
Rockchip RGB 和 MCU 接口开发指南

文件标识：RK-YH-YF-483

发布版本：V1.5.0

日期： 2024-08-27

文件密级：□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按“现状”提供，瑞芯微电子股份有限公司（“本公司”，下同）不对本文档的任何陈述、信息和内

容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本

文档仅作为使用指导的参考。

由于产品版本升级或其他原因，本文档将可能在未经任何通知的情况下，不定期进行更新或修改。

商标声明

“Rockchip”、“瑞芯微”、“瑞芯”均为本公司的注册商标，归本公司所有。

本文档可能提及的其他所有注册商标或商标，由其各自拥有者所有。

版权所有 © 2024 瑞芯微电子股份有限公司

超越合理使用范畴，非经本公司书面许可，任何单位和个人不得擅自摘抄、复制本文档内容的部分或全

部，并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址： 福建省福州市铜盘路软件园A区18号

网址： www.rock-chips.com

客户服务电话： +86-4007-700-590

客户服务传真： +86-591-83951833

客户服务邮箱： fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

版本号 作者 修改日期 修改说明

V1.0.0 丁凌崧 2023-07-01 初始发布

V1.1.0 丁凌崧 2023-07-15 添加 mcu-timing 和 display-timings 的详细说明

V1.2.0 丁凌崧 2023-09-05 修改 mcu-timing 和 display-timings 的配置说明

V1.3.0 丁凌崧 2024-03-21 添加 RK3576 支持

V1.4.0 丁凌崧 2024-06-26 添加 SPI RGB Panel 说明

V1.5.0 丁凌崧 2024-08-27 添加 RK3506 支持和 mcu read 功能相关说明

前言

文本主要介绍 Rockchip平台低速显示接口的调试验证指南。

读者对象

本文档（本指南）主要适用于以下工程师：

技术支持工程师

软件开发工程师

硬件开发工程师

修订记录

目录

Rockchip RGB 和 MCU 接口开发指南
1. 基础概念

1.1 RGB 接口

1.1.1 DE Mode
1.1.2 SYNC Mode

1.2 MCU 接口

1.2.1 Write Timing
1.2.2 Read Timing
1.2.3 Bypass 和 Normal Mode

2. RK 平台支持情况

3. 硬件连接

4. 软件配置

4.1 显示通路

4.2 Panel 配置

4.2.1 SPI 初始化配置

4.3 RGB 接口

4.4 MCU 接口

4.4.1 MCU Bypass Timing 配置

4.4.2 MCU Frame Write/Read
5. 调试流程

6. 常见问题

6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现象

1. 基础概念

1.1 RGB 接口

RGB 接口也被称为 DPI（Display Pixel Interface） 接口，RGB 接口用于同步的信号有 Vsync、Hsync、
Den（Enable）和 DCLK（Dotclk）四个引脚，根据同步方式的不同可以分为 DE mode 和 SYNC mode，
Rockchip 平台 RGB 接口的输出时序可以同时兼容两者。

1.1.1 DE Mode

DB[23:0] 数据是否有效仅由 Den 信号决定，低电平时数据有效，反之无效。

1.1.2 SYNC Mode

af://n70
af://n71
af://n74
af://n76

DB[23:0] 数据由 Vsync 和 Hsync 信号来同步，按照上图时序扫描数据。

1.2 MCU 接口

MCU 接口也被称为 DBI 接口或 8080 接口，支持 TX 和 RX 端的双向通信， 有 RS（CSX）、

CSN（D/CX）、WEN（WRX）和 REN（RDX）四个同步信号，RK 平台仅支持 MCU 接口的 TX 功
能。

1.2.1 Write Timing

CSX、D/CX 和 WRX 引脚依次拉低，在 DB[23:0] 数据有效期间 WRX 信号会先拉低再拉高。

1.2.2 Read Timing

af://n79
af://n81
af://n84

CSX、D/CX 和 RDX 引脚依次拉低，在 DB[23:0] 数据有效期间 RDX 信号会先拉低再拉高。

read 前先通过一次 write 将所读取的寄存器地址传输给 Panel 端。

第一次 read 返回的数据是无效的，从第二次 read 开始才是有效的数据。

MCU read 通常用于 panel 调试期间 debug、通过区分 panel ID 实现多屏兼容功能等应用场景，以及

会在下文中介绍的 frame read 功能。

1.2.3 Bypass 和 Normal Mode

bypass 模式：当 MCU 和 panel 之间通过 write/read 操作进行指令传输时，工作于 bypass 模式。

MCU 接口根据 panel-init-sequence/panel-exit-sequence 传输 init/deinit 指令，以及进行 frame
write/read 时（详见后文《软件配置》章节中的相关说明），均属于 bypass 模式。

normal 模式：主控将图像通过 MCU 接口传输到 panel 端的 ram 中并正常显示的模式，通常在传输

完 panel-init-sequence 并确认 panel 正常初始化后就会进入到该模式。

bypass 模式下可以包含 write/read 操作，normal 模式下仅为 write 操作。

2. RK 平台支持情况

af://n94
af://n102

SOC 平台
是否

支持

RGB

是否

支持

MCU

是否支

持

MCU
Read

VOP
Version

Video Port
通路（for
VOP 2.0）

Output Mode 支持

RK1808 Y Y N
VOP
1.0

 RGB666/RGB565

RK312X/PX3SE Y N N
VOP
1.0

 RGB888/RGB666/RGB565

RK3288 Y Y N
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8

RK3308B/RK3308BS Y Y N
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8

RK3326/PX30 Y Y N
VOP
1.0

 RGB888/RGB666/RGB565

RK3506 Y Y Y
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8/RGB3x6/RGB2x8

