
RK808 开发指南

文件标识：RK-KF-YF-66

发布版本：V1.0.1

日期：2022-05-30

文件密级：□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按“现状”提供，瑞芯微电子股份有限公司（“本公司”，下同）不对本文档的任何陈述、信息和内

容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本

文档仅作为使用指导的参考。

由于产品版本升级或其他原因，本文档将可能在未经任何通知的情况下，不定期进行更新或修改。

商标声明

“Rockchip”、“瑞芯微”、“瑞芯”均为本公司的注册商标，归本公司所有。

本文档可能提及的其他所有注册商标或商标，由其各自拥有者所有。

版权所有 © 2022 瑞芯微电子股份有限公司

超越合理使用范畴，非经本公司书面许可，任何单位和个人不得擅自摘抄、复制本文档内容的部分或全

部，并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址： 福建省福州市铜盘路软件园A区18号

网址： www.rock-chips.com

客户服务电话： +86-4007-700-590

客户服务传真： +86-591-83951833

客户服务邮箱： fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

芯片名称 内核版本

RK808 3.10、 4.4、4.19

版本号 作者 修改日期 修改说明

V1.0.0 张晴 2019-11-25 初始版本

V1.0.1 黄莹 2022-05-30 修改格式

前言

概述

本文档主要介绍 RK808 的各个子模块，介绍相关概念、功能、dts 配置和一些常见问题的分析定位。

产品版本

读者对象

本文档（本指南）主要适用于以下工程师：

技术支持工程师

软件开发工程师

修订记录

目录

RK808 开发指南
1. 基础

1.1 概述

1.2 功能

1.3 芯片引脚功能

1.4 重要概念

1.5 上电条件和时序

2. 配置

2.1 驱动和 menuconfig
2.1.1 3.10 内核配置
2.1.2 4.4 内核配置
2.1.3 4.19 内核配置

2.2 DTS 配置

2.2.1 3.10 内核 DTS 配置
2.2.2 4.4 内核 DTS 配置
2.2.3 4.19 内核 DTS 配置

2.3 函数接口

3. Debug
3.1 3.10内核

3.2 4.4内核

3.3 4.19内核

1. 基础

1.1 概述

RK808 是一款高性能 PMIC，RK808 集成 4 个大电流 DCDC、8 个 LDO、2个开关SWITCH、1 个 RTC、
可调上电时序等功能。

系统中各路电源总体分为两种：DCDC 和 LDO。两种电源的总体特性如下（详细资料请自行搜索）：

1. DCDC：输入输出压差大时，效率高，但是存在纹波比较大的问题，成本高，所以大压差，大电流

负载时使用。一般有两种工作模式。PWM 模式：纹波瞬态响应好，效率低；PFM 模式：效率高，

但是负载能力差。

2. LDO：输入输出压差大时，效率低，成本低，为了提高 LDO 的转换效率，系统上会进行相关优化

如：LDO 输出电压为 1.1V，为了提高效率，其输入电压可以从 VCCIO_3.3V 的 DCDC 给出。所以

电路上如果允许尽量将 LDO 接到 DCDC 输出回路，但是要注意上电时序。

1.2 功能

从使用者的角度看，RK808 的功能概况起来可以分为 4 个部分：

1. regulator 功能：控制各路 DCDC、LDO 电源状态；

2. rtc 功能：提供时钟计时、定时等功能；

3. clk 功能：有两个32.768KHZ时钟输出，一个不可以控常开，一个是软件可控。

1.3 芯片引脚功能

af://n58
af://n59
af://n67
af://n76

下面描述中，SLEEP 和 INT 引脚需要重点关注：

1.4 重要概念

I2C 地址

7 位从机地址：0x1b

PMIC 有 3 种工作模式

1. PMIC normal 模式

系统正常运行时 PMIC 处于 normal 模式，此时 pmic_sleep 为低电平。

2. PMIC sleep 模式

系统休眠时需要待机功耗尽量低，PMIC 会切到 sleep 模式减低自身功耗，这时候一般会降低某些

路的输出电压，或者直接关闭输出，这可以根据实际产品需求进行配置。系统待机时拉高
pmic_sleep 即可让 PMIC 进入 sleep 状态；当 SoC 唤醒时 pmic_sleep 恢复为低电平，PMIC 退出休

