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1. 基础概念  

1.1 RGB 接口  

RGB 接口也被称为 DPI（Display Pixel Interface） 接口，RGB 接口用于同步的信号有 Vsync、Hsync、
Den（Enable）和 DCLK（Dotclk）四个引脚，根据同步方式的不同可以分为 DE mode 和 SYNC mode，
Rockchip 平台 RGB 接口的输出时序可以同时兼容两者。

1.1.1 DE Mode  

DB[23:0] 数据是否有效仅由 Den 信号决定，低电平时数据有效，反之无效。

1.1.2 SYNC Mode  
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DB[23:0] 数据由 Vsync 和 Hsync 信号来同步，按照上图时序扫描数据。

1.2 MCU 接口  

MCU 接口也被称为 DBI 接口或 8080 接口，支持 TX 和 RX 端的双向通信， 有 RS（CSX）、

CSN（D/CX）、WEN（WRX）和 REN（RDX）四个同步信号，RK 平台仅支持 MCU 接口的 TX 功
能。

1.2.1 Write Timing  

CSX、D/CX 和 WRX 引脚依次拉低，在 DB[23:0] 数据有效期间 WRX 信号会先拉低再拉高。

1.2.2 Read Timing  
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CSX、D/CX 和 RDX 引脚依次拉低，在 DB[23:0] 数据有效期间 RDX 信号会先拉低再拉高。

read 前先通过一次 write 将所读取的寄存器地址传输给 Panel 端。

第一次 read 返回的数据是无效的，从第二次 read 开始才是有效的数据。

MCU read 通常用于 panel 调试期间 debug、通过区分 panel ID 实现多屏兼容功能等应用场景，以及

会在下文中介绍的 frame read 功能。

1.2.3 Bypass 和 Normal Mode  

bypass 模式：当 MCU 和 panel 之间通过 write/read 操作进行指令传输时，工作于 bypass 模式。

MCU 接口根据 panel-init-sequence/panel-exit-sequence 传输 init/deinit 指令，以及进行 frame 
write/read 时（详见后文《软件配置》章节中的相关说明），均属于 bypass 模式。

normal 模式：主控将图像通过 MCU 接口传输到 panel 端的 ram 中并正常显示的模式，通常在传输

完 panel-init-sequence 并确认 panel 正常初始化后就会进入到该模式。

bypass 模式下可以包含 write/read 操作，normal 模式下仅为 write 操作。

2. RK 平台支持情况  
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SOC 平台
是否

支持

RGB

是否

支持

MCU

是否支

持

MCU
Read

VOP
Version

Video Port
通路（for
VOP 2.0）

Output Mode 支持

RK1808 Y Y N
VOP
1.0

 RGB666/RGB565

RK312X/PX3SE Y N N
VOP
1.0

 RGB888/RGB666/RGB565

RK3288 Y Y N
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8

RK3308B/RK3308BS Y Y N
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8

RK3326/PX30 Y Y N
VOP
1.0

 RGB888/RGB666/RGB565

RK3506 Y Y Y
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8/RGB3x6/RGB2x8

RK3562 Y Y N
VOP
2.0

VP0 RGB888/RGB666/RGB565/RGB3x8

RK3568 Y N N
VOP
2.0

VP2 RGB888/RGB666/RGB565

RK3576 Y Y N
VOP
2.0

VP1/VP2 RGB888/RGB666/RGB565/RGB3x8/RGB3x6/RGB2x8

RV1103 Y Y N
VOP
1.0

 RGB3x8

RV1106 Y Y N
VOP
1.0

 RGB666/RGB565/RGB3x8

RV1109/RV1126 Y Y N
VOP
1.0

 RGB888/RGB666/RGB565/RGB3x8

注：上述 VOP 及 VP（Video Port）相关概念参考文档

《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。

3. 硬件连接  

1. RK3562/RK3576/RK3506 平台
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Component
Name

Pin Name
RGB888
(MCU)

RGB666
(MCU)

RGB565
(MCU)

RGB3x8
(MCU)

RGB3x6
(MCU)

RGB2x8
(MCU)

DCLK VO_LCDC_CLK DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS)

VSYNC VO_LCDC_VSYNC VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN)

HSYNC VO_LCDC_HSYNC HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN)

DEN VO_LCDC_DEN DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN)

R7_D23 VO_LCDC_D23 √ √ √ √ (D7_m1) √ (D5_m1) √ (D7_m1)

R6_D22 VO_LCDC_D22 √ √ √ √ (D6_m1) √ (D4_m1) √ (D6_m1)

R5_D21 VO_LCDC_D21 √ √ √ √ (D5_m1) √ (D3_m1) √ (D5_m1)

R4_D20 VO_LCDC_D20 √ √ √ √ (D4_m1) √ (D2_m1) √ (D4_m1)

R3_D19 VO_LCDC_D19 √ √ √ √ (D3_m1) √ (D1_m1) √ (D3_m1)

R2_D18 VO_LCDC_D18 √ √ × × × ×

R1_D17 VO_LCDC_D17 √ × × × × ×

R0_D16 VO_LCDC_D16 √ × × × × ×

G7_D15 VO_LCDC_D15 √ √ √ √ (D2_m1) √ (D0_m1) √ (D2_m1)

G6_D14 VO_LCDC_D14 √ √ √ √ (D1_m1) × √ (D1_m1)