RK3562 Y Y N
VOP
2.0

VP0 RGB888/RGB666/RGB565/RGB3x8

RK3568 Y N N
VOP
2.0

VP2 RGB888/RGB666/RGB565

RK3576 Y Y N
VOP
2.0

VP1/VP2 RGB888/RGB666/RGB565/RGB3x8/RGB3x6/RGB2x8

RV1103 Y Y N
VOP
1.0

 RGB3x8

RV1106 Y Y N
VOP
1.0

 RGB666/RGB565/RGB3x8

RV1109/RV1126 Y Y N
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8

注：上述 VOP 及 VP（Video Port）相关概念参考文档

《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。

3. 硬件连接

1. RK3562/RK3576/RK3506 平台

af://n209

Component
Name

Pin Name
RGB888
(MCU)

RGB666
(MCU)

RGB565
(MCU)

RGB3x8
(MCU)

RGB3x6
(MCU)

RGB2x8
(MCU)

DCLK VO_LCDC_CLK DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS)

VSYNC VO_LCDC_VSYNC VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN)

HSYNC VO_LCDC_HSYNC HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN)

DEN VO_LCDC_DEN DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN)

R7_D23 VO_LCDC_D23 √ √ √ √ (D7_m1) √ (D5_m1) √ (D7_m1)

R6_D22 VO_LCDC_D22 √ √ √ √ (D6_m1) √ (D4_m1) √ (D6_m1)

R5_D21 VO_LCDC_D21 √ √ √ √ (D5_m1) √ (D3_m1) √ (D5_m1)

R4_D20 VO_LCDC_D20 √ √ √ √ (D4_m1) √ (D2_m1) √ (D4_m1)

R3_D19 VO_LCDC_D19 √ √ √ √ (D3_m1) √ (D1_m1) √ (D3_m1)

R2_D18 VO_LCDC_D18 √ √ × × × ×

R1_D17 VO_LCDC_D17 √ × × × × ×

R0_D16 VO_LCDC_D16 √ × × × × ×

G7_D15 VO_LCDC_D15 √ √ √ √ (D2_m1) √ (D0_m1) √ (D2_m1)

G6_D14 VO_LCDC_D14 √ √ √ √ (D1_m1) × √ (D1_m1)

G5_D13 VO_LCDC_D13 √ √ √ √ (D0_m1) × √ (D0_m1)

G4_D12 VO_LCDC_D12 √ √ √ √ (D7_m0) √ (D5_m0) √ (D7_m0)

G3_D11 VO_LCDC_D11 √ √ √ √ (D6_m0) √ (D4_m0) √ (D6_m0)

G2_D10 VO_LCDC_D10 √ √ √ √ (D5_m0) √ (D3_m0) √ (D5_m0)

G1_D9 VO_LCDC_D9 √ × × × × ×

G0_D8 VO_LCDC_D8 √ × × × × ×

B7_D7 VO_LCDC_D7 √ √ √ √ (D4_m0) √ (D2_m0) √ (D4_m0)

B6_D6 VO_LCDC_D6 √ √ √ √ (D3_m0) √ (D1_m0) √ (D3_m0)

B5_D5 VO_LCDC_D5 √ √ √ √ (D2_m0) √ (D0_m0) √ (D2_m0)

B4_D4 VO_LCDC_D4 √ √ √ √ (D1_m0) × √ (D1_m0)

B3_D3 VO_LCDC_D3 √ √ √ √ (D0_m0) × √ (D0_m0)

B2_D2 VO_LCDC_D2 √ √ × × × ×

B1_D1 VO_LCDC_D1 √ × × × × ×

B0_D0 VO_LCDC_D0 √ × × × × ×

2. RK3568 平台

Component Name Pin Name RGB888 RGB666 RGB565

DCLK LCDC_CLK DCLK DCLK DCLK

VSYNC LCDC_VSYNC VSYNC VSYNC VSYNC

HSYNC LCDC_HSYNC HSYNC HSYNC HSYNC

DEN LCDC_DEN DEN DEN DEN

R7_D23 LCDC_D23 √ √ √

R6_D22 LCDC_D22 √ √ √

R5_D21 LCDC_D21 √ √ √

R4_D20 LCDC_D20 √ √ √

R3_D19 LCDC_D19 √ √ √

R2_D18 LCDC_D18 √ √ ×

R1_D17 LCDC_D17 √ × ×

R0_D16 LCDC_D16 √ × ×

G7_D15 LCDC_D15 √ √ √

G6_D14 LCDC_D14 √ √ √

G5_D13 LCDC_D13 √ √ √

G4_D12 LCDC_D12 √ √ √

G3_D11 LCDC_D11 √ √ √

Component Name Pin Name RGB888 RGB666 RGB565

G2_D10 LCDC_D10 √ √ √

G1_D9 LCDC_D9 √ × ×

G0_D8 LCDC_D8 √ × ×

B7_D7 LCDC_D7 √ √ √

B6_D6 LCDC_D6 √ √ √

B5_D5 LCDC_D5 √ √ √

B4_D4 LCDC_D4 √ √ √

B3_D3 LCDC_D3 √ √ √

B2_D2 LCDC_D2 √ √ ×

B1_D1 LCDC_D1 √ × ×

B0_D0 LCDC_D0 √ × ×

Component
Name

Pin Name
RGB888
(MCU)

RGB666
(MCU)

RGB666_CPADHI
(MCU)

RGB565
(MCU)

RGB565_CPADHI
(MCU)

RGB3x8
(MCU)

DCLK LCDC_CLK/LCD_CLK DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS)

