Trust Developer Guide

ID: RK-KF-YF-007

Release Version: V1.1.1

Release Date: 2021-04-26

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website:  www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com



af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface
Overview

Trust is one of firmware in Rockchip SDK, since it is related to security and confidentiality, the source code is
only open to some internal engineers (the basic functions of RK322x/RK3328/RK3368/RK3399/PX30, etc
platform have been open source [0]). This document only provides an brief description of Trust (take 64-bit
platform as an example), intended to give readers an idea of its role and functions in the overall system
architecture. At the same time, it guides readers how to collect and feedback issues when have problems in

practice.

Product Version

Chipset model Kernel version

RK3036/RK3126C/RK3288/RK322X/RK3368/RK3328/RK3399/PX30/RK3308 3.10. 4.4, 4.19

Intended Audience
This document (this guide) is mainly intended for:
Technical support engineers

Software development engineers



Revision History

Version
V1.0.0
V1.1.0

VI1.1.1

Author Date
Jianhong Chen
Jianhong Chen

Karen Huang

Change Description
2017-12-30
2019-11-11

2021-04-26



Contents

Trust Developer Guide
1. ARM TrustZone

1.1
1.2

System architecture

CPU privilege level

2. Trust on Rockchip platform

2.1
2.2
23
2.4

2.5

2.6
2.7

Implementation Mechanism
Boot-up process
Firmware obtain
Enable DTS
2.4.1 Kernel 3.10
2.4.1.1 32 bit platform
2.4.1.2 64 bit platform
2.4.2 Kernel 4.4+
2.4.2.1 32 bit platform
2.4.2.2 64 bit platform
2.4.3 Kernel Document
Running memory and life cycle
2.5.1 Running memory
2.5.2 Life cycle
Security
Functions
2.7.1 PSCI (Power State Coordination Interface)
2.7.2 Secure Monitor
2.7.3 Secure information configuration

2.7.4 Security data protection

3. Trust troubleshooting on the Rockchip platform

3.1
32
33
3.4

Boot log example

Print information identification
Firmware version identification
PANIC information identification
3.4.1 ARM Trusted Firmware panic
3.42 OP-TEE OS panic

4. Appendix Reference



1. ARM TrustZone

ARM TrustZone [1] technology is a basic feature of all Cortex-A class processors and is introduced through the
ARM architecture security extension. These extensions provide a consistent programmer model across vendors,

platforms, and applications while providing a security environment with real hardware support.

ARM TrustZone technology is a system-wide security approach, for a wide range of applications on high-
performance computing platforms, including security payments, digital rights management (DRM), enterprise
services, and web-based services. TrustZone technology is tightly integrated with Cortex-A processor and extend
through AMBA AXI bus and specific TrustZone system IP blocks, so ARM TrustZone technology is a security
mechanism provided at hardware level. This system approach means protecting peripherals such as security

memory, encryption blocks, keyboards, and screens to protect them from software attacks.

ARM Trusted Firmware and OP-TEE OS [2] are currently used in ARM open source projects of ARM
TrustZone technology, they are the underlying firmware open source projects for ARM chips, which can be used

together or use alone.

1.1 System architecture

From system architecture perspective, the following is a 64-bit platform system architecture diagram with ARM
TrustZone technology enabled. The system is divided into two worlds: the non- secure world on the left and the
secure world on the right. The secure world can access all the resources of the two worlds. The non- secure
world can only access the resources of the non- secure world. If the non-secure world accesses the resources of

the secure world, an exception such as system hardware bus error will occur, and resources cannot be obtained.

The interaction between these two worlds needs to use ARM Trusted Firmware as a bridge. When CPU is in the
non- secure world, if it want to enter the secure world, firstly, you need to enter ARM Trusted Firmware (SMC
instructions of ARM). Then, the Secure Monitor code in ARM Trusted Firmware will switch the CPU from non-
secure identity to secure identity. And then enter the secure world as a secure identity. vice versa. This is a

complete transition from secure identity to non-secure identity at hardware level.