G5_D13 VO_LCDC_D13 √ √ √ √ (D0_m1) × √ (D0_m1)

G4_D12 VO_LCDC_D12 √ √ √ √ (D7_m0) √ (D5_m0) √ (D7_m0)

G3_D11 VO_LCDC_D11 √ √ √ √ (D6_m0) √ (D4_m0) √ (D6_m0)

G2_D10 VO_LCDC_D10 √ √ √ √ (D5_m0) √ (D3_m0) √ (D5_m0)

G1_D9 VO_LCDC_D9 √ × × × × ×

G0_D8 VO_LCDC_D8 √ × × × × ×

B7_D7 VO_LCDC_D7 √ √ √ √ (D4_m0) √ (D2_m0) √ (D4_m0)

B6_D6 VO_LCDC_D6 √ √ √ √ (D3_m0) √ (D1_m0) √ (D3_m0)

B5_D5 VO_LCDC_D5 √ √ √ √ (D2_m0) √ (D0_m0) √ (D2_m0)

B4_D4 VO_LCDC_D4 √ √ √ √ (D1_m0) × √ (D1_m0)

B3_D3 VO_LCDC_D3 √ √ √ √ (D0_m0) × √ (D0_m0)

B2_D2 VO_LCDC_D2 √ √ × × × ×

B1_D1 VO_LCDC_D1 √ × × × × ×

B0_D0 VO_LCDC_D0 √ × × × × ×

2. RK3568 平台



Component Name Pin Name RGB888 RGB666 RGB565

DCLK LCDC_CLK DCLK DCLK DCLK

VSYNC LCDC_VSYNC VSYNC VSYNC VSYNC

HSYNC LCDC_HSYNC HSYNC HSYNC HSYNC

DEN LCDC_DEN DEN DEN DEN

R7_D23 LCDC_D23 √ √ √

R6_D22 LCDC_D22 √ √ √

R5_D21 LCDC_D21 √ √ √

R4_D20 LCDC_D20 √ √ √

R3_D19 LCDC_D19 √ √ √

R2_D18 LCDC_D18 √ √ ×

R1_D17 LCDC_D17 √ × ×

R0_D16 LCDC_D16 √ × ×

G7_D15 LCDC_D15 √ √ √

G6_D14 LCDC_D14 √ √ √

G5_D13 LCDC_D13 √ √ √

G4_D12 LCDC_D12 √ √ √

G3_D11 LCDC_D11 √ √ √



Component Name Pin Name RGB888 RGB666 RGB565

G2_D10 LCDC_D10 √ √ √

G1_D9 LCDC_D9 √ × ×

G0_D8 LCDC_D8 √ × ×

B7_D7 LCDC_D7 √ √ √

B6_D6 LCDC_D6 √ √ √

B5_D5 LCDC_D5 √ √ √

B4_D4 LCDC_D4 √ √ √

B3_D3 LCDC_D3 √ √ √

B2_D2 LCDC_D2 √ √ ×

B1_D1 LCDC_D1 √ × ×

B0_D0 LCDC_D0 √ × ×

Component
Name

Pin Name
RGB888
(MCU)

RGB666
(MCU)

RGB666_CPADHI
(MCU)

RGB565
(MCU)

RGB565_CPADHI
(MCU)

RGB3x8
(MCU)

DCLK LCDC_CLK/LCD_CLK DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS)

VSYNC LCDC_VSYNC/LCD_VSYNC VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN)

HSYNC LCDC_HSYNC/LCD_HSYNC HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN)

DEN LCDC_DEN/LCD_DEN DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN)

R7_D23 LCDC_D23/LCD_D23 √ × √ × √ ×

R6_D22 LCDC_D22/LCD_D22 √ × √ × √ ×

R5_D21 LCDC_D21/LCD_D21 √ × √ × √ ×

R4_D20 LCDC_D20/LCD_D20 √ × √ × √ ×

R3_D19 LCDC_D19/LCD_D19 √ × √ × √ ×

R2_D18 LCDC_D18/LCD_D18 √ × √ × × ×

R1_D17 LCDC_D17/LCD_D17 √ √ × × × ×

R0_D16 LCDC_D16/LCD_D16 √ √ × × × ×

G7_D15 LCDC_D15/LCD_D15 √ √ √ √ √ ×

G6_D14 LCDC_D14/LCD_D14 √ √ √ √ √ ×

G5_D13 LCDC_D13/LCD_D13 √ √ √ √ √ ×

G4_D12 LCDC_D12/LCD_D12 √ √ √ √ √ ×

G3_D11 LCDC_D11/LCD_D11 √ √ √ √ √ ×

G2_D10 LCDC_D10/LCD_D10 √ √ √ √ √ ×

G1_D9 LCDC_D9/LCD_D9 √ √ × √ × ×

G0_D8 LCDC_D8/LCD_D8 √ √ × √ × ×

B7_D7 LCDC_D7/LCD_D7 √ √ √ √ √ √

B6_D6 LCDC_D6/LCD_D6 √ √ √ √ √ √

B5_D5 LCDC_D5/LCD_D5 √ √ √ √ √ √

B4_D4 LCDC_D4/LCD_D4 √ √ √ √ √ √

B3_D3 LCDC_D3/LCD_D3 √ √ √ √ √ √

B2_D2 LCDC_D2/LCD_D2 √ √ √ √ × √

B1_D1 LCDC_D1/LCD_D1 √ √ × √ × √

B0_D0 LCDC_D0/LCD_D0 √ √ × √ × √

3. RK312X/PX3SE/RK3288/RK3308B/RK3308BS/RK3328/RK3326/PX30/RV1109/RV1126 平台

3. RK1808/RV1106 平台



Component
Name

Pin Name
RGB666
(MCU)

