U-Boot v2017(next-dev) Developer Guide

ID: RK-KF-YF-45

Release Version: V2.34.0

Release Date: 2025-03-11

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

Overview

The document aims to guide readers on how to develop projects in U-Boot v2017(next-dev) version.

Chip feature support

Chipset
RV1108
RK3036
RK3126C
RK3128
RK3229
RK3288
RK3308
RK3326/PX30
RK3328
RK3368/PX5
RK3399
RK1808

RV1126/RV1109

RK3566/RK3568

RK3588

RV1106/RV1103

RK3528

RK3562

RK3576

RV1106B/RV1103B

RK3506

Target Reader

Miniloader + RKIMG u-boot

This document (this Guide) applies primarily to the following engineers:

Technical Support Engineer

Software Development Engineer

Revision History

SPL + FIT u-boot

Version

V1.00

V1.01

VI1.10

VI1.11

V1.12

VI1.13

V1.20

V1.21

V1.22

V1.23

V1.30

V1.31

V1.32

V1.33

V1.40

V1.41

V142

Author

Joseph
Chen

Jason
Zhu

Joseph
Chen

Jon Lin

Liang
Chen

Qing
Zhang

Joseph
Chen

Joseph
Chen

Hisping
Lin

Joseph
Chen
Jason
Zhu

Joseph
Chen

Jason
Zhu

Jason
Zhu

Jason
Zhu

Joseph
Chen

Jason
Zhu

Jason
Zhu

Date

2018-
02-28

2018-
06-22

2018-
07-23

2018-
07-26

2018-
08-08

2018-
09-20

2018-
11-06

2019-
01-21

2019-
03-05

2019-
03-25

2019-
03-25

2019-
04-23

2019-
05-14

2019-
05-29

2019-
06-20

2019-
08-21

2019-
08-27

Change Description

Initial version

fastboot description, OPTEE Client description

Document improvement, including updates and adjustments to most

chapters

Improved descriptions of Nand, SFC SPI Flash

Added descriptions of HW-ID

Added CLK instructions

Added/Updated defconfig/rktest/probe/interrupt/kernel dtb/uart/atags

Added dtbo/amp/dvfs wide temperature range/fdt command

information

Added descriptions of optee client

Added descriptions of kernel cmdline

reorganized and improved the documents, adjust contents to some

chapters

Added hardware description of CRYPTO

Complement kernel cmdline descriptions

Added MMC command section, AVB and A/B system description,

terminology descriptions

Added/updated:

memblk/sysmem/bi dram/statcktrace/hotkey/

fdt param/run_command/distro/led/reset/
env/wdt/spl/amp/crypto/

efuse/Android compatible/io-domain/bootflow/pack image

Added secure otp description

Added storage equipment/MTD description

Version Author Date Change Description

Jason 2019- o
V1.43 Added BCB description
Zhu 10-08
Jason 2019- . . L
V1.44 Added SPL driver and function support description
Zhu 10-15
Jason 2019- . . .
V145 Added instructions of SPL pinctrl
Zhu 11-15
Joseph 2020- . . .
v2.0.0 Version upgrade, reorganized formatting, contents,layouts etc.
Chen 05-02
Joseph 2020- .
V2.1.0 Added FIT solution
Chen 05-29
. 2020-
V2.1.1 Jon Lin 06.07 Added open source framework storage support note
Tao 2020-)
V2.1.2 Adjusted format
Huang 07-08
David 2020- o
V2.2.0 Added Ethernet network support description
Wu 07-09
Jeff 2020-
V2.3.0 Added TPL support note
Chen 07-13

Joseph 2020-

V2.4.0 Chen 09.23 Updated chapters of FIT and compiling & programming
Jason 2020-
V2.5.0 Updated FIT chapter
Zhu 12-28
Jason 2020- . .
V2.6.0 Added quick power-on chapter description
Zhu 12-30
Shawn 2021- L.
V2.7.0 . Added PCle support description
Lin 01-25
V2.8.0 Joseph 2021- Added description of U-Boot firmware format, storage capacity,
o Chen 03-12 AMP and RK 3568 support
Joseph 2021-
V2.9.0 Updated chapters of FIT and USB upgrade
Chen 04-13
Jason 2021-)
Vv2.10.0 Add step-by-step safe operation
Zhu 05-06
V2.11.0 Joseph 2021- FIT Chapter: added recovery.img packaging and signature, pss
o Chen 05-13 signature parameters
Jason 2021- .
V2.12.0 Updated efuse/OTP open region
Zhu 06-23
Qing 2021- . .
V2.13.0 Driver module chapter: Added booted CPU support SCMI interface

Zhang 07-21

Version

V2.14.0

V2.15.0

V2.16.0

V2.17.0

V2.18.0

V2.19.0

v2.20.0

V2.21.0

V2.22.0

V2.23.0

V2.24.0

V2.25.0

V2.26.0

V2.27.0

V2.28.0

Vv2.29.0

Vv2.30.0

V2.31.0

Author

Frank
Wang

Joseph
Chen

Joseph
Chen

Nico

Cheng

Joseph
Chen

Joseph
Chen

Jason
Zhu

Joseph
Chen

Joseph
Chen

Joseph
Chen

Jon Lin

Jon Lin

Jon Lin

Joseph
Chen

Jon Lin

Xuhui
Lin

Damon

Ding

Xuhui
Lin

Date

2021-
10-19

2021-
10-19

2021-
10-20

2021-
11-01

2021-
12-23

2022-
03-10

2022-
08-29

2023-
01-15

2023-
02-21

2023-
03-21

2023-
04-03

2023-
08-17

2023-
09-13

2024-
01-18

2024-
01-26

2024-
04-22

2024-
08-27

2024-
09-23

Change Description

Added USB support description

Updated AMP chapter

Added chapters of RNG, Thermal and FS

Added DFU support description

Chip support list: Add rk3588

Added ENVF support description

Added RV1106 OTP safe region

Updated and simplified "chip feature support" in the first page.
Updated and organized the differences of platforms to the chapter of

"platform definition"

Updated chapters of clock/otp
Added RK3562

Adjusted the sorting of Chapter 2, added storage type differentiation
and GPIO compatible interface description

Updated the chapter of PCle

Updated the chapter of SPI

Updated the chapter of PCle

Updated description of ENVF suitability and FIT firmware

replacement

Added SPI rate description

Chip support list: Added rk3576

Updated the chapter of Display

Chip support list: Added rv1103b, rv1106b, rk3506

Version

V2.31.1

V231.2

V2.32.0

V2.33.0

V2.34.0

Author

Owen
Chen

Jon Lin

Shawn
Lin

Joseph
Chen

Joseph
Chen

Date

2024-
11-21

2025-
01-06

2025-
02-06

2025-
02-26

2025-
03-11

Change Description

Fix typo

Fix typo

Add descriptions for new PCle and NVMe commands.

Updated the U-Boot Image section to add note for modifying uboot
backup.

Add HW-ID DTB auto pack description

Contents

U-Boot v2017(next-dev) Developer Guide
1. Chapter-1 Basic Introduction
1.1 Feature
1.2 Version
1.3 DM
1.4 Security
1.5 Boot-order
1.6 Driver-probe
1.7 Shell
1.8 Boot-command
1.9 TPL/SPL/U-Boot Proper
1.10 Build-output
1.11 Environment-variables
1.12 U-Boot DTS
1.13 Relocation
2. Chapter-2 RK Architecture
2.1 Preface
2.2 Platform Documentation
2.3 Platform Configuration
2.4 Boot Process
2.5 Memory Layout
2.6 Storage Layout
2.7 Aliases
2.8 AMP
2.9 Atags
2.10 Bidram/Sysmem
2.11 Fuse/OTP
2.12 Hotkey
2.13 Image Decompress
2.14 Image Kernel
2.15 Image U-Boot
2.16 Interrupt
2.17 Kernel-DTB
2.18 MMU Cache
2.19 Make.sh
2.20 HW-ID DTB
2.21 Partition Table
2.22 Relocation
2.23 Reset
2.24 Sd/Udisk
2.25 Stacktrace
2.26 TimeCost
2.27 TimeStamp
2.28 Vendor Storage
3. Chapter-3 Compile and Download
3.1 Preparations
3.2 Firmware Compiling
3.3 Firmware Downloading
3.4 Firmware Size
3.5 Special Packaging
4. Chapter-4 System Module
4.1 AArch32
4.2 ANDROID AB
4.2.1 Configuration Item
4.2.2 Partition Table

43
4.4

4.5

4.6

4.7

4.8

4.9

4.2.3 Notes

ANDROID BCB

AVB Secure Boot

4.4.1 Feature

4.4.2 Configuration

4.4.3 Reference

Cmdline

4.5.1 Data Sources

4.5.2 Data Meaning

DFU Update Firmware
DTBO/DTO

4.7.1 Principle Introduction
4.7.2 Enable DTO

4.7.3 DTO Result

ENV

4.8.1 Framework Support
4.8.2 Relevant Interface
4.8.3 Advanced Interface
4.8.4 Storage Location
4.8.5 General Options
4.8.6 Fw_printenv Tool
4.8.7 ENVF

Fastboot

4.9.1 Configuration Options
4.9.2 Trigger Method
4.9.3 Command Support
4.9.4 Command Details

4.10 FileSystem

4.10.1 Framework Support
4.10.2 Relevant Interface
4.10.3 Example of Command

4.11 HW-ID DTB

4.11.1 Design Principle
4.11.2 Hardware Reference
4.11.3 DTB Naming

4.11.4 DTB Packaging
4.11.5 Feature Enablement
4.11.6 Load Results

4.12 SD and USB Flash Drives

4.12.1 Mechanisms and Principles

4.12.2 Firmware Creation
4.12.3 SD Configuration
4.12.4 USB Configuration
4.12.5 Functions Taking Effect
4.12.6 Notes

5. Chapter-5 Driver Module

5.1

52

5.3

AMP

5.1.1 Ideas for Implementation
5.1.2 Framework Support
5.1.3 Feature Enablement
Charge

5.2.1 Framework Support
5.2.2 Packaging Pictures
5.2.3 DTS Configuration
5.2.4 System Hibernation
5.2.5 Replacement of Pictures
5.2.6 Charging Indicator
Clock

5.3.1 Framework Support
5.3.2 Relevant Interface
5.3.3 Clock Initialization
5.3.4 CPU Frequency Boost
5.3.5 Clock Tree
5.4 Crypto
5.4.1 Framework Support
5.4.2 Relevant Interface
5.4.3 DTS Configuration
5.5 Display
5.5.1 Framework Support
5.5.2 Relevant Interface
5.5.3 DTS Configuration
5.5.4 Defconfig
5.5.5 LOGO Partition

5.5.6 Analysis of Common Problems

5.6 Dvfs

5.6.1 Wide Temperature Strategy

5.6.2 Framework Support
5.6.3 Relevant Interface

5.6.4 Enable Wide Temperature
5.6.5 Wide Temperature Results

5.7 Efuse/Otp
5.7.1 Framework Support
5.7.2 Relevant Interface
5.7.3 DTS Configuration
5.7.4 Recall Example
5.7.5 Open Area

5.8 Ethernet
5.8.1 Framework Support
5.8.2 Relevant Interface
5.8.3 DTS Configuration
5.8.4 Usage Example

5.8.5 Network Troubleshooting

5.9 Gpio
5.9.1 Framework Support
5.9.2 DM Interface
5.9.3 Legacy Interface
5.10 Interrupt
5.10.1 Framework Support
5.10.2 Related Interface
5.11 I2C
5.11.1 Framework Support
5.11.2 Relevant Interface
5.12 10-Domain
5.12.1 Framework Support
5.12.2 Relevant Interface
5.13 Key
5.13.1 Framework Support
5.13.2 Relevant Interface
5.14 Led
5.14.1 Framework Support
5.14.2 Relevant Interface
5.14.3 DTS Node
5.15 Mtd
5.15.1 Framework Support
5.15.2 Relevant Interface
5.15.3 Usage Example

5.16 Mtd blk
5.16.1 Framework Support
5.16.2 Relevant Interface
5.17 Optee Client
5.17.1 Framework Support
5.17.2 Firmware Description

5.17.3 Interface Description

5.17.3.1 Suitability

5.17.3.2 Return Value

5.17.3.3 trusty base write security data
5.17.3.4 trusty_base_read_security data
5.17.3.5 trusty read vbootkey hash
5.17.3.6 trusty write vbootkey hash
5.17.3.7 trusty_read_vbootkey enable flag
5.17.3.8 trusty read attribute hash
5.17.3.9 trusty write attribute hash
5.17.3.10 trusty write oem otp key
5.17.3.11 trusty_oem otp_key is written
5.17.3.12 trusty set oem hr otp_read lock
5.17.3.13 trusty oem otp key cipher
5.17.3.14 trusty read oem ns otp
5.17.3.15 trusty write_oem_ns_otp

5.17.3.16 trusty write ta encryption key

5.17.3.17 trusty ta encryption key is written

5.17.3.18 trusty write_oem_encrypt_data

5.17.3.19 trusty oem encrypt data is written

5.17.3.20 trusty check security level flag

5.17.3.21 trusty write oem huk
5.17.4 Shared Memory
5.17.5 Test Command
5.17.6 Common Misprints
5.18 PCle
5.18.1 Development Notes
5.18.2 Framework Support
5.18.3 DTS Configuration
5.18.4 Usage Example
5.18.4.1 PCle CMD
5.18.42 NVMe
5.18.4.3 RK3588 RC dma
5.18.4.4 RK3568 RC dma
5.18.5 Analysis of Common Problems
5.19 Pinctrl
5.19.1 Framework Support
5.19.2 Relevant Interface
5.20 Pmic/Regulator
5.20.1 Framework Support
5.20.2 Relevant Interface
5.20.3 Init Voltage
5.20.4 Skip Initialization
5.21 Reset
5.21.1 Framework Support
5.21.2 Relervant Interface
5.21.3 DTS Configuration
5.22 Rng
5.22.1 Framework Support
5.22.2 Relevant Interface
5.22.3 DTS Configuration
523 Spi

5.23.1 Framework Support
5.23.2 Relevant Interface
5.23.3 DTS Configuration
5.23.4 Recall Example
5.23.5 Test Command

5.23.6 Analysis of Common Problems

5.24 Storage

5.24.1 Framework Support
5.24.2 Relevant Interface

5.24.3 Boot Storage Type Differentiation

5.24.4 DTS Configuration
5.24.5 Dual Storage Expansion

5.24.6 Analysis of Common Problems

5.25 Thermal

5.25.1 Framework Support
5.25.2 Relevant Interface
5.25.3 DTS Configuration

5.26 Uart

5.26.1 Individual Replacement
5.26.2 Global Replacement
5.26.3 Turn off Printing

5.26.4 Relevant Interface

5.27 USB

5.27.1 Framework Support
5.27.2 Board Configuration
5.27.3 DTS Configuration
5.27.4 Related Commands

5.28 Vendor Storage

5.28.1 Principle Overview
5.28.2 Framework Support
5.28.3 Relevant Interface
5.28.4 Functionality Self-test

5.29 Watchdog

5.29.1 Framework Support
5.29.2 Relevant Interface

6. Chapter-6 Advanced Principle

6.1

6.2

6.3

Kernel-DTB

6.1.1 Design Background

6.1.2 Live Device Tree

6.1.3 Mechanisms to Achieve

6.1.4 U-Boot

Kernel Pass Parameter

6.2.1 Cmdline

6.2.2 Memory Capacity

6.2.3 Other Ways

AB System

6.3.1 AB Data Format

6.3.2 AB Activation Mode
6.3.2.1 Successful-boot
6.3.2.2 Reset-retry
6.3.2.3 Mode Comparison

6.3.3 Boot Process

6.3.4 Upgrade and Exceptions

6.3.5 Validation Methods
6.3.5.1 Successful-boot
6.3.5.2 Reset-retry

6.3.6 References

6.4 AVB Secure Boot

6.4.1 References
6.4.2 Terminology
6.4.3 Brief Introduction
6.4.4 Encryption Example
6.4.5 AVB
6.4.5.1 AVB Characteristics
6.4.5.2 Key+tsignaturetcertificate
6.4.5.3 AVB Lock
6.4.5.4 AVB Unlock
6.4.5.5 Kernel Configuration
6.4.5.6 Android SDK
6.4.5.7 Cmdline New Content
6.4.6 Partition Reference
6.4.7 Fastboot Command
6.4.7.1 Quick Overview of Commands
6.4.7.2 Command Usage
6.4.8 Firmware Downloading
6.4.9 Pre-loader Verified
6.4.10 U-boot Verified
6.4.11 System Verification Boot
6.4.12 Linux AVB
6.4.12.1 Operating Workflow
6.4.12.2 Verification Process
6.5 SD Boot and Upgrade
6.5.1 Brief Introduction
6.5.2 SD Card Category
6.5.2.1 Regular SD Card
6.5.2.2 SD Upgrade Card
6.5.2.3 SD Boot Card
6.5.2.4 SD Repair Card
6.5.3 Firmware Logo
6.5.4 Boot Process
6.5.4.1 Pre-loader Boot
6.5.4.2 U-Boot Boot
6.5.4.3 Recovery and PCBA
6.5.5 Notes
7. Chapter-7 Configuration Trimming
8. Chapter-8 Debugging Tools
8.1 DEBUG
8.2 Initcall
8.3 10 Command
8.4 IOMEM Command
8.5 I2C Command
8.6 GPIO Command
8.7 FDT Command
8.8 MMC Command
8.9 TimeStamp
8.10 DM Tree
8.11 DM Uclass
8.12 Stacktrace.sh
8.13 System Crash
8.14 CRC Check
8.15 HASH Check
8.16 Modify DDR Capacity
8.17 Jump Information
8.18 Boot Information
8.18.1 RK Firmware
8.18.2 Distro Firmware

8.18.3 No Valid Firmware
9. Chapter-9 Test Case
10. Chapter-10 SPL
10.1 Firmware Boot
10.1.1 FIT Firmware

10.1.2
10.1.3

RKFW Firmware
Storage Priority

10.2 Compilation and Packaging

10.2.1
10.2.2

Code Compilation

Firmware Packaging

10.3 System Module

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7

GPT

A/B System
Boot Priority
ATAGS
Kernel Boot
Pinctrl

Secure Boot

10.4 Driver Module

10.4.1
10.4.2
10.4.3
10.4.4
10.4.5

MMC

MTD Block
OTP

Crypto

Uart

11. Chapter-11 TPL
11.1 Compiling and Packaging
11.1.1 Configuration
11.1.2 Compiling
11.1.3 Packaging
12. Chapter-12 FIT
12.1 Preface
12.2 Brief Introduction
12.2.1 Basic Introduction
12.2.2 Example Introduction
12.2.3 ITB Structure
12.3 Platform Configuration
12.3.1
12.3.2
12.33

Chip Support
Code Configuration
Mirror File
12.3.4 ITSFile
12.3.5 Related Tools
12.4 Non-secure Boot
12.4.1 uboot.img
12.4.2 boot.img
12.5 Secure Boot
12.5.1 Principle
12.5.1.1
12.5.1.2
12.5.1.3
12.5.1.4 Signature Storage
12.5.1.5 Anti-rollback
12.5.2 Preliminary Preparation
12.52.1 Key
12.5.2.2 Configuration
12.5.2.3 Firmware
12.5.3 Compiling and Packaging
12.5.4 Checking Principles
12.5.5 Booting Information

Checking Process
Key Storage
Key Usage

13.

