
Rockchip Application Notes Storage

文件标识: RK-SM-YF-017

发布版本：V2.1.0

日期：2024-01-15

文件密级：□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按“现状”提供，瑞芯微电子股份有限公司（“本公司”，下同）不对本文档的任何陈述、信息和内

容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本

文档仅作为使用指导的参考。

由于产品版本升级或其他原因，本文档将可能在未经任何通知的情况下，不定期进行更新或修改。

商标声明

“Rockchip”、“瑞芯微”、“瑞芯”均为本公司的注册商标，归本公司所有。

本文档可能提及的其他所有注册商标或商标，由其各自拥有者所有。

版权所有 © 2024 瑞芯微电子股份有限公司

超越合理使用范畴，非经本公司书面许可，任何单位和个人不得擅自摘抄、复制本文档内容的部分或全

部，并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址： 福建省福州市铜盘路软件园A区18号

网址： www.rock-chips.com

客户服务电话： +86-4007-700-590

客户服务传真： +86-591-83951833

客户服务邮箱： fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

序

号
文档名称 内容概要

1 《Rockchip_Introduction_Partition》 介绍分区配置

2 《Rockchip-Developer-Guide-UBoot-nextdev-CN》 uboot 开发文档

3 《RK Vendor Storage Application Note》
Vendor Stroage
应用文档

4 《Rockchip量产烧录指南_v1.2》 量产烧录指南

5 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN》
Flash 开源存储

方案开发文档

6 《Rockchip_Developer_Guide_Dual_Storage_CN》
双存储开发文

档

芯片名称 内核版本

所有产品 --

版本号 作者 修改日期 修改说明

V1.0.0 赵仪峰、林鼎强 2018-08-25 初始版本

V1.1.0 赵仪峰 2021-03-02 增加RK3566和RK3568

V1.2.0 林鼎强 2021-10-29 增加 IDB 说明，移除开源存储驱动支持说明

V2.0.0 林鼎强 2024-01-08 增加命名规则及 Flash 简介

V2.1.0 林鼎强 2024-01-14 增加关于 flash 简介的内容

前言

概述

本文主要指导读者了解启动流程，对存储进行配置和调试。

本文档不尽详实内容还可以参考下列文档：

各芯片 feature 支持状态

读者对象

本文档（本指南）主要适用于以下工程师：

技术支持工程师

软件开发工程师

修订记录

目录

Rockchip Application Notes Storage
1. 命名规则

2. Flash 简介

2.1 Flash 存储类型

2.2 Flash 选型

2.3 Flash 简单对比

2.4 Flash 常见封装

2.5 Flash 价格

2.6 Nand 基本原理

2.7 Nor 基础原理

2.8 Nand 存储 ECC 依赖

2.9 Nand 原厂坏块

2.10 Nand 寿命及 ECC 报错

2.11 Nand 存储 FTL 算法关键技术说明

2.12 Nand 存储方案变迁（包括 PP Nand 和 SPI Nand）
2.13 Flash Host 端控制器

2.13.1 SFC 控制器

2.13.2 FSPI 控制器

2.13.3 NandC 控制器

2.13.4 通用 SPI 接口

2.14 SPI Flash 输出延时统计

3. 颗粒验证

3.1 SLC Nand/SPI Nand/SPI Nor 验证内容简述

3.2 RK Flash 送样要求简述

3.2.1 验证相关须知

3.2.2 验证流程

3.2.3 验证邮寄地址

3.2.4 客户补丁推送

4. 设备启动流程

4.1 RK SOC BOOTROM Boot 支持状态

4.2 RK SOC 存储接口规格

4.3 BOOTROM 流程

4.4 Pre Loader 流程

4.4.1 Miniloader
4.4.2 u-boot spl
4.4.3 loader

5. 分区及数据存储

5.1 数据存储

5.1.1 地址转换简介

5.1.2 分区及数据逻辑地址存储

5.2 分区表分区

5.2.1 MTD Partition
5.2.2 GPT
5.2.3 RK partition
5.2.4 ENV 分区

5.3 parameter 分区表修改工具

5.4 分区写保护设置

5.4.1 块设备分区写保护设置

5.4.2 MTD设备分区写保护设置

6. 固件烧录

6.1 USB 升级

6.1.1 流程框图

6.1.2 WIN 开发工具 RKDevTool
6.1.3 WIN 开发工具 SocToolKit
6.1.4 LINUX 开发工具 upgrade_tool

6.1.5 LINUX 开发工具 SocToolKit
6.1.6 量产工具

6.2 SD卡升级

6.3 UART 升级

6.4 EMMC 镜像烧录

6.5 SLC Nand 镜像烧录

6.6 SPI Nand 镜像烧录

6.7 SPI Nor 镜像烧录

7. 存储软件驱动配置

7.1 u-boot
7.2 kernel

7.2.1 MLC Nand、TLC Nand rknand 方案

7.2.2 SLC Nand、SPI Nand 及 SPI Nor rkflash 方案

7.2.3 SLC Nand、SPI Nand 及 SPI Nor MTD 开源方案

7.3 各阶段存储 iomux/clk 配置情况及扫描次序

7.4 双存储方案扩展

8. 开源方案 OTA
9. 文件系统支持

9.1 UBIFS 文件系统

9.2 JFFS2 文件系统支持

10. Vendor Storage 使用说明

10.1 Vendor Storage ID
10.2 Vendor Storage API

10.2.1 Uboot API
10.2.2 kernel API
10.2.3 User API
10.2.4 PC Tool API

10.3 使用注意事项

10.3.1 VENDOR 分区单个 item 最大支持数据量

10.3.2 VENDOR 数据双备份支持

11. 附录参考

命名 简介

SPI Nand SPI 协议 Nand，多为 SLC Nand

SPI Nor SPI 协议 Nor

PP Nand Parallel peripherals Nand，并口 Nand，SLC\MLC\TLC Nand

Flash SPI Nand、SPI Nor、PP Nand 统称

Nand SPI Nand 和 PP Nand 等 Nand 颗粒统称

Octal SPI DTR Nor flash Octal SPI Nor flash 带双采样

OCTA flash Octal SPI Flash，包括 Octal SPI Nor、Octal SPI Nand

1. 命名规则

af://n103

2. Flash 简介

2.1 Flash 存储类型

广义上的 flash 指所有基于 Nand flash 和 Nor flash 技术的非易失存储，例如我们 RK 设备上常用的
EMMC 和 SPI flash ，抑或是这几年逐渐进入视野的 PCIe SSD、SATA SSD 以及 UFS ，大家可能都比较

好奇这几个存储之间的差异是什么，下面做一个简单的介绍。

存储颗粒主要涉及两个内容，颗粒原片和接口控制器，也就是我们常说的 die 和 controller。

Flash 原片是最终贮存用户数据的载体，如截图里的 Nand flash Array。原厂生产不同容量大小的原片然

后搭配不同的控制器组成特定的存储器件，用于各个行业。如 Nand flash die 加上 EMMC 接口封装成的
EMMC 颗粒，Nor flash die 加上 SPI 接口封装成 SPI flash 颗粒，当然这些存储颗粒通常也和我们的芯片

一样内部也有运行固件，也就是俗称的 Firmware 固件，以下是部分存储颗粒的相应说明：

af://n130
af://n131

器件 器件介绍 Host 控制器 Host 端特殊驱动

SPI
Nor

Nor + SPI 接口 FSPI/SPI 控制器
较为简单，支持磨损均衡、异位更新

的文件系统即可

PP
Nand

Nand + 并口 NandC 控制器 FTL 算法或带 FTL 的文件系统

SPI
Nand

Nand + SPI 接口 FSPI/SPI 控制器 FTL 算法或带 FTL 的文件系统

eMMC
Nand + eMMC 接口 +
FTL 算法

SDMMC、
SDHCI 控制器

MMC 协议框架

SD 卡
Nand + SDIO 接口+
FTL 算法

SDMMC 控制器 MMC 协议框架

SATA
SSD

Nand + Sata 接口+
FTL 算法

Sata 控制器 SATA 协议框架

NVMe
SSD

Nand + PCIe 接口+
FTL 算法

PCIe 控制器 NVMe 协议框架

UFS
Nand + UFS 接口+
FTL 算法

UFS 控制器 UFS 协议框架

...