VSYNC LCDC_VSYNC/LCD_VSYNC VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN)

HSYNC LCDC_HSYNC/LCD_HSYNC HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN)

DEN LCDC_DEN/LCD_DEN DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN)

R7_D23 LCDC_D23/LCD_D23 √ × √ × √ ×

R6_D22 LCDC_D22/LCD_D22 √ × √ × √ ×

R5_D21 LCDC_D21/LCD_D21 √ × √ × √ ×

R4_D20 LCDC_D20/LCD_D20 √ × √ × √ ×

R3_D19 LCDC_D19/LCD_D19 √ × √ × √ ×

R2_D18 LCDC_D18/LCD_D18 √ × √ × × ×

R1_D17 LCDC_D17/LCD_D17 √ √ × × × ×

R0_D16 LCDC_D16/LCD_D16 √ √ × × × ×

G7_D15 LCDC_D15/LCD_D15 √ √ √ √ √ ×

G6_D14 LCDC_D14/LCD_D14 √ √ √ √ √ ×

G5_D13 LCDC_D13/LCD_D13 √ √ √ √ √ ×

G4_D12 LCDC_D12/LCD_D12 √ √ √ √ √ ×

G3_D11 LCDC_D11/LCD_D11 √ √ √ √ √ ×

G2_D10 LCDC_D10/LCD_D10 √ √ √ √ √ ×

G1_D9 LCDC_D9/LCD_D9 √ √ × √ × ×

G0_D8 LCDC_D8/LCD_D8 √ √ × √ × ×

B7_D7 LCDC_D7/LCD_D7 √ √ √ √ √ √

B6_D6 LCDC_D6/LCD_D6 √ √ √ √ √ √

B5_D5 LCDC_D5/LCD_D5 √ √ √ √ √ √

B4_D4 LCDC_D4/LCD_D4 √ √ √ √ √ √

B3_D3 LCDC_D3/LCD_D3 √ √ √ √ √ √

B2_D2 LCDC_D2/LCD_D2 √ √ √ √ × √

B1_D1 LCDC_D1/LCD_D1 √ √ × √ × √

B0_D0 LCDC_D0/LCD_D0 √ √ × √ × √

3. RK312X/PX3SE/RK3288/RK3308B/RK3308BS/RK3328/RK3326/PX30/RV1109/RV1126 平台

3. RK1808/RV1106 平台

Component
Name

Pin Name
RGB666
(MCU)

RGB565
(MCU)

RGB565
(MCU)

RGB3x8
(MCU)

DCLK LCDC_CLK/LCD_CLK DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS)

VSYNC LCDC_VSYNC/LCD_VSYNC VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN)

HSYNC LCDC_HSYNC/LCD_HSYNC HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN)

DEN LCDC_DEN/LCD_DEN DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN)

R5_D17 LCDC_D17/LCD_D17 √ × × ×

R4_D16 LCDC_D16/LCD_D16 √ × × ×

R3_D15 LCDC_D15/LCD_D15 √ √ √ ×

R2_D14 LCDC_D14/LCD_D14 √ √ √ ×

R1_D13 LCDC_D13/LCD_D13 √ √ √ ×

R0_D12 LCDC_D12/LCD_D12 √ √ √ ×

G5_D11 LCDC_D11/LCD_D11 √ √ √ ×

G4_D10 LCDC_D10/LCD_D10 √ √ √ ×

G3_D9 LCDC_D9/LCD_D9 √ √ √ ×

G2_D8 LCDC_D8/LCD_D8 √ √ √ ×

G1_D7 LCDC_D7/LCD_D7 √ √ √ √

G0_D6 LCDC_D6/LCD_D6 √ √ √ √

B5_D5 LCDC_D5/LCD_D5 √ √ √ √

B4_D4 LCDC_D4/LCD_D4 √ √ √ √

B3_D3 LCDC_D3/LCD_D3 √ √ √ √

B2_D2 LCDC_D2/LCD_D2 √ √ √ √

B1_D1 LCDC_D1/LCD_D1 √ √ √ √

B0_D0 LCDC_D0/LCD_D0 √ √ √ √

4. RV1103 平台

Component Name Pin Name RGB3x8 (MCU)

DCLK LCDC_CLK DCLK(RS)

VSYNC LCDC_VSYNC VSYNC(CSN)

HSYNC LCDC_HSYNC HSYNC(WRN)

DEN LCDC_DEN DEN(RDN)

D7 LCDC_D7 √

D6 LCDC_D6 √

D5 LCDC_D5 √

D4 LCDC_D4 √

D3 LCDC_D3 √

D2 LCDC_D2 √

D1 LCDC_D1 √

D0 LCDC_D0 √

4. 软件配置

4.1 显示通路

af://n1139
af://n1140

VOP（Video Output Process）是 RK 平台的显示处理单元，存在 VOP 1.0 和 VOP 2.0 两种架构主要区别

是对多显的支持方式不同，详细的介绍可以查阅文档

《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。左右框图分别对应 VOP 1.0 和 VOP 2.0 架构
RGB/MCU 接口的显示通路，VOP 会从 DDR 中读取图像数据并处理，再送到显示接口 RGB/MCU 上，

