
Perf 使用说明

文件标识：RK-SM-YF-149

发布版本：V1.1.0

日期：2023-03-08

文件密级：□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按“现状”提供，瑞芯微电子股份有限公司（“本公司”，下同）不对本文档的任何陈述、信息和内

容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本

文档仅作为使用指导的参考。

由于产品版本升级或其他原因，本文档将可能在未经任何通知的情况下，不定期进行更新或修改。

商标声明

“Rockchip”、“瑞芯微”、“瑞芯”均为本公司的注册商标，归本公司所有。

本文档可能提及的其他所有注册商标或商标，由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴，非经本公司书面许可，任何单位和个人不得擅自摘抄、复制本文档内容的部分或全

部，并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址： 福建省福州市铜盘路软件园A区18号

网址： www.rock-chips.com

客户服务电话： +86-4007-700-590

客户服务传真： +86-591-83951833

客户服务邮箱： fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

芯片名称 内核版本

全系列 通用

版本号 作者 修改日期 修改说明

V1.0.0 陈谋春 2017-12-25 初始版本

V1.0.1 黄莹 2021-03-02 修改格式

V1.1.0 陈谋春 2023-03-08 增加EVENT格式说明

前言

概述

产品版本

读者对象

本文档（本指南）主要适用于以下工程师：

技术支持工程师

软件开发工程师

修订记录

目录

Perf 使用说明
1. 介绍

2. 功能

3. 在 Android 平台使用

3.1 准备工作

3.2 获取当前平台支持的事件

3.3 获取系统热点进程

3.4 获取进程的统计信息

3.5 收集进程的 profile 数据

3.6 分析 profile 数据

3.7 FlameGraph
4. 在 Linux 平台使用

5. Simpleperf 使用

6. perf event格式说明

1. 介绍

 Perf 是从 Linux 2.6 开始引入的一个 profiling 工具，通过访问包括 pmu 在内的软硬件性能计数器来分

析性能，支持多架构，是目前 Kernel 的主要性能检测手段，和 Kernel 代码一起发布，所以兼容性良

好。

2. 功能

 性能瓶颈如果要分类的话，大致可以分为几个大类：cpu／gpu／mem／storage，其中 gpu 用 Perf 没法

探测（这个目前比较好用的工具就只有 DS5），storage 只能用 tracepoint 来统计。总的说来，Perf 还是

侧重于分析 cpu 的性能，其他功能都不是很好用。

 其中比较常用的功能有几个：

record：收集 profile 数据

report：根据 profile 数据生成统计报告

$ perf

 usage: perf [--version] [--help] COMMAND [ARGS]

 The most commonly used perf commands are:

 annotate Read perf.data (created by perf record) and display annotated

code

 archive Create archive with object files with build-ids found in

perf.data file

 bench General framework for benchmark suites

 buildid-cache Manage <tt>build-id</tt> cache.

 buildid-list List the buildids in a perf.data file

 diff Read two perf.data files and display the differential profile

 inject Filter to augment the events stream with additional

information

 kmem Tool to trace/measure kernel memory(slab) properties

 kvm Tool to trace/measure kvm guest os

 list List all symbolic event types

 lock Analyze lock events

 probe Define new dynamic tracepoints

 record Run a command and record its profile into perf.data

 report Read perf.data (created by perf record) and display the

profile

 sched Tool to trace/measure scheduler properties (latencies)

 script Read perf.data (created by perf record) and display trace

output

 stat Run a command and gather performance counter statistics

 test Runs sanity tests.

 timechart Tool to visualize total system behavior during a workload

 top System profiling tool.