RGB565
(MCU)

RGB565
(MCU)

RGB3x8
(MCU)

DCLK LCDC_CLK/LCD_CLK DCLK(RS) DCLK(RS) DCLK(RS) DCLK(RS)

VSYNC LCDC_VSYNC/LCD_VSYNC VSYNC(CSN) VSYNC(CSN) VSYNC(CSN) VSYNC(CSN)

HSYNC LCDC_HSYNC/LCD_HSYNC HSYNC(WRN) HSYNC(WRN) HSYNC(WRN) HSYNC(WRN)

DEN LCDC_DEN/LCD_DEN DEN(RDN) DEN(RDN) DEN(RDN) DEN(RDN)

R5_D17 LCDC_D17/LCD_D17 √ × × ×

R4_D16 LCDC_D16/LCD_D16 √ × × ×

R3_D15 LCDC_D15/LCD_D15 √ √ √ ×

R2_D14 LCDC_D14/LCD_D14 √ √ √ ×

R1_D13 LCDC_D13/LCD_D13 √ √ √ ×

R0_D12 LCDC_D12/LCD_D12 √ √ √ ×

G5_D11 LCDC_D11/LCD_D11 √ √ √ ×

G4_D10 LCDC_D10/LCD_D10 √ √ √ ×

G3_D9 LCDC_D9/LCD_D9 √ √ √ ×

G2_D8 LCDC_D8/LCD_D8 √ √ √ ×

G1_D7 LCDC_D7/LCD_D7 √ √ √ √

G0_D6 LCDC_D6/LCD_D6 √ √ √ √

B5_D5 LCDC_D5/LCD_D5 √ √ √ √

B4_D4 LCDC_D4/LCD_D4 √ √ √ √

B3_D3 LCDC_D3/LCD_D3 √ √ √ √

B2_D2 LCDC_D2/LCD_D2 √ √ √ √

B1_D1 LCDC_D1/LCD_D1 √ √ √ √

B0_D0 LCDC_D0/LCD_D0 √ √ √ √

4. RV1103 平台



Component Name Pin Name RGB3x8 (MCU)

DCLK LCDC_CLK DCLK(RS)

VSYNC LCDC_VSYNC VSYNC(CSN)

HSYNC LCDC_HSYNC HSYNC(WRN)

DEN LCDC_DEN DEN(RDN)

D7 LCDC_D7 √

D6 LCDC_D6 √

D5 LCDC_D5 √

D4 LCDC_D4 √

D3 LCDC_D3 √

D2 LCDC_D2 √

D1 LCDC_D1 √

D0 LCDC_D0 √

4. 软件配置  

4.1 显示通路  
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VOP（Video Output Process）是 RK 平台的显示处理单元，存在 VOP 1.0 和 VOP 2.0 两种架构主要区别

是对多显的支持方式不同，详细的介绍可以查阅文档

《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。左右框图分别对应 VOP 1.0 和 VOP 2.0 架构 
RGB/MCU 接口的显示通路，VOP 会从 DDR 中读取图像数据并处理，再送到显示接口 RGB/MCU 上，

接口模块则会将图像数据转换为符合协议的数据流，最后传输到屏幕上显示。

4.2 Panel 配置  

RGB panel 驱动可以参考 drivers/gpu/drm/panel/panel-simple.c 中的实现，下面为典型的 panel 节点配置：

/ {

    panel: panel {

        compatible = "simple-panel";

        bus-format = <MEDIA_BUS_FMT_RGB888_1X24>;

        backlight = <&backlight>;

        enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;

        enable-delay-ms = <20>;

        reset-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;

        reset-delay-ms = <10>;

        status = "okay";

        display-timings {

            native-mode = <&fx070_dhm11boe_timing>;

            fx070_dhm11boe_timing: timing0 {

                clock-frequency = <50000000>;

                hactive = <1024>;

                vactive = <600>;

                hback-porch = <140>;

                hfront-porch = <160>;

                vback-porch = <20>;

                vfront-porch = <20>;

                hsync-len = <20>;

                vsync-len = <2>;

                hsync-active = <0>;

                vsync-active = <0>;

                de-active = <0>;

                pixelclk-active = <0>;

            };

        };

        port {

            panel_in_rgb: endpoint {

                remote-endpoint = <&rgb_out_panel>;

            };

        };

    };

};

&backlight {

    pwms = <&pwm9 0 25000 0>;

    status = "okay";