说明：

flash 器件基本上是伴随着更高速的接口控制器、内部并行复杂度更高、容量更大的方向发展去迭

代

RK 产品除了支持过以上常见存储外，还支持过 SD Nand（贴片封装）

Nand flash 组成的器件都需要存储 FTL 算法对 Nand 进行管理，原因 "Nand 基础原理" 章节有所介

绍

PP Nand/SPI Nand 由于器件自身未集成 FTL 算法，所以 Host 端软件需要集成 FTL 算法或带 FTL
算法的文件系统

颗粒原厂、颗粒品牌商、RK 主控结合说明：

2.2 Flash 选型

af://n200

存储类型
稳定

性

单体价

格
常见尺寸及封装 IO 速率 常见容量

EMMC Good High 13x11.5 153 FBGA
200M
DDR
(HS400)

>= 1GB

SLC Nand Nornal Nornal 20x12 TSOP48 30M SDR 128MB~512MB

SPI Nand Nornal Low 8x6 WSON
133M
SDR
80M DDR

64MB~512MB

SPI Nor Good Low
5x4 SOP8/8x6
WSON

166M
SDR
104M
DDR

<= 128MB

Octal SPI
Nand

Nornal High
8x6 24-BALL
TFBGA

120M
DDR

128MB~512MB

Octal SPI Nor Good High
8x6 24-BALL
TFBGA

200M
DDR

<= 128MB

SLC Nand、SPI Nand、SPI Nor

以 GigaDevice 选型参考认识 Flash 物料选型的范围，GD 颗粒选型参考链接

2.3 Flash 简单对比

RK 几种主存简单对比：

说明：

EMMC 有容量大、稳定性较高、读写速率快等优点，但单体价格较贵，封装较大，初始化时间开

销较大（通常达到百毫秒级别）等缺点

SPI Nand 有封装小、单片价格低、容量相较于 Nor flash 来的大等优化，但由于 Nand 涉及 ECC、
存储算法管理等限制，所以读写速率及稳定性较为一般

SPI Nor 有封装小、稳定性高、单片价格低、软件初始化时间开销小的优点，尤其是 SPI Nor 在小

固件场景下加载速率不俗，但连续数据传输速率不如 EMMC，且当容量上升后单体价格较贵

由于 MLC/TLC PP Nand 对 FTL 算法的依赖、NandC 控制器占芯片面积较大、以及引脚多等缺点，

RK 近年来已经淘汰 PP Nand 接口，所以小容量存储主要指 SPI Flash，也因此 MLC/TLC PP Nand
并未列入以上表格

价格仅基于单片计算价格，每 MB 所折算的价格随容量增大而降低

2.4 Flash 常见封装

几种封装对比：

https://www.gigadevice.com.cn/Public/Uploads/uploadfile/files/resource-center/GigaDevice-Selection-Guide-cn.pdf
af://n203
af://n267

SLC Nand/SPI flash 常见封装：

存储类型 容量 价格（美金）

SPINand 1Gbits QPI Comsummer 0.53

SPINand 2Gbits QPI Comsummer 0.75

SPINand 4Gbits QPI Comsummer 1.7

SPINand（Continuous read mode 物料单一） 相较于同容量颗粒 +30% 左右

PP 1Gbits QPI Comsummer 0.6

PP 2Gbits QPI Comsummer 1.7

PP 4Gbits QPI Comsummer 3.8

Nor 32Mbits QPI Comsummer 0.12

Nor 64Mbits QPI Comsummer 0.17

Nor 128Mbits QPI Comsummer 0.28

Nor 256Mbits QPI Comsummer 0.9

Nor 512Mbits QPI Comsummer 2.1

Nor 256Mbits OPI Auto 2.1

Nor 512Mbits OPI Auto 3.6

封装介绍

2.5 Flash 价格

说明：

以上价格为特定厂家的市面报价，非客户对接加价

以上价格主要用于反映不同存储器件之间的价格差异以及同种存储器件的价格随容量增大的趋势情

况

https://www.gigadevice.com.cn/Public/Uploads/uploadfile/files/resource-center/GigaDevice-Selection-Guide-cn.pdf
af://n274

2.6 Nand 基本原理

Nand flash 阵列上的物理结构

以 SLC Nand 常见结构为例：

说明：

SLC Nand 是由多个 flash block 组成，通常达到 1024、2048 或 4096 blocks，以上截图为 2048
blocks
块（block ）是 Nand flash 最小擦除单位，SLC Nand block size 通常为 128KB 或 256KB，擦除后由

逻辑 0 变为 1
一个 block 通常由 64 pages 组成，有一些颗粒多达 128 pages
页（page） 是 Nand flash 编程和读的基础单位，SLC Nand page size 通常为 2KB 或 4KB，编程后由

逻辑 1 变为 0

逻辑上的 0 或 1 实际上是每个 Bit cell 物理单元上的电平值

以 floating gate 实现的 SLC Nand 为例：

af://n343

Flash 真正存储数据的单元是内部的浮栅（ Floating gate ），通过控制门（ Control gate） 和衬底施加电

压控制浮栅是冲入电荷还是释放电荷，而数据上逻辑 0 或 1 由存储的电荷的电压是否超过一个特定的阈

值 Vth 来表示：

对于 NAND Flash 的写入，就是通过加高压控制门对浮栅充电，超过阈值 Vth，就表示 0

Data Retention 问题：电荷有加高压进入浮栅，在没有擦除行为时，电荷存储在浮栅中，但由

于浮栅和衬底存在电场，电荷会随着时间逐渐流失

P/E cycle 问题：随着擦写次数增加，也就是 Program/Erase Cycle（P/E Cycle）增加，浮栅和

衬底之间的氧化物层老化，同样会影响浮栅储存电荷的能力

对于 NAND Flash 的擦除，就是通过加高压衬底对浮栅放电，低于阀值 Vth，就表示 1

Wordline 和 Bitline 的设计

为了高效地完成成千上万 Nand flash cell 的充放电动作，设计者实现了 Bitline/Wordline 等辅助电路结

构，例如多个 cell 串行，多组 cell 组成 Nand string，一组 Nand string 的两端是 Bit Line 和 Source line，
每个 cell 控制门由一根 Wordline 连接，同一根 Wordline 上控制的 cell 为逻辑上的页（Page），整体组成

一个 block，block 里所有的 cell 又是共用衬底，所以最小擦除为块。

Bitline 图片来源

关于 SLC\MLC\TLC\QLC 的基础原理：

如上可以通过 Bitine 来控制充放电行为，决定 bit cell 的电平状态，实际上还可以通过控制充电量的多

少，实现单个 bit cell 的不同电平表现：

SLC、Single Level cell，单个 bit cell 代笔 1 bits 数据，即仅有 0/1 两种电平逻辑

MLC，支持 2 bits 数据，有 0~3 的 4 级电平状态

TLC，支持 3bits 数据，有 0~7 的 8 级电平状态

QLC，支持 4bits 数据，有 0~15 的 16 级电平状态

—— 图片来源于网络

Bit cell 电荷存储能力失效出现位翻转（bit flip）

https://www.tonguebusy.com/a/peixun/xinxi/03-we-q-w-06.html

颗粒类型 主控 选择所依赖ECC

EMMC 无需 ECC EMMC 颗粒

SPI Nand 不带 ECC SPI Nand 颗粒

SLC Nand Nand V6 使用 16bits ECC NandC 控制器

MLC TLC Nand Nand V9 使用 16bits 及更高位 ECC NandC 控制器

由于 Nand 特定的物理结构，导致 Nand 颗粒存在充放电过程电压不稳定、擦写磨损导致物理结构老化

影响储电能力的可能，从而导致逻辑电平发生变化，也就是出现位翻转（bit flip），在用户层面上可能

就会出现数据出错、固件异常、文件系统乱飞等表现，所以 Nand flash 产品都会引入不同能力的 ECC 纠
错算法支持，以延长颗粒寿命、增强 Nand 产品的健壮性。

Nand flash 产品特点

由于 Nand 的物理实现原理决定着 Nand flash 产品有以下特点：

异处更新(out-of-place Update)。Nand Flash 编程操作只能把存储单元从1变为0，所以在重新编程之

前需要进行擦除操作，而且编程以页为单位，擦除以块为单位(一个块包括多个页)，如果使用同处

更新(in-place update)，就是把同逻辑地址重复更新到同样的位置上，那么每一次更新，都需要先进

行一次擦除操作。由于擦除操作耗费时间和对Flash有损伤，所以一般 FTL 使用异处更新，把更新

的数据映射到一个新的位置上。

P/E次数有限制。之前有提到，Nand Flash每个块是有擦除次数限制的，在擦除一定次数后，这个

块会变得不稳定，编程进去的数据容易出错，甚至会擦除失败。通常旧制程的 SLC Nand 擦写次数

在 100K 次，现在原厂为了降成本推出的新制程的颗粒擦写寿命可能有所下降。

性能更好。和传统机械硬盘不同，Flash存储是没有机械设备的，比如说不需要寻道，对所有的地

址访问开销都一样，特别是在随机读性能上，SSD远远好于传统机械硬盘。按这个道理，Flash设备

随机访问和顺序访问的速度是一样，但现实上，Flash支持Cache操作，在顺序访问中可以提前把下

一个页的数据读取放到内部寄存器中，可以更快响应读请求。所以在顺序访问上速度要比随机访问

要快的。

读、写速度不一致。如之前文章描述的，把电子从浮动门中吸进去（写操作）比检测浮动门电场状

态（读操作）要耗时。所以FTL在管理时，尽量减少写和擦除的操作。

2.7 Nor 基础原理

原理与 Nand 相近，主要有以下差异：

bit cell 实现原理相近，但每个 cell 两端直接接入 Bit Line 和 Source line，更稳定，所以所以通常
Nor 不需要 ECC 机制来防止物理上的老化（然而实际上依旧存在极小概率翻转异常），但 cell 周
围的电路结构更复杂，相同容量上 die 的成本更高