Rockchip Trust can be understood as a collection of features of ARM Trusted Firmware + OP-TEE OS, which
implements functionalities we need in the secure world and functionalities of Secure Monitor (the core code for

two world transition).


af://n61
af://n65

Trusted
Apps

© Trusted

Hypervisor OS

ARM Trusted Firmware

Rich OS application environment Trusted execution environment

P @ Trusted Trusted app Trusted app
application telematics & FOTA &
DRM

authentication  integrity Mgmt

DE066

GlobalPlatform TEE client API GlobalPlatform TEE internal APIs
Trusted OS components

TEE Trusted Trusted
comm. core drivers
agent framework

Rich OS

Arm trusted firmware

HW Keys, Secure storage, Trusted Ul (Keypad screen),
Crypto accelerators, Secure element, efc.

Hardware platform HW secure resources

1.2 CPU privilege level


af://n71

From the CPU perspective, the following is a standard CPU privilege mode level architecture diagram with
ARM TrustZone enabled. If it is a 64-bit CPU, its privilege level is divided into ELO, EL1, EL2, EL3, which is
divided into secure ELO, secure EL1 or non-secure ELO, non-secure EL1 according to the world in which the
CPU is located. If it is a 32-bit CPU, its privilege level is divided into Mon, Hyp, SVC, ABT, IRQ, FIQ, UND,
SYS, USER mode, of which SVC, ABT, IRQ, FIQ, UND, SYS, USER are also like 64 bits, there are security

and non-security modes difference.

Rockchip Trust can be understood as features collection of EL3 + Secure EL1.

Normal world Secure world

\
User [Application] [Application} [Applicatinn] [Application | [ Secure firmware J ELO
e

SVC, ABT, IRQ, [

FIQ, UND, SYS

) No Hypervisor in
Hyp Hypervisor I Secure world EL2

Normal

WWela[«HON
EL1/EL2

TOS
specific
protocol

ARM trusted firmware o and
EL3 ; mechanism

Porting interface Interface between

between trusted trusted firmware and

firmware and SoC/ trusted OS dispatcher
platform

2. Trust on Rockchip platform

2.1 Implementation Mechanism

Currently, the combination of ARM Trusted Firmware + OP-TEE OS is used on 64-bit SoC platform of
Rockcehip platform; the OP-TEE OS is used on 32-bit SoC platform.


af://n76
af://n77

2.2 Boot-up process

The ARM Trusted Firmware architecture divides the whole system into four secure levels: ELO, EL1, EL2, and
EL3. The process phase of the entire secure boot is defined as: BL1, BL2, BL31, BL32, BL33, and the functions
of BL1, BL2, and BL31 are provided in the source code of ARM Trusted Firmware itself. The Rockchip
platform only uses the functions of BL31. BL1 and BL2 have their own implementations method. So on the
Rockchip platform we can also generally "default" ARM Trusted Firmware refers to BL31, while BL32 uses
OP-TEE OS.

If the above phase definition is mapped to Rockchip platform firmware, the corresponding relationship are:
Maskrom (BL1), Loader (BL2), Trust (BL31: ARM Trusted Firmware + BL32: OP-TEE OS), U-Boot (BL33).

Android system boot-up sequence:

Maskrom -> Loader -> Trust -> U-Boot -> kernel -> Android

Normal World g Secure World

To Hypervisor / Linux 2nd level
Kernel ; BL32 BL2 Boot loader
@ Secure EL1 Trusted Boot| [oads all
: payload <j Firmware | 3rd level
\ B_||:33 . ; images
on Truste : Trusted
Firmware to load the | Trusted OS kernel boot board
Non Secure OS.

(e.g : U-Boot, EDK?2) < | | ﬁ
{L BLl 1st level

Boot Loader
sl BL31 FEe AP Boot | [oads 2nd
EL3 Runtime Firmware 2Ly level image
Trusted
World switch Dispatcher boot board <::| RESET
’ Key X 3 Glossary h
- EDK2 — EFI Development Kit 2
EL3 Execution

Secure EL1 Execution PSCI — Power State Control Interface

- BL — Boot Loader
‘ Normal EL2/EL1 Execution ; ' SMC — Secure Monitor Call .

- mEm -

EL — Exception Level

2.3 Firmware obtain

Currently only binary files are provided, and source code is not provided. Binary files of Trust are submitted in

the U-Boot project.

./tools/rk _tools/bin/rk30/
./tools/rk tools/bin/rk31/
./tools/rk_tools/bin/rk32/
./tools/rk tools/bin/rk33/


af://n79
af://n85

When compiling uboot.img of a certain platform, the "trust.img" of the corresponding platform will also be
packaged and generated in the root directory of U-Boot. When binaries are packaged into "trust.img", it is
indexed through the ini file which is located in the U-Boot project:

tools/rk_tools/RKTRUST/

Note: Developers can download the individual rkbin repository which contains the binaries of all platforms.