接口模块则会将图像数据转换为符合协议的数据流，最后传输到屏幕上显示。

4.2 Panel 配置

RGB panel 驱动可以参考 drivers/gpu/drm/panel/panel-simple.c 中的实现，下面为典型的 panel 节点配置：

/ {

 panel: panel {

 compatible = "simple-panel";

 bus-format = <MEDIA_BUS_FMT_RGB888_1X24>;

 backlight = <&backlight>;

 enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;

 enable-delay-ms = <20>;

 reset-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;

 reset-delay-ms = <10>;

 status = "okay";

 display-timings {

 native-mode = <&fx070_dhm11boe_timing>;

 fx070_dhm11boe_timing: timing0 {

 clock-frequency = <50000000>;

 hactive = <1024>;

 vactive = <600>;

 hback-porch = <140>;

 hfront-porch = <160>;

 vback-porch = <20>;

 vfront-porch = <20>;

 hsync-len = <20>;

 vsync-len = <2>;

 hsync-active = <0>;

 vsync-active = <0>;

 de-active = <0>;

 pixelclk-active = <0>;

 };

 };

 port {

 panel_in_rgb: endpoint {

 remote-endpoint = <&rgb_out_panel>;

 };

 };

 };

};

&backlight {

 pwms = <&pwm9 0 25000 0>;

 status = "okay";

};

af://n1143

Display Mode Bus Format Cycles Per Pixel

RGB888 (24bit) MEDIA_BUS_FMT_RGB888_1X24 1

RGB666 (18bit) MEDIA_BUS_FMT_RGB666_1X18 1

RGB666_CPADHI (18bit) MEDIA_BUS_FMT_RGB666_1X24_CPADHI 1

RGB565 (16bit) MEDIA_BUS_FMT_RGB565_1X16 1

RGB565_CPADHI (16bit) MEDIA_BUS_FMT_RGB565_1X24_CPADHI 1

RGB3x8 (8bit)
MEDIA_BUS_FMT_RGB888_3X8
MEDIA_BUS_FMT_RGB888_3X8

3

RGB4x8(8bit)
MEDIA_BUS_FMT_RGB888_DUMMY_4X8
MEDIA_BUS_FMT_BGR888_DUMMY_4X8

4

bus-format 属性根据屏端支持的 display mode 配置，通常可以通过 panel datasheet 引脚定义说明及
panel 驱动 IC 的显示模式支持等章节确定。DTS 中配置的宏定义详见 kernel 文件
include/uapi/linux/media-bus-format.h，与硬件连接的对应关系如下：

backlight 节点的 pwms 配置需要根据硬件实际的连接情况修改，在显示图像前需要确保背光已经正

常点亮。详见 pwm 模块参考文档《Rockchip_Developer_Guide_Linux_PWM_CN》。

enable-gpios/reset-gpios 和 enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-
ms/disable-delay-ms 配置需要根据 panel datasheet中上下电和复位的时序要求，以及实际硬件电路的

设计来修改。

（可选）enable 引脚通常用于屏端供电的使能，gpio 配置取决于供电电路的具体设计。

（可选）reset 引脚通常屏端会直接引出，并在 datasheet 中说明触发复位功能的条件，gpio 配
置取决于复位电路的具体设计。

（可选）enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-ms/disable-delay-ms 根
据 datasheet 的 power/reset/signal 时序要求配置。

display-timings 时序节点屏幕 datasheet 会提供推荐配置，用户也可以根据具体的应用需求在指定的

上下阈值区间内微调，下图为示例 panel 节点配置对应的 panel datasheet：

同时 DRM 框架对于 display_timing 结构体及其变量的描述可以在文件 include/video/display_timing.h
中找到，如下所示：

/*

 * Single "mode" entry. This describes one set of signal timings a display can

对于 RGB/MCU 接口，display-timings 节点下 clock-frequency 属性值会决定 VOP 输出的帧率，计

算中需要用到 drm 框架的时序属性 htotal 和 vtotal，此处截取部分说明，详见
include/drm/drm_modes.h。

帧率的计算则可以参考 drivers/gpu/drm/drm_modes.c 中 drm_mode_vrefresh() 函数的实现，设帧率为
fr 则计算公式为：

 * have in one setting. This struct can later be converted to struct videomode

 * (see include/video/videomode.h). As each timing_entry can be defined as a

 * range, one struct display_timing may become multiple struct videomodes.

 *

 * Example: hsync active high, vsync active low

 *

 * Active Video

 * Video ______________________XXXXXXXXXXXXXXXXXXXXXX_____________________

 * |<- sync ->|<- back ->|<----- active ----->|<- front ->|<- sync..

 * | | porch | | porch |

 *

 * HSync _|¯¯¯¯¯¯¯¯¯¯|___|¯¯¯¯¯¯¯¯¯

 *

 * VSync ¯|__________|¯¯¯|_________

 */

struct display_timing {

 struct timing_entry pixelclock;

 struct timing_entry hactive; /* hor. active video */

 struct timing_entry hfront_porch; /* hor. front porch */

 struct timing_entry hback_porch; /* hor. back porch */

 struct timing_entry hsync_len; /* hor. sync len */

 struct timing_entry vactive; /* ver. active video */

 struct timing_entry vfront_porch; /* ver. front porch */

 struct timing_entry vback_porch; /* ver. back porch */

 struct timing_entry vsync_len; /* ver. sync len */

 enum display_flags flags; /* display flags */

};

/**

 * struct drm_display_mode - DRM kernel-internal display mode structure

 * @hdisplay: horizontal display size

 * @hsync_start: horizontal sync start

 * @hsync_end: horizontal sync end

 * @htotal: horizontal total size

 * @hskew: horizontal skew?!

 * @vdisplay: vertical display size

 * @vsync_start: vertical sync start

 * @vsync_end: vertical sync end

 * @vtotal: vertical total size

 * @vscan: vertical scan?!

......

 *

 * The horizontal and vertical timings are defined per the following diagram.