Block/page 和 Nand 大小不一

通常支持广义上的擦除块 Block/Sector 两种格式，分别为 64KB 和 4KB
通常支持基础编程（写）单位 page 为 256B

2.8 Nand 存储 ECC 依赖

RK 集成情况：

说明：

af://n402
af://n414

SLC Nand 部分颗粒自带 ECC，其余 PP Nand 都不集成 ECC，依赖控制器自带的 ECC

2.9 Nand 原厂坏块

Nand Flash 由于其物理特性的原因，工艺上是允许存在一定比例的原厂坏块，出厂时会在 flash 的特定区

域置上原厂坏块标记，通常是在 spare first byte (或称为 oob 区域)，通常原厂坏块标记是不可破坏的。

W25N01GV SPI Nand 除外

2.10 Nand 寿命及 ECC 报错

Nand flash 有耐久度，通常是用 P/E（擦除/写）来表征，P/E 达到一定数量级后会出现颗粒失效的情形，

实测个别品质差的颗粒可能在 30K 次左右就会出现异常，这点如果与原厂标称不符，会建议客户联系原

厂定位。

接近 Nand flash 寿命时候，通常会有如下 warning：

读数据位翻转达到需要 refresh 数据的情形

数据有效，使用正常

达到或超过 Nand flash 时通常会出现如下异常：

读数据位翻转达到需要 refresh 数据的情形

数据有效，使用正常

读数据报 ECC fail

数据无效，底层会有 retry 机制，所以可能会造成线程占用 cpu 率较高

有部分数据丢失，进而导致上层异常

擦除/写 fail

标记为坏块，不影响使用，数据不会丢失

2.11 Nand 存储 FTL 算法关键技术说明

地址映射管理。闪存设备对外是一个黑盒子，里面集成了Nand Flash和FTL等，上层应用使用逻辑

地址来访问，FTL把逻辑地址映射到不同物理地址上，管理着每个逻辑地址最新的数据存放的物理

位置

垃圾回收。随着数据的写入，闪存设备上有些块的部分数据已经无效了，需要把有效的数据从块上

搬走，然后擦除用来接收新的数据。

磨损均衡和坏块管理。因为每个块的P/E次数是有限的，某些块可能被重复使用而损坏了，而有些

块数据很少被访问，所以一直没有进行操作过。为了避免这种情况，FTL加入磨损均衡的功能，大

致是通过控制垃圾回收和空块池的管理，从而平衡每个块的使用次数，最理想是所有块一起达到磨

损阈值。由于Flash本身就存在部分坏块，在使用的过程中部分块会变坏，所以FTL在管理的时候需

要避开这些无用块，把使用后变得不稳定块上的数据及时拷贝到稳定位置。

2.12 Nand 存储方案变迁（包括 PP Nand 和 SPI Nand）

早期仅支持 RK 闭源 FTL 方案 rkflash

主要包括 RK3326\RK3308\RV1108

af://n441
af://n446
af://n474
af://n482

开始有客户有 UBIFS、MTD 及烧录器烧录等需求，需要用到 MTD 存储驱动框架

RK3308 芯片开始，由于该方案从驱动、到算法、到文件系统都为开源代码，所以通常内部区

别闭源方案，称为 MTD 开源方案

RK3308 提供底层驱动，上层衔接由客户（开发能力较强）自行完成

RK3308 产品同事曾提供 PP SLC Nand MTD 开源方案的 SDK 配置

全面转到 MTD 开源方案，并提供更详细的支持和指导：

RV1126\RK3568 及之后芯片

2.13 Flash Host 端控制器

2.13.1 SFC 控制器

串行闪存控制器（SFC）用于控制芯片系统与串行nor/nand闪存设备之间的数据传输。

The SFC supports the following features:

支持 SPI Nor、SPI Nand
支持 SPI Nor 1线、2线和4线传输

DMA 传输

2.13.2 FSPI 控制器

FSPI (Flexible Serial Peripheral Interface) 是一个灵活的串行传输控制器，SFC 的新设计，考虑到支持的

器件有所变化，所以更新命名为 FSPI，有以下主要特性：

支持 SPI Nor、SPI Nand、SPI 协议的 Psram 和 SRAM
支持 SPI Nor 1线、2线和4线传输，version 8 及以后支持 8 线 DDR 传输

XIP 技术

DMA 传输

2.13.3 NandC 控制器

NandC 使用来完成 Nand flash 和主芯片之间的数据传输的主控，支持数据直接通过 AHB 总线的 master
传输。为了针对不同应用场景，RK 目前主要有两版的 NandC，富集成的 NandC V9 和 简化后占芯片面

积较小的 NandC V6。

一个芯片一般根据市场地位选择 NandC 版本，NandC V6 仅支持 SLC Nand 通常放在小容量存储方案的

产品中（通常 SLC Nand 小于 512MB），NandC V9 可以支持MLC、TLC，所以可以应用在大容量存储

的产品中。

2.13.4 通用 SPI 接口

FSPI 为专用 SPI Flash 接口，但 RK SOC 通常还有多个通用的 SPI 接口，该接口同样支持外挂 SPI Flash
器件，但通常该接口器件无法作为 bootdev。

2.14 SPI Flash 输出延时统计

af://n503
af://n504
af://n514
af://n525
af://n528
af://n530

 1.8 V 3.3 V 1.65-3.6

FORESEE < 8 ns

BIWIN < 9 ns

Dosilicon <10 ns <8 ns

ESMT <8 ns

Toshiba <6 ns

WINBONG <7 ns

MXIC <8 ns

MXIC (SPI NOR) <12 ns(30 pf)<10 ns(15 pf)

汇总：

说明：

具体颗粒以手册为准，表格仅供参考

存储类型 功能性验证 颗粒可靠性验证 软件兼容性、稳定性验证

SPI Nor Y N*1 N

SPI Nand Y Y TBD*2

SLC Nand Y N*3 TBD*2

3. 颗粒验证

3.1 SLC Nand/SPI Nand/SPI Nor 验证内容简述

验证说明：

小容量颗粒自身较为稳定，且与主控制器之间的兼容性通常较优，所以大部分仅作功能性验证，其可靠

性和稳定性主要依赖原厂自身进行的大量测试及其报告。

1.功能性验证

2.基本产品生命周期可靠性验证

3.软件兼容性、稳定性验证

注释说明：

1. SPI Nor 只做功能性验证，主要是考虑到其相对稳定、兼容性较好且测试要达到较大数量级才能测

试到边界量，可靠性和稳定性验证由颗粒原厂自身保证

2. TBD：只对兼容性改动较大的存储颗粒、存储驱动版本更新较大的部分做相应测试，通常不做该项

测试

3. SLC Nand 的 ECC part 主要由 RK Nand 主控提供，可纠错达到 16bits/ 1KB，所以冗余较大，稳定

性较高，不针对其可靠性做进一步验证，可靠性和稳定性验证由颗粒原厂自身保证

验证方法：

1.功能性验证

主控兼容，系统能正常boot起来，基础功能正常，flash 10 loop 压力测试 pass

2.颗粒可靠性验证

Retention测试：

对flash进行一定比例的P/E cycle处理后，进行烤机，模拟产品寿命

3.软件兼容性、稳定性的异常掉电验证(建议为实际产品)

异常掉电测试

1分钟掉电1次
上电进入到linux系统

上电期间不断进行dd命令读写，不做比对，主要测试ftl数据搬移数据良好

持续7天（达到大部分产品基本需求，约10K读写，1万次左右掉电）

3.2 RK Flash 送样要求简述

af://n583
af://n584
af://n640

3.2.1 验证相关须知

通用说明：

1. 小容量存储包括 SLC PP Nand、SPI Nand、SPI Flash
2. 优先推送主要在售颗粒

3. 该渠道为验证驱动，暂无业务相关建议可回复

4. 通常小容量存储支持列表更新周期为 1~2 个月，实际颗粒验证时间不定，但会在更新支持列表前

完成验证

5. 至少寄送 10 pcs，并提供对应的颗粒手册

6. 优先验证客户亟需的颗粒

SPI Nand 特殊说明：

1. 颗粒需自带 ECC 模块，否则不支持，RK 主控没有集成 ECC 模块

2. Flash 尾部没有连续坏块，否则将破坏尾部坏块表信息，如无法解决则无法支持

3. 无需 plane select bits 即可片选 odd plane block，部分颗粒为 2 plane 结构，需要传输地址上置上
plane slect bits 才能选中 odd plane 数据，该颗粒 RK 平台存在兼容问题，驱动需做兼容性处理，不