};

af://n1143


Display Mode Bus Format Cycles Per Pixel

RGB888 (24bit) MEDIA_BUS_FMT_RGB888_1X24 1

RGB666 (18bit) MEDIA_BUS_FMT_RGB666_1X18 1

RGB666_CPADHI (18bit) MEDIA_BUS_FMT_RGB666_1X24_CPADHI 1

RGB565 (16bit) MEDIA_BUS_FMT_RGB565_1X16 1

RGB565_CPADHI (16bit) MEDIA_BUS_FMT_RGB565_1X24_CPADHI 1

RGB3x8 (8bit)
MEDIA_BUS_FMT_RGB888_3X8
MEDIA_BUS_FMT_RGB888_3X8

3

RGB4x8(8bit)
MEDIA_BUS_FMT_RGB888_DUMMY_4X8
MEDIA_BUS_FMT_BGR888_DUMMY_4X8

4

bus-format 属性根据屏端支持的 display mode 配置，通常可以通过 panel datasheet 引脚定义说明及 
panel 驱动 IC 的显示模式支持等章节确定。DTS 中配置的宏定义详见 kernel 文件 
include/uapi/linux/media-bus-format.h，与硬件连接的对应关系如下：

backlight 节点的 pwms 配置需要根据硬件实际的连接情况修改，在显示图像前需要确保背光已经正

常点亮。详见 pwm 模块参考文档《Rockchip_Developer_Guide_Linux_PWM_CN》。

enable-gpios/reset-gpios 和 enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-
ms/disable-delay-ms 配置需要根据 panel datasheet中上下电和复位的时序要求，以及实际硬件电路的

设计来修改。

（可选）enable 引脚通常用于屏端供电的使能，gpio 配置取决于供电电路的具体设计。

（可选）reset 引脚通常屏端会直接引出，并在 datasheet 中说明触发复位功能的条件，gpio 配
置取决于复位电路的具体设计。

（可选）enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-ms/disable-delay-ms 根
据 datasheet 的 power/reset/signal 时序要求配置。

display-timings 时序节点屏幕 datasheet 会提供推荐配置，用户也可以根据具体的应用需求在指定的

上下阈值区间内微调，下图为示例 panel 节点配置对应的 panel datasheet：

同时 DRM 框架对于 display_timing 结构体及其变量的描述可以在文件 include/video/display_timing.h 
中找到，如下所示：

/*

 * Single "mode" entry. This describes one set of signal timings a display can



对于 RGB/MCU 接口，display-timings 节点下 clock-frequency 属性值会决定 VOP 输出的帧率，计

算中需要用到 drm 框架的时序属性 htotal 和 vtotal，此处截取部分说明，详见 
include/drm/drm_modes.h。

帧率的计算则可以参考 drivers/gpu/drm/drm_modes.c 中 drm_mode_vrefresh() 函数的实现，设帧率为 
fr 则计算公式为：

 * have in one setting. This struct can later be converted to struct videomode

 * (see include/video/videomode.h). As each timing_entry can be defined as a

 * range, one struct display_timing may become multiple struct videomodes.

 *

 * Example: hsync active high, vsync active low

 *

 *                  Active Video

 * Video  ______________________XXXXXXXXXXXXXXXXXXXXXX_____________________

 *    |<- sync ->|<- back ->|<----- active ----->|<- front ->|<- sync..

 *    |      |   porch  |            |   porch   |

 *

 * HSync _|¯¯¯¯¯¯¯¯¯¯|___________________________________________|¯¯¯¯¯¯¯¯¯

 *

 * VSync ¯|__________|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|_________

 */

struct display_timing {

    struct timing_entry pixelclock;

    struct timing_entry hactive;        /* hor. active video */

    struct timing_entry hfront_porch;   /* hor. front porch */

    struct timing_entry hback_porch;    /* hor. back porch */

    struct timing_entry hsync_len;      /* hor. sync len */

    struct timing_entry vactive;        /* ver. active video */

    struct timing_entry vfront_porch;   /* ver. front porch */

    struct timing_entry vback_porch;    /* ver. back porch */

    struct timing_entry vsync_len;      /* ver. sync len */

    enum display_flags flags;       /* display flags */

};

/**

 * struct drm_display_mode - DRM kernel-internal display mode structure

 * @hdisplay: horizontal display size

 * @hsync_start: horizontal sync start

 * @hsync_end: horizontal sync end

 * @htotal: horizontal total size

 * @hskew: horizontal skew?!

 * @vdisplay: vertical display size

 * @vsync_start: vertical sync start

 * @vsync_end: vertical sync end

 * @vtotal: vertical total size

 * @vscan: vertical scan?!

......

 *

 * The horizontal and vertical timings are defined per the following diagram.

 *

 * ::



4.2.1 SPI 初始化配置  

有些 RGB 屏需要主控通过 SPI 接口发送指令以完成初始化流程，drivers/gpu/drm/panel/panel-simple.c 支
持 3-wire 9-bit serial interface 协议：

 *

 *

 *               Active                 Front           Sync           Back

 *              Region                 Porch                          Porch

 *     <-----------------------><----------------><-------------><--------------

>

 *       //////////////////////|

 *      ////////////////////// |

 *     //////////////////////  |..................               

................

 *                                                _______________

 *     <----- [hv]display ----->

 *     <------------- [hv]sync_start ------------>

 *     <--------------------- [hv]sync_end --------------------->

 *     <-------------------------------- [hv]total -----------------------------

>*

 *

......

 */

/**

 * drm_mode_vrefresh - get the vrefresh of a mode

 * @mode: mode

 *

 * Returns:

 * @modes's vrefresh rate in Hz, rounded to the nearest integer. Calculates the

 * value first if it is not yet set.

