaCodec enables configuration extension parameters (this configuration is currently
supported only on Android versions >= 13):

Note:

1. Hardware error correction is not limitless. Overly severe frame dropping can still cause
screen artifacts.

2. POC continuity detection is a standard process for bitstream decoding and is therefore
supported solely as a user configuration feature.

3.10 Player seek operation causes progress bar jump back

[Problem Analysis]

The player's seek operation is non-precise seek, and the media source's seek relies on IDR frames.
Therefore, when specifying a time point for a seek operation, the player will jump to the position
of the first IDR frame near the specified time and start playing from there. This results in
discrepancies between the progress bar and the dragged time point, manifesting as backward
jumps in the progress bar.

Some applications implement precise seek by first locating the position of the I-frame
immediately before the target timestamp, then decoding sequentially until the target timestamp
frame is obtained before playback starts. This approach can cause prolonged decoding delays
and unresponsive seek operations when IDR intervals are large or the chip's decoding capability is
limited. Therefore, the SDK does not support precise seek functionality.

3.11 TikTok\Youku Video Browsing Encounter Android
Reboot Issues

[Issue Description]

TikTok\Youku APK occasionally triggers an Android system reboot while scrolling through videos,
and logs indicate surfaceFlinger crash anomalies.

[Problem Analysis]

When using GPU rendering, and the parsed color gamut values of the played media are of a type
unsupported by the GPU, the color gamut values are passed to Mali. The Mali interface returns
unsupported, which causes surfaceFlinger to crash.

Unsupported types such as:

Configuration Method:

mediaFormat.setInteger("vendor.disable-dpb-check.value", 1);

Confirmation Effective Log:

c2_info("disable poc discontinuous check");

E mali_config_interface: Unsupported dataspace standard (xxxx)

D skia: Could not create EGL image, err = (0x3003)

af://n669
af://n673

[Solution]

Perform compatibility processing in the decoder HAL and Mali library to convert the transmitted
color gamut values to those supported by the GPU.

The specific modification patches please refer to rk patch bulletin: https://redmine.rock-chips.co
m/issues/533602

HAL_DATASPACE_STANDARD_BT601_625_UNADJUSTED = 196608

HAL_DATASPACE_STANDARD_BT601_525_UNADJUSTED = 327680

HAL_DATASPACE_STANDARD_BT2020_CONSTANT_LUMINANCE = 458752

HAL_DATASPACE_STANDARD_BT470M = 524288

HAL_DATASPACE_STANDARD_DCI_P3 = 655360

https://redmine.rock-chips.com/issues/533602

	Rockchip Android Multimedia FAQ
	General Media Category
	Media Source Unable to Play
	Check if the media sources are within the supported specifications of the chip
	Check Whether Audio/Video Formats Involve Copyright Issues

	Common Chip Codec Capabilities Specification Table
	Decoding Capability Specification Table
	Encoding Capability Specification Table

	How to Increase VPU Frequency
	VPU Frequency Query
	VPU Frequency Modification

	How to Capture Codec Input and Output
	Multi-channel Encoding and Decoding Supported Channel Calculation
	High CPU Usage in Multimedia Applications
	Analysis of Memory Leak Issues in Multimedia Applications
	Platform JPEG Hardware Codec Reference Demo

	Video Encoding and Decoding Category
	Media Source Stuttering\Audio-Video Synchronization Issues
	Video/Screen Recording Output Blurry or Mosaic
	MediaCodec Encoding Bitrate Configuration Overflow/Exceeding Bitrate
	Codec Initialization Failed Log Indicates "MPP HAL xxx init failed"
	MediaCodec BufferMode Decoding Efficiency Improvement

	Application Usage Category
	Kodi\Bilibili and other applications video playback not using hardware decoder
	WebView Video Playback Failure or White Space at the Top
	iQIYI APP Crashes During Video Playback Stress Test
	The player application failed to retrieve thumbnails in real-time during playback
	RK356X Screen Recording or Video Encoding Green Screen, Log Indicates RGA Error
	Removal of Custom Audio-Video Format Support in Video Player Application
	Camera 4K Video Recording Exhibits Reddish During Playback
	Video Switching Displays Black Frame with the Player
	Intermittent Artifact Distortion or Stuttering in Screen Mirroring Display
	Player seek operation causes progress bar jump back
	TikTok\Youku Video Browsing Encounter Android Reboot Issues