 *

 * ::

4.2.1 SPI 初始化配置

有些 RGB 屏需要主控通过 SPI 接口发送指令以完成初始化流程，drivers/gpu/drm/panel/panel-simple.c 支
持 3-wire 9-bit serial interface 协议：

 *

 *

 * Active Front Sync Back

 * Region Porch Porch

 * <-----------------------><----------------><-------------><--------------

>

 * //////////////////////|

 * ////////////////////// |

 * ////////////////////// |..................

................

 * _______________

 * <----- [hv]display ----->

 * <------------- [hv]sync_start ------------>

 * <--------------------- [hv]sync_end --------------------->

 * <-------------------------------- [hv]total -----------------------------

>*

 *

......

 */

/**

 * drm_mode_vrefresh - get the vrefresh of a mode

 * @mode: mode

 *

 * Returns:

 * @modes's vrefresh rate in Hz, rounded to the nearest integer. Calculates the

 * value first if it is not yet set.

 */

int drm_mode_vrefresh(const struct drm_display_mode *mode)

{

 unsigned int num, den;

 if (mode->htotal == 0 || mode->vtotal == 0)

 return 0;

 num = mode->clock;

 den = mode->htotal * mode->vtotal;

 if (mode->flags & DRM_MODE_FLAG_INTERLACE)

 num *= 2;

 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)

 den *= 2;

 if (mode->vscan > 1)

 den *= mode->vscan;

 return DIV_ROUND_CLOSEST_ULL(mul_u32_u32(num, 1000), den);

}

EXPORT_SYMBOL(drm_mode_vrefresh);

af://n1205

由于 RK 平台 SPI 模块支持的数据传输粒度为 4/8/16 bit，上述协议为 9 bit 数据单元，因此在
panel-simple 驱动中是用 GPIO 模拟 SPI 来实现 。

kernel-5.10 及以上内核版本的典型配置：

spi_gpio: spi-gpio {

 compatible = "spi-gpio";

 #address-cells = <0x1>;

 #size-cells = <0x0>;

 pinctrl-names = "default";

 pinctrl-0 = <&spi_gpio_pins>;

 spi-delay-us = <10>;

 status = "okay";

 sck-gpios = <&gpio4 RK_PA5 GPIO_ACTIVE_HIGH>;

 miso-gpios = <&gpio4 RK_PA7 GPIO_ACTIVE_HIGH>;

 mosi-gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>;

 cs-gpios = <&gpio4 RK_PA4 GPIO_ACTIVE_HIGH>;

 num-chipselects = <1>;

 /*

 * 320x480 RGB/MCU screen K350C4516T

 */

 panel: panel {

 compatible = "simple-panel-spi";

 reg = <0>;

 bus-format = <MEDIA_BUS_FMT_RGB666_1X18>;

 backlight = <&backlight>;

 enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;

 enable-delay-ms = <20>;

 reset-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;

 reset-delay-ms = <10>;

 prepare-delay-ms = <20>;

 unprepare-delay-ms = <20>;

 disable-delay-ms = <20>;

 init-delay-ms = <10>;

 width-mm = <217>;

 height-mm = <136>;

 rockchip,cmd-type = "spi";

 status = "okay";

 // type:0 is cmd, 1 is data

 panel-init-sequence = [

 /* type delay num val1 val2 val3 */

 00 00 01 e0

 01 00 01 00

需要打开配置项 CONFIG_SPI_GPIO，并根据硬件设计配置对应的 sck-gpios、miso-gpios、mosi-
gpios 和 cs-gpios，详见驱动 drivers/spi/spi-gpio.c。

panel 节点配置与上文基本相同，注意点如下：

compatible 修改为 ”simple-panel-spi“。
rockchip,cmd-type 需配置为 “spi”。
在 panel-init-sequence/panel-exit-sequence 填上相应的 init/deinit 序列。

kernel 4.19 及以下内核版本，SPI RGB 屏用到的 SDI/SCL/CS（注意实际上不支持 SDI，dts 中配
置的 SDI 实为硬件上的 SDO，此为早期版本笔误）引脚直接在 simple-panel 驱动中用 gpio 模
拟，不依赖第三方 SPI 驱动。示例如下：

 00 78 01 11

 00 00 01 29

];

 panel-exit-sequence = [

 //type delay num val1 val2 val3

 00 0a 01 28

 00 78 01 10

];

 display-timings {

 native-mode = <&kd050fwfba002_timing>;

 kd050fwfba002_timing: timing0 {

 /*

 * 10453500 for RGB666(18bit)

 */

 clock-frequency = <10453500>;

 hactive = <320>;

 vactive = <480>;

 hback-porch = <10>;

 hfront-porch = <5>;

 vback-porch = <10>;

 vfront-porch = <5>;

 hsync-len = <10>;

 vsync-len = <10>;

 hsync-active = <0>;

 vsync-active = <0>;

 de-active = <0>;

 pixelclk-active = <1>;

 };

 };

 port {

 panel_in_rgb: endpoint {

 remote-endpoint = <&rgb_out_panel>;

 };

 };

 };

};

panel: panel {

 compatible = "simple-panel";

 spi-sdi-gpios = <&gpio1 RK_PC7 GPIO_ACTIVE_HIGH>;

不同内核版本 SPI RGB 屏的参考配置如下：

kernel 4.19 及以下：arch/arm64/boot/dts/rockchip/rk3308-evb-ext-v10.dtsi
kernel 5.10 及以上：arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-k350c4516t.dts

4.3 RGB 接口

rgb 驱动对应文件 drivers/gpu/drm/rockchip/rockchip_rgb.c，参考 dts 配置如下：

 spi-scl-gpios = <&gpio1 RK_PD0 GPIO_ACTIVE_HIGH>;

 spi-cs-gpios = <&gpio1 RK_PD1 GPIO_ACTIVE_HIGH>;

 rockchip,cmd-type = "spi";