14.

16.

17.

12.6 Remote Signature
12.6.1 Implementation Idea
12.6.2 Signed Data
12.6.3 Detailed Steps
12.6.4 Other Solutions

12.7 Firmware Unpacking

12.8 Firmware Replacement

12.9 Safety Checking Step-by-Step

Chapter-13 Fast Boot

13.1 Chip Support

13.2 Storage Support

13.3 bootrom Support

13.4 U-Boot SPL Support

13.5 MCU Configuration

13.6 Kernel Support

13.7 Fast Boot Process

Chapter-14 Platform Definition

14.1 ATF/OPTEE

14.2 Clock

14.3 Defconfig

144 DFU

14.5 Optee

. Chapter-15 Remarks

15.1 SDK Compeatibility
15.1.1 androidboot.mode Compatibility
15.1.2 MISC Compatibility

Chapter-16 Tools

16.1 trust merger

16.2 boot merger

16.3 loaderimage

16.4 resource tool

16.5 mkimage

16.6 stacktrace.sh

16.7 mkbootimg

16.8 unpack bootimg

16.9 repack-bootimg

16.10 pack resource.sh

16.11 buildman

16.12 patman

Chapter-17 Appendix

17.1 Download address
17.1.1 RKBIN
17.1.2 GCC

17.2 Terminology

1. Chapter-1 Basic Introduction

1.1 Feature

v2017(next-dev) is the version developed by RK from the official v2017.09 version of U-Boot, and it supports

all the mainstream chips sold by RK. The main features supported are:

¢ Supports RK Android firmware booting;

¢ Supports Android AOSP firmware booting;

¢ Supports Linux Distro firmware booting;

¢ Supports both Rockchip miniloader and SPL/TPL pre-loader boot;

e Supports LVDS, EDP, MIPI, HDMI, CVBS, RGB and other display devices.

¢ Support eMMC, Nand Flash, SPI Nand flash, SPI NOR flash, SD card, USB flash disk and other storage
devices;

e Supports FAT, EXT2, and EXT4 file systems;

e Supports GPT, RK parameter partition tables;

¢ Supports power-on LOGO, charging animation, low power management, power management;

e Supports I12C, PMIC, CHARGE, FUEL GUAGE, USB, GPIO, PWM, GMAC, eMMC, NAND, Interrupt,
etc;

¢ Supports vendor storage saving user data and configuration.

¢ Supports RockUSB and Google Fastboot USB gadget to write eMMC;

e Supports mass storage, ethernet, HID and other USB devices;

¢ Supports dynamic selection of kernel DTB by hardware state;

1.2 Version

There are two versions of RK's U-Boot including v2014 and v2017, internally named rkdevelop and next-dev,

respectively. Two methods are available for the user to confirm whether the current U-Boot is the v2017.
Method 1: Check whether or not the Makefile version number is 2017.
#

Chapter-1 SPDX-License-Identifier: GPL-2.0+
#

VERSION = 2017
PATCHLEVEL = 09

SUBLEVEL =
EXTRAVERSION =

Method 2: Check whether or not the first official line of the boot print is U-Boot 2017.09.

U-Boot 2017.09-01818-g11818ff-dirty (Nov 14 2019 - 11:11:47 +0800)

af://n424
af://n425
af://n456

Project open source: v2017 has been open source and regularly updated to Github: https://github.com/rock

chip-linux/u-boot

kernel version: v2017 requires RK kernel version >= 4.4

1.3 DM

DM (Driver Model) is U-Boot's standard device-driver development model, which is very similar to the kernel's
device-driver model. v2017 also follows the DM framework to develop various functional modules. Hence, it is
recommended that readers read the DM documentation first to understand the principles and implementation of
the DM architecture.

README:

./doc/driver-model/README. txt

Terminology

Uclass - a group of devices which operate in the same way. A uclass provides
a way of accessing individual devices within the group, but always
using the same interface. For example a GPIO uclass provides
operations for get/set value. An I2C uclass may have 10 I2C ports,

4 with one driver, and 6 with another.

Driver - some code which talks to a peripheral and presents a higher-level

interface to it.
Device - an instance of a driver, tied to a particular port or peripheral.

Brief summary:

e uclass : Device driver model
e driver

e device

Core code:

./drivers/core/

1.4 Security

U-Boot belongs to Non-Secure World in ARM TrustZone security system, it can't directly access any secure
resources (e.g. secure memory, secure otp, efuse), and needs to use trust to access them indirectly. U-Boot

operates in the following mode on RK platforms.

32-bit platform: Non-Secure PL1
64-bit platform: EL2(Always be Non-Secure)

1.5 Boot-order

https://github.com/rockchip-linux/u-boot
af://n465
af://n480
af://n483

The RK platform currently has two sets of startup methods, depending on whether the front-level Loader code is

open source or not:

// Front loader closed source
BOOTROM => ddr bin => Miniloader => TRUST => U-BOOT => KERNEL
// Front loader open source

BOOTROM => TPL => SPL => TRUST => U-BOOT => KERNEL

TPL is equivalent to ddr bin, SPL is equivalent to miniloader. the combination of TPL+SPL realizes the same

function as RK closed source ddr.bin+miniloader, and can be replaced by each other.

1.6 Driver-probe

Although U-Boot introduces the device-driver development model, it will not automatically initiate the probe of
the registered device-driver as kernel does during the initialization phase. The probe of the driver must be

initiated with the user's active call. The interface is as follows:

int uclass_get device(enum uclass id id, int index, struct udevice **devp);
int uclass_get device by name(enum uclass_id id, const char *name,
struct udevice **devp) ;
int uclass get device by seg(enum uclass id id, int seq, struct udevice **devp);
int uclass_get device by of offset(enum uclass_id id, int node, struct udevice
**devp) ;
int uclass get device by ofnode(enum uclass id id, ofnode node, struct udevice
**devp) ;
int uclass _get device by phandle id(enum uclass id id,
int phandle id, struct udevice **devp);
int uclass get device by phandle(enum uclass id id,
struct udevice *parent, struct udevice **devp);
int uclass_get device by driver (enum uclass_id id,
const struct driver *drv, struct udevice
**devp) ;

int uclass _get device tail(struct udevice *dev, int ret, struct udevice **devp);

Core calls to the above interfaces:

int device probe (struct udevice *dev); // Users are recommended to understand

the internal implementation!

1.7 Shell

U-Boot's Shell is called CLI(Command Line Interface), users can customize CMD according to their needs. In

addition to through the Shell, CMD can be called as code through run_command() and run_command _list()".

int run command(const char *cmd, int flag)

int run command list(const char *cmd, int len, int flag)

1.8 Boot-command

af://n487
af://n492
af://n495

U-Boot eventually boots the kernel with the boot command defined by CONFIG BOOTCOMMAND . The
CONFIG PREBOOT pre-boot command is also executed before the execution of CONFIG BOOTCMD , which is

usually defined as empty.

1.9 TPL/SPL/U-Boot Proper

By using different compilation conditions, U-Boot can, with the same set of code, get three different functional
Loaders, TPL/SPL/U-Boot-proper.

TPL (Tiny Program Loader) and SPL (Secondary Program Loader) are loaders at an earlier stage than U-Boot:

e TPL: Running in sram, responsible for completing ddr initialization;

e SPL: Running in ddr, responsible for completing the lowlevel initialization of the system, and loading the

later firmware (trust.img and uboot.img);

¢ U-Boot proper: Running in the ddr, we usually call it “U-Boot”, responsible for booting the kernel;

Note: The term U-Boot proper is used to distinguish it from SPL. For the sake of convention, all

references to U-Boot proper in subsequent chapters will be abbreviated to U-Boot.

Booting process:
BOOTROM => TPL(ddr bin) => SPL(miniloader) => TRUST => U-BOOT => KERNEL

For more, please refer to doc/README.TPL and doc/README.SPL

1.10 Build-output

U-Boot will generate some important files in the root directory after successful compilation of U-Boot(TPL/SPL

generated files are only available when TPL/SPL compilation is supported):

// U-Boot phase

./u-boot .map // MAP table file

./u-boot.sym // SYMBOL table file

./u-boot // ELF files, kernel-like vmlinux (important!)
./u-boot.dtb // u-boot's own dtb file

./u-boot.bin // Executable binary file that will be packaged as
uboot.img for programming

// SPL phase

./spl/u-boot-spl.map // MAP table file

./spl/u-boot-spl.sym // SYMBOL table file

./spl/u-boot-spl // ELF files, kernel-like vmlinux (important!)
./spl/u-boot-spl.dtb // spl's own dtb file

./spl/u-boot-spl.bin // Executable binary file that will be packaged into a
loader for programming

// TPL phase

./tpl/u-boot-tpl.map // MAP table file
./tpl/u-boot-tpl.sym // SYMBOL table file
./tpl/u-boot-tpl // ELF files, kernel-like vmlinux (important!)

./tpl/u-boot-tpl.dtb // tpl's own dtb file

af://n497
af://n513

./tpl/u-boot-tpl.bin // Executable binary file that will be packaged into a

loader for programming

1.11 Environment-variables

ENV (Environment-Variables) is a global data management and delivery method supported by U-Boot, the

principle is to build a HASH mapping table, and manage user data as “key-data” table entries.

EVN is usually used to define platform configuration parameters such as firmware load address, network
configuration (ipaddr, serverip), bootcmd, bootargs, which can be printed out by the user using the printenv

command at the command line.

e Users can choose whether to save ENV data to local storage
e ENV data is restricted to U-Boot only and cannot be passed directly to the kernel or parsed by the kernel.
e The user layer can access ENV data through the fw_printenv tool provided by U-Boot

The storage address and size of ENV data on the RK platform are defined as follows (unit: byte):

if ARCH ROCKCHIP

config ENV_OFFSET
hex
depends on !ENV IS IN UBI
depends on !ENV IS NOWHERE
default 0x3£8000
help

Offset from the start of the device (or partition)

config ENV_SIZE
hex
default 0x8000
help
Size of the environment storage area

endif

1.12 U-Boot DTS

U-Boot has its own DTS file, and the corresponding DTB file is automatically generated when compiling, and

then being added at the end of u-boot.bin. File directory:

arch/arm/dts/

Which DTS file to use for each platform is specified by CONFIG DEFAULT DEVICE TREE in defconfig.

1.13 Relocation

Usually, during the boot phase, U-Boot is loaded into the low DRAM address by the previous bootloader, and
after completing the board_f.c process, U-Boot will relocate itself to a reserved address at the end of the memory
(called as relocation, the location depends on the memory layout of the U-Boot). After completing the relocation,

the board_r.c process continues. This can be recognized by the boot message:

af://n516
af://n528
af://n532

U-Boot 2017.09-gabfdlc5e3d-210202-dirty #cjh (Mar 08 2021 - 16:57:31 +0800)

Model: Rockchip RK3568 Evaluation Board

PreSerial: 2, raw, 0xfe660000

DRAM: 2 GiB

Sysmem: init

// relocate to ddr where first address offset 0x7d304000. If the offset is 0, no

relocation is executed.

Relocation Offset: 7d304000, fdt: 7b9f8ed8
Using default environment

2. Chapter-2 RK Architecture

This chapter introduces users to some important basics, features, etc. on the RK platform.

2.1 Preface

All references to enable/disable CONFIG _ configuration item throughout the text refer to enable or disable it by

means of make menuconfig.
Except for some special CONFIG _ configuration items that are defined directly in the .h file.

Do not enable/disable the CONFIG _ configuration item directly in defconfig to avoid .config not taking effect

due to configuration dependencies defined in Kconfig.

Please use make savedefconfig when updating defconfig.

2.2 Platform Documentation

Platform catalog:

./arch/arm/include/asm/arch-rockchip/
./arch/arm/mach-rockchip/
./board/rockchip/

./include/configs/
defconfig catalog:
./configs/
Core public board-level documentation!

./arch/arm/mach-rockchip/board.c

2.3 Platform Configuration

configuration file

Configuration items, parameters for each platforms are typically located in the following locations:

af://n538
af://n540
af://n546
af://n553

//Public documents for each platform (developers usually don't need to modify
them)
./arch/arm/mach-rockchip/Kconfig

./include/configs/rockchip-common.h

// Unique to each platform, here taking RK3399 as an example
./include/configs/rk3399 common.h

./include/configs/evb rk3399.h

./configs/rk3399 defconfig

Configuration note:

The following describes the important configurations defined in rockchip-common.h, rkxxx_common.h and

evb_rkxxx.h.

e RKIMG DET BOOTDEYV: Storage type detection command, detects the current storage device type in a
scan-by-scan fashion;

e RKIMG BOOTCOMMAND: Kernel boot command;

e ENV_MEM LAYOUT SETTINGS: Firmware loading addresses, including ramdisk/fdt/kernel;

e PARTS DEFAULT: Default GPT partition table, used in some cases when no valid GPT partition table is
found in the store

e ROCKCHIP_DEVICE_SETTINGS: Peripheral-related commands, mainly specifying stdio (which
typically includes display module boost commands);

¢ BOOTENYV: Booting device detection commands when booting linux in distro mode

e CONFIG SYS MALLOC LEN: The size of malloc memory pool;

e CONFIG_SYS _TEXT BASE: Starting address for U-Boot operation;

¢ CONFIG_BOOTCOMMAND: Boot command, typically defined as RKIMG_BOOTCOMMAND;

e CONFIG_PREBOOT: Pre-boot command, executed before CONFIG BOOTCOMMAND;

¢ CONFIG_SYS MMC_ENV_DEV: when MMC is used as ENV storage medium, dev num is usually 0

The following is an example of the RK3399:

/include/configs/rockchip-common.h:

#define RKIMG DET BOOTDEV \ // Dynamically detects the
current storage type
"rkimg bootdev=" \
"if mmc dev 1 && rkimgtest mmc 1; then " \
"setenv devtype mmc; setenv devnum 1; echo Boot from SDcard;" \
"elif mmc dev 0; then " \
"setenv devtype mmc; setenv devnum 0;" \
"elif rknand dev 0; then " \
"setenv devtype rknand; setenv devnum 0;" \
"elif rksfc dev 0; then " \
"setenv devtype rksfc; setenv devnum 0;" \
"fi; \O"

#define RKIMG BOOTCOMMAND \

"boot android ${devtype} ${devnum};" \ // Booting android format
firmware

"bootrkp;" \ // Booting RK format
firmware

"run distro bootcmd;" // Booting the linux

firmware

Jinclude/configs/rk3399 common.h:

#ifndef CONFIG_SPL_BUILD
#define ENV_MEM LAYOUT SETTINGS \ // Firmware loading address
"scriptaddr=0x00500000\0" \
"pxefile addr r=0x00600000\0" \
"fdt addr r=0x01£00000\0" \
"kernel addr r=0x02080000\0" \
"ramdisk addr r=0x0a200000\0"

#include <config distro bootcmd.h>
#define CONFIG EXTRA ENV_SETTINGS \
ENV_MEM LAYOUT SETTINGS \
"partitions=" PARTS DEFAULT \ // Default GPT partition table
ROCKCHIP DEVICE SETTINGS \
RKIMG_DET BOOTDEV \

BOOTENV // Booting device detection command
when booting linux
#endif
#define CONFIG_ PREBOOT // Pre-boot commands that are executed
before CONFIG BOOTCOMMAND

#ifndef CONFIG SPL_BUILD
#undef CONFIG BOOTCOMMAND
#define CONFIG_BOOTCOMMAND RKIMG BOOTCOMMAND // Define boot command (set to
RKIMG BOOTCOMMAND)
#endif
#define ROCKCHIP DEVICE SETTINGS \ // Enable display module
"stdout=serial,vidconsole\0" \

"stderr=serial,vidconsole\0"

2.4 Boot Process

The U-Boot boot process for the RK platform is as follows, only some of the important steps are listed

start.s
// assembly environment

=> IRQ/FIQ/lowlevel/vbar/errata/cpl5/gic // ARM architecture related

lowlevel initialization
=> main
=> stack // Prepare the stack needed for
the C environment

// [Phase 1] Initialization of the C environment, initiating a series of
function calls
=> board init f: init sequence f[]

initf malloc

af://n589

arch cpu init
SoCs]
serial_init
dram init
information]
reserve_mmu
ddr to a
reserve video
reserve uboot
reserve malloc
reserve global data
reserve fdt
reserve stacks
dram init banksize
sysmem_init
setup reloc
Boot

// Compilation environment

=> relocate code

implement relocation

// [Lowlevel initialization of

// Serial port initialization

// [Getting ddr capacity

// Reserve memory from the end of

lower address.