建议使用

SPI Nor 特殊说明：

1. SPI Nor 颗粒要求 tRST 少于 200us

3.2.2 验证流程

内部会做功能测试和压力测试以验证颗粒与主控的兼容性，但颗粒自身的稳定性和压测表现以原厂

自身标定为准

仅在经典平台上验证，RK 小容量存储主控 IP 为兼容 IP，所以仅验证 RK3568 但能兼容大部分有

相应控制器件的 SOC，例如 RK3568 验证 OK 的 SPI Nand，对于 RV1126 RK3308 都是兼容的

3.2.3 验证邮寄地址

RK Redmine 问题平台上提出申请，由存储模块软件工程师提供地址。

3.2.4 客户补丁推送

由于 flash 新物料，尤其是 SPI Flash 物料，完成验证后通常要有源码补丁更新，如果客户有驱动需

求，请在 RK Redmine 问题反馈平台提出，届时会在线提供补丁包

af://n641
af://n668
af://n674
af://n676

BootROM preloader

uboot

trust

kernel rootfs linux app

芯片名称
Emmc
Boot

Nand
Boot

SPI NAND
Boot

SD
Boot

SPI NOR
Boot

RV1108 Y Y Y Y Y

RV1126/RV1109 Y Y Y Y Y

RK2108 Y N N N Y

RK2206 Y N N Y Y

RK3036 Y Y Y Y Y

RK3126C Y Y Y*1 Y Y

RK3128 Y Y Y Y Y

RK3229 Y Y Y*1 Y Y

RK3288 Y Y Y Y Y

4. 设备启动流程

启动流程是指系统上电到系统启动完成的一个软件流程，下面是 linux 系统启动流程：

4.1 RK SOC BOOTROM Boot 支持状态

af://n681
af://n684

芯片名称
Emmc
Boot

Nand
Boot

SPI NAND
Boot

SD
Boot

SPI NOR
Boot

RK3308 Y Y Y Y Y

RK3326/PX30 Y Y Y*1 Y Y

RK3328 Y N Y*1 Y Y

RK3368/PX5 Y Y Y*1 Y Y*1

RK3399 Y N Y*1 Y Y

RK3568/RK3566 Y Y Y Y Y

RK3588 Y N Y Y Y

RV1106/RV1103 Y N Y Y Y

RK3528 Y N Y Y Y

RK3562 Y N Y Y Y

*1： 芯片硬件支持，SDK release 开发包未做支持。

4.2 RK SOC 存储接口规格

af://n827

AP NANDC SPI0 SPI1 SPI2 SFC SD SDIO EMMC USB0 USB1

RK3188
60bits MLC
SLC

Boot - -
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0
OTG

RK3128
60bits MLC
SLC

 - - Boot
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0
OTG

RK3126
60bits MLC
SLC

 - - Boot
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0
OTG

RK3036
60bits MLC
SLC

 - - Boot
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0
OTG

RK3288
60bits MLC
SLC

 Boot -
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0
OTG

RK3399 - - Boot - -
SD
3.0

SDIO
3.0

HS400
HS200

3.0
OTG
TYPEC

3.0
OTG
TYPEC

RK3368
60bits MLC
SLC

 Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0
OTG

RK3228
RK3229

60bits MLC
SLC

Boot - - -
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0
OTG

RK3328 - Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

3.0
OTG

RK3228H - Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

3.0
OTG

RK3128X
60bits MLC
SLC

Boot - - -
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0
OTG

RV1107 RV1108 16bits SLC Boot
SD
3.0

SDIO
3.0

HS200 -
2.0
OTG

RV1109 RV1126 16bits SLC Boot
SD
3.0

SDIO
3.0

HS200 -
2.0
OTG

RK3308 16bits SLC Boot
SD
3.0

SDIO
3.0

HS200

RK3326
70bits TLC
MLC SLC

 Boot
SD
3.0

SDIO
3.0

HS200

RKPX3
60bits MLC
SLC

Boot - -
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0
OTG

RKPX3SE
60bits MLC
SLC

 Boot
SD
3.0

SDIO
3.0

SD50
DDR50

RKPX5
60bits MLC
SLC

 Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0
OTG

RKPX30
70bits TLC
MLC SLC

 Boot
SD
3.0

SDIO
3.0

HS200

RK1608 - Boot - - - - - -

RK1808 - Boot - - HS200

RK3568
RK3566

70bits TLC
MLC SLC

 Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

3.0
OTG

RK3588 - - - - Boot
SD
3.0

SDIO
3.0

HS400
2.0
Host

3.0
OTG

RV1106/RV1103 - - - - Boot
SD
3.0

- HS50

RK3528 - - - - Boot
SD
3.0

SDIO
3.0

HS400
2.0
Host

3.0
OTG

AP NANDC SPI0 SPI1 SPI2 SFC SD SDIO EMMC USB0 USB1

RK3562 - - - - Boot
SD
3.0

SDIO
3.0

HS400
2.0
Host

3.0
OTG

NO

NO

BOOTROM

Check ID BLOCK from NAND FLASH

ID correct?

Check ID BLOCK from EMMC

ID correct?

Check ID BLOCK from SPI NOR

ID correct?

备注：表格中SPIx 和 SFC 有 Boot 标识的表示 BOOTROM 可以从对应的 SPI/SFC 接口启动。

4.3 BOOTROM 流程

RK 芯片上电后最新执行代码是集成在芯片内部不可更改的掩膜代码，也就是 BOOTROM 代码，AP 和
MCU 都有集成，系统上电时先运行 BOOTROM 代码，然后 BOOTROM 代码会探测外设存储器并加载

其中的 Loader 代码。

不同芯片，BOOTROM 探测外设存储器的顺序不同。下图是 BOOTROM 启动流程图一个例子：

af://n1154

YES

YES

NO

YESNO

YES

NO YES

load loader code and run

Check ID BLOCK from SPI NAND

ID correct?

Check ID BLOCK from SD CARD

ID correct?

Boot from USB

说明：

部分芯片设置支持 ADC Key 不同输入电平来指定 BOOTROM 探测的存储器件，如果该存储探测

失败，直接进入 maskrom mode
探测存储器件通常是通过探测器件 ID 来确认是否由外挂设备

如果所有器件都未探测到有效固件，设备进入 maskrom mode，等待特定的接口如 usb/uart 进行固

件下载，不是所有芯片都支持 usb/uart 接口升级

各芯片 BOOTROM 启动顺序

AP No.1 No.2 No.3 No.4 No.5 No.6

RK3188 SD0 NAND
SPI
NOR(SPI0)

SPI
NAND(SPI0)

EMMC USB

RK3128 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3126(B) NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3036 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3288 NAND EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB

RK3399
SPI
NOR(SPI2)

SPI
NAND(SPI2)

EMMC SD0 USB --

RK3368 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3228/9 NAND EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB

RK3328 EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB --

RK3228H EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB --

RK3128X/H NAND EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB

RV1107/8 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RV1109
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RV1126
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RK3308 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3326 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RKPX3 SD0 NAND
SPI
NOR(SPI0)

SPI
NAND(SPI0)

EMMC USB

RKPX3SE NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RKPX5 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RKPX30 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK1608 SPI SLAVE
SPI
NOR(SPI2)

SPI
NAND(SPI2)

-- -- --

RK1808 SPI SLAVE
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC USB --

AP No.1 No.2 No.3 No.4 No.5 No.6

RK3399PRO
SPI
NOR(SPI2)

SPI
NAND(SPI2)

EMMC SD0 USB --

RK3568
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RK3566
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RK3588
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB

RV1106/RV1103
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB/UART

RK3528
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB

RK3562
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB

4.4 Pre Loader 流程

RK SDK 编译工程输出的镜像通常是可以看到一个 MiniloaderAll.bin 的镜像，这个镜像是实际上是有两

个主要功能：

引导烧录

烧录 idb 镜像

idb 镜像是 MiniadloerAll.bin 解包出来的有效镜像，又称为 idblock，最终烧录到 flash 中，通常 idb 镜像

由 ddr.bin 和 Pre Loader 镜像打包而成，部分芯片支持打包更多的功能镜像。Pre Loader 目前主要有 3
种： miniloader（非开源）， uboot spl 和 loader。

4.4.1 Miniloader

简介

miniloader 固件是 RK 非开源的 preLoader 固件，通常打包与 ddr.bin usbplug.bin 打包为 loader.bin，结构

如下：

af://n1408
af://n1416

SD CARD NAND FLASH EMMC SPI NOR FLASH SPI NAND FLASH

注释：

1. ddr.bin：ddr 初始化固件，简称 471
2. usbplug.bin：引导烧录所使用的运行固件，简称 472
3. miniloader.bin：闭源 pre-loader 固件

4. MiniloaderAll.bin：为 SDK 统一命名文件，实际为对应芯片打包固件的 loader.bin
5. RK 升级工具升级过程会从 loader.bin 中提取并升级 idblock.bin，并作多备份处理

6. idblock， 固件为 ddr.bin + pre-loader 的打包固件，闭源版本 pre-loader 就是指 miniloader.bin

rkbin 仓库打包生成 Miniloader

以 rk3308 为例，进入 SDK 中 rkbin 目录，最终生成 rk3308_loader_v1.xx.1xx.bin：

存储探测顺序

如同 BootRom，为兼容不同存储类型，Preloader 阶段也会去探测不同存储外设：

由于代码没有开源，用户不能自行修改启动顺序。

启动流程

./tools/boot_merger ./RKBOOT/RK3308MINIALL.ini .