 */

int drm_mode_vrefresh(const struct drm_display_mode *mode)

{

    unsigned int num, den;

    if (mode->htotal == 0 || mode->vtotal == 0)

        return 0;

    num = mode->clock;

    den = mode->htotal * mode->vtotal;

    if (mode->flags & DRM_MODE_FLAG_INTERLACE)

        num *= 2;

    if (mode->flags & DRM_MODE_FLAG_DBLSCAN)

        den *= 2;

    if (mode->vscan > 1)

        den *= mode->vscan;

    return DIV_ROUND_CLOSEST_ULL(mul_u32_u32(num, 1000), den);

}

EXPORT_SYMBOL(drm_mode_vrefresh);
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由于 RK 平台 SPI 模块支持的数据传输粒度为 4/8/16 bit，上述协议为 9 bit 数据单元，因此在 
panel-simple 驱动中是用 GPIO 模拟 SPI 来实现 。

kernel-5.10 及以上内核版本的典型配置：

spi_gpio: spi-gpio {

    compatible = "spi-gpio";

    #address-cells = <0x1>;

    #size-cells = <0x0>;

    pinctrl-names = "default";

    pinctrl-0 = <&spi_gpio_pins>;

    spi-delay-us = <10>;

    status = "okay";

    sck-gpios = <&gpio4 RK_PA5 GPIO_ACTIVE_HIGH>;

    miso-gpios = <&gpio4 RK_PA7 GPIO_ACTIVE_HIGH>;

    mosi-gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>;

    cs-gpios = <&gpio4 RK_PA4 GPIO_ACTIVE_HIGH>;

    num-chipselects = <1>;

    /*

     * 320x480 RGB/MCU screen K350C4516T

     */

    panel: panel {

        compatible = "simple-panel-spi";

        reg = <0>;

        bus-format = <MEDIA_BUS_FMT_RGB666_1X18>;

        backlight = <&backlight>;

        enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;

        enable-delay-ms = <20>;

        reset-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;

        reset-delay-ms = <10>;

        prepare-delay-ms = <20>;

        unprepare-delay-ms = <20>;

        disable-delay-ms = <20>;

        init-delay-ms = <10>;

        width-mm = <217>;

        height-mm = <136>;

        rockchip,cmd-type = "spi";

        status = "okay";

        // type:0 is cmd, 1 is data

        panel-init-sequence = [

            /* type delay num val1 val2 val3 */

            00   00  01  e0

            01   00  01  00

            ......



需要打开配置项 CONFIG_SPI_GPIO，并根据硬件设计配置对应的 sck-gpios、miso-gpios、mosi-
gpios 和 cs-gpios，详见驱动 drivers/spi/spi-gpio.c。

panel 节点配置与上文基本相同，注意点如下：

compatible 修改为 ”simple-panel-spi“。
rockchip,cmd-type 需配置为 “spi”。
在 panel-init-sequence/panel-exit-sequence 填上相应的 init/deinit 序列。

kernel 4.19 及以下内核版本，SPI RGB 屏用到的 SDI/SCL/CS（注意实际上不支持 SDI，dts 中配
置的 SDI 实为硬件上的 SDO，此为早期版本笔误）引脚直接在 simple-panel 驱动中用 gpio 模
拟，不依赖第三方 SPI 驱动。示例如下：

            00   78  01  11

            00   00  01  29

        ];

        panel-exit-sequence = [

            //type delay num val1 val2 val3

            00   0a  01  28

            00   78  01  10

        ];

        display-timings {

            native-mode = <&kd050fwfba002_timing>;

            kd050fwfba002_timing: timing0 {

                /*

                 * 10453500  for RGB666(18bit)

                 */

                clock-frequency = <10453500>;

                hactive = <320>;

                vactive = <480>;

                hback-porch = <10>;

                hfront-porch = <5>;

                vback-porch = <10>;

                vfront-porch = <5>;

                hsync-len = <10>;

                vsync-len = <10>;

                hsync-active = <0>;

                vsync-active = <0>;

                de-active = <0>;

                pixelclk-active = <1>;

            };

        };

        port {

            panel_in_rgb: endpoint {

                remote-endpoint = <&rgb_out_panel>;

            };

        };

    };

};

panel: panel {

    compatible = "simple-panel";

    ......

    spi-sdi-gpios = <&gpio1 RK_PC7 GPIO_ACTIVE_HIGH>;



不同内核版本 SPI RGB 屏的参考配置如下：

kernel 4.19 及以下：arch/arm64/boot/dts/rockchip/rk3308-evb-ext-v10.dtsi
kernel 5.10 及以上：arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-k350c4516t.dts

4.3 RGB 接口  

rgb 驱动对应文件 drivers/gpu/drm/rockchip/rockchip_rgb.c，参考 dts 配置如下：

    spi-scl-gpios = <&gpio1 RK_PD0 GPIO_ACTIVE_HIGH>;

    spi-cs-gpios = <&gpio1 RK_PD1 GPIO_ACTIVE_HIGH>;

    ......

    rockchip,cmd-type = "spi";

    /* type:0 is cmd, 1 is data */

    panel-init-sequence = [

        /* type delay num val1 val2 val3 */

          00   00  01  e0

          ......

          00   78  01  11

          00   00  01  29

    ];

    panel-exit-sequence = [

        /* type delay num val1 val2 val3 */

        00   0a  01  28

        00   78  01  10

    ];

    ......