//Determine the address of the U-
itself to be relocated

// Compilation of U-Boot code to

// [Phase 2] C environment initialization, initiating a series of

function calls

=> board init r: init sequence r[]

initr caches
initr malloc
bidram initr
sysmem initr
initr of live
initr dm
board init

core part]

board debug uart init

configuration
init kernel dtb
clks_probe

regulators enable boot on

io domain init
set armclk rate
on demand by the platform)

dvfs init

frequency modulation and voltage control

rk board init
specific platform
console init r

board late init

rockchip set ethaddr

rockchip set serialno

setup boot mode

command

modes, recovery

charge display

rockchip show logo

soc_clk dump

rk board late init

specific platform
run_main_loop

execute the boot command]

// Enable MMU and I/Dcache

// Initialize of live
// Initializing the dm framework

// [Platform initialization, the

// Serial port iomux, clk

// [Switch to kernel dtb]!

// Initialize system frequency
// Initialize system power

// io-domain initialization

// __weak, ARM boost (implemented
// wide-temperature chip

// __weak, implemented by each
// [Platform late initialization]
// Setting the mac address

// Setting serialno

// Parsing the “reboot xxx”

// Recognizes key and loader

// U-Boot charge

// Display boot logo

// print clk tree

// __weak, implemented by each

// [Enter command line mode, or

2.5 Memory Layout

The U-Boot is loaded by the predecessor loader to the CONFIG SyS TEXT BASE address, and initializes by
probing the total memory capacity of the current system, which is assumed to be a maximum of 4GB available
on 32-bit platforms (but doesn't affect the kernel's recognition of the capacity), and all of the memory is assumed
to be available on 64-bit platforms. Then, through a series of reserve_xxx() interfaces, it reserves the memory it
needs from the end of the memory forward, and finally relocates itself to a certain reserved space. The overall

memory usage layout is as follows, using ARM64 as an example (the regular case):

Start Addr
Name Size Usage Secure
Offset
ARM Trusted
ATF 0x00000000 M . Yes
Firmware
SHM 0x00100000 1M SHM, Pstore No
Refer to the TEE
OP-TEE 0x08400000 2M~30M Development Yes
Manual
FDT fdt_addr r - kernel dtb No
KERNEL kernel addr r - kernel image No
RAMDISK ramdisk addr r - ramdisk image No
FASTBOOT - - Fastboot buffer No
SP - - stack No
FDT - sizeof(dtb) U-Boot dtb No
GD - sizeof(gd) - No
Board - sizeof(bd_t) - No
MALLOC - CONFIG_SYS MALLOC_LEN System heap space No
U-Boot - sizeof(mon) u-boot image No
Video FB - fb size 32M No
RAM_TOP-
TLB Table 64K - 32K MMU Page Table No

The start Addr Offset column in the above table indicates the address offset based on the DDR

base;

Fastboot address and size are determined by configuration: CONFIG_FASTBOOT BUF_ADDR,
CONFIG_FASTBOOT BUF _SIZE.

¢ Video FB/U-Boot/Malloc/Board/Gd/Fdt/Sp is allocated from top to bottom based on actual requirement

size;;

af://n592

e 64-bit platforms: ATF is required for ARMvS8, OP-TEE is optional; 32-bit platforms: only OP-TEE
available

e kernel fdt/kernel/ramdisk is the address of the firmware that U-Boot needs to load, defined by
ENV_MEM LAYOUT SETTINGS ;

¢ The address and size of the buffer needed for Fastboot functionality is defined in defconfig;

e The space occupied by OP-TEE needs to be based on the actual demand, the maximum is 30M; where OP-
TEE on RK1808/RK3308 is placed at the low address, not at 0x8400000;

2.6 Storage Layout

The storage layout of the RK linux program is as follows, and the Android program is basically the same except

that the definition of boot/rootfs is different from that of the linux platform, which can be used for reference.

Partition Start Sector Number of Sectors Partition Size Requirements
MBR 0 00000000 |1 00000001 | 512 0.5KB
Primary GPT 1 00000001 |63 0000003F | 32256 31.5KB
loader1 64 00000040 |T7104 00001bc0 | 4096000 2.5MEBE | preloader (miniloader or U-Eoot SPL)
Vendor Storage 7168 00001c00 | 512 00000200 | 262144 256KB | SN, MAC and efc.
Reserved Space 7680 00001e00 | 384 00000180 | 196608 192KB | Not used
reservedt 8064 0000180 | 128 00000080 | 65536 B4KB |legacy DRM key
U-Boot ENV 8128 00001fc0 |64 00000040 | 32768 32KB
reserved2 8192 00002000 |8192 00002000 | 4194304 4MB legacy parameter
loader2 16384 00004000 (8192 00002000 |4194304 4MB U-Boot or UEFI
trust 24576 00006000 |8192 00002000 |4194304 |4MB |trusted-os like ATF, OP-TEE
boot (bootable must be set) | 32768 00008000 |229376 |00038000 |117440512|112MB | kernel, dtb, extlinux.conf, ramdisk
rootfs 262144 | 00040000 |- - - -MB Linux system
Secondary GPT 16777183 | 0OFFFFDF | 33 00000021 | 16896 16.5KB

Picture reference: http://opensource.rock-chips.com/wiki_Partitions

2.7 Aliases

There are some special aliases in U-Boot that differ from those defined in the kernel DTS.

eMMC/SD are collectively referred to as mmc devices in U-Boot, using numbers 0 and 1 for differentiation; SD

has a higher boot priority than eMMC.

mmcl: indicates sd

mmcO: indicates emmc

2.8 AMP

U-Boot for RK platform supports AMP (Asymmetric Multi-Processing) firmware boot.

2.9 Atags

af://n717
http://opensource.rock-chips.com/wiki_Partitions
af://n722
af://n726
af://n730

The booting process of the RK platform:
BOOTROM => ddr-bin => Miniloader => TRUST => U-BOOT => KERNEL

Some configuration information can be passed between the various levels of firmware on the RK platform via
the ATAGS mechanism.

¢ Scope of application: ddr-bin, miniloader, trust, U-Boot, excluding Kernel
e Passed content: serial port configuration, storage type, memory occupied by ATF and OP-TEE, ddr

capacity, etc.

Code implementation:

./arch/arm/include/asm/arch-rockchip/rk atags.h

./arch/arm/mach-rockchip/rk_atags.c

2.10 Bidram/Sysmem

U-Boot can use all the memory of the system, and reserve the memory needed by the system from the high
address to the low address, after reserving the memory, there is usually still a large memory space left. U-Boot
does not have a mechanism to manage this space, so the RK platform introduces the mechanism of bidram,

sysmem memory block to manage this block of memory.

Thus, together with U-Boot's existing malloc management mechanism, the RK platform manages all system

memory through sysmem + bidram + malloc, preventing problems such as memory conflicts.

low-addr
high-addr
L i |semsmmme e |

| no management | system used

¢ bidram: Manage memory blocks that are unavailable at u-boot and kernel stage and need to be eliminated,
e.g. space occupied by ATF and OP-TEE.

e sysmem: Manages blocks of memory visible and available to the kernel. For example, the space occupied
by fdt, ramdisk, kernel, and fastboot.

Related Code:
./lib/sysmemn.c
./lib/bidram.c

./include/memblk.h

./arch/arm/mach-rockchip/memblk.c

The following table shows the memory management information for bidram and sysmem, which is dumped

when a block is initialized or allocated abnormally. The following is a brief description.

bidram memory information table:

bidram dump all:

af://n741

// <1> Here shows the total capacity information of the ddr that U-Boot got
from the previous loader, which is 2GB in total
memory.rgn[0] .addr = 0x00000000 - 0x80000000 (size: 0x80000000)

memory.total = 0x80000000 (2048 MiB. 0 KiB)

// <2> This shows information about the memory that has been set aside for

each firmware, which is unvisible to the kernel.

reserved.rgn[0] .name = "ATEF"

.addr = 0x00000000 - 0x00100000 (size: 0x00100000)
reserved.rgn[1l] .name = "SHM"

.addr = 0x00100000 - 0x00200000 (size: 0x00100000)
reserved.rgn[2] .name = "OP-TEE"

.addr = 0x08400000 - 0x0a200000 (size: 0x01e00000)
reserved.total = 0x02000000 (32 MiB. 0 KiB)

// <3> Here is how the core algorithm organizes the reserved information for
<2> above, e.g., it will merge adjacent blocks

LMB.reserved[0] .addr 0x00000000 - 0x00200000 (size: 0x00200000)

LMB.reserved[1l].addr 0x08400000 - 0x0a200000 (size: 0x01e00000)

reserved.core.total = 0x02000000 (32 MiB. 0 KiB)

sysmem memory information table:

sysmem dump all:
// <1> Here is the total amount of memory that sysmem can manage, i.e., the

amount of available ddr, excluding bidram <3>, visible to the kernel.

memory.rgn[0] .addr = 0x00200000 - 0x08400000 (size: 0x08200000)
memory.rgn[l].addr = 0x0a200000 - 0x80000000 (size: 0x75e00000)
memory.total = 0x7e000000 (2016 MiB. 0 KiB)

// <2> This shows information about the memory blocks allocated away by each

firmware
allocated.rgn[0] .name = "U-Boot"
.addr = 0x71dd6140 - 0x80000000 (size: 0x0e229ecO0)
allocated.rgn[l] .name = "STACK" <Overflow!> // Indicates stack
overflow
.addr = 0x71bd6140 - 0x71dd6140 (size: 0x00200000)
allocated.rgn[2] .name = "EFDT"
.addr = 0x08300000 - 0x08316204 (size: 0x00016204)
allocated.rgn[3] .name = "KERNEL" <Overflow!> // Indicates a memory
block overflow
.addr = 0x00280000 - 0x014ce204 (size: 0x0124e204)
allocated.rgn[4] .name = "RAMDISK"

.addr = 0x0a200000 - 0x0a3e6804 (size: 0x001e6804)
// <3> size of malloc r/f
malloc r: 192 MiB, malloc f: 16 KiB

allocated.total = 0x0f874acc (248 MiB. 466 KiB)

// <4> Here's the information that the core algorithm organizes for the

above <2>, showing information about occupied memory blocks

LMB.reserved[0] .addr 0x00280000 - 0x014ce204 (size: 0x0124e204)
LMB.reserved[1l] .addr 0x08300000 - 0x08316204 (size: 0x00016204)
LMB.reserved[2] .addr 0x0a200000 - 0x0a3e6804 (size: 0x001e6804)
LMB.reserved[3] .addr = 0x71bd6140 - 0x80000000 (size: 0x0e4d29ec0)
reserved.core.total = 0x0f874acc (248 MiB. 466 KiB)

The following are some common error printouts. When these exceptions occur, analyze them in conjunction with

the bidram and sysmem dump memory information above.

//The memory expected to be requested is already occupied by other firmware and
there is memory overlap. This indicates that the current system's memory block
usage is not planned properly

Sysmem Error: "KERNEL" (0x00200000 - 0x02200000) alloc is overlap with existence

"RAMDISK" (0x00100000 - 0x01200000)

// Memory expected to be requested could not be requested for some specific
reason (analyze sysmem and bidram messages)

Sysmem Error: Failed to alloc "KERNEL" expect at 0x00200000 - 0x02200000 but at
0x00400000 - 0x0420000

// sysmem manages space starting at 0x200000, so it simply can't claim space
starting at 0x100000

Sysmem Error: Failed to alloc "KERNEL" at 0x00100000 - 0x02200000
// Duplicate request for “RAMDISK” memory block.
Sysmem Error: Failed to double alloc for existence "RAMDISK"

2.11 Fuse/OTP

The RK platform enables secure-boot mode (without the need of downloading efuse/otp) by signing the
firmware for easy debugging of secure-boot. Miniloader will append a cmdline to the kernel via U-Boot to

indicate whether the current efuse/otp enabling has been downloaded or not:

* "fuse.programmed=1": Secure-boot is enabled, efuse/otp is already downloaded.
e "fuse.programmed=0" : Secure-boot is enbaled and efuse/otp has not been downloaded.
e No fuse.programmed in cmdline: secure-boot is not enabled (Miniloader doesn't pass), or Miniloader is

too old to support passing.

U-Boot needs to include the following commits:

83c9bd4 board: rockchip: pass fuse programmed state to kernel

2.12 Hotkey

RK platform provides serial port key combination to trigger some events for debugging and downloading (if you

can't trigger it, please try again; invalid when secure-boot is enabled). when booting, long pressing :

e ctrl+c: Enter U-Boot command line mode;
o ctrl+d: Enter loader mode;

e ctrl+b: Enter maskrom mode

af://n759
af://n770

e ctrl+f: Enter fastboot mode;

e ctrl+m: Print bidram/system information
e ctrl+i: Enabling kernel initcall debug

e ctrl+p: Print cmdline information

e ctrl+s: “Starting kernel...” After that, enter U-Boot command line;

2.13 Image Decompress

¢ 64-bit machines usually download Image, which is loaded by U-Boot to the target running address. U-
Boot for RK platforms can also support decompression of 64-bit LZ4 compressed kernels. However, to

achieve that, the user must enable:
CONFIG Lz4=y

The pre and post decompression addresses of the 64-bit LZ4 compression kernel must be defined in the

rkxxx_common.h file for each platform:

#define ENV_MEM LAYOUT SETTINGS \
"scriptaddr=0x00500000\0" \
"pxefile addr r=0x00600000\0" \

"fdt addr r=0x01£00000\0" \
"kernel addr no bl32 r=0x00280000\0" \

"kernel addr r=0x00680000\0" \ // Address of the LZ4
decompression kernel

"kernel addr c=0x02480000\0" \ // Address of the LZ4 compression
kernel

"ramdisk addr r=0x04000000\0"

¢ 32-bit machines usually download zImage, which is loaded by U-Boot to the kernel addr r address,
and then self-decompressed by the kernel. U-Boot for RK platforms can also support Image format, which

is loaded by U-Boot to the target runtime address.

Currently the rkxxx common.h file for each platform only defines the kernel addr r butnot the
kernel addr c address. Users don't need to change the configuration, cause U-Boot will determine

whether it is currently zImage or Image, and process these 2 addresses dynamically. But user must disable:
CONFIG_SKIP RELOCATE UBOOT
32-bit kernel loading address definition.