./tools/boot_merger ./RKBOOT/RK3308MINIALL_WO_FTL.ini . /* 尾缀为 _WO_FTL 文件、为

开源存储方案选用的 Pre Loader，文件系统选择ubifs或者jaffs2 */

./tools/boot_merger ./RKBOOT/RK3326MINIALL_SLC.ini . /* 尾缀为 _SLC 文件、为小容量存

储（SLC Nand、SPI Nand、SPI Nor）方案专用的 Pre Loader，内带rk ftl算法，不支持ubifs */

Mini Loader

Load Trust Load UBoot

Check Trust Check UBoot

Boot Trust

Boot UBoot

4.4.2 u-boot spl

芯片支持情况参考文档《Rockchip-Developer-Guide-UBoot-nextdev-CN》，支持 NAND 和 SPI NAND 时
不带 FTL 算法，只用开源 NAND 驱动，建议使用 UBIFS 文件系统。

简介

注释：

af://n1443

SD CARD NAND FLASH / SPI NAND / SPI Nor EMMC

1. ddr.bin：ddr 初始化固件，简称 471
2. usbplug.bin：引导烧录所使用的运行固件，简称 472
3. spl.bin：u-boot 源码下编译出来的 spl 固件，输出文件在 uboot 目录下的 spl/u-boot-spl.bin
4. MiniloaderAll.bin：为 SDK 统一命名文件，实际为对应芯片打包固件的 spl_loader.bin
5. RK 升级工具升级过程会从 loader.bin 中提取并升级 idblock.bin，并作多备份处理

6. idblock， 固件为 ddr.bin + pre-loader 的打包固件，spl 版本 pre-loader 就是指 u-boot-spl.bin，RK
SDK 会定期编译 u-boot-spl.bin 贮存在 rkbin 对应目录，命名为 rkxxxx_spl_vx.xx.bin

7. PC 升级工具 SLC Nand/SPI Flash idblock 镜像会做双倍份，其他存储器件 idblock 镜像五备份

结合 BOOTROOM 的流程，理解 ”加载 xxx.bin 运行 xxx 功能“行为：

烧录流程：

BOOTROM 加载 ddr.bin，初始化 ddr
BOOTROM 加载 usbplug.bin，通过 usb plug 固件（烧录）

启动流程：

BOOTROM 加载 ddr.bin，初始化 ddr
BOOTROM 加载 spl.bin，执行 Loader 功能，Load 后级固件

部分芯片还有在 idblock 中打包 mcu.bin、PCIe.bin 也是类似行为和目标，pre-load the pre-
loader

spl 存储探测顺序

说明：

spl 支持开启 SD 卡启动功能，探测到 SD 卡及 SD 卡内的有效固件，加载 SD 卡中的后期固件，完

成 SD 启动

支持 atags 的 spl 固件优先检测使用 BOOTROM 探测成功的存储器件启动，atags 功能详细参考 u-
boot 开发手册

spl 存储相关 log

启动流程

U-Boot SPL 2017.09-gcc781e0266-230509-dirty #ldq (Nov 24 2023 - 00:15:39)

unknown raw ID 0 0 0

unrecognized JEDEC id bytes: 00, 00, 00

Trying to boot from MMC2

MMC: no card present

mmc_init: -123, time 0

spl: mmc init failed with error: -123

Trying to boot from MMC1 # bootdev 探测结果：MMC2(SD Card)、

MMC1(EMMC)、MTD0(SLC Nand)、MTD1(SPI Nand)、MTD2(SPI Nor)

No misc partition

Trying fit image at 0x4000 sector

SPL

Load Trust Load UBoot

Check Trust Check UBoot

Boot Trust

Boot UBoot

芯片 SD CARD SLC NAND EMMC SPI NOR SPI NAND

RV1107/8 支持 支持 支持 支持 支持

RK3036 支持 支持*1 支持*1 支持 支持

RK3128 支持 支持*1 支持*1 支持 支持

RK3229 支持 支持*1 支持*1 支持 不支持

SD CARD SLC NAND EMMC SPI NOR FLASH SPI NAND FLASH

4.4.3 loader

支持 RV1107、RV1108、RK3036、RK3128 和 RK3229 等平台，一般用于支持小容量存储，不使用
uboot，直接引导 kernel。

*1 RK3036、RK3128 和 RK3229 使用 SLC NAND 和 EMMC 的项目，一般直接用 miniloader。

存储探测顺序

启动流程

af://n1493

YES

NO

YESNO

Loader

Load kernel

Check USB Connected?

ROCKUSB

Check Kerenl OK?

Boot Kernel

5. 分区及数据存储

5.1 数据存储

5.1.1 地址转换简介

如果对存储有所了解，那么应该会知道存储颗粒大多不是平坦映射，而是由用户逻辑扇区地址（lba）转

换到 Flash 物理扇区地址（pba），这种映射过程即 FTL （Flash translation layer）,FTL 需要综合数据磨

损、坏块管理、垃圾回收等需求进行地址转换。不论是否有 FTL，用户和文件仅需关心逻辑地址即可，

而地址转换细节由软件完成。

假定用户需要访问地址 0x4000 扇区，地址转换关系如下：

假定文件系统内接口访问地址 0x4000 扇区，地址转换关系如下：

af://n1537
af://n1538
af://n1539

5.1.2 分区及数据逻辑地址存储

5.2 分区表分区

RK 存储方案中一共有 3 种分区表可固化到存储分区中：MTD Partition，GPT 和 RK partition。

详细的信息可以参考文档《Rockchip_Introduction_Partition》。

af://n1545
af://n1547

分区 说明 适用平台 限制

MTD
Partition

parameter 文件中定义，通过 cmdline 传递，uboot-next
分支开始不再提供支持

所有

AP*1
需要独立分

区存放

GPT EFI 通用分区表，uboot-next 分支支持
所有

AP*2
占用资源多

一点

RK
partition

参考 GPT 设计，主要用于小容量存储，节省资源
RV1107/8,
MCU

RK 自定

义，不通用

*1 使用 uboot-next 分支的平台不再支持 MTD partition，如果需要使用，需要自己适配。

*2 使用 uboot-next 分支的平台默认都是使用 GPT 做分区表，如果需要使用其他分区表，需要自己适

配。

5.2.1 MTD Partition

参考 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.md》 文档。

5.2.2 GPT

GPT 分区表也是通过 parameter 文件配置，结构和 MTD Partition 类似，差异的地方有四个：

1. 设置 TYPE 为 GPT。
2. 没有定义 parameter 分区（如果定义，也不会使用）。

3. 最后一个分区需要增加关键字”grow“。
4. 需要指定 rootfs 的 uuid，不同SDK可能设定值不同，需要和DTS里面定义的rootfs uuid匹配。

GPT 分区表升级流程：

1. 工具读取 parameter 里面的分区定义

FIRMWARE_VER:8.1

MACHINE_MODEL:RK3326

MACHINE_ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK_MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT /* GPT 分区 */

CMDLINE:mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot),0x00002000@0x00006000