 /* type:0 is cmd, 1 is data */

 panel-init-sequence = [

 /* type delay num val1 val2 val3 */

 00 00 01 e0

 00 78 01 11

 00 00 01 29

];

 panel-exit-sequence = [

 /* type delay num val1 val2 val3 */

 00 0a 01 28

 00 78 01 10

];

};

&rgb {

 status = "okay";

 pinctrl-0 = <&rgb666_pins>;

 ports {

 port@1 {

 reg = <1>;

 rgb_out_panel: endpoint {

 remote-endpoint = <&panel_in_rgb>;

 };

 };

 };

};

//VOP 1.0

&rgb_in_vop {

 status = "okay";

};

//VOP 2.0

&rgb_in_vp0 {

 status = "okay";

};

af://n1234

对于 VOP 1.0 和 VOP 2.0 两种架构，RGB 接口相关节点的配置有所不同，参考配置：

VOP 1.0：arch/arm/boot/dts/rv1106-evb-ext-rgb-v10.dtsi。
VOP 2.0：可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-FX070-DHM11BOE-
A.dts。

pinctrl 配置需要根据实际的硬件连接确定，可以在 rkxxxx-pinctrl.dtsi/rvxxxx-pinctrl.dtsi 文件中找到

各种线序对应的定义。

4.4 MCU 接口

mcu 接口及 mcu panel 驱动可以查看 drivers/gpu/drm/rockchip/rockchip_rgb.c，dts 配置与 rgb 接口基本相

同，额外需要加上切换 mcu 模式的标志和 timing，参考配置如下：

&rgb {

 status = "okay";

 rockchip,data-sync-bypass;

 pinctrl-names = "default";

 /*

 * rgb3x8_pins_m0/rgb3x8_pins_m1 for RGB3x8(8bit)

 * rgb565_pins for RGB565(16bit)

 */

 pinctrl-0 = <&rgb565_pins>;

 /*

 * 320x480 RGB/MCU screen K350C4516T

 */

 mcu_panel: mcu-panel {

 /*

 * MEDIA_BUS_FMT_RGB888_3X8 for RGB3x8(8bit)

 * MEDIA_BUS_FMT_RGB565_1X16 for RGB565(16bit)

 */

 bus-format = <MEDIA_BUS_FMT_RGB565_1X16>;

 backlight = <&backlight>;

 enable-gpios = <&gpio1 RK_PA3 GPIO_ACTIVE_LOW>;

 enable-delay-ms = <20>;

 reset-gpios = <&gpio1 RK_PA4 GPIO_ACTIVE_LOW>;

 reset-value = <0>;

 reset-delay-ms = <10>;

 prepare-delay-ms = <20>;

 unprepare-delay-ms = <20>;

 disable-delay-ms = <20>;

 init-delay-ms = <10>;

 width-mm = <217>;

 height-mm = <136>;

 // type:0 is cmd, 1 is data

 panel-init-sequence = [

 //type delay num val1 val2 val3

 01 00 01 55 /*

 * interface pixel format:

 * 66 for RGB3x8(8bit)

 * 55 for RGB565(16bit)

 */

af://n1247

 01 00 01 a0 /*

 * frame rate control:

 * 70 (45hz) for RGB3x8(8bit)

 * a0 (60hz) for RGB565(16bit)

 */

 01 00 01 02 /*

 * display function control:

 * 32 for RGB

 * 02 for MCU

 */

 00 78 01 11

 00 32 01 29

 00 00 01 2c

];

 panel-exit-sequence = [

 //type delay num val1 val2 val3

 00 0a 01 28

 00 78 01 10

];

 display-timings {

 native-mode = <&kd050fwfba002_timing>;

 kd050fwfba002_timing: timing0 {

 /*

 * 7840125 for frame rate 45Hz

 * 10453500 for frame rate 60Hz

 */

 clock-frequency = <10453500>;

 hactive = <320>;

 vactive = <480>;

 hback-porch = <10>;

 hfront-porch = <5>;

 vback-porch = <10>;

 vfront-porch = <5>;

 hsync-len = <10>;

 vsync-len = <10>;

 hsync-active = <0>;

 vsync-active = <0>;

 de-active = <0>;

 pixelclk-active = <1>;

 };

 };

 port {

 panel_in_rgb: endpoint {

 remote-endpoint = <&rgb_out_panel>;

 };

 };

 };

 ports {

 rgb_out: port@1 {

 reg = <1>;

 #address-cells = <1>;

 #size-cells = <0>;

 rgb_out_panel: endpoint@0 {

 reg = <0>;

 remote-endpoint = <&panel_in_rgb>;

 };

 };

 };

 };

};

//VOP 1.0

&rgb_in_vop {

 status = "okay";

};

&vop {

 status = "okay";

 /*

 * Default config is as follows:

 *

 * mcu-pix-total = <9>;

 * mcu-cs-pst = <1>;

 * mcu-cs-pend = <8>;

 * mcu-rw-pst = <2>;

 * mcu-rw-pend = <5>;

 * mcu-hold-mode = <0>; // default set to 0

 *

 * To increase the frame rate, reduce all parameters because

 * the max dclk rate of mcu is 150M in rv1103/rv1106.