 See 'perf help COMMAND' for more information on a specific command.

af://n62
af://n64

stat：打印性能计数统计值

top：cpu 占有率实时统计

3. 在 Android 平台使用

3.1 准备工作

1. 首先按 Google 或芯片厂商的指导，构建一个完整的 Android 和 Kernel 的编译环境（如果不关心
Kernel 可以忽略）, 这样分析的时候符号表才能匹配上。

2. 编译 Perf

3. 准备符号文件

符号文件可以简单分为三类：

a. 平台 native 代码，这部分代码在编译的过程中会自动生成符号表，不需要我们干预

b. 平台 java 代码，对于 art 虚拟机来说（老版本的 dalvik 就不说了）最终的编译结果是 oat 文件，

这也是正规的 elf 文件，但是默认是不带 debug 信息。而新版本的 Android 也提供了自动生成 java
符号表的工具：

 c. 第三方 apk，如果是来自开源社区，则可以通过修改 makefile 和套用 Android 提供的 java 符号表工

具来生成符号表文件，然后拷贝到 Android 的符号表目录，==注意路径必须要和设备上的完全一致==，
可以通过 showmap 来获取设备上的路径。

 如果是商业的 apk，基本上已经做过混淆和 strip，除非开发商能配合，不然就没招。

4. 稍微新一点的 Android 都开起了 Kernel 的指针保护，这也会影响 Perf 的 record，所以需要临时关

闭保护：

~$. build/envsetup.sh

~$ lunch

~$ mmm external/linux-tools-perf

~$ adb root

~$ adb remount

~$ adb push perf /system/bin/

~$ adb shell sync

bash art/tools/symbolize.sh

~$ adb shell showmap apk_pid

38540 36296 36296 0 0 36216 80 0 3

/data/app/com.android.webview-2/lib/arm/libwebviewchromium.so

~$ cp libwebviewchromium.so

$ANDROID_PRODUCT_OUT/symbols/data/app/com.android.webview-

2/lib/arm/libwebviewchromium.so

 ~$ adb shell echo 0 > /proc/sys/kernel/kptr_restrict

af://n77
af://n78

5. 为了方便分析，一般会把 record 的数据 pull 到 host 端，在 host 端做分析，所以需要在设备端也安

装一下 Perf 工具，ubuntu 下安装命令如下：

6. 目前大部分的 Android 平台默认 Perf 功能都是打开的，所以一般不需要重新配置 Kernel，如果碰到
Perf 被关闭的情况，可以打开下面几个配置

3.2 获取当前平台支持的事件

实际上 Android 移植的 Perf 还不完整，tracepoint 的事件还不支持，例如：block 事件，所以如果想要抓

去一些内核子系统的性能信息就无法满足。Android 7.0 开始已经去掉了 Perf 工具，替代它的是

Simpleperf 1 工具，对 tracepoint 的支持比原来的好很多。

3.3 获取系统热点进程

~$ sudo apt-get install linux-tools-common

CONFIG_PERF_EVENTS=y

CONFIG_HW_PERF_EVENTS=y

rk3399:/data/local # ./perf list

List of pre-defined events (to be used in -e):

 cpu-cycles OR cycles [Hardware event]

 instructions [Hardware event]

 cache-references [Hardware event]

 cache-misses [Hardware event]

 branch-instructions OR branches [Hardware event]

 branch-misses [Hardware event]

 bus-cycles [Hardware event]

 cpu-clock [Software event]

 task-clock [Software event]

 page-faults OR faults [Software event]

 context-switches OR cs [Software event]

 cpu-migrations OR migrations [Software event]

 minor-faults [Software event]

 major-faults [Software event]

 alignment-faults [Software event]

 emulation-faults [Software event]

 dummy [Software event]

 L1-dcache-loads [Hardware cache event]

 L1-dcache-load-misses [Hardware cache event]

 L1-dcache-stores [Hardware cache event]

 L1-dcache-store-misses [Hardware cache event]

 L1-dcache-prefetch-misses [Hardware cache event]

 L1-icache-loads [Hardware cache event]