2.4 Enable DTS

2.4.1 Kernel 3.10

2.4.1.1 32 bit platform

(1) Add psci node

psci {
compatible = "arm,psci";
method = "smc";
cpu_suspend = <0x84000001>;
cpu off = <0x84000002>;
cpu_on = <0x84000003>;
affinity info = <0x84000004>;

}i

(2) Add in the chosen node or in the parameter: psci=enable

chosen {
bootargs = "psci=enable vmalloc=496M cma=4M rockchip jtag";

}i

2.4.1.2 64 bit platform

(1) Add psci node:

psci {
compatible = "arm,psci-0.2";
method = "smc";

}i

(2) Inside the cpu node, add: enable-method = "psci";

cpus {
faddress-cells = <2>;

#size-cells = <0>;

cpul0 {
device type = "cpu";

compatible = "arm,cortex-a53", "arm,armv8";


af://n91
af://n92
af://n93
af://n98

reg = <0x0 0x0>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP>;
}i
cpu@l {
device type = "cpu";
compatible = "arm,cortex-ab53", "arm,armv8";
reg = <0x0 0x1>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP>;
bi
cpu@2 {
device type = "cpu";
compatible = "arm,cortex-ab53", "arm,armv8";
reg = <0x0 0x2>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP>;
bi
cpu@3 {
device type = "cpu";
compatible = "arm,cortex-ab3", "arm,armv8";
reg = <0x0 0x3>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP>;

2.4.2 Kernel 4.4+

2.4.2.1 32 bit platform

Just need to add psci node:

psci {
compatible = "arm,psci-1.0";
method = "smc";
}i
2.4.2.2 64 bit platform

(1) Add psci node:

psci {
compatible = "arm,psci-1.0";
method = "smc";

}i

(2) Inside the cpu node, add: enable-method = "psci";

cpus {


af://n103
af://n104
af://n107

#address-cells = <2>;

#size-cells = <0>;

cpu@0 {
device type = "cpu";
compatible = "arm,cortex-ab3", "arm,armv8";
reg = <0x0 0x0>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP>;
}i
cpu@l {
device type = "cpu";
compatible = "arm,cortex-a53", "arm,armv8";
reg = <0x0 0x1>;
enable-method = "psci";
cpu-idle-states = <&CPU SLEEP>;
}i
cpul@2 {
device type = "cpu";
compatible = "arm,cortex-a53", "arm,armv8";
reg = <0x0 0x2>;
enable-method = "psci";
cpu-idle-states = <&CPU SLEEP>;
}i
cpu@3 {
device type = "cpu";
compatible = "arm,cortex-a53", "arm,armv8";
reg = <0x0 0x3>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP>;

2.4.3 Kernel Document

The kernel document provides instructions on psci:

./Documentation/devicetree/bindings/arm/psci.txt

2.5 Running memory and life cycle

2.5.1 Running memory

The ARM Trusted Firmware runs in the space where DRAM start offset is OM~2M, and 0x10000 (64KB) is
used as the program entry address.

The OP-TEE OS runs between 132M and 148M of DRAM start offset (the end address depends on the platform
requirements) with 0x08400000 (132M) as the entry address.


af://n112
af://n115
af://n116

2.5.2 Life cycle

Trust has been resident in memory since it was initialized to complete its mission.

2.6 Security

In the first chapter we introduced that after ARM TrustZone is enabled, the system is divided into a secure world
and a non-secure world. So on Rockchip platform, how do you distinguish between which firmware the CPU
running is in the secure world or the non-secure world? The method is as follows: Loader and Trust run in the

secure world; U-Boot, kernel, and Android run in the non-secure world (except for security drivers and APPs).

2.7 Functions

2.7.1 PSCI (Power State Coordination Interface)

Usually, the chips of various SoC vendors have significant differences in IC design, especially the power state
management part of CPU. Each SoC vendor has its own set of software processes to manage CPU power state,
so this part of code in kernel is fragmented and it is difficult to achieve a high degree of uniformity. Obviously,
kernel is very reluctant to maintain the fragmentation status in this respect. Moreover, developers usually are not
very concerned about this part of implementation, because this part of the software implementation is closely

related to CPU architecture and IC design, it is difficult to fully understand or implement.