#define ENV_MEM LAYOUT SETTINGS \
"scriptaddr=0x60000000\0" \
"pxefile addr r=0x60100000\0" \
"fdt addr r=0x68300000\0" \
"kernel addr r=0x62008000\0" \ // zImage compressed kernel address
"ramdisk addr r=0x6a200000\0"

2.14 Image Kernel

U-Boot for the RK platform supports three formats of kernel firmware boot:

af://n789
af://n802

¢ RK format

The magic of the image file is “KRNL”:

00000000 4B 52 4E 4C 42 97 OF 00 1F 8B 08 00 00 00 00 0O
KRNL. .V.ouennn..
00000010 00 03 A4 BC 0B 78 53 55 D6 37 BE 4F 4E D2 A4 69
..... xSU.7.0N. .1

kernel.img = kernel,
resource.img = dtb + logo.bmp + logo_kernel.bmp;
boot.img = ramdisk;
recovery.img = ramdisk(for recovery) ;
¢ Android format

The magic of the image file is “ANDROID!”:

00000000 41 4E 44 52 4F 49 44 21 24 10 74 00 00 80 40 60
ANDROID!S.t...@"
00000010 F9 31 CD 00 00 00 00 62 00 00 00 00O 00 00 FO 60

boot.img = kernel + ramdisk+ resource + <dtb>;

recovery.img = kernel + ramdisk(for recovery) + resource + <recovery_dtbo> + <dtb>;

Notes: recovery_dtbo: images added only since Android-9.0; dtb: images added only since Android-
10.0;

¢ Distro format

One common firmware packaging format for open source Linux is to package ramdisk, dtb, and kernel into
an image. This image usually exists in a sertain file system format, such as ext2, ext4, fat, etc. U-Boot

needs to access its contents through the file system. For more information, please refer to:

./doc/README.distro
./include/config distro defaults.h

./include/config distro bootcmd.h

e Boot priority: android > rk > distro, each type of firmware has a corresponding boot command, and the
three commands will be executed one by one in order of priority until the firmware is booted up. If all

commands fail, it stays in U-Boot command line mode.

Boot Priority Definition:

#define RKIMG BOOTCOMMAND \
"boot android ${devtype} ${devnum};" \
"bootrkp;" \

"run distro bootcmd;"

2.15 Image U-Boot

af://n829

There are two firmware formats for U-Boot and trust for RK platforms: the RK and FIT formats are booted by
Miniloader and SPL respectively. The current SDK released by Rockchip takes RV1126 as the seperating point,
platforms after RV1126 use FIT format, and platforms before RV1126 use RK format.

e RK format

Rockchip's customized firmware formats, U-Boot and trust are packaged as uboot.img and trust.img

respectively. as follows:

The uboot.img and 32-bit trust.img images have the magic “LOADER”.

00000000 4c 4f 41 44 45 52 20 20 00 00 00 00 00 OO 0O 00 |LOADER

00000010 00 00 20 00 78 dO Of 00 06 99 c2 a8 20 00 00 00 |.. .X...o.o...
-
00000020 09 8a b0 el 89 7a c2 89 0d e8 da ef 86 3e f2 24

The 64-bit trust.img image file has the magic “BL3X".

00000000 42 4c 33 58 00 01 00 00 23 00 OO0 00 £8 00 04 0O
|IBL3X....#...0.n. \
00000010 00 0O 00 00 OO OO OO 00O 00 OO OO OO 00 00 0O 0O

e FIT format

The U-Boot mainline supports an extremely flexible firmware format, with U-Boot, trust and mcu

firmware packaged together as uboot.img.

The image file of uboot.img has the magic “d0 0d fe ed”, with the command fdtdump uboot.img you can

view the firmware header.

00000000 dO Od fe ed 00 00 06 00 00 00 00 58 00 00 04 c4
lccoccoocooo Xooool
00000010 00 0O 00 28 00 00 0O 11 00 00 OO 10 00 00 OO OO |...

For more references: please check FIT section.

e Backup Packaging

Usually, uboot.img and trust.img are packaged with multiple backups in order to cope with the possibility

of firmware corruption due to power failure during the OTA upgrade process and so on.

Firmware Size per copy Number of copies
RK uboot.img IMB 4
RK 32-bit trust.img IMB 4
RK 64-bit trust.img 2MB 2
FIT uboot.img 2MB 2

As you can see from the table above, both uboot.img and trust.img are 4MB in size by default.

Methods for modifying the size for per copy and number of copies

o RK format: add parameters to the compiling command. For example: -sz-uboot 2048 1 and -sz-
trust 4096 1, means uboot.img single copy size is 2M, with 1 copy packaged; trust.img single
copy size is 4M, with 1 copy packaged.

o FIT Format: change the configuration parameters: CONFIG_SPL FIT IMAGE KB and
CONFIG_SPL_FIT IMAGE MULTIPLE, which indicate the single copy size (in KB) and the
number of packaged copies, respectively.

Note: SPL determines the location and number of backup items in uboot.img according to
CONFIG_SPL FIT IMAGE KB or CONFIG SPL FIT IMAGE MULTIPLE.If the developer
changes these two options, it must append the parameter --spl-new to make.sh so that the
generated Loader will contain the u-boo-spl.bin generated by the real-time compilation.Otherwise,
the u-boo-spl.bin submitted in rkbin is packed by default (the default is to find the backup items in
uboot.img as per 2MB*2).

2.16 Interrupt

U-Boot's native code does not have full support for interrupts, and the RK platform improves this feature to
support GIC-V2 and GIC-V3.

Please refer to Driver Modules section for more.

2.17 Kernel-DTB

Native U-Boot only supports the use of U-Boot's own DTB, RK platform adds support for kernel DTB
mechanism, i.e., using kernel DTB to initialize peripherals. The main purpose is to be compatible with peripheral

board-level differences, such as: power, clock, display and so on.
Role of the two:

e U-Boot DTB: Responsible for initializing devices such as devices for storaging and printing serial ports;

e Kernel DTB: Responsible for initializing devices other than devices for storaging and printing serial ports;

When U-Boot initializes, it first uses the U-Boot DTB to complete the storage and print serial port initialization,
and then loads the Kernel DTB from the storage and turns to this DTB to continue to initialize the rest of the

peripherals.The code for the Kerne DTB is implemented in the function: init_kernel dtb().

Developers generally do not need to modify the U-Boot DTB (unless the print serial port is replaced), the
defconfig used in the SDKs released for each platform has the kernel DTB mechanism enabled. So usually for

peripheral DTS modification, user should modify kernel DTB.
About U-Boot DTB:

DTS directory:
./arch/arm/dts/

After enabling the kernel DTB mechanism: the compilation phase will filter out the nodes with u-boot, dm-
pre-reloc and u-boot,dm-spl attributes from the U-Boot DTS, and on top of that, it will exclude the
property specified by the CONFIG _OF SPL REMOVE PROPS from defconfig, and finally generate the u-
boot.dtb file and append it to the end of the u-boot.bin.

Users can check the DTB content by fdtdump command after compiling U-Boot:

af://n879
af://n883

fdtdump ./u-boot.dtb | less

For more references: please check Advanced Principles section

2.18 MMU Cache

RK platform enables MMU, Dcache and Icache by default, MMU adopts 1:1 linear mapping, and Dcache adopts

write-back policy. Related interfaces:

// Icache interface:
void icache enable (void);
void icache disable (void);

void invalidate icache all(void);

// Dcache interface:

void dcache disable (void);

void dcache enable(void);

void flush dcache range(unsigned long start, unsigned long stop):;

void flush cache(unsigned long start, unsigned long size);

void flush dcache all(void);

void invalidate dcache range (unsigned long start, unsigned long stop);
void invalidate dcache all(void);

// Remap the Dcache attributes of a block of memory intervals

void mmu set region dcache behaviour (phys addr t start, size t size,

enum dcache option option)

2.19 Make.sh

make.sh is both a compilation script and a packaging and debugging tool, can be used to disassemble and

package firmware.

// help command
./make.sh --help

// Functions of packaging firmware

./make.sh trust // packaging trust

./make.sh loader // packaging loader

./make.sh trust <ini-file> // Specify ini file when packaging trust

./make.sh loader <ini-file> // Specify ini file when packaging loader

./make.sh spl // Replace ddr and miniloader with tpl+spl, and
packaged as loader

./make.sh spl-s // Replace miniloader with spl, packaged as loader
./make.sh itb // Packaging u-boot.itb (64-bit platforms only

support packaging ATF and U-Boot, OP-TEE does not)

./make.sh env // Generate fw printenv tool

// Disassembly Functions

./make.sh elf-[x] [type] // Disassembly: Use the -[x] parameter, [type] to
select whether to disassemble SPL or TPL.

./make.sh elf // Disassemble the u-boot file, using the -D
parameter by default.

af://n901
af://n904

./make.sh elf-S // Disassemble the u-boot file, using the -S

parameter

./make.sh elf-d // Disassemble the u-boot file, using the -d
parameter

./make.sh elf spl // Disassemble the tpl/u-boot-tpl file, using the -

D parameter by default.

./make.sh elf tpl // Disassemble the spl/u-boot-tpl file, use the -D
parameter by default

./make.sh <addr> // Requires the function name and code location

corresponding to addr

./make.sh map // open u-boot.map
./make.sh sym // open u-boot.sym
2.20 HW-ID DTB

The U-Boot of the RK platform can filter the DTBs that match the hardware state from multiple DTB files to be
loaded based on the hardware state of the GPIOs or ADCs.

For more reference: please check the System Modules section.

2.21 Partition Table

U-Boot for RK platform supports two kinds of partition table: RK parameter format (old) and standard GPT
format (new), when there are two kinds of partition table on the machine, the GPT partition table is preferred.
No matter it is GPT format or RK parameter formatr, when making downloading, the partition table file used is

called parameter.txt, users can confirm whether it is GPT or not through the “TYPE: GPT” attribute.

FIRMWARE VER:8.1

MACHINE MODEL:RK3399

MACHINE ID:007

MANUFACTURER: RK3399

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3399

CHECK_MASK: 0x80

PWR HLD: 0,0,A,0,1

TYPE: GPT // Partition table in GPT format is under using,
otherwise it is RK paramter format

CMDLINE :mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot) ,0x00002000@0x00006000 (t
rust), 0

x00002000@0x00008000 (misc), 0x00008000@0x0000a000 (resource),0x00010000@0x00012000
(kernel

) ,0x00010000@0x00022000 (boot), 0x00020000@0x00032000 (recovery),0x00038000@0x00052
000 (bac

kup) , 0x00002000@0x0008a000 (security),0x00100000@0x0008c000 (cache),0x00500000@0x0
018c000

(system), 0x00008000@0x0068c000 (metadata), 0x00100000@0x00694000 (vendor) ,0x0010000
0@0x007

96000 (oem) , 0x00000400@0x00896000 (frp),-@0x00896400 (userdata:grow)

2.22 Relocation

af://n907
af://n911
af://n914

U-Boot will relocate itself to an address at the end of memory after completing the board_f.c process, depending

on the U-Boot memory layout. RK's U-Boot default:

e 32-bit platforms: CONFIG SKIP RELOCATE UBOOT=y does not have relocation, otherwise it does.

e 64-bit platforms have relocation.

2.23 Reset

e U-Boot reset, like kernel, eventually needs to be done in trust.
¢ U-Boot command line mode can support the same reboot xxx commands as the kernel (depending on the

definition in the kernel dts)

2.24 Sd/Udisk

U-Boot for RK platform supports firmware booting or upgrading from SD/U disk. Among them:

¢ SD booting/upgrading is supported from the bootrom level onwards

¢ USB flash drive booting/upgrading is supported from the U-Boot level onwards

For more reference: please check System Modules section.

2.25 Stacktrace

Native U-Boot does not support call stack traceback mechanism, however, RK platform added the function.

Currently there are a total of 3 ways to trigger call stack printing:

¢ Automatically triggered when the system crashes;
e User-initiated call to dump_stack();
* Enable CONFIG ROCKCHIP DEBUGGER ;

For example, system abort:

"Synchronous Abort" handler, esr 0x96000010

// abort reason, pc, lr, sp

* Reason: Exception from a Data abort, from current exception level
w 12C = 000000000028£430
* LR = 00000000002608d0
w i = 00000000£3dceb30

// Highlighting PC and LR
Call trace:
PC: [< 0028£430 >]
LR: [< 002608d0 >]

// Function call relationships
Stack:

[< 0028£f430 >]

[< 0028da24 >]

[< 00211600 >]

af://n921
af://n927
af://n936

[< 00211700
[< 00202910
[< 00202aa8
[< 0027698c
[< 002151ec
[< 00201b2c

V V. V V V V

// Instructs the user to convert the above call stack information
Copy info from "Call trace..." to a file(eg. dump.txt), and run

command in your U-Boot project: ./scripts/stacktrace.sh dump.txt

According to the above instructions, the user copies the call stack information to any txt file (such as dump.txt)

and executes the following command:

cjh@Ubuntu:~/u-boot$./scripts/stacktrace.sh dump.txt

// Symbol Table Sources
SYMBOL File: ./u-boot.sym

// Highlight the code locations corresponding to PC and LR
Call trace:

PC: [< 0028f430 >] strncpy+0xc/0x20 ./1lib/string.c:98

LR: [< 002608d0 >] on serialno+0x10/0xlc ./drivers/usb/gadget/g dnl.c:217

// Converted to get the real function name

Stack:

[< 0028f430 >] strncpy+0xc/0x20
[< 0028da24 >] hdelete r+0xcc/0xf0
[< 00211600 >] _do_env_set.isra.0+0x70/0x1b8
[< 002117b0 >] env_set+0x3c/0x58
[< 00202910 >] rockchip set serialno+0x54/0x140
[< 00202aa8 >] board late init+0x5c/0xa0
[< 0027698c >] initcall run 1ist+0x58/0x94
[< 00215lec >] board init r+0x20/0x24
[< 00201b2c >] relocation return+0x4/0x0

Notes:

e There are three types of conversion commands, please follow the instructions after the call stack printout to

determine which one to use

./scripts/stacktrace.sh ./dump.txt // Parsing Call Stack Information
from U-Boot

./scripts/stacktrace.sh ./dump.txt tpl // Parsing call stack information
from tpl

./scripts/stacktrace.sh ./dump.txt spl // Parsing call stack information
from spl

When executing this command, the firmware on the current machine must match the current

code environment to be meaningful!Otherwise you will get an incorrect conversion.

2.26 TimeCost

The end of U-Boot initialization prints the total elapsed time for this phase by default:

af://n956

Booting Android Image at 0x02007800

Kernel load addr 0x02008000 size 8062 KiB

Flattened Device Tree blob at 08300000
Booting using the fdt blob at 0x8300000
XIP Kernel Image ... OK
'reserved-memory' dma-unusable@fe000000: addr=£fe000000 size=1000000
'reserved-memory' ramoops@00000000: addr=8000000 size=£0000
Using Device Tree in place at 08300000, end 0831l6edl

Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)

Adding bank: 0x09200000 - 0x80000000 (size: 0x76e00000)

Total: 812.613 ms //Total elapsed time for the U-Boot phase

Starting kernel

The user can open debug () and DEBUG in lib/initcall.c to get the following process timings, the

function addresses can be obtained with the help of . /make.sh for disassembly.

U-Boot 2017.09-00019-g9%b55ed0-dirty (Dec 26 2019 - 14:45:33 +0800)

5212 us # 137.868 ms
initcall: 0020delf

1 us # 142.636 ms
initcall: 0020e015
Model: Evb-RK3288

1646 us # 149. 48 ms
initcall: 0020ddé61l
PreSerial: 2

1213 us # 155. 28 ms

initcall: 0020ddcd
DRAM: # 606 us # 160.401 ms
initcall: 00203719

// The following 187 us is the time consumed by initcall: 00203719
call

// The following 165.355 ms is the U-Boot boot time until
initcall: 00203719

187 us # 165.355 ms
initcall: 0020de81

2 us # 169.938 ms
initcall: 0020dc29

1 us # 174.703 ms
initcall: 0020dc3d

1 us # 179.469 ms
initcall: 0020ddad

2 us # 184.237 ms
initcall: 0020de27

1 us # 189 2 ms

2.27 TimeStamp

Kernel's print message has a timestamp by default, which is convenient for users to pay attention to the time.U-
Boot's print message doesn't have a timestamp by default, users can enable the configuration
CONFIG BOOTSTAGE PRINTF TIMESTAMP if necessary.

af://n961

[0.324987] U-Boot 2017.09-00019-g9%055ed0-dirty (Dec 26 2019 - 14:31:44
+0800)

[0.327215] Model: Evb-RK3288

[0.330039] PreSerial: 2

[0.332526] DRAM: 2 GiB

[0.3306454] Relocation Offset: 00000000, fdt: 7be22c38
[0.346981] Using default environment

[0.351075] dwmmc@f£f0c0000: 1, dwmmc@££f0£f0000: O
[0.394136] Bootdev (atags): mmc 0

[0.394272] MMCO: High Speed, 52Mhz

[0.395276] PartType: EFI

[0.400347] Android 9.0, Build 2019.6

[0.402070] boot mode: None

[0.405213] Found DTB in boot part

[0.407833] DTB: rk-kernel.dtb

[0.418211] ANDROID: fdt overlay OK

[0.432128] I2c0 speed: 400000Hz

[0.435916] PMIC: RK808

[0.439113] vdd_arm 1100000 uv

[0.444148] vdd _gpu 1100000 uv

[1.005018] ## Booting Android Image at 0x02007800

[1.009917] Kernel load addr 0x02008000 size 8062 KiB

[1.014981] ## Flattened Device Tree blob at 08300000

[1.019970] Booting using the fdt blob at 0x8300000

[1.025185] XIP Kernel Image ... OK

[1.035469] 'reserved-memory' dma-unusable@fe000000: addr=£fe000000
s1ze=1000000

[1.037448] 'reserved-memory' ramoops@00000000: addr=8000000 size=f0000
[1.044412] Using Device Tree in place at 08300000, end 08316edl
[1.064363] Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)
[1.064976] Adding bank: 0x09200000 - 0x80000000 (size: 0x76e00000)
[1.075259] Total: 812.613 ms

[1.075279] Starting kernel

Notes: The timestamp prints relative time, not absolute time.