眠模式。

3. PMIC shutdown 模式

当系统进入关机流程的时候，PMIC 需要完成整个系统的电源下电操作。AP 通过 I2C 指令把
pmic_sleep 配置成 shutdown 模式，然后拉高 pmic_sleep 即可让 PMIC 进入 shutdown 状态。

pmic_sleep 引脚

常态为低电平，PMIC 处于 normal 模式。当引脚拉高的时候会切换到 sleep 或者 shutdown 的模式。

af://n83

pmic_int 引脚

常态为高电平，当有中断产生的时候变为低电平。如果中断没有被处理，则会一直维持低电平。

pmic_pwron 引脚

pwrkey 的功能需要硬件上将 power 按键接到这个引脚，驱动通过这个引脚来判断按下/释放。

各路 DCDC 的工作模式

DCDC 有 PWM（也叫 force PWM）、PFM 模式，但是 PMIC 有一种模式会动态切换 PWM、

PFM，这就是我们通常所说的 AUTO 模式。PMIC 支持 PWM、AUTO PWM/PFM 两种模式，

AUTO 模式效率高但是纹波瞬态响应会差。出于系统稳定性考虑，运行时都是设置为 PWM 模式，

系统进入休眠时会选择切换到 AUTO PWM/PFM。

DCDC3 电压调节

DCDC3 这路电源比较特殊，不能通过寄存器修改电压，只能通过外部电路的分压电阻进行调节，

所以如果需要修改电压请修改外围硬件，在 Rockchip 的方案上一般作为 VCC_DDR 使用。

DCDC 和 LDO 的运行时电压调节范围

电压范围(V) 步进值(mV) 具体档位值(V)

0.7125 ~ 1.45 12.5 0.7125、0.725、0.737.5、 ……、1.45

1.8 ~ 3.3 100 1.8、1.9、2.0、2.2....、3.3

1. DCDC 电压范围连续：

电压范围(V) 步进值(mV) 具体档位值(V)

0.8 ~ 3.4 100 0.8、0.9、1.0、1.1、1.2、 …… 3.4

2. LDO 电压连续：

1.5 上电条件和时序

1. 上电条件

只要满足下面任意一个条件即可以实现 PMIC 上电：

EN 信号从低电平变高电平触发

EN 信号保持高电平，且 RTC 闹钟中断触发

EN 信号保持高电平，按 PWRON 键触发

2. 上电时序

每款 SOC 平台对各路电源上电时序要求可能不一样，目前上电时序有如下情况，具体请参考最新

的 datasheet：

af://n146

2. 配置

2.1 驱动和 menuconfig

2.1.1 3.10 内核配置

RK808 驱动文件：

RK808 dts文件可参考：

drivers/mfd/rk808.c

drivers/mfd/rk808-irq.c

drivers/rtc/rtc-rk808.c

arch/arm/boot/dts/rk808.dtsi

arch/arm/boot/dts/rk3288-evb-android-rk808-edp.dts

af://n163
af://n164
af://n165

menuconfig 里对应的宏配置：

2.1.2 4.4 内核配置

RK808 驱动文件：

RK808 dts文件可参考：

menuconfig 里对应的宏配置：

2.1.3 4.19 内核配置

RK808 驱动文件：

menuconfig 里对应的宏配置：

2.2 DTS 配置

2.2.1 3.10 内核 DTS 配置

DTS 的配置包括：I2C 挂载、主体、regulator、rtc、poweroff 等部分。

CONFIG_MFD_RK808

CONFIG_RTC_RK808

drivers/mfd/rk808.c

drivers/rtc/rtc-rk808.c

drivers/regulator/rk808-regulator.c

drivers/clk/clk-rk808.c

arch/arm64/boot/dts/rockchip/rk3399-evb-rev3.dtsi

CONFIG_MFD_RK808

CONFIG_RTC_RK808

CONFIG_REGULATOR_RK808

CONFIG_COMMON_CLK_RK808

drivers/mfd/rk808.c

drivers/rtc/rtc-rk808.c

drivers/regulator/rk808-regulator.c // 跟4.4内核不同

drivers/clk/clk-rk808.c

CONFIG_MFD_RK808

CONFIG_RTC_RK808

CONFIG_REGULATOR_RK808

CONFIG_COMMON_CLK_RK808

af://n172
af://n179
af://n184
af://n185

1. I2C 挂载

整个完整的 rk808 节点挂在对应的 i2c 节点下面，并且配置 status = "okay";