 L1-icache-load-misses [Hardware cache event]

 dTLB-load-misses [Hardware cache event]

 dTLB-store-misses [Hardware cache event]

 iTLB-load-misses [Hardware cache event]

 branch-loads [Hardware cache event]

 branch-load-misses [Hardware cache event]

af://n107
af://n111

Perf 中的 top 工具可以列出当前 cpu 的热点，还可以附加 Kernel 的符号表让信息可方便分析。命令如

下：

结果输出如下：

perf top 还可以只抓取指定进程的 pid，这一般是用在要优化某个程序是非常有用，命令如下：

perf top 还和系统的 top 一样可以指定刷新间隔 2 , 以上命令中的-d 选项就是这个功能，单位是秒。

3.4 获取进程的统计信息

perf stat 用于获取进程某个时间段内的 pmu 统计信息，命令如下：

ctrl+c 退出，或发信号让 Perf 进程退出都可以看到统计结果，例如：

一些明显的异常值会被标注为红色，例如上图是浏览器跑 fishtank 时候抓的统计信息，可以看到分支预

测的失败率非常高，结合 Perf 的热点分析工具可以进一步缩小范围找到分支预测失败的原因。

3.5 收集进程的 profile 数据

perf record 用于记录详细的 profile 数据，可以指定记录某个进程，还可以记录调用栈，命令如下：

也可以指定只抓取某个事件，事件列表可以通过上面的 perf list 得到，例如：

3.6 分析 profile 数据

perf report 用户分析抓到的 profile 数据，一般会先把数据发到 pc 上再分析，命令如下：

结果如图：

 上图有‘+’的地方可以用‘enter’键来遍历其调用关系。

$ adb shell mkdir -p /data/local/symbols

$ adb push vmlinux /data/local/symbols/vmlinux

$ adb shell

perf top --vmlinux=/path/to/vmlinux -d 2

perf top --vmlinux=/path/to/vmlinux -d 2 -p pid_of_prog

./perf stat -p 1415

perf record -g -p pid -o /data/local/perf.data

./perf record -e cache-misses -p 1415

adb pull /data/local/perf.data

perf report --objdump=aarch64-linux-android-objdump --vmlinux=/path/to/vmlinux -

-symfs ANDROID_PRODUCT_OUT/symbols -i perf.data

af://n120
af://n126
af://n131

3.7 FlameGraph

还可以通过一些脚本来方便分析调用关系，Flame Graph 就是一个比较好用的可视化分析工具。

下载：

生成图形：

4. 在 Linux 平台使用

arm 版本的 linux 发行版很多都没有提供 Perf 的包，所以需要自己手动编译一个 Perf，由于 Perf 依赖的
elfutils/binutils/zlib，所以实际上需要交叉编译四个东西。

首先编译 zlib，源码地址

==Note: prefix 要指向你的交叉编译工具的库目录==

编译 elfutils，我直接用的最新的版本的：

配置：

修改 Makefile： 删除 elfutils 根目录下 Makefile 里面的 libcpu

修改 backends/Makefile： 删除 backends/Makefile 中的 libebl_i386 和 libebl_x86_64 有关的所有东西

编译：

编译 binutils，这个要考虑和 gcc 版本的兼容，我用的 2.28.1 的版本，源代码地址

git clone https://github.com/brendangregg/FlameGraph.git

perf script --vmlinux=<kernel_folder>/vmlinux --symfs

$ANDROID_PRODUCT_OUT/symbols -i perf.data | FlameGraph/stackcollapse-perf.pl |

FlameGraph/flamegraph.pl > flamegraph.html

CC=aarch64-linux-gnu-gcc ./configure --

prefix=/home/cmc/workspace/linaro/toolchain/armlinux/aarch64/gcc-linaro-6.3.1-

2017.02-x86_64_aarch64-linux-gnu/aarch64-linux-gnu/libc/usr

make && make install

git clone git://sourceware.org/git/elfutils.git

cd /path/to/elfutils

mkdir build

./configure --enable-maintainer-mode --host=aarch64-linux-gnu --

prefix=/home/cmc/workspace/linaro/elfutils/build

make && make install

af://n137
af://n143
http://zlib.net/zlib-1.2.11.tar.gz
http://ftp.gnu.org/gnu/binutils/binutils-2.28.1.tar.bz2