2.28 Vendor Storage

The U-Boot of RK platform provides a Vendor storage area for users to save SN, MAC and other information.

The storage offset is as follows (see vendor.c for details):

#define EMMC VENDOR PART OFFSET (1024 * 7)

/* —-- Spi Nand/SLC/MLC large capacity case define --- */
#define NAND VENDOR PART OFFSET 0

/* --— Spi/Spi Nand/SLC/MLC small capacity case define --- */
#define FLASH VENDOR PART OFFSET 8

af://n966

Users generally do not need to concern themselves with and modify storage offsets, only with the read and write

interfaces:

int vendor storage read(ulé id, void *pbuf, ulé size)

int vendor storage write(ulé id, void *pbuf, ulé6 size)

3. Chapter-3 Compile and Download

3.1 Preparations

Download rkbin

Rkbin is a toolkit repository for RK's non-open-source bin, script, and packaging tools. U-Boot compiles
from this repository and indexes the relevant files to package the loader, trust, and uboot firmware. Rkbin

and the U-Boot project must be kept in the same directory-level.
rkbin downloading: please refer to the Appendix.

Download GCC

The GCC compiler uses gece-linaro-6.3.1 and is placed in the prebuilts directory. The prebuilts and U-Boot

shall maintain a sibling directory relationship.

// 32-bit:
prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-x86_ 64 arm-linux-
gnueabihf

// 64-bit:
prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-x86 64 aarch64-

linux-gnu/

GCC downloading: please refer to the Appendix section

select defconfig: Please refer to the Platform Definition section.

config fragment introduction

Due to the differentiated needs of products on a single platform, a defconfig can no longer satisfy. So from

RV 1126 onwards, we support config fragment, i.e. overlaying the defconfig.

For example, if CONFIG BASE DEFCONFIG=“rv1126 defconfig” is specified in rv1126-emmc-
tb.config, when the . /make.sh rv1126-emmc-tb command is executed, it will first generate the
.config with rv1126_defconfig, and then overlay the .config with the configuration in rv1126-emmc-

tb.config. This command is equivalent to:
make rv1126 defconfig rvll26-emmc-tb.config && make

To make updates to the config fragment file, simply resortto . /scripts/sync-fragment.sh.

Example:
./scripts/sync-fragment.sh configs/rvll26-emmc-tb.config

Command effect: diff the configuration difference entries of the current .config and rv1126 defconfig into

the rv1126-emmc-tb.config file.

3.2 Firmware Compiling

Compiling command:

af://n973
af://n974
af://n997

./make.sh [board] // [board]: configs/[board] defconfig file.

First- time compilation: Regardless of 32-bit or 64-bit platforms, the first time you specify defconfig or want to

re-specify defconfig, the compiling command must specify [board]. Example:

./make.sh rk3399 // build for rk3399 defconfig
./make.sh evb-rk3399 // build for evb-rk3399 defconfig
./make.sh firefly-rk3288 // build for firefly-rk3288 defconfig

Secondary compilation: Regardless of 32-bit or 64-bit platforms, if you want to compile based on the current

“.config”, you don't need to specify [board] in the compiling command.:

. /make.sh

Note: If the compilation fails due to strange problems during compilation, try make distclean and

recompile.

Firmware generation: When the compilation is complete, the following information is generated in the U-Boot

root directory: trust, uboot, loader.:

// compile...

// uboot packaging process

load addr is 0x60000000!

pack input u-boot.bin

pack file size: 478737

crc = 0x840£f163c

uboot version: v2017.12 Dec 11 2017
pack uboot.img success!

pack uboot okay! Input: u-boot.bin

// loader packaging process and the referenced ini file
out:rk3126 loader v2.09.247.bin

fix opt:rk3126 loader v2.09.247.bin

merge success (rk3126 loader v2.09.247.bin)

pack loader okay! Input: /home/cjh/rkbin/RKBOOT/RK3126MINIALL.ini

// trust packaging process and the referenced ini file
load addr is 0x68400000'!
pack file size: 602104
crc = 0x9cl78803
trustos version: Trust os
pack ./trust.img success!
trust.img with ta is ready
pack trust okay! Input: /home/cjh/rkbin/RKTRUST/RK3126TOS.ini

// Prompts for a successful compilation. Note: This is prompted even if the
above trust and loader packaging fails, indicating that at least uboot.img was
generated

Platform RK3126 is build OK, with new .config(make rk3126 defconfig)

Eventually, downloadable firmware is generated in the root directory:

./uboot.img

./trust.img // Note: If the firmware is in fit format, there is no trust.img.
the trust binary is packed in uboot.img.

./rk3126 loader v2.09.247.bin

Firmware packaging tool: Please refer to the Tools section.

3.3 Firmware Downloading

Downloading tool:

The firmware downloading tool for Windows/Linux is recommended to use the tool version released by the SDK

or the latest version.

Downloading mode:

The RK platform has a total of two downloading modes: Maskrom mode and Loader mode (U-Boot).
1. How to enter Loader mode:

e When powering on, long press Volume + button
¢ When powering on, the host computer long presses ctrl+d at the same time

¢ U-Boot command line input: download or rockusb 0 $devtype $devnum
2. How to enter Maskrom mode:

e When powering on, the host computer long presses ctrl+b at the same time.

e U-Boot command line input: rbrom
Notes:

e Currently U-Boot supports two types of partition tables: RK parameter (old) and GPT (new). If you want
to replace the current partition table with another partition table type, the Nand machine must be
rewritten/redownloaded with the whole firmware; eMMC machine can support replacing the partition table

individually.

¢ [f both partition tables exist on the machine, the GPT partition table is recognized first. This can be

confirmed by a boot message:

PartType: EFI // Currently it is the GPT partitioned table, otherwise print
“PartType: RKPARM”.

3.4 Firmware Size

Please refer to section: RK Architecture => U-Boot Image.

3.5 Special Packaging

af://n1012
af://n1042
af://n1044

In addition to compiling code, . /make.sh integrates firmware packaging function with providing some additional
standalone packaging commands for developers to use. However, the prerequisite for that is the U-Boot has

already been compiled once.

Non-FIT format:

./make.sh trust // package trust

./make.sh loader // package loader

./make.sh trust <ini-file> // Specify the ini file when packaging trust,
otherwise use the default ini file

./make.sh loader <ini-file> // Specify the ini file when packing the loader.

Otherwise, use the default ini file

FIT format:

// old script:

./make.sh spl // Replace ddr and miniloader with tpl+spl and
package them into loader

./make.sh spl-s // Replace the miniloader with spl and package it

into loader

// new script:

./make.sh --spl // Replace the miniloader with spl and package it
into loader

./make.sh —--tpl // Replace ddr with tpl and package it into loader
./make.sh --tpl --spl // Replace ddr and miniloader with tpl and spl and

package them into loader
./make.sh --spl-new // ./make.sh--spl command do packages but not

compile. This command recompiles and repackages.

How toidentify old and new scripts? If the new command is in effect, make.sh is the new script.

4. Chapter-4 System Module

4.1 AArch32

ARMVS's 64-bit chips support degradation from AArch64 to AArch32 mode (compatible with ARMv7), the

code must be compiled in 32-bit.

Users can use this macro to confirm whether the current mode is AArch32 of ARMvS:

CONFIG_ARM64 BOOT AARCH32=y

4.2 ANDROID AB

The so-called A/B System divides the system firmware into two parts, called slot-a and slot-b respectively. The
system can be booted from any slot, and when one slot fails, it can also be booted from the other slot. Also,
when upgrading, it can be directly copied to the other slot without entering the system upgrade mode. Please

refer to the Advanced Principles section for detailed principles and procedures.

The current RK platform's pre-loader and U-Boot can support A/B systems.

4.2.1 Configuration Item

The A/B System depends on LIBAVB as follows

// A/B dependent libraries
CONFIG _AVB LIBAVB=y
CONFIG_AVB_ LIBAVB AB=y
CONFIG_AVB_LIBAVB_ATX=y
CONFIG_AVB LIBAVB USER=y
CONFIG _RK AVB LIBAVB USER=y
// Enable A/B function
CONFIG_ANDROID AB=y

4.2.2 Partition Table

The A/B System has requirements for the partition table: partitions that need to support A/B must have the

suffixes aand b added. Parameter.txt is referenced below:

af://n1054
af://n1055
af://n1059
af://n1062
af://n1065

FIRMWARE VER:8.1
MACHINE MODEL:RK3326
MACHINE ID:007
MANUFACTURER: RK3326
MAGIC: 0x5041524B
ATAG: 0x00200800
MACHINE: 3326

CHECK MASK: 0x80
PWR_HLD: 0,0,A,0,1
TYPE: GPT

CMDLINE:

mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot a),0x00002000@0x00006000 (uboot b
), 0x00002000@0x00008000 (trust_a), 0x00002000@0x0000a000 (trust _b),0x00001000@0x000
0c000 (misc),0x00001000@0x0000d4000 (vbmeta a), 0x00001000@0x0000e000 (vbmeta b),0x00
020000@0x0000e000 (boot_a),0x00020000@0x0002e000 (boot b),0x00100000@0x0004e000 (sy
stem_a),OxOO3000OO@OxOO32eOOO(system_b),OxOOlOOOOO@OxOO62eOOO(vendor_a),OxOOlOOO
00@0x0072e000 (vendor b),0x00002000@0x0082e000 (ocem_a), 0x00002000@0x00830000 (oem b
), 0x0010000@0x00832000 (factory),0x00008000@0x842000 (factory bootloader),0x000800

00@0x008ca000 (cem) ,-@0x0094a000 (userdata)

4.2.3 Notes

With the old U-Boot enabled A/B system, if the user accesses a partition with a/b, the partition name passed to

part get info by name () must have a slot suffix, e.g. “boot_a” or “boot b” . This adds a lot of

redundant code: the user must first get the current system's slot, then do string splicing to get the partition name.

The new code optimizes this issue. If the user's version of the code is after the commit point below, the partition

a/b can be accessed with or without a slot suffix, and the framework layer automatically detects which slot is

currently used by the system. e.g. “boot” can be used directly in the above case.

commit c6666740ee3b51c3el02bfbaflab95b78df29246
Author: Joseph Chen <chenjh@rock-chips.com>
Date: Thu Oct 24 15:48:46 2019 +0800

common: android/rkimg: remove/clean android a/b (slot) code

- the partition disk layer takes over the responsibility of slot suffix
appending, we remove relative code to make file clean;

- put android a/b code together and name them to be eary understood,

this makes file esay to read.

Change-Id: Id8c838da682ce6098bd7192d7d7¢c64269f4e86ba
Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

4.3 ANDROID BCB

BCB (Bootloader Control Block) is a mechanism designed for Android to control the boot process and to

interact with the bootloader. The data structure is defined in the misc partition offset 16KB or 0 position.

data structure:

struct android bootloader message {

af://n1068
af://n1072

char command[32];
char status([32]:;

char recovery[768];

/* The 'recovery' field used to be 1024 bytes. It has only ever

* been used to store the recovery command line, so 768 bytes

* should be plenty. We carve off the last 256 bytes to store the
* stage string (for multistage packages) and possible future

* expansion. */

char stage[32];

/* The 'reserved' field used to be 224 bytes when it was initially
* carved off from the 1024-byte recovery field. Bump it up to
* 1184-byte so that the entire bootloader message struct rounds up
* to 2048-byte. */
char reserved[1184];
}i

command: boot command, currently supports the following three:

Parameters Functionality

bootonce-bootloader Boot to entry U-Boot fastboot
boot-recovery Boot to entry recovery

boot-fastboot Boot to entry recovery fastboot (fastbootd)

recovery: the incidental command to enter recovery mode, it starts with “recovery\n” and can be followed by
multiple parameters, starting with “--” and ending with “\n”, for example, "recovery\n--wipe ab\n--

wipe package size=345\n--reason=wipePackage\n":

Parameters

update package

retry count

wipe_data
wipe_cache
show_text

sideload
sideload_auto_reboot

just_exit

locale

shutdown_after

wipe_all

wipe_ab

wipe_package size

prompt and wipe data

fw_update
factory_mode
pcba_test
resize partition

rk_fwupdate

Functionality
OTA upgrade

the number of times to enter recovery upgrade, such as accidental power down

during upgrade, based on this value to re-enter recovery upgrade.
erase user data (and cache), then reboot
wipe cache (but not user data), then reboot

show the recovery text menu, used by some bootloader

an option only available in user-debug build, reboot the device without waiting
do nothing, exit and reboot

save the locale to cache, then recovery will load locale from cache when

reboot
return shutdown
Erase the entire userdata partition

wipe the current A/B device, with a secure wipe of all the partitions in
RECOVERY_ WIPE

wipe package size

prompt the user that data is corrupt, with their consent erase user data (and

cache), then reboot

SD Card Firmware Upgrade

Factory mode, mainly used to do some device testing, such as PCBA testing
Access to PCBA Testing

Resizing partitions, dynamic partitioning support in android Q

Specify tk SD/USB firmware upgrade, applicable scope limited to U-Boot

Generally, during U-Boot phase, it is no need to use and care about the above parameters, only for reference for

users .

4.4 AVB Secure Boot

Android Verified Boot(AVB), a set of firmware verification process designed by Google, mainly used to verify

the boot system and other firmware. Rockchip Secure Boot achieve a complete set of Secure Boot verification

program with reference to verification method and AVB in communication .

4.4.1 Feature

¢ safety check

af://n1153
af://n1155

e integrity check

e anti-rollback protection

e persistent partition support

¢ chained partitions support, can be consistent with boot, system signing private key, or oem can save private
key by itself, but must be signed by PRK.

4.4.2 Configuration

Enabling AVB requires trust support:

CONFIG_OPTEE CLIENT=y
CONFIG_OPTEE Vl=y
CONFIG OPTEE ALWAYS USE SECURITY PARTITION=y //Security data is stored in the

security partition

e CONFIG OPTEE V1 : suitable for platforms with 312x,322x,3288,3228H,3368,3399.
e CONFIG _OPTEE V2 : suitable for platforms with 3326,3308.
e CONFIG OPTEE ALWAYS USE SECURITY PARTITION : This macro is only enabled when eMMC's rpmb

is not working, it is not enabled by default.

Enables AVB-related configuration:

CONFIG_AVB LIBAVB=y

CONFIG AVB LIBAVB AB=y

CONFIG AVB LIBAVB ATX=y

CONFIG_AVB LIBAVB USER=y

CONFIG RK AVB LIBAVB USER=y

// The above options are mandatory, the following options support AVB and A/B
features, the two features can be used separately.

CONFIG_ANDROID AB=y //This supports A/B

CONFIG_ANDROID AVB=y //This supports A/B

// The following macros are for efuse-only platforms

CONFIG_ROCKCHIP PRELOADER PUB KEY=y

// The following macros need to be turned on for strict unlock checksums
CONFIG RK AVB LIBAVB ENABLE ATH UNLOCK=y

// Enable Security check

CONFIG_AVB VBMETA PUBLIC KEY VALIDATE=y

// If you need the cpuid as a challenge number, enable the following macro
CONFIG MISC=y

CONFIG ROCKCHIP EFUSE=y

CONFIG_ROCKCHIP OTP=y

4.4.3 Reference

Because AVB involves more content, please refer to the Advanced Principles sector for the rest of the principles

and configurations.

4.5 Cmdline

af://n1167
af://n1179
af://n1181

The cmdline is an important means for U-Boot to pass parameters to the kernel, such as boot storage, device
status, etc. Currently, there are several sources of cmdlines, which are spliced by U-Boot and filtered for
duplicates before being passed to the kernel. cmdlines from the U-Boot phase are stored in the bootargs

environment variable.

U-Boot ultimately implements cmdline passing via /chosen/bootargs in the modified kernel DTB.

4.5.1 Data Sources

* parameter.txt

If the partition table is in RK format, you can store the cmdline information in parameter.txt, for example:

CMDLINE: console=ttyFIQ0 androidboot.baseband=N/A
androidboot.selinux=permissive androidboot.hardware=rk30board
androidboot.console=ttyFIQ0 init=/init
mtdparts=rk29xxnand:0x00002000@0x00002000 (uboot),0x00002000@0x00004000 (trust
),

If the partition table is in GPT format, it is not valid to store cmdline information in parameter.txt.

e /chosen/bootargs of kernel dts, e.g.

chosen {
bootargs = "earlyprintk=uart8250,mmio32,0xf£f30000 swiotlb=1
console=ttyFIQ0
androidboot.baseband=N/A androidboot.veritymode=enforcing
androidboot.hardware=rk30board androidboot.console=ttyFIQ0
init=/init kpti=0";
bi

e U-Boot: Depending on the current running state, U-Boot will dynamically append something to the

cmdline. for example:
storagemedia=emmc androidboot.mode=emmc

¢ The ones in the boot/recovery.img firmware header usually have the cmdline field information as well.