};

&rgb {

    status = "okay";

    pinctrl-0 = <&rgb666_pins>;

    ports {

        port@1 {

            reg = <1>;

            rgb_out_panel: endpoint {

                remote-endpoint = <&panel_in_rgb>;

            };

        };

    };

};

//VOP 1.0

&rgb_in_vop {

    status = "okay";

};

//VOP 2.0

&rgb_in_vp0 {

    status = "okay";

};
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对于 VOP 1.0 和 VOP 2.0 两种架构，RGB 接口相关节点的配置有所不同，参考配置：

VOP 1.0：arch/arm/boot/dts/rv1106-evb-ext-rgb-v10.dtsi。
VOP 2.0：可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-FX070-DHM11BOE-
A.dts。

pinctrl 配置需要根据实际的硬件连接确定，可以在 rkxxxx-pinctrl.dtsi/rvxxxx-pinctrl.dtsi 文件中找到

各种线序对应的定义。

4.4 MCU 接口  

mcu 接口及 mcu panel 驱动可以查看 drivers/gpu/drm/rockchip/rockchip_rgb.c，dts 配置与 rgb 接口基本相

同，额外需要加上切换 mcu 模式的标志和 timing，参考配置如下：

&rgb {

    status = "okay";

    rockchip,data-sync-bypass;

    pinctrl-names = "default";

    /*

     * rgb3x8_pins_m0/rgb3x8_pins_m1 for RGB3x8(8bit)

     * rgb565_pins for RGB565(16bit)

     */

    pinctrl-0 = <&rgb565_pins>;

    /*

     * 320x480 RGB/MCU screen K350C4516T

     */

    mcu_panel: mcu-panel {

        /*

         * MEDIA_BUS_FMT_RGB888_3X8  for RGB3x8(8bit)

         * MEDIA_BUS_FMT_RGB565_1X16 for RGB565(16bit)

         */

        bus-format = <MEDIA_BUS_FMT_RGB565_1X16>;

        backlight = <&backlight>;

        enable-gpios = <&gpio1 RK_PA3 GPIO_ACTIVE_LOW>;

        enable-delay-ms = <20>;

        reset-gpios = <&gpio1 RK_PA4 GPIO_ACTIVE_LOW>;

        reset-value = <0>;

        reset-delay-ms = <10>;

        prepare-delay-ms = <20>;

        unprepare-delay-ms = <20>;

        disable-delay-ms = <20>;

        init-delay-ms = <10>;

        width-mm = <217>;

        height-mm = <136>;

        // type:0 is cmd, 1 is data

        panel-init-sequence = [

            //type delay num val1 val2 val3

              ......

              01   00  01  55 /*

                               * interface pixel format:

                               * 66 for RGB3x8(8bit)

                               * 55 for RGB565(16bit)

                               */

              ......
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              01   00  01  a0 /*

                               * frame rate control:

                               * 70 (45hz) for RGB3x8(8bit)

                               * a0 (60hz) for RGB565(16bit)

                               */

              ......

              01   00  01  02 /*

                               * display function control:

                               * 32 for RGB

                               * 02 for MCU

                               */

              00   78  01  11

              00   32  01  29

              00   00  01  2c

        ];

        panel-exit-sequence = [

            //type delay num val1 val2 val3

              00   0a  01  28

              00   78  01  10

        ];

        display-timings {

            native-mode = <&kd050fwfba002_timing>;

            kd050fwfba002_timing: timing0 {

                /*

                 * 7840125  for frame rate 45Hz

                 * 10453500 for frame rate 60Hz

                 */

                clock-frequency = <10453500>;

                hactive = <320>;

                vactive = <480>;

                hback-porch = <10>;

                hfront-porch = <5>;

                vback-porch = <10>;

                vfront-porch = <5>;

                hsync-len = <10>;

                vsync-len = <10>;

                hsync-active = <0>;

                vsync-active = <0>;

                de-active = <0>;

                pixelclk-active = <1>;

            };

        };

        port {

                panel_in_rgb: endpoint {

                    remote-endpoint = <&rgb_out_panel>;

                };

            };

        };

        ports {

            rgb_out: port@1 {

                reg = <1>;

                #address-cells = <1>;

                #size-cells = <0>;



                rgb_out_panel: endpoint@0 {

                    reg = <0>;

                    remote-endpoint = <&panel_in_rgb>;

                };

            };

        };

    };

};

//VOP 1.0

&rgb_in_vop {

    status = "okay";

};

&vop {

    status = "okay";

    /*

     * Default config is as follows:

     *

     * mcu-pix-total = <9>;

     * mcu-cs-pst = <1>;

     * mcu-cs-pend = <8>;

     * mcu-rw-pst = <2>;

     * mcu-rw-pend = <5>;

     * mcu-hold-mode = <0>; // default set to 0

     *

     * To increase the frame rate, reduce all parameters because

     * the max dclk rate of mcu is 150M in rv1103/rv1106.