编译 Perf，Perf 是 Kernel 一起发布的，所以直接下载一个 Kernel 就有了，但是交叉编译的话，需要改一

些东西：

修改 Makefile.perf，在前面加入：

编译

理论上在 arm 的 linux 发行版上直接编译 Perf 应该也是可以的，但是我没有试过。用法的话和 Android
是一样的，这里就不叙说了。

5. Simpleperf 使用

Android 7.0 开始提供了一个更完整的 Perf 版本 Simpleperf：

Simpleperf 相对之前 google 移植的 Perf 有以下改进

支持剖析 apk 中兼容的共享库，从 .gnu_debugdata 段读取符号表和调试信息

提供更方便分析的脚本

纯静态，所以和 Android 版本无关，只要指令集兼容都能跑

ndk r13 开始就提供了 Simpleperf 工具，所以也可以直接下载编译好的工具：

用法上和 Perf 是类似的，命令基本通用，可以直接参考上面 Perf 的命令。

Simpleperf 更多信息， 特别是调试 java 程序的方法，请参考官方手册

cd /path/to/binutils

mkdir build

../configure --target=aarch64-linux-gnu --host=aarch64-linux-gnu --

prefix=/home/cmc/workspace/linaro/binutils-2.28.1/build

make && make install

EXTRA_CFLAGS=-I/path/to/elfutils/build/inclue -L/path/to/elfutils/build/lib -

I/path/to/binutils/build/include -L/path/to/binutils/build/lib

WERROR=0

NO_LIBPERL=1

NO_LIBPYTHON=1

cd /path/to/kernel/tools/perf

make -f Makefile.perf perf ARCH=arm64

CROSS_COMPILE=/home/cmc/workspace/linaro/toolchain/armlinux/aarch64/gcc-linaro-

6.3.1-2017.02-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu- -j8

source build/envsetup.sh

lunch

mmma system/extras/simpleperf

git clone https://aosp.tuna.tsinghua.edu.cn/platform/prebuilts/simpleperf

af://n164
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md

6. perf event格式说明

 目前perf的event支持如下几种格式：

symbolic event：这是最常见的用法，即给出 perf list命令看到的完整名字，下面是一个例子：

raw event：用上面介绍的符号名有个缺陷，就是有一些非架构通用的event并不会出现在 perf

list里，即PMU驱动并不会把所有可支持的event全部符号化。这时候就需要用到raw event，其格

式是 rNNN，其中 NNN是event的16进制格式，event的16进制值可以在CPU手册的PMU章节找到，

下面是一个例子：

rk3399_Android11:/data/local/tmp # ./perf_aarch64 list pmu

 CCI_500/cci_rq_stall_addr_hazard/ [Kernel PMU event]

 CCI_500/cci_snoop_access_filter_bank_0_1/ [Kernel PMU event]

 CCI_500/cci_snoop_access_filter_bank_2_3/ [Kernel PMU event]

 CCI_500/cci_snoop_access_filter_bank_4_5/ [Kernel PMU event]

 CCI_500/cci_snoop_access_filter_bank_6_7/ [Kernel PMU event]

 CCI_500/cci_snoop_access_miss_filter_bank_0_1/ [Kernel PMU event]

 CCI_500/cci_snoop_access_miss_filter_bank_2_3/ [Kernel PMU event]

 CCI_500/cci_snoop_access_miss_filter_bank_4_5/ [Kernel PMU event]

 CCI_500/cci_snoop_access_miss_filter_bank_6_7/ [Kernel PMU event]

 CCI_500/cci_snoop_back_invalidation/ [Kernel PMU event]

 CCI_500/cci_snoop_cd_hs/ [Kernel PMU event]

 CCI_500/cci_snoop_rq_stall_tt_full/ [Kernel PMU event]

 CCI_500/cci_snoop_rq_tzmp1_prot/ [Kernel PMU event]

 CCI_500/cci_snoop_stall_alloc_busy/ [Kernel PMU event]

 CCI_500/cci_snoop_stall_tt_full/ [Kernel PMU event] # 例

如我想抓这个event

 CCI_500/cci_wrq/ [Kernel PMU event]

 CCI_500/mi_r_data_beat_any,source=?/ [Kernel PMU event]

 CCI_500/mi_r_data_stall,source=?/ [Kernel PMU event]

 CCI_500/mi_rrq_stall,source=?/ [Kernel PMU event]

 CCI_500/mi_w_data_beat_any,source=?/ [Kernel PMU event]