 */

 mcu-timing {

 mcu-pix-total = <5>;

 mcu-cs-pst = <1>;

 mcu-cs-pend = <4>;

 mcu-rw-pst = <2>;

 mcu-rw-pend = <3>;

 mcu-hold-mode = <0>; // default set to 0

 };

};

//VOP 2.0

&rgb_in_vp0 {

 status = "okay";

};

&vp0 {

 status = "okay";

 /*

 * Default config is as follows:

 *

 * mcu-pix-total = <9>;

 * mcu-cs-pst = <1>;

 * mcu-cs-pend = <8>;

 * mcu-rw-pst = <2>;

 * mcu-rw-pend = <5>;

对于 VOP 1.0 和 VOP 2.0 两种架构，MCU 接口相关节点的配置有所不同，参考配置：

VOP 1.0：arch/arm/boot/dts/rv1106-evb-ext-mcu-v10.dtsi。
VOP 2.0：可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-mcu-k350c4516t.dts。

驱动中会根据 rgb 节点下的 rockchip,data-sync-bypass 属性来切换 mcu 和 rgb 两种接口模式，不加该

属性默认为 rgb 接口，使能后则切换到 mcu 接口。

在 kernel-5.10 及以上的版本，mcu 接口对应的 panel 配置推荐放在 rgb 节点下，kernel-4.19 及更早

版本的内核，则作为独立的节点通过 simple-panel 驱动初始化。若将 simple-panel 驱动对应的 panel
节点移植到 rgb 节点下需要注意：

确保 panel 节点命名为 mcu-panel，驱动中根据此去识别并解析 mcu panel 参数。

compatible 属性可以删除，无需配置。

mcu panel 通常需要通过初始化序列来初始化 display mode/pixel format/frame rate 等配置（具体由
panel 的驱动 IC 确定），以及通过去初始化序列来确保 panel 关闭或进入 low-power 模式等。相关
panel-init-sequence 和 panel-exit-sequence 属性的注意点如下：

序列由屏厂提供，通常需要从 c 文件转换为 DTS 配置。

序列每行从左往右依次为：指令类型cmd/data、延迟时间（ms）、数据长度（byte）、数据。

帧率的配置通常也在序列初始化阶段进行，需要跟《Panel 配置》中计算出的帧率相对

应。下面是示例驱动 IC 手册中的说明：

 * mcu-hold-mode = <0>; // default set to 0

 *

 * To increase the frame rate, reduce all parameters because

 * the max dclk rate of mcu is 150M in rk3562.

 */

 mcu-timing {

 mcu-pix-total = <5>;

 mcu-cs-pst = <1>;

 mcu-cs-pend = <4>;

 mcu-rw-pst = <2>;

 mcu-rw-pend = <3>;

 mcu-hold-mode = <0>; // default set to 0

 };

};

mcu-timing 用于配置 MCU 接口 normal mode 控制信号 CSN/WEN/REN 的时序，各属性分别对应下

图中各区间的时间。详细时序图及各区间的具体要求摘自示例 dts 配置对应 panel 模组的
datasheet。下面将介绍 mcu-timing 中各属性及 display-timings 中 clock-frequency 属性的配置方法。

设变量 ptotal 为 mcu-timing 中 mcu-pix-total 的值，查表可知 panel datasheet 中要求
MCU_PIX_TOTAL 区间时间不小于 tmin：

（panel datasheet 中 twc = 40 而驱动 ic datasheet twc = 30，取两者中的较大值）

对于示例 panel，同时支持 MEDIA_BUS_FMT_RGB888_3X8 和
MEDIA_BUS_FMT_RGB565_1X16 两种 mode， Cycles Per Pixel 值（指将一个 pixel 的数据分

成 n 个 cycle 去发送，详见《Panel 配置》章节）设为 cpp，则可以计算出两者对应的理论帧

率上限（分别设为 frs-max 和 frp-max）：

因此，串行 rgb3x8 模式的帧率 frs = 45(Hz)，并行 rgb1x16 模式的帧率 frp = 60(Hz)。

（下文变量的下缀 s 表示 serial 串行，p 表示 parallel 并行，不再赘述）

同时也可算出两者 display-timings 配置中 clock-frequency 属性的值：

每个平台 mcu 接口的 dclk 都会有最大值限制，详见 drivers/gpu/drm/rockchip/rockchip_rgb.c 驱
动中的 mcu_max_dclk_rate 属性，通常为 150000000 Hz，驱动中相应的检查逻辑详见
rockchip_rgb_encoder_mode_valid() 函数。

根据 dclkmax 和初始化序列中配置的帧率（设为变量 fr，值通常为 60Hz），可以算出 ptotal

的最大值：

实际的 ptotal 取两者较小值 ptotal = 5，同时由时序图可确定 mcu-timing 的其他属性
值。

最后，还需要根据 datasheet 时序要求对计算出的实际值作校验。

MCU 接口的实际 dclk 并不是 display-timings 配置中 clock-frequency 属性的值，还和 mcu-
timing 中 mcu-pix-total 配置和 Cycles Per Pixel 值有关：

上述 dclk 值均未超过 dclkmax，同时可以计算出 MCU_PIX_TOTAL 区间实际时间：

上述 MCU_PIX_TOTAL 区间时间 t 均满足大于 40 ns 的要求。

4.4.1 MCU Bypass Timing 配置

早期支持 MCU 接口的平台，如 RK3308 和 PX30 等， bypass mode 的 timing 配置跟 normal mode 是一致

的。在 RK3562 及之后的平台，IC 在设计上进行了优化，驱动中会有一组默认的 bypass mode timing 用
于满足大多数情况下 bypass mode 中 write/read 操作的需要，详见
drivers/gpu/drm/rockchip/rockchip_vop_reg.c 和 drivers/gpu/drm/rockchip/rockchip_vop2_reg.c 中结构体
vop_mcu_bypass_cfg 的相关定义，如：