For the above reasons, kernel is more inclined to put the power management of CPU into the firmware of each
SoC vendor. Kernel only needs to focus on CPU control strategy to make the kernel code more highly unified.
Therefore, the kernel framework added PSCI (Power State Coordination Interface) [3] interface to achieve this

goal.

PSCl is a set of CPU core power management related interfaces, essentially through ARM SMC instructions into
Trust to complete the above related operations: cpu on, cpu off, system suspend, system reset, system off, and so

on. mainly includes:

PSCI_VERSION
PSCI_FEATURES
CPU_ON

CPU_OFF
CPU_SUSPEND
SYSTEM_SUSPEND
AFFINITY INFO
SYSTEM OFF
SYSTEM RESET

4.4+ Kernel related code path

./arch/arm/kvm/psci.c
./arch/arm/kernel/smccc-call.s
./arch/armé64/kernel/psci.c
./arch/armé64/kernel/smccc-call.S
./drivers/firmware/psci.c

./drivers/firmware/rockchip sip.c


af://n119
af://n121
af://n123
af://n124

3.10 Kernel related code path

./arch/arm/kernel/psci.c
./arch/arm64/kernel/psci.c

./arch/arm/mach-rockchip/psci.c

2.7.2 Secure Monitor

Secure Monitor is the bridge between CPU for state transition between the secure world and the non-secure
world. The Secure Monitor code is implemented in Trust. Without this part of the code, CPU will not be able to
switch between the secure and non-secure state, and ARM TrustZone technology will lose its importance and

function.

So how to enter Secure Monitor mode? Need to be implemented by SMC instructions, the following is a clear

description in the ARM technical manual:

The Secure Monitor Call exception is implemented only as part of the Security Extensions. The Secure
Monitor Call instruction, SMC, requests a Secure Monitor function, causing the processor to enter

Monitor mode.

2.7.3 Secure information configuration

In addition to the tight integration of Cortex-A processor itself, ARM TrustZone technology needs to be
extended in the system through the AMBA AXI bus and the specific TrustZone system IP block. Therefore, a

series of related IP module security information needs to be configured, and they are completed in Trust.

2.7.4 Security data protection

Security data protection. For example: storage protection for related security information such as secure

payments, digital rights management (DRM), enterprise services, and web-based services.

3. Trust troubleshooting on the Rockchip platform

At present, the released firmware is only provided with Trust binary files, and the source code is not provided.
Currently, there are few debugging methods for Trust. it usually need to use the special jtag tools for analysis.
When have Trust issues, customers generally do not have the ability to debug and solve problems by themselves,
so please try to protect the scene when issues occur, collect enough information to feed back to the maintainer
responsible for Trust. Therefore, users should generally know which is the print information of Trust, the version

number corresponding to Trust, and which is PANIC information of Trust.
3.1 Boot log example

NOTICE: BL31l: vl.3(debug) :4c793da
NOTICE: BL31: Built : 18:13:44, Dec 25 2017
NOTICE: BL31:Rockchip release version: v1.3


af://n133
af://n138
af://n140
af://n142
af://n144

INFO: ARM GICv2 driver initialized

INFO: Using opteed sec cpu context!

INFO: boot cpu mask: 1

INFO: plat rockchip pmu init: pd status Oxe
INFO: BL31: Initializing runtime services
INFO: BL31l: Initializing BL32

INF [0x0] TEE-CORE:init primary helper:337: Initializing (1.1.0-127-g27532f4 #54
Mon Dec 18 02:01:14 UTC 2017 aarché64)

INF [0x0] TEE-CORE:init primary helper:338: Release version: 1.4

INF [0x0] TEE-CORE:init teecore:83: teecore inits done

INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x200000
INFO: SPSR = 0x3c9

3.2 Print information identification

Except from the printing information during the boot phase, they are usually during running.