(trust),0x00002000@0x00008000 (misc),0x00008000@0x0000a000

(resource),0x00010000@0x00012000 (kernel),0x00010000@0x00022000

(boot),0x00020000@0x00032000 (recovery),0x00038000@0x00052000

(backup),0x00002000@0x0008a000 (security),0x000c0000@0x0008c000

(cache),0x00300000@0x0014c000 (system),0x00008000@0x0044c000

(metadata),0x000c0000@0x00454000 (vendor),0x00040000@0x00514000

(oem),0x00000400@0x00554000 (frp),-@0x00554400 (userdata:grow)

uuid:rootfs=614e0000-0000-4b53-8000-1d28000054a9

af://n1573
af://n1575

2. 从 loader 处获取存储设备的容量

3. 修改最后一个分区大小并创建 gpt 分区表文件

4. 烧写分区表到存储设备的 0 地址和 - 33（末尾）地址

注： 1. parameter 文件本身不会被烧写到存储设备中。

5.2.3 RK partition

RK 自定义的一种分区表，结构和 GPT 类似，占用资源少，初始化更快，主要用在 RV1107/8 平台和
MCU 平台。

下面为 Linux\Android 产品分区定义文件模板：

下面是 RTOS 产品分区定义文件模板，其中 Flag 标志中的 bits [8,10] 规范暂时仅在 RTOS 产品有效：

#Flag 目前只有两个值，1 为分区需要下载，0 为不需要下载

#type 目前有 5 种值，0x1=Vendor 分区 0x2=IDBlock 分区 0x4=Kernel 分区 0x8=boot 分区

0x80000000 = 普通分区

#PartSize 和 PartOffset 字段的值都是以扇区为单位

[System]

FwVersion=16.12.23

如果 Nano=1, 则生成 nano 的 idblock

Nano=

如果 BLANK_GAP＝1, 则生成的 idblock 按每 2k 数据间隔 2k 空白保存

BLANK_GAP=1

#FILL_BYTE 表示分区尾部空白用什么数据填充，默认为 0

FILL_BYTE=

[IDBlock]

Flag=1

DDR_Bin=rk3399_DDR_800MHz_v1.17.bin

Loader_Bin=rk3399_miniloader_spi_nor_v1.14.bin

PartOffset=0x40

PartSize=0x780

[UserPart1]

Name=trust

Type=0x10

Flag=1

File=trust_1MB.img

PartOffset=0x800

PartSize=0x800

[UserPart2]

Name=uboot

Type=0x20

Flag=1

File=uboot_1MB.img

PartOffset=0x1000

PartSize=0x800

#Flag:

bits filed:

[0] : skip : 0 - disabled (default), 1 - enable

[2] : no partition size : 0 - diabled (default), 1 - enable

[8, 9] : property : 0 - do not register (default), 1 - read

only, 2 - write only, 3 - rw

af://n1598

5.2.4 ENV 分区

ENV（Environment-Variables）是 U-Boot 支持的一种全局数据管理和传递方式，原理是构建一张 HASH
映射表，把用户的数据以"键值-数据"作为表项进行管理。

RK 部分芯片平台使用将 ENV 信息贮存在 flash 中，定义为 ENV 分区，同时将 cmdlines 中的 mtdparts 分
区表信息生成并记录在 ENV 信息表中，并从 SPL 或 U-Boot 传递到内核。

5.3 parameter 分区表修改工具

 分区表修改工具可以用于修改parameter定义的分区，一个分区大小被修改时，其后的分区偏移都会匹

配修改。

[10] : register type : 0 - block partition (default), 1 - MTD

partition

#type can suppot 32 partiton types,0x0:undefined 0x1:Vendor 0x2:IDBlock

,bit3:bit31 are available

#PartSize and PartOffset unit by sector

#Gpt_Enable 1:compact gpt,0:normal gpt

#Backup_Partition_Enable 0:no backup,1:backup

#Loader_Encrypt 0:no encrypt,1:rc4

#nano 1:generate idblock in nano format

[System]

FwVersion=1.0

Gpt_Enable=

Backup_Partition_Enable=

Nano=

Loader_Encrypt=

Chip=

Model=

[UserPart1]

Name=IDBlock

Type=0x2

PartOffset=0x80

PartSize=0x80

Flag=

File=../../Image/rk2108_loader.bin,../../Image/Boot2_Fake.bin

[UserPart2]

Name=rtthread

Type=0x8

PartOffset=0x100

PartSize=0xa00

Flag=

File=../../Image/rtthread.img

[UserPart3]

Name=root

Type=

PartOffset=0x1100

PartSize=0x6f00

Flag=0x305

File=../../Image/root.img

af://n1604
af://n1607

5.4 分区写保护设置

5.4.1 块设备分区写保护设置

 Linux Kernel下EMMC和SD CARD是块设备，NAND FLASH使用rknand 或者rkflash驱动时也是块设

备，可以通过下面命令配置分区的读写属性。

示例1. 设置system分区为只读：

示例2. 设置system分区为可读写：

注意：分区配置最好在分区mount之前，不然分区mount为可写，在配置分区属性为只读，文件系统会报

错。

5.4.2 MTD设备分区写保护设置

mtd一般通过cmdline定义分区，可以在分区名后加上字符'ro'来设定这个分区为只读。可以在uboot传递

cmdline给kernel的时候修改mtdparts来实现特定分区写保护。

示例：修改分区表，设置boot分区为只读：

./busybox blockdev --setro /dev/block/by-name/system

./busybox blockdev --setrw /dev/block/by-name/system

mtdparts=rk29xxnand:0x00002000@0x00004000(uboot),0x00004000@0x00006000(boot)ro,.

..

af://n1610
af://n1611
af://n1618

PC Tools PC rockusb USB IF AP rockusb NVM

6. 固件烧录

目前量产烧录固件主要有 3 种方式： USB 升级、SD 卡升级和烧录器烧录。

6.1 USB 升级

USB 升级目前有两种协议：rockusb 和 fastboot。本文档只介绍 rockusb 升级方式，如果需要用 fastboot
升级方式，可以参考 uboot 开发文档《Rockchip-Developer-Guide-UBoot-nextdev-CN》。

6.1.1 流程框图

AP rockusb: maskrom rockusb, miniloader rockusb and uboot rockusb。

NVM： SPI NOR， SPI NAND， SLC NAND， EMMC，M/TLC NAND。

6.1.2 WIN 开发工具 RKDevTool

GPT/RK Partition 方案：

AP SDK 发布的时候会提供配置好的开发工具，用于开发时烧录完整固件或更新部分分区的数据。工具

附带功能比较多，详细功能介绍参考工具自带的文档，这里介绍几个比较实用的功能：

1. 读取设备分区表：在 loader 升级模式，点击按钮 “设备分区表”，可以读取设备的分区表

2. 切换到 loader 升级模式：在 MSC 或者 MTP 模式下，可以点击 “切换” 按钮切换到 loader 升级模式

3. 从 loader 切换到 maskrom 升级模式： 在高级功能里面点击 “进入 maskrom” 按钮可以从 loader 升级

模式切换到 maskrom 升级模式

4. 重启设备：在 loader mode 或者 maskrom mode 下，可以点击高级功能 “重启设备”