4.5.2 Data Meaning

The following is a list of cmdline parameters that are commonly used on the RK platform. For more information,

please refer to the kernel documentation: Documentation/admin-guide/kernel-parameters.txt.

e sdfwupdate: sd upgrade card logo, required by the recovery program ;

¢ 100t=PARTUUID: Specify the UUID of the rootfs(system) partition, supported only by the GPT table
e skip initramfs: kernel uses the ramdisk in rootfs(system) but not the ramdisk loaded by uboot,

e storagemedia: Storage boot type;

¢ console: kernel print port configuration information

e carlycon: Specify the serial port and its configuration before the serial node is created

af://n1184
af://n1199

loop.max_part: max_part is used to set the number of partitions that can be supported by each loop's

device.

rootwait: Used in cases where the file system is not immediately available, for example, emmc
initialization is not complete, if you do not set root_wait at this time, mount rootfs failed, but if you add
this parameter, you can wait for the driver to finish loading, then copy the rootfs from the storage device

and mount it again, then it will not prompt the Failed
ro/rw: Load rootfs attributes, read-only/read-write
firmware_calss.path: Specify driver location, e.g. wifi, bt, gpu, etc.

dm="Iroot none 0, 0 4096 linear 98:3 0, 4096 4096 linear 98:32" root=/dev/dm-0: Will boot to a rw dm-
linear target of 8192 sectors split across two block devices identified by their major:minor numbers.After
boot, udev will rename this target to /dev/mapper/lroot (depending on the rules).No uuid was

assigned.please refer to https://android.googlesource.com/kernel/common/+/android-3.18/Documentation/

55

device-mapper/boot.txt>

androidboot.slot_suffix: Specify a slot for the kernel to boot from during AB System.
androidboot.serialno: Provide serial numbers for the kernel and upper layers, e.g. adb's serial number, etc.

androidboot.verifiedbootstate: Android requirements, which provide the upper layers with the state of the

uboot verifivation firmware, it has three states, as follows

1. green: If in LOCKED state and the key used for verification was not set by the end user
2. yellow: If in LOCKED state and the key used for verification was set by the end user
3. orange: If in the UNLOCKED state

androidboot.hardware: boot the device, e.g. rk30board

androidboot.verifymode: Specify the true mode/state of the verification partition (i.e., verify the integrity

of the firmware)

androidboot.selinux: SELinux is a mandatory access control (MAC) security system based on the domain-

type model There are three models:

1. enforcing: enforcing mode, meaning that SELinux is running and has started restricting the
domain/type correctly.

2. permissive: Tolerant Mode: This means that SELinux is running, but only warning messages will be
displayed without actually restricting access to the domain/type. This mode can be used for
debugging SELinux.

3. disabled: Shutdown, SELinux does not actually work!

androidboot.mode: Android boot method: normal and charger.

1. normal: Normal boot up
2. charger: After powering off and on, androidboot.mode is set to charger, which is set to the bootargs
environment variable by uboot after detecting power charging.

androidboot.wificountrycode: Set wifi country code, e.g. US, CN
androidboot.baseband: Configure baseband, RK does not have this feature, set to N/A
androidboot.console: android message output port configuration
androidboot.vbmeta.device=PARTUUID: Specify the location of vbmeta in the storage
androidboot.vbmeta.hash_alg: Set the vbmeta hash algorithm, e.g. sha512
androidboot.vbmeta.size: Specify the size of the vbmeta

androidboot.vbmeta.digest: Upload a digest of the vbmeta to the kernel, the kernel loads the vbmeta,

calculates the digest, and compares it to this digest

androidboot.vbmeta.device_state: avb2.0 specifying system lock and unlock

https://android.googlesource.com/kernel/common/+/android-3.18/Documentation/device-mapper/boot.txt

4.6 DFU Update Firmware

DFU is Device Firmware Update, which is used to update the firmware of the device. For the platforms that

supporting DFU Please refer to the Platform Definition section.

To enable the DFU feature, the macros that need to be enabled include:

CONFIG CMD DFU=y
CONFIG_USB_FUNCTION DFU=y

Depending on the storage media used, you can choose to turn on the following switches

CONFIG DFU MMC
CONFIG DFU_MTD
CONFIG_DFU_ NAND
CONFIG_DFU RAM
CONFIG DFU_SF

Platforms that support DFU usually provide a separate config file, for example, compiling the RV1126 firmware
with DFU support can be done by executing the following compile command

./make.sh rvl126-dfu

Download the firmware into the development board and connect the OTG connector to the PC, execute the

following in the U-Boot command line
dfu 0 S$devtype S$devnum

where devtype can be mmc or mtd, at this point you will find a USB download gadget device on your PC, use

Zadig to replace the device driver, the screenshot after successful replacement is as follows

Ed Zadig — x
Device Options Help

USE download gadget » | []Edit

Driver |Winu55 (v6. 1.7600. 16385) | C? |Winu55 {v6. 1. 7600, 16385) |: More Information
WinUSE (libush)

USE ID 0107 libush-win32

; Reinstall Criver b libushk,
WCID = IEI

WinUSE (Microsoft]

5 devices found.

Execute the followings from the Windows command line using the host computer software
./dfu-util.exe -1

At this point the device will upload the partition table, which is defined in
include/configs/evb rv1126.h.

af://n1273

F:\Prj\20210901-Hisense-AB\dfu-util-0.9-win64>dfu-util.exe -1
dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2016 Tormod Volden and Stefan Schmidt

This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1l, intf=0, path="1-12", alt=5,
name="userdata", serial="UNKNOWN"

Found DFU: [2207:0107] wver=0223, devnum=16, cfg=1l, intf=0, path="1-12", alt=4,
name="rootfs", serial="UNKNOWN"

Found DFU: [2207:0107] wver=0223, devnum=16, cfg=1l, intf=0, path="1-12", alt=3,
name="boot", serial="UNKNOWN"

Found DFU: [2207:0107] wver=0223, devnum=16, cfg=1l, intf=0, path="1-12", alt=2,
name="uboot", serial="UNKNOWN"

Found DFU: [2207:0107] wver=0223, devnum=16, cfg=1l, intf=0, path="1-12", alt=1,
name="loader", serial="UNKNOWN"

Found DFU: [2207:0107] wver=0223, devnum=16, cfg=1l, intf=0, path="1-12", alt=0,
name="gpt", serial="UNKNOWN"

The Windows command line executes the following command to transfer files to the development board in the

command line format

dfu-util.exe VID:PID -a (partition name) -D (file name) -R (reboot option)

F:\Prj\20210901-Hisense-AB\dfu-util-0.9-win64>dfu-util.exe -d 2207:0107 -a
system b -D rootfs.img -R

The log of a successful download is as follows

dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2016 Tormod Volden and Stefan Schmidt

This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Invalid DFU suffix signature

A valid DFU suffix will be required in a future dfu-util release!!!
Opening DFU capable USB device...

ID 2207:0107

Run-time device DFU version 0110

Claiming USB DFU Interface...

Setting Alternate Setting #8

Determining device status: state = dfulIDLE, status = 0

dfuIDLE, continuing

DFU mode device DFU version 0110

Device returned transfer size 4096

Copying data from PC to DFU device

Download [] 100% 49938432 bytes

Download done.

state(7) = dfuMANIFEST, status(0) = No error condition is present
state (2) = dfuIDLE, status(0) = No error condition is present
Done!

can't detach

Resetting USB to switch back to runtime mode

If you need to download other partitions, you only need to replace the partition name after the -a option of the
download command and the file name after the -D option; the -R parameter appended to the download

command indicates that the board will be rebooted after the download is completed.

4.7 DTBO/DTO

In order to facilitate the user's understanding of the contents of this chapter, here we recommend you first read
the Appendix Section to recognize the terminology: DTB, DTBO, DTC, DTO, DTS, FDT.

The relationship between them can be described as:

e DTS is the file used to describe the FDT;
e DTS is compiled by DTC, can generate DTB/DTBO;
¢ DTB and DTBO can be combined into a new DTB through a DTO operation;

Usually, many users are used to replace the action meaning of the word “DTO” with “DTBO”. In the following,
to avoid this mixing concepts, we make it clear that DTO is a verb concept, which stands for operation; while

DTBO is a noun concept, which refers to the number of dtb, indicating aggregation.

More knowledge of this chapter can be found at: : https://source.android.google.cn/devices/architecture/dto.

4.7.1 Principle Introduction

DTO (Devcie Tree Overlay) is a mandatory feature introduced with Android P that allows a secondary device
tree Blob (DTBO) to be overlayed on top of an existing primary device tree Blob. DTO maintains the system-on-
chip SoC device tree and dynamically overlays device-specific device trees to add nodes to the tree and make

changes to properties in the existing tree.

The Primary Device Tree Blob (*.dtb) is usually provided by the Vendor, while the Secondary Device Tree Blob
(*.dtbo) can be provided by ODM/OEM, etc., and finally merged by the bootloader before passing to the kernel.

as shown in the figure below:

VENDOR PROVIDED ODM PROVIDED

bootloader dtbo

(board #1)

dtbo

(board #2)
configure hardware

.dtbo
ﬁ

identify SoC and identify board and
load one with .dtb load one with .dtb

af://n1295
https://source.android.google.cn/devices/architecture/dto
af://n1307

Image from: https://source.android.google.cn/devices/architecture/dto

Note: The compilation of DTB and DTBO for DTO operations is different from the normal DTB compilation,

and there is a special syntax difference:

When compiling .dts with dtc, you must add the option -@ to add the _symbols node to the resulting .dtbo. The
_symbols_node contains a list of all nodes with labels that the DTO library can use the list as a reference. The

following is an example:

1. Sample commands for compiling the main .dts:

dtc -@ -0 dtb -o my main dt.dtb my main dt.dts

2. Sample commands for compiling the overlay DT .dts :

dtc -@ -0 dtb -o my overlay dt.dtbo my overlay dt.dts

4.7.2 Enable DTO

1. Configuration Enable:

CONFIG CMD DTIMG=y
CONFIG OF LIBFDT OVERLAY=y

2. Implementation of the board select fdt index() function. This is a __ weak function that can be
reimplemented by the user. The function is to get the DTBO used to perform DTO operation among

multiple DTBOs (return index index, the smallest starts from 0), the default weak function returns index 0.

/*
* Default return index 0.
=
__weak int board select fdt index(ulong dt table hdr)
{
/*
* User can use "dt for each entry(entry, hdr, idx)" to iterate

* over all dt entry of DT image and pick up which they want.

* Example:
* struct dt table entry *entry;

* int index;
* dt for each entry(entry, dt table hdr, index) {

&3 (use entry)

*
* return index;
=/

return 0;

4.7.3 DTO Result

https://source.android.google.cn/devices/architecture/dto
af://n1323
af://n1332

1. After DTO execution is complete, you can see the result in the boot message of U-Boot:

// The printout when it succeed

ANDROID: fdt overlay OK

// The printout when it failed
ANDROID: fdt overlay failed, ret=-19

Often the cause of failure is generally due to incompatibility between the contents of the primary/secondary

device book blob, so the user needs to be clear about their generation syntax and compatibility.

2. The following message is appended to the cmdline of the kernel after successful DTO execution, indicating
which DTBO is being used for the DTO operation:

androidboot.dtbo idx=1 // The idx starts from 0. Here it means that the DTBO

with idx=1 is selected for DTO operation.

3. After the DTO is successfully executed you can use the £dt command at the U-Boot command line to

view the contents of the DTB to confirm that the changes have taken effect.

4.8 ENV

4.8.1 Framework Support

ENV is a very important data management method in U-Boot framework, which constructs “key value” and
“data” through hash table for mapping management, and supports “add/delete/modify/check” operations.
Usually, we call the keys and data it manages as environment variables.U-Boot supports saving ENV data in
various storage media: NOWHERE/eMMC/FLASH/EEPROM/NAND/SPI FLASH/UBI ...

configurations:

// Default configuration: ENV saved in memory

CONFIG_ENV_IS NOWHERE

// ENV saved on various storage media
CONFIG ENV_IS IN MMC
CONFIG_ENV_ IS IN NAND
CONFIG_ENV_IS IN EEPROM
CONFIG_ENV_IS TN FAT
CONFIG ENV_IS IN FLASH
CONFIG_ENV_IS IN NVRAM
CONFIG_ENV_ IS IN ONENAND
CONFIG ENV_IS IN REMOTE
CONFIG ENV_IS IN SPI FLASH
CONFIG_ENV IS IN UBI

// Any storage media (except mmc) that has been accessed to the BLK framework

layer is recommended by the RK platform !
CONFIG ENV_IS IN BLK DEV

Framework code:

af://n1345
af://n1346

./env/nowhere.c
./env/env_blk.c
./env/mmc.c
./env/nand.c
./env/eeprom.c
./env/embedded.c
./env/extd.c
./env/fat.c

./env/flash.c

4.8.2 Relevant Interface

// Getting Environment Variables
char *env_get (const char *varname) ;
ulong env_get ulong(const char *name, int base, ulong default wval);

ulong env get hex(const char *varname, ulong default val);

// Modify or create environment variables, value NULL is equivalent to deletion.
int env_set(const char *varname, const char *value);
int env_set ulong(const char *varname, ulong value);

int env_set hex(const char *varname, ulong value);

// Load all the ENV information saved on the storage media

int env load(void);

// Save all current ENV information to a storage medium

int env_save (void);

e env_load(): The user does not need to call it, the U-Boot framework will call it in the appropriate boot
process;

e env_save(): User-initiated invocation at the moment of need will save all ENV information to the storage
medium specified by CONFIG_ENV IS NOWHERE XXX;

4.8.3 Advanced Interface

RK provides two high-level interfaces that unify the handling of ENVs with create, append, and replace
functionality. This is primarily for handling bootargs environment variables, but is equally applicable to other

environment variable operations.

/**
* env_update () - update sub value of an environment variable

*

* This add/append/replace the sub value of an environment variable.
*

* @varname: Variable to adjust

* @valude: Value to add/append/replace

* @return 0 if OK, 1 on error

*/

int env_update (const char *varname, const char *varvalue);

/‘k*

af://n1352
af://n1359

* env_update filter () - update sub value of an environment variable but

* ignore some key word
* This add/append/replace/igore the sub value of an environment variable.

* @varname: Variable to adjust
* @valude: Value to add/append/replace
* @ignore: Value to be ignored that in varvalue
* @return 0 if OK, 1 on error
o/
int env_update filter (const char *varname, const char *varvalue, const char

*ignore) ;

1 Rules for using env_update():

¢ Create: creates varname and varvalue if varname does not exist;

e Append: append varvalue if varname already exists and varvalue does not;

¢ Replace: If varname already exists and varvalue already exists, replace the original with the current
varvalue. For example: the original is “storagemedia=emmc”, the current input varvalue is

“storagemedia=rknand”, then the final update will be “storagemedia=rknand”. rknand”.

2 env_update_filter() is an extended version of env_update(): it strips out a keyword from varvalue while

updating env;

3 Special note: env_update() and env_update_filter() both use space and “=" as separator to split ENV content,

so the unit of operation is: single word, “key=value” combination word:

¢ single word: sdfwupdate,
e "key=value"combination word: storagemedia=emmc, init=/init, androidboot.console=ttyFIQO,
¢ The above two interfaces cannot handle long string units. For example, it is not possible to operate

“console=ttyFIQO0 androidboot.baseband=N/A androidboot.selinux=permissive” as a whole unit.

4.8.4 Storage Location

env_save() saves the ENV to the storage medium. The storage location and size of the ENV for the RK platform

are defined below:

if ARCH ROCKCHIP

config ENV_OFFSET
hex
depends on !ENV IS IN UBI
depends on !ENV_IS NOWHERE
default 0x3£8000
help

Offset from the start of the device (or partition)

config ENV_SIZE
hex
default 0x8000
help
Size of the environment storage area

endif

¢ Normally, neither ENV_OFFSET nor ENV_SIZE are recommended for modification.

af://n1379

4.8.5 General Options

Currently, the commonly used storage media are: eMMC/sdmmc/Nandflash/Norflash, etc. However, U-Boot's
native Nand and Nor ENV drivers all follow the MTD framework, while all the supported storage media in RK
follow the BLK framework, so these ENV drivers cannot be used.

Hence, RK provides the CONFIG ENV IS IN BLK DEV configuration option for storage accessing the BLK

framework

¢ For the eMMC/sdmmc case, select CONFIG_ENV_IS IN MMC ;
e For Nand, Nor case, select CONFIG_ENV IS IN BLK DEV;

Users please first read the definition CONFIG _ENV_IS IN BLK DEV of Kconfig
// It 1s already specified by default and does not need to be changed.