ARM Trusted Firmware print format (without time stamp)

INFO: Kk hkkk kK kKK

OP-TEE OS print format (without time stamp):

INF [0x0] TEE-CORE: #***#&xxkkx

3.3 Firmware version identification

ARM Trusted Firmware version: 4c793da.
NOTICE: BL31: vl.3(debug):4c793da
OP-TEE OS version: 275324 (ignoring the front g)

INF [0x0] TEE-CORE:init primary helper:337: Initializing (1.1.0-127-g27532f4 #54
Mon Dec 18 02:01:14 UTC 2017 aarcho64)

3.4 PANIC information identification

3.4.1 ARM Trusted Firmware panic

Unhandled Exception in EL3.

x30 = 0x00000000££00£££0
x0 = 0x00000000000101cO
x1l = 0x0000000000000000
X2 = 0x0000000000000000
x3 = 0x0000000000000000

x4 = 0x0000000000cd383b


af://n146
af://n152
af://n157
af://n158

x5 = 0x0000000000080001

x6 = 0x0000000080803520
x7 = 0x00000000000342a0
x8 = 0x00000000000101c0
x9 = 0x0000000000000000
x10 = 0x0000000000000000
x1l = 0x0000000000000000
x12 = 0x0000000000000001
x13 = 0x00000000000101b8
x14 = 0x000000000001a950
x15 = 0x0000000000000000
x16 = 0x00000000000101c0
x17 = 0x0000000000000000
x18 = 0x0000000000000000
x19 = 0x0000000000000000
x20 = 0x0000000040000000
x21 = 0x0000000000000040
x22 = 0x00000000000305b0
x23 = 0x000000000001016c
x24 = 0x00000000000101c0
x25 = 0x0000000000000000
x26 = 0x0000000000000000
x27 = 0x0000000000000000
x28 = 0x0000000000035b£8
x29 = 0x0000000000000000
scr el3 = 0x00000000000101c0
sctlr el3 = 0x0000000000000000
cptr_el3 = 0x0000000000000000
tcr el3 = 0x0000000000000000
daif = 0x0000000000000238
mair el3 = 0x0000000000cd383b
spsr_el3 = 0x0000000000000000
elr el3 = 0x0000000080803520
ttbr0 el3 = 0x00000000000101c0
esr el3 = 0x0000000000000000
far el3 = 0x0000000000000000
spsr_ell = 0x00000000000101c0
elr ell = 0x0000000000000000
spsr_abt = 0x0000000000000000

3.4.2 OP-TEE OS panic

core data-abort at address 0Oxcl2lblé6c

fsr 0x00000805 ttbr0 0x6847446a ttbrl 0x6847006a cidr 0x2

cpu #0 cpsr 0x200001d1

r0 0x20068000 r4 0x68407195 r8 0x00000000 rl2 0x00000000
rl 0x00000049 r5 0x6848068b r9 0x6840a3bd sp Oxcl2lbla4
r2 0x6848068c r6 0x6848068c rl0 0x684808cc 1lr 0x684296a6
r3 0x0000001f r7 0x00000001 rll 0x68404f9d pc 0x6840041c

ERR [0x0] TEE-CORE:tee pager handle fault:125: Unexpected page fault! Trap CPU
PANIC: tee pager handle fault core/arch/arm/include/mm/tee pager.h:126


af://n160

4. Appendix Reference

[0] Open source code download address:

ARM Trusted Firmware: https:/github.com/ARM-software/arm-trusted-firmware

OP-TEE OS: https://github.com/OP-TEE/optee_os

[1] ARM TrustZone:

https://www.arm.com/products/security-on-arm/trustzone

https://developer.arm.com/technologies/trustzone

[2] op-tee official website: https:/www.op-tee.org/

[3] PSCI: <http://infocenter.arm.com/help/topic/com.arm.doc.den0022¢/DEN0022C_Power_State Coordinatio
n_Interface.pdf "Power State Coordination Interface PDD (ARM DEN 0022C)>"



af://n162
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/optee_os
https://www.arm.com/products/security-on-arm/trustzone
https://developer.arm.com/technologies/trustzone
https://www.op-tee.org/
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

	Trust Developer Guide
	ARM TrustZone
	System architecture
	CPU privilege level

	Trust on Rockchip platform
	Implementation Mechanism
	Boot-up process
	Firmware obtain
	Enable DTS
	Kernel 3.10
	32 bit platform
	64 bit platform

	Kernel 4.4+
	32 bit platform
	64 bit platform

	Kernel Document

	Running memory and life cycle
	Running memory
	Life cycle

	Security
	Functions
	PSCI（Power State Coordination Interface）
	Secure Monitor
	Secure information configuration
	Security data protection


	Trust troubleshooting on the Rockchip platform
	Boot log example
	Print information identification
	Firmware version identification
	PANIC information identification
	ARM Trusted Firmware panic
	OP-TEE OS panic


	Appendix Reference