工具界面：

af://n1623
af://n1625
af://n1627
af://n1631

高级功能：

1. maskrom升级模式，需要选择loader文件下载到DDR里面运行

2. update.img 固件解包

3. 支持脚本运行

4. 读取FLASH ID
5. 读取FLASH信息

6. 读取芯片信息

7. 读取loader支持扩展功能

8. 测试测试是否ready
9. 重启设备

10. 重启进去maskrom升级模式，一般从loader升级模式切换到maskrom升级模式

11. 覆盖写数据，清空序列号，可能会破坏固件

12. 导出loader头部IDB结构

13. 根据16和17定义的起始地址和扇区数，擦除扇区，需要对齐到4MB，不然可能会多擦除或者少擦

14. 导出loader运行的串口信息，保存在工具的output目录

15. 根据16和17定义的起始地址和扇区数，导出固件镜像，保存在工具的output目录

16. 定义起始扇区

17. 定义操作操作的扇区数

18. 工具日志

6.1.3 WIN 开发工具 SocToolKit

ENV 方案：

RK 部分 AP 平台支持开源的 ENV 分区信息，支持分区表、bootargs 等信息记录在 ENV 分区表内，并通

过 cmdlines 的方式传递到内核，该方案有特定的镜像打包方案和升级工具。

工具界面：

6.1.4 LINUX 开发工具 upgrade_tool

Linux 工具与安卓工具类似，都有相近的功能。

工具界面：

af://n1684
af://n1689

6.1.5 LINUX 开发工具 SocToolKit

Linux 工具与安卓工具类似，都有相近的功能。

6.1.6 量产工具

量产工具支持一拖多异步烧录固件，工具运行升级功能后，每接上一台设备，工具就会开始升级固件，

多台机器之间独立的。

工具界面：

af://n1693
af://n1695

工具目录下有config.ini配置文件，每个选项都有详细注释，这里列举几个常用的配置：

1、FW_BURN_EFUSE 烧录固件的同时烧录efuse，启用secure boot。

AP用OTP，或者PCB没有预留EFUSE电源控制电路时不能开启这个功能。

2、NOTRESET_AFTER_UPGRADE 升级后不重启机器

 有些产品第一次开机要求不能断电，需要设置升级固件后不重启。

3、FORCE_DATA_BAND 修改USB单包传输数据大小，烧写SPI NOR时如果出现usb超时出错，可以改

小这个值。

4、SN_DLL_ON 开启升级固件过程同时烧写SN的功能

5、RB_CHECK_OFF固件升级是否需要回读调用

6.2 SD卡升级

使用 SD_Firmware_Tool 工具把update.img固件烧录到sd卡里面，把制作好的升级用SD（TF）卡插到机

器的SD卡口，上电就会从sd卡启动到recovery并升级固件到机器内部存储中。

工具界面：

af://n1707

工具功能说明：

1、PCBA测试，勾选这个功能会先进行PCBA测试后再升级固件。

2、SD启动，制作启动卡，完整固件都存在在SD卡里面。

3、恢复磁盘，删除启动卡的启动代码，恢复位普通sd卡。

6.3 UART 升级

特定的芯片支持通过 UART 接口升级镜像，同样支持 linux、windows 和量产工具。

af://n1714

6.4 EMMC 镜像烧录

用SpiImageTools把update.img转成烧录器用镜像。

工具界面：

工具配置说明：

1、空白填充： EMMC选择 0x0

2、SPI FLASH：不要勾选

3、数据区预留：需要勾选

如果使用GPT分区的固件，制作镜像时parameter需要配置 DISKSIZE参数 ，具体参考文档《Rockchip量
产烧录指南_v1.2》。

录器配置说明：

1、把data.bin烧录到EMMC的user分区

2、如果是RK3188/RKPX3,还需要把boot0.bin烧录到EMMC的boot1和boot2分区

3、烧录器配置全0的数据跳过不烧录

4、CSD值全部用默认值，不能修改

5、EXT CSD配置：

没有列出的项全部使用默认值，不能修改。

RK3188/RKPX3:
EXT_CSD[167] = 0x1f （如果EMMC颗粒支持，需要配置）

EXT_CSD[162] = 0x1 (启用 reset pin功能)
EXT_CSD[177] = 0x0 (默认值)
EXT_CSD[178] = 0x0 (默认值)
EXT_CSD[179] = 0x8 (0x8,从 boot1 启动)

其他AP：
EXT_CSD[167] = 0x1f （如果EMMC颗粒持，需要配置）

EXT_CSD[162] = 0x0 (默认值)
EXT_CSD[177] = 0x0 (默认值)
EXT_CSD[178] = 0x0 (默认值)
EXT_CSD[179] = 0x0 (默认值)

6.5 SLC Nand 镜像烧录

参考 《Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf》对应章节。

af://n1717
af://n1734

6.6 SPI Nand 镜像烧录

参考 《Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf》对应章节。

6.7 SPI Nor 镜像烧录

参考 《Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf》对应章节。

af://n1736
af://n1738

简称
主要支持的颗

粒类型

主要支持文件

系统
支的烧录方式

eMMC 方案 eMMC
FAT、EXT、
SquashFS

USB 升级、SD 卡升级

rknand 方案
MLC、TLC
Nand

FAT、EXT、
SquashFS

USB 升级、SD 卡升级

rkflash 方案
SLC Nand、SPI
Nand

FAT、EXT、
SquashFS

USB 升级、SD 卡升级

rkflash 方案（SPI Nor
支持）

SPI Nor
SquashFS、
JFFS2

USB 升级、SD 卡升级、烧

录器升级

SLC Nand 开源方案 SLC Nand UBIFS
USB 升级、SD 卡升级、烧

录器升级

SPI Nand 开源方案 SPI Nand UBIFS
USB 升级、SD 卡升级、烧

录器升级

SPI Nor 开源方案 SPI Nor
SquashFS、
JFFS2

USB 升级、SD 卡升级、烧

录器升级

7. 存储软件驱动配置

RK 主要提供以下存储方案：

7.1 u-boot

详细参考《Rockchip-Developer-Guide-UBoot-nextdev-CN》 CH05 - 驱动模块 Storage 章节。

7.2 kernel

由于内核 4.4 及旧版本内核对于开源 SPI Flash 的支持不完善，所以内核中关于 flash 的开源方案与 uboot
下的实现方式有所不同：

af://n1741
af://n1784
af://n1786

简称

主要支

持的颗

粒类型

主控驱动 flash 框架
注册

设备

类型

主要支持

文件系统

支持

的烧

录方

式

rknand 方案

MLC
TLC
Nand

drivers/rkand drivers/rkand
block
设备

FAT、
EXT、
SquashFS

USB
升

级、

SD
卡升

级

rkflash 方案

SLC
Nand、
SPI
Nand

drivers/rkflash drivers/rkflash
block
设备

FAT、
EXT、
SquashFS

USB
升

级、

SD
卡升

级

rkflash 方案

（SPI Nor
支持）

SPI Nor drivers/rkflash drivers/rkflash

block
或

mtd
设备

SquashFS、
JFFS2

USB
升

级、

SD
卡升

级、

烧录

器升

级

SLC Nand
开源方案

SLC
Nand

drivers/mtd/
nand/raw

drivers/mtd/
nand/raw

mtd UBIFS

USB
升

级、

SD
卡升

级、

烧录

器升

级

简称

主要支

持的颗

粒类型

主控驱动 flash 框架
注册

设备

类型

主要支持

文件系统

支持

的烧

录方

式

SPI Nand 开
源方案

SPI
Nand

drivers/rkflash drivers/rkflash mtd UBIFS

USB
升

级、

SD
卡升

级、

烧录

器升

级

SPI Nor 开
源方案

SPI Nor drivers/rkflash drivers/rkflash

mtd
或

mtd
block
设备

SquashFS、
JFFS2

USB
升

级、

SD
卡升

级、

烧录

器升

级

7.2.1 MLC Nand、TLC Nand rknand 方案

配置：

驱动文件：

7.2.2 SLC Nand、SPI Nand 及 SPI Nor rkflash 方案

参考 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.md》 文档。

7.2.3 SLC Nand、SPI Nand 及 SPI Nor MTD 开源方案

参考 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.md》 文档。

7.3 各阶段存储 iomux/clk 配置情况及扫描次序

CONFIG_RK_NAND=y

./drivers/rk_nand/

af://n1845
af://n1850
af://n1852
af://n1854

阶段 存储器件
是否配置

iomux

是否配

置

clock
驱动配置

maskrom 扫描 nor、spinand、emmc、sdcard
配置（仅配置

探测成功的器

件）

配置

spl

优先级1（支持 atags 方案）：

maskrom 探测成功设备

优先级2：扫描 nor、spinand、
emmc、sdcard

1.不配置（默

认）
2.补充配置需

要的 iommux

配置

（驱动

里配

置）

dts/defconfig
根据具体 sdk
配置

uboot

优先级1（默认未开启）：

CONFIG_ROCKCHIP_BOOTDEV
指定目标存储

优先级2（支持 atags 方案）：

maskrom 探测成功设备

优先级3：扫描 nor、spinand、
emmc、sdcard

不配置

配置

（驱动

里配

置）

dts/defconfig
根据具体 sdk
配置

kernel 扫描 nor、spinand、emmc、sdcard
dts/defconfig
根据具体 sdk
配置

7.4 双存储方案扩展

参考 《Rockchip_Developer_Guide_Dual_Storage_CN.md》 文档。

af://n1886

8. 开源方案 OTA

参考 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.md》 文档。

af://n1889

9. 文件系统支持

9.1 UBIFS 文件系统

参考 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.md》 文档。

9.2 JFFS2 文件系统支持

参考 《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.md》 文档。

af://n1892
af://n1893
af://n1895

10. Vendor Storage 使用说明

Vendor Storage 是设计来存放一些非安全小数据，比如 SN、MAC 等，详细参考文档：

EMMC：《RK Vendor Storage Application Note》
rkflash 方案的 flash 支持：《RK Vendor Storage Application Note》
MTD 方案的 flash 支持：

《Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.pdf》

10.1 Vendor Storage ID

Vendor Storage 是通过 ID（16bits）访问数据，不需要关心数据具体存放在分区的哪个位置，可以简单认

为 ID 就是索引或者文件名。ID 0 -31 保留为通用 SDK 功能使用，客户自定义存储时请使用 32-65535.