如果默认的 bypass mode timing 无法满足应用场景的需要，支持在 dts 中指定（参考
arch/arm/boot/dts/rk3506g-evb1-v10-mcu-k350c4516t.dts）：

static struct rockchip_mcu_timing rk3506_mcu_bypass_timing = {

 .mcu_pix_total = 26,

 .mcu_cs_pst = 3,

 .mcu_cs_pend = 24,

 .mcu_rw_pst = 6,

 .mcu_rw_pend = 15,

};

static const struct vop_mcu_bypass_cfg rk3506_mcu_bypass_cfg = {

 .timing = &rk3506_mcu_bypass_timing,

 .dclk_rate = 120000000,

};

&vop {

 mcu-timing {

 mcu-pix-total = <5>;

 mcu-cs-pst = <1>;

 mcu-cs-pend = <4>;

 mcu-rw-pst = <2>;

 mcu-rw-pend = <3>;

 mcu-hold-mode = <0>;

 };

af://n1316

需要注意的是，bypass mode 中可能会涉及 MCU read 操作，而通常情况下，MCU read timing 的
min 限制会大于 MCU write timing（可以参考前一章节的示例 datasheet），所以 mcu-bypass-
timing 通常会以 datasheet 中 read timing 的限制去计算和配置，以同时兼容 write/read 操作的时序要

求。

4.4.2 MCU Frame Write/Read

在 MCU normal mode 下，可以通过 frame write/read 功能在帧间去进行主控和 panel 间的指令交互行为，

用于读取 panel 的状态寄存器、修改显示的起始位置等，通常用于静电压测或满足一些特定 panel 逐帧

更新显示起始位置的需要等场景。

使能该功能需要在 dts 中配置 panel-frame-sequence 序列，可以参考 arch/arm/boot/dts/rk3506g-evb1-v10-
mcu-k350c4516t.dts，示例如下：

帧间的 write/read 操作是在 drivers/gpu/drm/rockchip/rockchip_rgb.c 中实现的：

 mcu-bypass-timing {

 mcu-pix-total = <9>;

 mcu-cs-pst = <1>;

 mcu-cs-pend = <8>;

 mcu-rw-pst = <2>;

 mcu-rw-pend = <7>;

 mcu-hold-mode = <0>;

 };

};

&rgb {

 mcu_panel: mcu-panel {

 panel-frame-sequence = [

 //type delay num val1 val2 val3

 00 00 01 0a

 02 00 01 0a

 02 00 01 0a

 00 00 01 2c

];

 };

};

static void mcu_interframe_work_func(struct work_struct *work)

{

 struct rockchip_mcu_panel *mcu_panel =

 container_of(work, struct rockchip_mcu_panel, interframe_work);

 struct drm_panel *panel = &mcu_panel->base;

 struct drm_display_mode *mode = mcu_panel->desc->mode;

 struct drm_crtc *crtc = mcu_panel->encoder->crtc;

 u32 timeout = DIV_ROUND_CLOSEST_ULL(1000, drm_mode_vrefresh(mode));

 int ret;

 ret = rockchip_drm_wait_vact_end(crtc, timeout);

af://n1324

如果有特定的应用需求，可以自行修改上述 work 的实现。

5. 调试流程

1. 确认 rgb/mcu 接口各 pin 脚的硬件连接，需要注意每个平台 pin 脚的映射方式可能会有所不同，具

体看上文《硬件连接》章节。

2. 根据 panel datasheet 正确配置 enable/reset 控制引脚极性和上电时序，以及背光所用到的 pwm 通
道。若为 mcu 屏，还需要配置正确的初始化序列。

 if (ret) {

 DRM_DEV_ERROR(panel->dev, "wairt vact end timed out\n");

 return;

 }

 ret = rockchip_mcu_panel_xfer_mcu_cmd_seq(mcu_panel, mcu_panel->desc-

>frame_seq);

 if (ret) {

 DRM_DEV_ERROR(panel->dev, "failed to send frame cmds seq\n");

 return;

 }

 schedule_work(&mcu_panel->interframe_work);

};

af://n1333

3. 确保背光已点亮的情况下，需再确认下 enable/reset 控制引脚是否为正确的电平，若实际测量仍非

预期值，则确认下 iomux 是否正确配置为 GPIO。

6. 常见问题

6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现
象

答：可以尝试翻转下 dclk 时钟极性，对应 display-timings 下的 pixelclk-active 属性，可以改变 dclk 与
data 信号的相对相位。

display-timings {

 native-mode = <&fx070_dhm11boe_timing>;

 fx070_dhm11boe_timing: timing0 {

 clock-frequency = <50000000>;

 hactive = <1024>;

 vactive = <600>;

 hback-porch = <140>;

 hfront-porch = <160>;

 vback-porch = <20>;

 vfront-porch = <20>;

 hsync-len = <20>;

 vsync-len = <2>;

 hsync-active = <0>;

 vsync-active = <0>;

 de-active = <0>;

 pixelclk-active = <0>; // 1 翻转，0 不翻转

 };

};

af://n1343
af://n1344

	Rockchip RGB 和 MCU 接口开发指南
	基础概念
	RGB 接口
	DE Mode
	SYNC Mode

	MCU 接口
	Write Timing
	Read Timing
	Bypass 和 Normal Mode

	RK 平台支持情况
	硬件连接
	软件配置
	显示通路
	Panel 配置
	SPI 初始化配置

	RGB 接口
	MCU 接口
	MCU Bypass Timing 配置
	MCU Frame Write/Read

	调试流程
	常见问题
	RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现象