 CCI_500/mi_w_data_stall,source=?/ [Kernel PMU event]

 CCI_500/mi_w_resp_stall,source=?/ [Kernel PMU event]

 CCI_500/mi_wrq_stall,source=?/ [Kernel PMU event]

 CCI_500/si_r_data_stall,source=?/ [Kernel PMU event]

 CCI_500/si_r_stall_arbit,source=?/ [Kernel PMU event]

 CCI_500/si_rq_stall_ot_limit,source=?/ [Kernel PMU event]

rk3399_Android11:/data/local/tmp # ./perf_aarch64 stat -e

cci_snoop_stall_tt_full # 直接给出event的完整名字即可

^C

 Performance counter stats for 'system wide':

 29 cci_snoop_stall_tt_full

 4.512917370 seconds time elapsed

rk3399_Android11:/data/local/tmp # ./perf_aarch64 stat -e cpu_cycles ./mhz

1798 MHz, 0.5562 nanosec clock

 Performance counter stats for './mhz':

 1688410875 cpu_cycles

 (50.00%)

 0.944476845 seconds time elapsed

af://n179

带修饰的raw event或symbolic event：格式就是在上面两种event的后面加上 :X，其中X的意义如

下：

带格式参数的event：目前比较常见的PMU有三种：CPU、BUS、自定义，其中CPU就是对应我们

常见的Cortex-A5x/Cortex-A7x这些，BUS则对应CCI和DSU(还有CMN等BUS，我司SOC都没用到

过)，自定义则是vendor自己加的一些PMU event，每一个PMU设备都有自己的格式要求，这个可以

通过如下命令看到：

找到格式以后，就可以通过如下命令来指定具体event：

这种格式的好处是方便指定同一种event的不同实例，以CCI500为例，它有7个slave和6个master接
口都有同一套event list，用这种方式就很容易指定不同的接口，下面是一个例子：

 0.941888000 seconds user

 0.000000000 seconds sys

rk3399_Android11:/data/local/tmp # ./perf_aarch64 stat -e r11 ./mhz #

cpu_cycles对应的16进制值是0x11

1798 MHz, 0.5562 nanosec clock

 Performance counter stats for './mhz':

 1686673192 r11

 0.941898803 seconds time elapsed

 0.939286000 seconds user

 0.000000000 seconds sys

u - user-space counting

k - kernel counting

h - hypervisor counting

I - non idle counting

G - guest counting (in KVM guests)

H - host counting (not in KVM guests)

p - precise level

P - use maximum detected precise level

S - read sample value (PERF_SAMPLE_READ)

D - pin the event to the PMU

W - group is weak and will fallback to non-group if not schedulable

rk3399_Android11:/data/local/tmp # perf record -a -e cpu-cycles:p ... #

use ibs op counting cycles

rk3399_Android11:/data/local/tmp # perf record -a -e r11:p ... #

same as -e cpu-cycles:p

rk3399_Android11:/data/local/tmp # ls

/sys/bus/event_source/devices/CCI_500/format/

event source

上面的event和source就是cci 500这个device的参数名了

./perf_aarch64 stat -e CCI_500/event=0xa,source=0xf/ #

cci_snoop_stall_tt_full

./perf_aarch64 stat -e cci_snoop_stall_tt_full # 等同于上面命令

不同格式参数的含义，需要结合不同的PMU驱动和手册去看，这里就不具体叙述了。

./perf_aarch64 stat -e CCI_500/event=0x1a,source=0x0/ # slave 0的

si_w_data_stall

./perf_aarch64 stat -e CCI_500/event=0x1a,source=0x1/ # slave 1的

si_w_data_stall

1. 后面也会简单介绍一些Simpleperf↩

2. 这个是指top统计信息的刷新间隔而不是采样间隔↩

	Perf 使用说明
	介绍
	功能
	在 Android 平台使用
	准备工作
	获取当前平台支持的事件
	获取系统热点进程
	获取进程的统计信息
	收集进程的 profile 数据
	分析 profile 数据
	FlameGraph

	在 Linux 平台使用
	Simpleperf 使用
	perf event格式说明