下表为具体的 ID 功能定义：

af://n1898
af://n1907

ID Function

0 reserved

1 SN

2 WIFI MAC

3 LAN MAC

4 BT MAC

5 HDCP 1.4 HDMI

6 HDCP 1.4 DP

7 HDCP 2.X

8 DRM KEY

9 PLAYREADY Cert

10 ATTENTION KEY

11 PLAYREADY ROOT KEY 0

12 PLAYREADY ROOT KEY 1

13 SENSOR CALIBRATION

14 RK reserved for future use

15 IMEI

16 LAN_RGMII_DL

17 – 31 RK reserved for future use

32 - 65535 Vendor use

10.2 Vendor Storage API

10.2.1 Uboot API

int vendor_storage_init (void)

 function: Initialize vendor storage

 input: none

 return: 0, Initialize success

 other, Initialize fail

int vendor_storage_read (u32 id, void *pbuf, u32 size)

 function: read vendor storage by id

 input: id, item id; pbuf, data buffer; size, number byte to read.

 return: -1, read fail.

 other: number byte have read.

af://n1971
af://n1972

10.2.2 kernel API

Source code : kernel/drivers/soc/rockchip/rk_vendor_storage.c

Include header：include/linux/soc/rockchip/rk_vendor_storage.h

10.2.3 User API

用户应用是通过 IOCTL 接口访问 vendor storage，下面是读写的参考代码。

int rk_vendor_write (u32 id, void *pbuf, u32 size)

 function: write vendor storage by id

 input: id, item id; pbuf: data buffer; size: number bytes to write.

 return: 0: write success

 other : write fail

int vendor_storage_init (void)

 function: Initialize vendor storage

 input: none

 return: 0, Initialize success

 other, Initialize fail

int vendor_storage_read (u32 id, void *pbuf, u32 size)

 function: read vendor storage by id

 input: id, item id; pbuf, data buffer; size, number byte to read.

 return: -1, read fail.

 other: number byte have read.

int rk_vendor_write (u32 id, void *pbuf, u32 size)

 function: write vendor storage by id

 input: id, item id; pbuf: data buffer; size: number bytes to write.

 return: 0: write success

 other : write fail

#include <fcntl.h>

#include <sys/ioctl.h>

#define VENDOR_REQ_TAG 0x56524551

#define VENDOR_READ_IO _IOW ('v', 0x01, unsigned int)

#define VENDOR_WRITE_IO _IOW ('v', 0x02, unsigned int)

#define VENDOR_SN_ID 1

#define VENDOR_WIFI_MAC_ID 2

#define VENDOR_LAN_MAC_ID 3

#define VENDOR_BLUETOOTH_ID 4

struct rk_vendor_req {

 u32 tag;

 u16 id;

 u16 len;

 u8 data [1];

};

af://n1976
af://n1982

static void print_hex_data (uint8 *s, uint32 *buf, uint32 len)

{

 uint32 i, j, count;

 ERROR ("% s", s);

 for (i = 0; i < len; i += 4)

 ERROR ("% x % x % x % x", buf [i], buf [i + 1], buf [i + 2], buf [i +

3]);

}

int vendor_storage_read_test (void)

{

 u32 i;

 int ret, sys_fd;

 u8 p_buf [2048];/* malloc req buffer or used extern buffer */

 struct rk_vendor_req *req;

 req = (struct rk_vendor_req *) p_buf;

 sys_fd = open ("/dev/vendor_storage", O_RDWR, 0);

 if (sys_fd < 0){

 ERROR ("vendor_storage open fail\n");

 return -1;

 }

 req->tag = VENDOR_REQ_TAG;

 req->id = VENDOR_SN_ID;

 req->len = 512; /* max read length to read*/

 ret = ioctl (sys_fd, VENDOR_READ_IO, req);

 print_hex_data ("vendor read:", (uint32*) req, req->len + 8);

/* return req->len is the real data length stored in the NV-storage */

 if (ret){

 ERROR ("vendor read error\n");

 return -1;

 }

 return 0;

}

int vendor_storage_write_test (void)

{

 uint32 i;

 int ret, sys_fd;

 uint8 p_buf [2048]; /* malloc req buffer or used extern buffer */

 struct rk_vendor_req *req;

 req = (struct rk_vendor_req *) p_buf;

 sys_fd = open ("/dev/vendor_storage", O_RDWR, 0);

 if (sys_fd < 0){

 ERROR ("vendor_storage open fail\n");

 return -1;

 }

 req->tag = VENDOR_REQ_TAG;

 req->id = VENDOR_SN_ID;

 req->len = 32; /* data len */

 for (i = 0; i < 32; i++)

 req->data [i] = i;

10.2.4 PC Tool API

PC 工具有提供参考工程源码，由 C++ 开发，这里列出读写的两个 API 接口。

10.3 使用注意事项

10.3.1 VENDOR 分区单个 item 最大支持数据量

Nand 和 EMMC Vendor 分区共 64KB，Nor 为 4KB，存放在 vendor 结构体里：

所以如果只写 1 个 item：

1. Nand 和 EMMC 单个 item data size 可达 64 * 1024 - 32 - 8 -4 -4 = 65488 bytes
2. Nor 单个 item data size 可达 4 * 1024 - 32 -8 -4 -4= 4048 bytes

10.3.2 VENDOR 数据双备份支持

VENDOR 数据默认支持双备份写入，所以：

 print_hex_data ("vendor write:", (uint32*) req, req->len + 8);

 ret = ioctl (sys_fd, VENDOR_WRITE_IO, req);

 if (ret){

 ERROR ("vendor write error\n");

 return -1;

 }

 return 0;

}

int RK_ReadProvisioningData (int id, (PBYTE) pbuf, int size)

 function: read vendor storage by id

 input: id, item id; pbuf, data buffer; size, number byte to read.

 return: 0, read data okay.

 other: read fail.

int RK_WriteProvisioningData (int id, (PBYTE) pbuf, int size)

 function: write vendor storage by id

 input: id, item id; pbuf: data buffer; size: number bytes to write.

 return: 0: write success

 other : write fail

struct vendor_info {

 struct vendor_hdr *hdr; //32byte

 struct vendor_item *item; //8byte * item

 u8 *data; //size = sum (item 1, item 2, ... item n)

 u32 *hash;

 u32 *version2;

};

af://n1985
af://n1989
af://n1990
af://n1999

如果写入第一份时掉电，则回退用旧的数据（不可避免）

如果写入第二份时掉电，则使用第一份

11. 附录参考

[1] UBI FAQ: http://www.linux-mtd.infradead.org/faq/ubi.html

[2] UBIFS FAQ: http://www.linux-mtd.infradead.org/faq/ubifs.html#L_lebsz_mismatch

[3] MTD FAQ: http://www.linux-mtd.infradead.org/faq/general.html

af://n2007
http://www.linux-mtd.infradead.org/faq/ubi.html
http://www.linux-mtd.infradead.org/faq/ubifs.html#L_lebsz_mismatch
http://www.linux-mtd.infradead.org/faq/general.html

	Rockchip Application Notes Storage
	命名规则
	Flash 简介
	Flash 存储类型
	Flash 选型
	Flash 简单对比
	Flash 常见封装
	Flash 价格
	Nand 基本原理
	Nor 基础原理
	Nand 存储 ECC 依赖
	Nand 原厂坏块
	Nand 寿命及 ECC 报错
	Nand 存储 FTL 算法关键技术说明
	Nand 存储方案变迁（包括 PP Nand 和 SPI Nand）
	Flash Host 端控制器
	SFC 控制器
	FSPI 控制器
	NandC 控制器
	通用 SPI 接口

	SPI Flash 输出延时统计

	颗粒验证
	SLC Nand/SPI Nand/SPI Nor 验证内容简述
	RK Flash 送样要求简述
	验证相关须知
	验证流程
	验证邮寄地址
	客户补丁推送

	设备启动流程
	RK SOC BOOTROM Boot 支持状态
	RK SOC 存储接口规格
	BOOTROM 流程
	Pre Loader 流程
	Miniloader
	u-boot spl
	loader

	分区及数据存储
	数据存储
	地址转换简介
	分区及数据逻辑地址存储

	分区表分区
	MTD Partition
	GPT
	RK partition
	ENV 分区

	parameter 分区表修改工具
	分区写保护设置
	块设备分区写保护设置
	MTD设备分区写保护设置

	固件烧录
	USB 升级
	流程框图
	WIN 开发工具 RKDevTool
	WIN 开发工具 SocToolKit
	LINUX 开发工具 upgrade_tool
	LINUX 开发工具 SocToolKit
	量产工具

	SD卡升级
	UART 升级
	EMMC 镜像烧录
	SLC Nand 镜像烧录
	SPI Nand 镜像烧录
	SPI Nor 镜像烧录

	存储软件驱动配置
	u-boot
	kernel
	MLC Nand、TLC Nand rknand 方案
	SLC Nand、SPI Nand 及 SPI Nor rkflash 方案
	SLC Nand、SPI Nand 及 SPI Nor MTD 开源方案

	各阶段存储 iomux/clk 配置情况及扫描次序
	双存储方案扩展

	开源方案 OTA
	文件系统支持
	UBIFS 文件系统
	JFFS2 文件系统支持

	Vendor Storage 使用说明
	Vendor Storage ID
	Vendor Storage API
	Uboot API
	kernel API
	User API
	PC Tool API

	使用注意事项
	VENDOR 分区单个 item 最大支持数据量
	VENDOR 数据双备份支持

	附录参考