2. 主体部分

不可修改部分

可修改部分

gpios：指定 pmic_int（第一个）和 pmic_sleep（第二个）引脚；

3. regulator 部分

regulator-name : 电源名字，建议和硬件图上保持一致，使用 regulator_get 接口时需要匹配这个

名字；

regulator-min-microvolt：运行时可调节的最小电压；

regulator-max-microvolt：运行时可调节的最大电压；

&i2c1 {

 rk808: rk808@1b {

 reg = <0x1b>;

 status = "okay";

 };

};

/include/ "rk808.dtsi"

&rk808 {

 gpios = <&gpio0 GPIO_A4 GPIO_ACTIVE_HIGH>,

 <&gpio0 GPIO_B3 GPIO_ACTIVE_LOW>;

 rk808,system-power-controller;

 rtc {

 status = "disabled";

 };

 regulators {

 rk808_dcdc1_reg: regulator@0 {

 regulator-always-on;

 regulator-boot-on;

 regulator-min-microvolt = <750000>;

 regulator-max-microvolt = <1400000>;

 regulator-init-microvolt = <1300000>;

 regulator-name = "vdd_arm";

 regulator-state-mem {

 regulator-off-in-suspend;

 };

 };

 rk808_dcdc2_reg: regulator@1 {

 };

 rk808_dcdc3_reg: regulator@2 {

 };

 };

};

rk808,system-power-controller：声明RK808具备管理系统下电的功能；

regulator-initial-mode：运行时 DCDC 工作模式，一般配置为 1。 1：force pwm，2：auto
pwm/pfm；

regulator-state-mode： 休眠时 DCDC 工作模式，一般配置为 2。1：force pwm， 2：auto
pwm/pfm；

regulator-initial-state：suspend 时的模式，必须配置成 3；
regulator-boot-on：存在这个属性时，在注册 regulator 的时候就会使能这路电源；

regulator-always-on：存在这个属性时，运行时不允许关闭这路电源且会在注册的时候使能这

路电源；

regulator-state-enabled：休眠时保持上电状态，想要关闭该路电源，则改成”regulator-state-
disabled”；
regulator-state-uv：休眠不断电情况下的待机电压。

说明：

4. rtc 部分

如果不想使能 RTC 的功能（如 box 产品上），则需要像上面那样增加节点，显式指明为 status =
"disabled"。如果需要使能的的话则可以把整个 RTC 节点去掉或者设置状态为 status = "okay"即可。

5. poweroff 部分

因为 RK808 驱动自动拦截关机命令，执行写I2C关闭PMIC输出。

rk808_shutdown是注册syscore shutdown,用于一些准备工作，如打印关机电压，关闭RTC中断等。

如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等，则在注册这个

regulator 的时候系统框架默认会把这个电压设置下去并使能这路电源，不需要使用者干预。

如果 regulator-boot-on 或者 regulator-always-on 存在，则系统框架在注册这路regulator 的

时候默认会进行 enable，此时的这路 regulator 的电压有 2 种情况：如果 regulator-min-

microvolt 和 regulator-max-microvolt 的电压相等，则系统框架会把这路电压设置为当前这个电压

值；如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压不相等，则此时的电压

是 PMIC 的本身的硬件默认上电电压。

static void rk808_shutdown(void)

{

 int ret,i,val;

 u16 reg = 0;

 struct rk808 *rk808 = g_rk808;

 printk("%s\n",__func__);

 /***************get dc1\dc2 voltage *********************/

 for(i=0;i<2;i++){

 reg = rk808_reg_read(rk808,rk808_BUCK_SET_VOL_REG(i));

 reg &= BUCK_VOL_MASK;

 val = 712500 + reg * 12500;

 printk("%s,line=%d dc[%d]= %d\n", __func__,__LINE__,(i+1),val);

 }

 /***/

 ret = rk808_set_bits(rk808, RK808_INT_STS_MSK_REG1,(0x3<<5),(0x3<<5));

//close rtc int when power off

 ret = rk808_clear_bits(rk808, RK808_RTC_INT_REG,(0x3<<2)); //close rtc int

when power off

 mutex_lock(&rk808->io_lock);

 mdelay(100);