     */

    mcu-timing {

        mcu-pix-total = <5>;

        mcu-cs-pst = <1>;

        mcu-cs-pend = <4>;

        mcu-rw-pst = <2>;

        mcu-rw-pend = <3>;

        mcu-hold-mode = <0>; // default set to 0

    };

};

//VOP 2.0

&rgb_in_vp0 {

    status = "okay";

};

&vp0 {

    status = "okay";

    /*

     * Default config is as follows:

     *

     * mcu-pix-total = <9>;

     * mcu-cs-pst = <1>;

     * mcu-cs-pend = <8>;

     * mcu-rw-pst = <2>;

     * mcu-rw-pend = <5>;



对于 VOP 1.0 和 VOP 2.0 两种架构，MCU 接口相关节点的配置有所不同，参考配置：

VOP 1.0：arch/arm/boot/dts/rv1106-evb-ext-mcu-v10.dtsi。
VOP 2.0：可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-mcu-k350c4516t.dts。

驱动中会根据 rgb 节点下的 rockchip,data-sync-bypass 属性来切换 mcu 和 rgb 两种接口模式，不加该

属性默认为 rgb 接口，使能后则切换到 mcu 接口。

在 kernel-5.10 及以上的版本，mcu 接口对应的 panel 配置推荐放在 rgb 节点下，kernel-4.19 及更早

版本的内核，则作为独立的节点通过 simple-panel 驱动初始化。若将 simple-panel 驱动对应的 panel 
节点移植到 rgb 节点下需要注意：

确保 panel 节点命名为 mcu-panel，驱动中根据此去识别并解析 mcu panel 参数。

compatible 属性可以删除，无需配置。

mcu panel 通常需要通过初始化序列来初始化 display mode/pixel format/frame rate 等配置（具体由 
panel 的驱动 IC 确定），以及通过去初始化序列来确保 panel 关闭或进入 low-power 模式等。相关 
panel-init-sequence 和 panel-exit-sequence 属性的注意点如下：

序列由屏厂提供，通常需要从 c 文件转换为 DTS 配置。

序列每行从左往右依次为：指令类型cmd/data、延迟时间（ms）、数据长度（byte）、数据。

帧率的配置通常也在序列初始化阶段进行，需要跟《Panel 配置》中计算出的帧率相对

应。下面是示例驱动 IC 手册中的说明：

     * mcu-hold-mode = <0>; // default set to 0

     *

     * To increase the frame rate, reduce all parameters because

     * the max dclk rate of mcu is 150M in rk3562.

     */

    mcu-timing {

        mcu-pix-total = <5>;

        mcu-cs-pst = <1>;

        mcu-cs-pend = <4>;

        mcu-rw-pst = <2>;

        mcu-rw-pend = <3>;

        mcu-hold-mode = <0>; // default set to 0

    };

};



mcu-timing 用于配置 MCU 接口 normal mode 控制信号 CSN/WEN/REN 的时序，各属性分别对应下

图中各区间的时间。详细时序图及各区间的具体要求摘自示例 dts 配置对应 panel 模组的 
datasheet。下面将介绍 mcu-timing 中各属性及 display-timings 中 clock-frequency 属性的配置方法。

设变量 ptotal 为 mcu-timing 中 mcu-pix-total 的值，查表可知 panel datasheet 中要求 
MCU_PIX_TOTAL 区间时间不小于 tmin：

（panel datasheet 中 twc = 40 而驱动 ic datasheet twc = 30，取两者中的较大值）

对于示例 panel，同时支持 MEDIA_BUS_FMT_RGB888_3X8 和 
MEDIA_BUS_FMT_RGB565_1X16 两种 mode， Cycles Per Pixel 值（指将一个 pixel 的数据分

成 n 个 cycle 去发送，详见《Panel 配置》章节）设为 cpp，则可以计算出两者对应的理论帧

率上限（分别设为 frs-max 和 frp-max）：

因此，串行 rgb3x8 模式的帧率 frs = 45(Hz)，并行 rgb1x16 模式的帧率 frp = 60(Hz)。

（下文变量的下缀 s 表示 serial 串行，p 表示 parallel 并行，不再赘述）

同时也可算出两者 display-timings 配置中 clock-frequency 属性的值：

每个平台 mcu 接口的 dclk 都会有最大值限制，详见 drivers/gpu/drm/rockchip/rockchip_rgb.c 驱
动中的 mcu_max_dclk_rate 属性，通常为 150000000 Hz，驱动中相应的检查逻辑详见 
rockchip_rgb_encoder_mode_valid() 函数。

根据 dclkmax 和初始化序列中配置的帧率（设为变量 fr，值通常为 60Hz），可以算出 ptotal 

的最大值：



实际的 ptotal 取两者较小值 ptotal = 5，同时由时序图可确定 mcu-timing 的其他属性
值。

最后，还需要根据 datasheet 时序要求对计算出的实际值作校验。

MCU 接口的实际 dclk 并不是 display-timings 配置中 clock-frequency 属性的值，还和 mcu-
timing 中 mcu-pix-total 配置和 Cycles Per Pixel 值有关：

上述 dclk 值均未超过 dclkmax，同时可以计算出 MCU_PIX_TOTAL 区间实际时间：

上述 MCU_PIX_TOTAL 区间时间 t 均满足大于 40 ns 的要求。

4.4.1 MCU Bypass Timing 配置  

早期支持 MCU 接口的平台，如 RK3308 和 PX30 等， bypass mode 的 timing 配置跟 normal mode 是一致

的。在 RK3562 及之后的平台，IC 在设计上进行了优化，驱动中会有一组默认的 bypass mode timing 用
于满足大多数情况下 bypass mode 中 write/read 操作的需要，详见 
drivers/gpu/drm/rockchip/rockchip_vop_reg.c 和 drivers/gpu/drm/rockchip/rockchip_vop2_reg.c 中结构体 
vop_mcu_bypass_cfg 的相关定义，如：