CONFIG_ENV OFFSET
CONFIG _ENV_SIZE

// It won't be used usually.
CONFIG_ENV_OFFSET REDUND (optional)
CONFIG ENV_SIZE REDUND (optional)
CONFIG_SYS MMC ENV_PART (optional)

Note: Whichever CONFIG_ENV IS IN XXX configuration you choose, read the definition description in

Kconfig first, which contains subconfiguration descriptions.

4.8.6 Fw_printenv Tool

fw_printenv is an env tool provided by U-Boot for linux. With this tool, users can access and modify the
contents of env on linux. Using this tool requires that the env region be located on a kernel-visible partition
(separate partitions are recommended), essentially accessing the env region through the storage node under the

kernel sys.

Tool Acquisition Methods:
./make.sh env

after executing the command, you will obtained :

./tools/env/fw printenv // env read/write tool
./tools/env/fw env.config // env configuration file
./tools/env/README // env read/write tool documentation

Please refer to the README documentation for usage.

4.8.7 ENVF

This feature currently only applies to SDK firmware existed with env.img (mainly IPC-type products). If it does

not exist, please ignore this section.

af://n1385
af://n1396
af://n1403

U-Boot's native ENV function is to save all environment variables to a specified storage area, which can be
modified at will externally. If system-related variables are modified incorrectly, the system fail to boot normally,
or be maliciously attacked. For example, the boot command bootcmd can be erased or pointed to a malicious
boot process. Therefore, we have added the ENV Fragment function to separate U-Boot system environment
variables from external user environment variables. Users have to define an env fragment for storing customized
environment variables and set up a whitelist in U-Boot, U-Boot only allows importing/exporting/modifying

whitelisted environment variables from the env fragment.
ENVF process:

The user creates env.txt on demand and specifies the contents, then uses mkenvimage to generate and download
env.img to storage 0 address. Loader and U-Boot load and parse the content of env.img at boot time, and import
legal environment variables according to the CONFIG_ENVF_LIST whitelist. Where: for different storage

types, different sizes of env.img need to be made.

Configuration:

CONFIG_ENVF
CONFIG SPL ENVF
CONFIG _ENVF LIST="blkdevparts mtdparts sys bootargs app reserved"

// eMMC:

// Specifies the storage address of Primary env.img. Unit: bytes.
CONFIG_ENV_OFFSET=0x0

// Specifies the storage address of Backup env.img, which is the same as
CONFIG _ENV_OFFSET when there is no backup. Unit: bytes.
CONFIG_ENV_OFFSET REDUND=0x0

// Size of Primary and Backup env.img. Unit: bytes.
CONFIG_ENV_SIZE=0x8000

// spi-nor: the same usage as above.
CONFIG_ENV_NOR_OFFSET=0x0

CONFIG _ENV_NOR OFFSET REDUND=0x0
CONFIG_ENV_NOR_SIZE=0x10000

// spi-nand/slc-nand: the same usage as above.
CONFIG_ENV_NAND OFFSET=0x0

CONFIG_ENV_NAND OFFSET REDUND=0x0
CONFIG_ENV_NAND SIZE=0x40000

Code:

./env/envf.c

Tools:

// By default, it participates in U-Boot compilation and generates
tools/mkenvimage, which is used to package env.img.

./tools/mkenvimage.c

PC development process (example)

1. Creat env.txt:

// The system partition table must be defined or it will not boot properly.
Example:
blkdevparts=mmcblk0:4M@8M (uboot),4M(trust), 32M (boot) ,32M(recovery) , 32M(backup) , -
(rootfs)

sys_bootargs=rootwait earlycon=uart8250,mmio32,0xff570000 console=ttyFIQO0

e Formatting requirements:
(1) Use “key=value” key-value pairs.
(2) “=" in key-value pairs: no spaces in left or right, no single/double quotes
(3) Use newlines to indicate the end of a key-value pair

e sys bootargs : The effect is equivalent to bootargs in kernel dts. if this field is specified, U-Boot will
use sys_bootargs to overlay the bootargs in kernel dts, and sys_bootargs will have a higher priority when

there are the same entries.

e Partition table: Support kernel-standard mtdparts and blkdevparts partition table format, please choose

according to your needs (choose one). The partition formats for different storage are listed below:

// eMMC:
blkdevparts=mmcblk0:32K(env),512K@32K (idblock) , 256K (uboot) , 32M (boot) ,2G (rootfs),

1G (oem), 2G (userdata) , - (media)

// spi-nor:
mtdparts=sfc nor:64K(env), 128KQR64K (idblock), 128K (uboot), 2M(boot) , 4M(rootfs), 6M (o

em) , - (userdata)

// spi-nand/slc-nand:
mtdparts=rk-
nand: 256K (env) ,256K@256K (idblock) , 256K (uboot), 8M(boot), 64M(rootfs),32M (userdata)

, - (media)

2. Generate env.img:

Chapter-4 eMMC:

./tools/mkenvimage -s 0x8000 -p 0x0 -o env.img env.txt

Chapter-4 spi-nor:

./tools/mkenvimage -s 0x10000 -p 0x0 -o env.img env.txt

#spi-nand/slc-nand:
./tools/mkenvimage -s 0x40000 -p 0x0 -o env.img env.txt
3. env.img is downloaded to memory 0 address.
U-Boot-side development process (example):
1. Enable and configure env.img on demand
// enable ENVF
CONFIG_ENVF=y

CONFIG_SPL_ENVF=y
CONFIG ENVF LIST="blkdevparts mtdparts sys bootargs app reserved"

// eMMC:

CONFIG_ENV_SIZE=0x8000
CONFIG_ENV_OFFSET=0x0
CONFIG_ENV_OFFSET REDUND=0x0

// spi nor:
CONFIG_ENV_NOR_OFFSET=0x0
CONFIG_ENV_NOR_OFFSET_REDUND:OXO
CONFIG_ENV_NOR_SIZE=0x10000

// spi nand/slc nand:
CONFIG_ENV_NAND OFFSET=0x0
CONFIG_ENV_NAND OFFSET REDUND=0x0
CONFIG_ENV_NAND STIZE=0x40000

2. Recompile and download uboot.img.

3. Power-on message display

dwmmc@f£fc50000: 0, dwmmc@ffco0000: 1
Bootdev (atags) : mmc 0

MMCO: HS200, 200Mhz

// printout as follows:

ENVF: Primary 0x00000000 - 0x00008000
ENVF: OK

PartType: ENV

DM: vl

boot mode: normal

FIT: no signed, no conf required
DTB: rk-kernel.dtb

4. The user can save env from the U-Boot command line with the following command, or use code

env_save ()

=> env save
Saving Environment to env... // Exporting and saving whitelisted environment

variables

4.9 Fastboot

Fastboot is a way provided by Android to interact with U-Boot via USB, which is generally used for getting

device information, downloading firmware, etc.

4.9.1 Configuration Options

af://n1452
af://n1454

// Enabled Configuration
CONFIG_FASTBOOT
CONFIG_FASTBOOT FLASH
CONFIG USB_ FUNCTION FASTBOO

// Parameter Configuration
CONFIG_FASTBOOT BUF ADDR
CONFIG FASTBOOT BUF SIZE
CONFIG_FASTBOOT FLASH MMC DEV
CONFIG_FASTBOOT USB_DEV

4.9.2 Trigger Method

Fastboot uses Google adb's VID/PID by default, with the following trigger methods:

e Command line execution of the kernel: reboot fastboot
¢ Command line execution of U-Boot: fastboot usb 0

e Power on and long press combination-key : ctrl+f

4.9.3 Command Support

fastboot flash < partition [< filename >]
fastboot erase < partition
fastboot getvar < variable | all
fastboot set active < slot
fastboot reboot

fastboot reboot-bootloader
fastboot flashing unlock
fastboot flashing lock
fastboot stage [< filename >]

fastboot get staged [< filename >]
fastboot oem fuse at-perm-attr-data
fastboot oem fuse at-perm-attr

fastboot oem at-get-ca-request

fastboot oem at-set-ca-response

fastboot oem at-lock-vboot

fastboot oem at-unlock-vboot

fastboot oem at-disable-unlock-vboot
fastboot oem fuse at-bootloader-vboot-key
fastboot oem format

fastboot oem at-get-vboot-unlock-challenge

fastboot oem at-reset-rollback-index

4.9.4 Command Details

¢ fastboot flash < partition > [< filename >]
Function: Partition download
Example: fastboot flash boot boot.img

e fastboot erase < partition >

af://n1456
af://n1465
af://n1467

Function: Erase Partition

Example: fastboot erase boot

fastboot getvar < variable >

Function: Get device information

Example: fastboot getvar version-bootloader

< variable > parameters:

version /* fastboot version */
version-bootloader /* uboot version */

version-baseband

product /* Product Information */

serialno /* sertial number */

secure /* security checking enabled or not*/
max-download-size /* the maximum number of bytes

supported by fastboot in a single transfer */

logical-block-size /* Number of logical blocks */
erase-block-size /* Number of erased blocks */
partition-type : < partition > /* Partition type*/
partition-size : < partition > /* Partition size */

unlocked /* Device lock status */

off-mode-charge

battery-voltage

variant

battery-soc-ok

slot-count /* Number of slots*/

has-slot: < partition > /* Check if the partition name is in
the slot */

current-slot /* Currently booted slots*/
slot-suffixes /* The current slot of the device,
print its name. */

slot-successful: < a | b > /* See if the partition is properly
verified and booted*/

slot-unbootable: < a | b > /* Check if the partition is set to
unbootable */

slot-retry-count: < a | _b > /* Check the number of retry-counts
for a partition */

at-attest-dh

at-attest-uuid

at-vboot-state

fastboot getvar all

Function: Get all device information

fastboot set_active < slot >

Function: Set the slot for reboot

Example: fastboot set_active a

fastboot reboot

Function: Reboot the device for normal startup
Example: fastboot reboot

fastboot reboot-bootloader

Function: Reboot the device to enter fastboot mode.

Example: fastboot reboot-bootloader
¢ fastboot flashing unlock
Function: Unlock the device and allow firmware downloading
Example: fastboot flashing unlock
¢ fastboot flashing lock
Function: Lock the device, prohibit downloading
Example: fastboot flashing lock
o fastboot stage [< filename > |

Function: Download data to device-side memory, the memory start address is
CONFIG_FASTBOOT BUF_ADDR.

Example: fastboot stage permanent_attributes.bin
o fastboot get staged [< filename >]
Function: Getting data from the device side
Example: fastboot get staged raw_unlock challenge.bin
e fastboot oem fuse at-perm-attr
Function: Download permanent _attributes.bin and hash.
Example:
fastboot stage permanent_attributes.bin
fastboot oem fuse at-perm-attr
e fastboot oem fuse at-perm-attr-data
Function: Download only permanent_attributes.bin to the secure storage area (RPMB)
Example:
fastboot stage permanent_attributes.bin
fastboot oem fuse at-perm-attr-data
o fastboot oem at-get-ca-request
e fastboot oem at-set-ca-response
¢ fastboot oem at-lock-vboot
Function: Lock device
Example: fastboot oem at-lock-vboot
e fastboot oem at-unlock-vboot
Function: Unlock the device, now support authenticated unlock
Example:

fastboot oem at-get-vboot-unlock-challenge

fastboot get staged raw_unlock challenge.bin
/make unlock.sh (See make unlock.sh for reference)

fastboot stage unlock credential.bin

fastboot oem at-unlock-vboot
You can refer to “how-to-generate-keys-about-avb.md”.

e fastboot oem fuse at-bootloader-vboot-key

Function: Download bootloader key hash

Example:
fastboot stage bootloader-pub-key.bin
fastboot oem fuse at-bootloader-vboot-key
e fastboot oem format
Function: reformat partitions, partition information depends on $partitions
Example: fastboot oem format
¢ fastboot oem at-get-vboot-unlock-challenge
Function: authenticated unlock, need to get unlock challenge data
Example: please refer to 16. fastboot oem at-unlock-vboot
¢ fastboot oem at-reset-rollback-index
Function: Reset the rollback data of the device
Example: fastboot oem at-reset-rollback-index
o fastboot oem at-disable-unlock-vboot
Function: Disables the fastboot oem at-unlock-vboot command.

Example: fastboot oem at-disable-unlock-vboot

4.10 FileSystem

4.10.1 Framework Support

FAT and EXT2/4 are commonly used file system formats. Among them, FAT uses DOS (MBR) partition table,

and the common devices are: SD card, USB flash drive.
These two file systems are generally accessed more often in U-Boot today.
FAT configuration:

CONFIG DOS PARTITION=y

CONFIG_FS FAT=y

CONFIG_FAT WRITE=y

CONFIG_FS FAT MAX CLUSTSIZE=65536

CONFIG_CMD FAT=y
CONFIG CMD FS_GENERIC=y

FAT command:
fatinfo fatload fatls fatsize fatwrite
EXT2/4 configuration:

CONFIG _CMD EXT2=y
CONFIG_CMD EXT4=y
CONFIG _CMD FS GENERIC=y

EXT2/4 command:

af://n1565
af://n1566

ext2load ext2ls extdload extdls extdsize

4.10.2 Relevant Interface

FAT function header file . /include/fat.h:

int file fat detectfs(void);

int fat exists(const char *filename) ;

int fat size(const char *filename, loff t *size);

int file fat read at(const char *filename, loff t pos, void *buffer,
loff t maxsize, loff t *actread);

int file fat read(const char *filename, void *buffer, int maxsize);

int fat set blk dev(struct blk desc *rbdd, disk partition t *info);

int fat register device(struct blk desc *dev desc, int part no);

int file fat write(const char *filename, void *buf, loff t offset, loff t len,
loff t *actwrite);

int fat read file(const char *filename, void *buf, loff t offset, loff t len,
loff t *actread);

int fat opendir(const char *filename, struct fs dir stream **dirsp);

int fat readdir(struct fs dir stream *dirs, struct fs dirent **dentp);

void fat closedir(struct fs dir stream *dirs);

void fat close(void);
EXT2/4 function header file include/ext4fs.h:

struct ext_filesystem *get fs(void);
int extd4fs open(const char *filename, loff t *len);
int extd4fs read(char *buf, loff t offset, loff t len, loff t *actread):;
int ext4fs mount (unsigned part length);
void extdfs close(void);
void extd4fs reinit global (void);
int extd4fs ls(const char *dirname);
int extd4fs exists(const char *filename);
int extdfs size(const char *filename, loff t *size);
void extd4fs free node(struct ext2fs node *node, struct ext2fs node *currroot);
int extd4fs devread(lbaint t sector, int byte offset, int byte len, char *buf);
void extdfs set blk dev(struct blk desc *rbdd, disk partition t *info);
long int read allocated block(struct ext2 inode *inode, int fileblock);
int extd4fs probe(struct blk desc *fs dev desc,
disk partition t *fs partition);
int ext4 read file(const char *filename, void *buf, loff t offset, loff t len,
loff t *actread);
int ext4 read superblock(char *buffer);

int ext4fs uuid(char *uuid str);

4.10.3 Example of Command

// Confirm that the SD card is recognizable(if it is a USB flash drive then use
the usb command for recognition, the device number is usually: usb 0)
=> mmc dev 1

switch to partitions #0, OK

af://n1577
af://n1582

mmcl is current device

// View Information

=> fatinfo mmc 1

Interface: MMC
Device 1: Vendor: Man 000003 Snr e8lec501 Rev: 1.9 Prod: SCl6G
Type: Removable Hard Disk
Capacity: 15193.5 MB = 14.8 GB (31116288 x 512)

Filesystem: FAT32 "NO NAME "

// View File
=> fatls mmc 1
System Volume Information/
23 hello.txt
23 linux.txt

2 file(s), 1 dir(s)

// Read the size of the hello.txt file (the result is saved to the variable
filesize by default)

=> fatsize mmc 1 hello.txt

=> echo $filesize

0x17

// Read hello.txt file to address 0x2000000

=> fatload mmc 1 0x2000000 hello.txt

reading hello.txt

23 bytes read in 2 ms (10.7 KiB/s)

// Viewing the contents of read hello.txt

=> md.1l 0x2000000

02000000: 6c6c6568 65682d6f 2d6fé6cbe 6c6Cc6568 hello-hello-hell
02000010: 65682de6f ffefécec ffffffff ffffffff @=I3Ll®s cooooo0oo

// Create a new file: hello-copy.txt. Write the contents of addresses
0x2000000~0x2000017 to hello-copy.txt.
=> fatwrite mmc 1 0x2000000 hello-copy.txt 0x17
writing hello-copy.txt
23 bytes written
// See new file: hello-copy.txt
=> fatls mmc 1
System Volume Information/

23 hello.txt

23 linux.txt

23 hello-copy.txt

3 file(s), 1 dir(s)

Note: The ext2/4 and fat commands are used in a similar way, so no specific instructions are given.

4.11 HW-ID DTB

The U-Boot of RK platform supports detecting the GPIO or ADC status on the hardware to dynamically load
different Kernel DTBs, which is tentatively called HW-ID DTB (Hardware id DTB) function.

af://n1585

4.11.1 Design Principle

Usually the hardware design is frequently updated with newer versions and components, such as screen, wifi
module, etc. If each hardware version has to correspond to a set of software, it will be troublesome to maintain
it. So we need the HW_ID function to realize that a set of software can be adapted to different versions of

hardware.