}

rk808_device_shutdown是真正写I2C关闭PMIC输出。

2.2.2 4.4 内核 DTS 配置

DTS 的配置包括：i2c 挂载、主体、rtc、clk、regulator 等部分。

static struct syscore_ops rk808_syscore_ops = {

 .shutdown = rk808_shutdown,

};

static void rk808_device_shutdown(void)

{

 int ret,i;

 u8 reg = 0;

 struct rk808 *rk808 = g_rk808;

 for(i=0;i < 10;i++){

 printk("%s\n",__func__);

 ret = rk808_i2c_read(rk808,RK808_DEVCTRL_REG,1,®);

 if(ret < 0)

 continue;

 ret = rk808_i2c_write(rk808, RK808_DEVCTRL_REG, 1,(reg |(0x1 <<3)));

 if (ret < 0) {

 printk("rk808 power off error!\n");

 continue;

 }

 }

 while(1)wfi();

}

EXPORT_SYMBOL_GPL(rk808_device_shutdown);

&i2c1 {

 status = "okay";

 rk808: pmic@1b {

 compatible = "rockchip,rk808";

 reg = <0x1b>;

 interrupt-parent = <&gpio1>;

 interrupts = <21 IRQ_TYPE_LEVEL_LOW>;

 pinctrl-names = "default";

 pinctrl-0 = <&pmic_int_l &pmic_dvs2>;

 rockchip,system-power-controller;

 wakeup-source;

 #clock-cells = <1>;

 clock-output-names = "rk808-clkout1", "rk808-clkout2";

 vcc1-supply = <&vcc3v3_sys>;

 vcc2-supply = <&vcc3v3_sys>;

 vcc3-supply = <&vcc3v3_sys>;

 vcc4-supply = <&vcc3v3_sys>;

 vcc6-supply = <&vcc3v3_sys>;

 vcc7-supply = <&vcc3v3_sys>;

 vcc8-supply = <&vcc3v3_sys>;

 vcc9-supply = <&vcc3v3_sys>;

 vcc10-supply = <&vcc3v3_sys>;

 vcc11-supply = <&vcc3v3_sys>;

af://n240

1. i2c 挂载

整个完整的 rk808 节点挂在对应的 i2c 节点下面，并且配置 status = "okay";

2. 主体部分

不可修改：

可修改（按照 pinctrl 规则）

interrupt-parent：pmic_int 隶属于哪个 gpio；
interrupts：pmic_int 在 interrupt-parent 的 gpio 上的引脚索引编号和极性；

pinctrl-names：不修改，固定为 "default"；
pinctrl-0：引用 pinctrl 里定义好的 pmic_int 引脚；

3. rtc

 vcc12-supply = <&vcc3v3_sys>;

 vddio-supply = <&vcc1v8_pmu>;

 regulators {

 vdd_log: DCDC_REG1 {

 regulator-always-on;

 regulator-boot-on;

 regulator-min-microvolt = <750000>;

 regulator-max-microvolt = <1350000>;

 regulator-ramp-delay = <6001>;

 regulator-name = "vdd_log";

 regulator-state-mem {

 regulator-on-in-suspend;

 regulator-suspend-microvolt = <900000>;

 };

 };

 vdd_cpu_l: DCDC_REG2 {

 regulator-always-on;

 regulator-boot-on;

 regulator-min-microvolt = <750000>;

 regulator-max-microvolt = <1350000>;

 regulator-ramp-delay = <6001>;

 regulator-name = "vdd_cpu_l";

 regulator-state-mem {

 regulator-off-in-suspend;

 };

 };

 vcc_ddr: DCDC_REG3 {

 };

 };

 };

};

compatible = "rockchip,rk808";

reg = <0x1b>;

rockchip,system-power-controller;

wakeup-source;

#clock-cells = <1>;

如果 menuconfig 选中了这个模块，但是实际又不需要使能这几个驱动，那么可以在 dts 里增加 rtc节点，

并且显式指明状态为 status = "disabled"，这样就不会使能驱动，但是开机信息会有错误 log 报出，可以

忽略；如果要使能驱动，则可以去掉相应的节点，或者设置状态为 status = "okay"。

4. regulator

regulator-compatible：驱动注册时需要匹配的名字，不能改动，否则会加载失败；

regulator-name：电源的名字，建议和硬件图上保持一致，使用 regulator_get 接口时需要匹配这

个名字；

regulator-init-microvolt：u-boot阶段的初始化电压，kernel阶段无效；

regulator-min-microvolt：运行时可以调节的最小电压；

regulator-max-microvolt：运行时可以调节的最大电压；

regulator-initial-mode：运行时 DCDC 的工作模式，一般配置为 1。 1：force pwm，2：auto
pwm/pfm；

regulator-mode：休眠时 DCDC 的工作模式，一般配置为 2。1：force pwm， 2：auto
pwm/pfm；

regulator-initial-state：suspend 时的模式，必须配置成 3；
regulator-boot-on：存在这个属性时，在注册 regulator 的时候就会使能这路电源；