如果默认的 bypass mode timing 无法满足应用场景的需要，支持在 dts 中指定（参考 
arch/arm/boot/dts/rk3506g-evb1-v10-mcu-k350c4516t.dts）：

static struct rockchip_mcu_timing rk3506_mcu_bypass_timing = {

    .mcu_pix_total = 26,

    .mcu_cs_pst = 3,

    .mcu_cs_pend = 24,

    .mcu_rw_pst = 6,

    .mcu_rw_pend = 15,

};

static const struct vop_mcu_bypass_cfg rk3506_mcu_bypass_cfg = {

    .timing = &rk3506_mcu_bypass_timing,

    .dclk_rate = 120000000,

};

&vop {

    mcu-timing {

        mcu-pix-total = <5>;

        mcu-cs-pst = <1>;

        mcu-cs-pend = <4>;

        mcu-rw-pst = <2>;

        mcu-rw-pend = <3>;

        mcu-hold-mode = <0>;

    };
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需要注意的是，bypass mode 中可能会涉及 MCU read 操作，而通常情况下，MCU read timing 的 
min 限制会大于 MCU write timing（可以参考前一章节的示例 datasheet），所以 mcu-bypass-
timing 通常会以 datasheet 中 read timing 的限制去计算和配置，以同时兼容 write/read 操作的时序要

求。

4.4.2 MCU Frame Write/Read  

在 MCU normal mode 下，可以通过 frame write/read 功能在帧间去进行主控和 panel 间的指令交互行为，

用于读取 panel 的状态寄存器、修改显示的起始位置等，通常用于静电压测或满足一些特定 panel 逐帧

更新显示起始位置的需要等场景。

使能该功能需要在 dts 中配置 panel-frame-sequence 序列，可以参考 arch/arm/boot/dts/rk3506g-evb1-v10-
mcu-k350c4516t.dts，示例如下：

帧间的 write/read 操作是在 drivers/gpu/drm/rockchip/rockchip_rgb.c 中实现的：

    mcu-bypass-timing {

        mcu-pix-total = <9>;

        mcu-cs-pst = <1>;

        mcu-cs-pend = <8>;

        mcu-rw-pst = <2>;

        mcu-rw-pend = <7>;

        mcu-hold-mode = <0>;

    };

};

&rgb {

    ......

    mcu_panel: mcu-panel {

        ......

        panel-frame-sequence = [

            //type delay num val1 val2 val3

              00   00  01  0a

              02   00  01  0a

              02   00  01  0a

              00   00  01  2c

        ];

        ......

    };

    ......

};

static void mcu_interframe_work_func(struct work_struct *work)

{

    struct rockchip_mcu_panel *mcu_panel =

        container_of(work, struct rockchip_mcu_panel, interframe_work);

    struct drm_panel *panel = &mcu_panel->base;

    struct drm_display_mode *mode = mcu_panel->desc->mode;

    struct drm_crtc *crtc = mcu_panel->encoder->crtc;

    u32 timeout = DIV_ROUND_CLOSEST_ULL(1000, drm_mode_vrefresh(mode));

    int ret;

    ret = rockchip_drm_wait_vact_end(crtc, timeout);
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如果有特定的应用需求，可以自行修改上述 work 的实现。

5. 调试流程  

1. 确认 rgb/mcu 接口各 pin 脚的硬件连接，需要注意每个平台 pin 脚的映射方式可能会有所不同，具

体看上文《硬件连接》章节。

2. 根据 panel datasheet 正确配置 enable/reset 控制引脚极性和上电时序，以及背光所用到的 pwm 通
道。若为 mcu 屏，还需要配置正确的初始化序列。

    if (ret) {

        DRM_DEV_ERROR(panel->dev, "wairt vact end timed out\n");

        return;

    }

    ret = rockchip_mcu_panel_xfer_mcu_cmd_seq(mcu_panel, mcu_panel->desc-

>frame_seq);

    if (ret) {

        DRM_DEV_ERROR(panel->dev, "failed to send frame cmds seq\n");

        return;

    }

    schedule_work(&mcu_panel->interframe_work);

};
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3. 确保背光已点亮的情况下，需再确认下 enable/reset 控制引脚是否为正确的电平，若实际测量仍非

预期值，则确认下 iomux 是否正确配置为 GPIO。

6. 常见问题  

6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现
象

 

答：可以尝试翻转下 dclk 时钟极性，对应 display-timings 下的 pixelclk-active 属性，可以改变 dclk 与 
data 信号的相对相位。

 

display-timings {

    native-mode = <&fx070_dhm11boe_timing>;

    fx070_dhm11boe_timing: timing0 {

        clock-frequency = <50000000>;

        hactive = <1024>;

        vactive = <600>;

        hback-porch = <140>;

        hfront-porch = <160>;

        vback-porch = <20>;

        vfront-porch = <20>;

        hsync-len = <20>;

        vsync-len = <2>;

        hsync-active = <0>;

        vsync-active = <0>;

        de-active = <0>;

        pixelclk-active = <0>; // 1 翻转，0 不翻转

    };

};
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