regulator-always-on：存在这个属性时，表示运行时不允许关闭这路电源且会在注册的时候使

能这路电源；

regulator-ramp-delay：DCDC 的电压上升时间，固定配置为 12500；
regulator-on-in-suspend：休眠时保持上电状态，想要关闭该路电源，则改成”regulator-off-in-
suspend”；
regulator-suspend-microvolt：休眠不断电情况下的待机电压。

5. poweroff 部分

4.4上使用pm_power_off_prepare，实现PMIC关机前的准备工作，如关闭RTC中断，配置一些特殊寄存器

等。

注册syscore shutdown, 真正用于PMIC关机。

6. clk 部分

如果某个节个需要引用 RK808 的 clk 进行使用，引用格式如下：

clocks = <&rk808 1>;

 第一个参数： &rk808 固定，不可改动；

 第二个参数： 引用 rk808 的哪个 clk，只能是 0 或者 1，其中 0：rk808-clkout1， 1：rk808-clkout2；

2.2.3 4.19 内核 DTS 配置

请参考4.4内核DTS配置。差异点：4.19内核的DTS配置不再需要gpio子节点，但其他模块依然使用

gpios = <&rk808 0 GPIO_ACTIVE_LOW>; 的方式引用和使用rk808的pin脚。

2.3 函数接口

如下几个接口基本可以满足日常使用，包括 regulator 开、关、电压设置、电压获取等：

1. 获取 regulator：

struct regulator *regulator_get(struct device *dev, const char *id)

dev 默认填写 NULL 即可，id 对应 dts 里的 regulator-name 属性。

af://n301
af://n303

2. 释放 regulator
void regulator_put(struct regulator *regulator)

3. 打开 regulator
int regulator_enable(struct regulator *regulator)

4. 关闭 regulator

int regulator_disable(struct regulator *regulator)

5. 获取 regulator 电压

 int regulator_get_voltage(struct regulator *regulator)

6. 设置 regulator 电压

 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)

 传入的参数时保证 min_uV = max_uV，由调用者保证。

7. 范例

说明：4.4或者4.19内核还提供了 devm_开头的regulator接口帮开发者管理要申请的资源。

3. Debug

3.1 3.10内核

因为 PMIC 涉及的驱动在使用逻辑上都不复杂，重点都体现在最后的寄存器设置上。所以目前常用的
debug 方式就是直接查看 rk808 的寄存器，通过如下节点：

/sys/rk808/rk808_test

读寄存器：

echo r [addr] > /sys/rk808/rk808_test

写寄存器：

echo w [addr] [value] > /sys/rk808/rk808_test

一般写操作执行完之后最好再读一遍确认是否写成功。

3.2 4.4内核

命令格式同 3.10 内核一样，只是节点路径不同，4.4 内核上的 debug 节点路径是：

/sys/rk8xx/rk8xx_dbg

struct regulator *rdev_logic;

rdev_logic = regulator_get(NULL, "vdd_logic"); // 获取vdd_logic

regulator_enable(rdev_logic); // 使能vdd_logic

regulator_set_voltage(rdev_logic, 1100000, 1100000); // 设置电压1.1v

regulator_disable(rdev_logic); // 关闭vdd_logic

regulator_put(rdev_logic); // 释放vdd_logic

af://n330
af://n331
af://n339

3.3 4.19内核

请参考4.4内核命令。

af://n342

	RK808 开发指南
	基础
	概述
	功能
	芯片引脚功能
	重要概念
	上电条件和时序

	配置
	驱动和 menuconfig
	3.10 内核配置
	4.4 内核配置
	4.19 内核配置

	DTS 配置
	3.10 内核 DTS 配置
	4.4 内核 DTS 配置
	4.19 内核 DTS 配置

	函数接口

	Debug
	3.10内核
	4.4内核
	4.19内核