For different hardware versions, the software needs to provide the corresponding dtb file, as well as the
ADC/GPIO hardware unique values to characterize the current hardware version (e.g., a fixed adc value, a fixed
GPIO level).

The user packages all these dtb files corresponding to the hardware version into a same resource.img. When U-
Boot boots the kernel, it checks for hardware uniqueness and finds the dtb that matches the current hardware

version from the resource.img and passes it to the kernel.

4.11.2 Hardware Reference

Both ADC and GPIO are currently supported to determine the hardware version.
ADC reference design

The RK3326-EVB/PX30-EVB motherboard has reserved voltage divider resistors, different resistor divider has

different ADC value, so that you can determine the different hardware versions:.

SSADCO_HW_ID T, :
: i
Part F It is reserved. for.the hardware version of the product.
1 If it is not needed, it can be removed. H
VGG_1vE
¥
U1D00F
Vi4 ' ADCO HIW D 150 05 .
D¢, o |-ty — 2SI T TR0
ADC_INY [yTS {ADCI_HP_HOOK
ADC_INZ CADCZ_KEY_IN
13 o
ADC_AVDD_1VE — TiEm0 ~ANCC_1VE
] 100nF
PX30 KER
8.3V
™| codoz
H
:
Hote:ill the Power filter capacitors. should be M HW ID
placed close to the power pins of PX30 M
:
ADC0_HW_ID Bull-up Full-desm | ADD Value | §
Besistance | Besistan
Versiorl (Default) 51K IHE 1024

The MIPI panel is equipped with an additional pull-down resistor.

af://n1587
af://n1591

LCD/TP Adapter Board

PP PSSR P
] [| Ly g

T 7
- | s 7| oea A =
VOO EYEL o SO 1000 ;:\:E.l_
w| s | omer e 27 e
v

Different mipi screens will be configured with different resistance values, and a unique ADC parameter value

will be determined in conjunction with the EVB motherboard.

ADC calculation method for current V1 version: the maximum value of the ADC parameter is 1024, which
corresponds to the ADC_INO pin being pulled up directly to the supply voltage of 1.8V, and there is a 10K pull-
down resistor on the MIPI screen, after successful connecting to the EVB board, the ADC = 1024*10K/(10K +
51K)=167.8 .

GPIO reference design

There is currently no hardware reference design for GPIOs, which can be customized by the user.

4.11.3 DTB Naming

Users need to reflect the hardware unique value information of ADC/GPIO in the dtb file name. The naming

convention is as follows:
ADC as HW_ID DTB:

¢ The file name ends with “.dtb”;
e HW _ID format: #[controller] ch[channel]=[adcval], called a complete unit
[controller]: The node name of the ADC controller inside dts.
[channel]: ADC channel.
[adcval]: The center value of the ADC, the actual valid range is: adcval+-30.
e Each complete unit must be in lowercase letters with no internal spaces;

e Multiple units are separated by #, up to 10 units are supported.;

Example:

af://n1602

rk3326-evb-1p3-vl0#saradc_ch2=111#saradc_chl1=810.dtb
rk3326-evb-1p3-v10# saradc_ch2=569.dtb

GPIO as HW_ID DTB:

¢ The file name ends with “.dtb”;
e HW _ID format: #gpio[pin]=[level], called a complete unit
[pin]: GPIO pin, e.g. 0a2 for gpio0a2
[level]: GPIO Pin Levels.
e Each complete unit must be in lowercase letters with no internal spaces;

e Multiple units are separated by #, up to 10 units are supported.;

Example:

rk3326-evb-1p3-v10#gpiola2=0#gpio0c3=1.dtb

4.11.4 DTB Packaging

kernel repository: scripts/mkmultidtb.py. This script can be used to package multiple dtbs into the same

resource.img.

The user needs to open the script file to write the dtb file to be packed into the DTBS dictionary and fill in the

corresponding ADC/GPIO configuration information.

DTBS = {}
DTBS['PX30-EVB'] = OrderedDict ([('rk3326-evb-1p3-v10', '# saradc ch0O=166"'),
('px30-evb-ddr3-1vds-v10', '# saradc ch0=512")])

In the above example, executing scripts/mkmultidtb.py PX30-EVB generates resource.img with 3 copies of the
dtb:

e rk-kernel.dtb: rk's default dtb, not reflected in the above dictionary. It is used by default when all dtb's are
not matched successfully. The packaging script will use the first dtb of the DTBS as the default dtb;

e 1k3326-evb-1p3-v10# saradc ch0=166.dtb: The rk3326 dtb file containing ADC information;

¢ px30-evb-ddr3-lvds-v10# saradc_ch0=512.dtb: The px30 dtb file containing ADC information;

If you run scripts/mkmultidtb.py manually, you will also need manually replace the generated resource.img into
boot.img. For convenience, the user can increase the calls like follows, and the compilation of the kernel

repository will automatically include the multi-DTB resource.img.

af://n1633

diff --git a/scripts/mkimg b/scripts/mkimg

index 1d895602935..5e1355b9da8 100755

--- a/scripts/mkimg

+++ b/scripts/mkimg

@@ -248,6 +248,7 @@ if ["S${srctree}l" != "${objtreel}l"]; then

fi

scripts/resource tool ${DTB_PATH} ${LOGO} ${LOGO_KERNEL} >/dev/null

echo " 1Image: resource.img (with ${DTB} ${LOGO} ${LOGO KERNEL}) is ready"
+./scripts/mkmultidtb.py PX30-EVB

if [-f "${BOOT IMG}"]; then
if file -L -p -b ${BOOT_ IMG} | grep -gq 'Device Tree Blob' ; then

4.11.5 Feature Enablement

Configuration options:

CONFIG ROCKCHIP HWID DTB=y

Driver code:

./arch/arm/mach-rockchip/resource img.c // Specific realization:
rockchip read hwid dtb ()

DTS configuration:

If GPIOs are used as hardware identification, the corresponding pinctrl and gpio nodes must be reserved in rkxx-
u-boot.dtsi; ADCs are enabled by default.

For example, gpio0 and gpiol are used as identification:

&pinctrl {

u-boot,dm-spl; // Append this attribute to allow the node to be retained in
the U-Boot DTB. Same below.
}:

&gpiol {
u-boot,dm-spl;
}i

&gpiol {

u-boot,dm-spl;
}i

4.11.6 Load Results

af://n1647
af://n1656

mmcO (part 0) is current device

boot mode: None

DTB: rk3326-evb-1p3-v10# saradc chO=166.dtb // Prints the matching DTB,
otherwise defaults to “rk-kernel.dtb”.

Using kernel dtb

4.12 SD and USB Flash Drives

This chapter focuses on firmware booting and upgrading of SD and USB flash drives on the RK platform.

4.12.1 Mechanisms and Principles

After the boot card and upgrade card are created, a fixed tag is placed in the firmware header at a fixed storage
offset location to mark whether it is a boot card or an upgrade card. U-Boot recognizes this tag and proceeds

with the corresponding boot or upgrade process. where:

¢ Boot Card: There is only one complete firmware in the card, U-Boot uses this complete firmware to
directly boot the system normally;

e Upgrade card: The card contains two copies of firmware. When creating an upgrade card, the PC tool will
write two copies of firmware: one of which containing only the partition image necessary to enter
recovery mode (denoted as firmware A), and the other on containing with the complete update.img
firmware (denoted as firmware B). U-Boot uses firmware A to boot the system into recovery mode, and

then the recovery program uses firmware B to complete the upgrade work.
Special Notes:

e SD card boot/upgrade is supported from the bootrom level;
e USB disk boot/upgrade is only supported from the U-Boot level, which means that the user should at least

make sure that U-Boot is working properly!

4.12.2 Firmware Creation

The process of creating SD and USB disk boot cards and upgrade cards on the RK platform is identical and

requires only two steps:
e Usethe RKTools/linux/Linux_ Pack Firmware/rockdev/ tool in the SDK directory to generate
update.img.
¢ Use SDDiskTool to download update.img to SD or USB disk. As shown in the picture:

o Select removable disks
o Select Firmware Upgrade or SD Boot .

o Click start Creating

af://n1658
af://n1660
af://n1673

oy BT AR E T v1.53 |

B AR R SDBoot:2.12
| Generic STORAGE DEVICE USB Device 1486 -

B AEThRAE,
VBl 4R (| pCEATIGS, [sp/=Eh

B AR RE (4]
E:\REVP%308RK3326N T B rodkdev\update.img HEEE

I D emodidR (BE)

I H#EDemo
LHEEEE PO EHOEOEE (e)
B |

4.12.3 SD Configuration

SD Boot/Upgrade: U-Boot released by SDK of each platform has enabled this function by default, users do not

need to configure it additionally.

4.12.4 USB Configuration

USB Boot/Upgrade: U-Boot released by each platform SDK is not enabled by default. Because U-Boot's native

USB scanning command is time-consuming, it's better for users enabling it themselves on demand:

Step 1: download the upgrade firmware to local storage (eMMC/Nand/...etc.), make sure the firmware is

available.

Step 2: Plug in the USB flash drive and boot into U-Boot command line mode. Execute usb start and
usb info commands to make sure the USB flash drive is recognized normally, otherwise, please adjust
the USB flash drive recognition first.

Step 3: Make a copy of the kernel DTB that alighed with step 1 and name it kern.dtb and put it in U-Boot's
. /dts/ directory of U-Boot. This kern.dtb will be automatically packed into uboot.img when compiling
U-Boot.

kern.dtb Purpose: U-Boot uses kern.dtb to ensure that the USB is initialized properly when the

kernel dtb of the local storage partition is corrupted.

Step 4: U-Boot enable boot/upgrade configuration of USB

CONFIG ROCKCHIP USB BOOT=y

Recompile and download uboot.img.

af://n1688
af://n1690

[f the process prompts that uboot's firmware is too large to be packaged and resulted from the

addition of kern.dtb in step 3, please cut out some unused U-Boot configurations first.

4.12.5 Functions Taking Effect

How to confirm that the SD, USB disk boot or upgrade function is in effect.

Users can erase key partitions such as kernel, resource, boot, recovery on local storage (¢eMMC, Nand...) to make

sure you can enter kernel after inserting SD/U disk.

4.12.6 Notes

¢ The usb start command is called when the USB flash drive is initialized, and the whole process is

relatively time-consuming;

¢ [f the boot/upgrade card needs to support GPT partition tables, the version of the SDDiskTool tool requires
>=v1.59;

¢ If the boot/upgrade card needs to support AB systems, the version of the SDDiskTool tool requires >=
v1.61

e Because the USB disk boot/upgrade feature is a feature added in 2019.11, the relevant repository needs to

meet the following conditions

1. U-Boot repository shall be updated to the following commit points (recommended)

commit 369e944c844£783508b783%ae86a3418e2f63bc7
Author: Joseph Chen <chenjh@rock-chips.com>
Date: Thu Dec 12 18:07:07 2019 +0800

fdt/Makefile: make u-boot-dtb.bin 8-byte aligned
The dts/kern.dtb is appended after u-boot-dtb.bin for U-disk boot.

Make sure u-boot-dtb.bin is 8-byte aligned to avoid data-abort on
calling: fdt check header (gd->fdt blob kern).

Signed-off-by: Joseph Chen <chenjh@rock-chips.com>
Change-Id: Id5f2daf0c5446e7ea828cb970d3d4879%e3acda86

Or add the following patch changes individually (presumably more difficult):

369e944 fdt/Makefile: make u-boot-dtb.bin 8-byte aligned

b3b57ac rockchip: board: fix always entering recovery on normal boot U-disk
eOceedl rockchip: resource: add shal/256 verify for kernel dtb

5e817a0 tools: rockchip: resource tool: add shal for file entry

fc474da lib: sha256: add sha256 csum()

0ed06fl rockchip: support boot from U-disk

01£0422 common: bootm: skip usb stop() if usb is boot device

5704c89 fdtdec: support pack "kern.dtb" to the end of u-boot.bin

3bdef7e gpt: return 1 directly when test the mbr sector

1. The rkbin repository should contain this commit:

af://n1707
af://n1710

commit £9cO0b0b72673a65865b00a8824908ca6fl2ecc32
Author: Joseph Chen <chenjh@rock-chips.com>
Date: Thu Nov 7 09:21:36 2019 +0800

tools: resource: add shal for file entry

Base on U-Boot next-dev branch:

(5e817a0 tools: rockchip: resource tool: add shal for file entry)

Change-Id: IfeO6lcabacab488dbecf2a3245d58cc660091dbd
Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

1. The kernel repository should contain this commit:

commit 078785057478c789bb033ba06925fa3a07e3130a
Author: Tao Huang <huangtao@rock-chips.com>
Date: Thu Nov 7 17:53:38 2019 +0800

rk: scripts/resource tool: add shal for file entry
From u-boot 5e817a0ead27 ("tools: rockchip: resource tool: add shal for
file entry").

Merge all C files to one resource tool.c

Change-Id: If63ba77d1f5a3660bd6ef87769bb456fa086ae7l
Signed-off-by: Tao Huang <huangtao@rock-chips.com>

o Ifthe SDK owned by the user is relatively old, in addition to adding the above patches individually, it is

recommended to check with the engineer in charge of recovery to see if recovery has the relevant patches.

5. Chapter-5 Driver Module

5.1 AMP

5.1.1 Ideas for Implementation

The U-Boot framework does not have AMP (Asymmetric Multi-Processing) support by default, however, RK

implements a set of AMP mechanism by itself: different CPUs run different firmware.
Implementation Ideas:
(1) Firmware Packaging

All AMP firmware (excluding Linux) specifies the CPU running state, describes the firmware information

through its file, and finally packages it into a FIT-formatted amp.img to be downloaded to the amp partition.

During booting, U-Boot is responsible for loading the amp.img firmware and performing sha256 integrity
checks, and then trust specifies the running state of each CPU and dispatches it to the corresponding entry

address.
(2) Boot order

The CPU running U-Boot is called the master core, which finally operates on itself after completing state

switching and firmware jumps of other cores.
(3) Resource management

U-Boot is not responsible for the coordination of resources (including the division of memory, interrupts, etc.)

between firmwares under the AMP scheme, so developers please make sure for it.
(4) Trust support

The AMP feature requires trust support. If the user-specified CPU running state is the default state, then the
SDK's trust is already supported,; if it is not the default state, then trust requires additional support (but some
platforms' SDKs already support it by default).

The above CPU default state refers to:

32-bit chip default state: arch = "arm", thumb = <0>, hyp = 0;

64-bit chip default state: arch = "arm64", thumb = <0>, hyp = 1;
(5) Linux+AMP combination

1. Considering the compatibility, the Linux-related firmware under the combination scheme is consistent with
the traditional SMP firmware, i.e. Linux-related firmware + amp.img.

2. Developers can specify the state of the CPU running Linux by adding a “linux” node to amp's its (without
it, it's the default state).

3. If the main core is running Linux or no firmware is specified, the main core will boot Linux from U-Boot
in the traditional SMP boot fashion after booting other AMP firmware.

4. If the non-main core is running Linux, boot Linux first, then other AMP firmware. Note: If you want to
boot on a core other than CPUO, you need special trust support.

5. The load address of the Linux firmware is determined by the U-Boot configuration only, e.g.
rk3568 common.h.

af://n1738
af://n1739
af://n1740

5.1.2 Framework Support

Configurations:

CONFIG AMP
CONFIG ROCKCHIP AMP

Framework Code:
./drivers/cpu/rockchip amp.c

its templates:
./drivers/cpu/amp.its

Packing Tools:

./tools/mkimage // wil be generated automatically after a full U-Boot

compilation
Code commit point at least includes:

commit ¢51cf04095dde2df2dd047e70d2c7£fb0866ea916
Author: Joseph Chen <chenjh@rock-chips.com>
Date: Tue Oct 19 03:16:35 2021 +0000

cpu: amp.its: update amps "arm64" => "arm

Signed-off-by: Joseph Chen <chenjh@rock-chips.com>
Change-Id: I99de02c5b6c62ffdd9b25565acdl172801d6e983¢c

5.1.3 Feature Enablement

1. To create amp.img you need an its file, please modify it based on drivers/cpu/amp.its:

The following its: CPU1/2/3 runs AMP, CPUO runs Linux, and the main core is CPU3. The boot order is:
CPUO => CPU1/2 => CPU3.

/dts-vl1/;
/A

description = "FIT source file for rockchip AMP";

#address-cells = <1>;

// All AMP firmware (excluding Linux) should be specified under the images

node;
images {
ampl {
description = "bare-mental-corel"; // Required: Description
info
data = /incbin/ ("./ampl.bin"); // Required: ampl firmware
type = "firmware"; // Required: No change

compression = "none"; // Required: No change

af://n1768
af://n1779

arch = "arm"; // Required:
bit
cpu = <0x100>; // Required:
thumb = <0>; // Required:
thumb
hyp = <0>; // Required:
load = <0x01800000>;// Required:
address
udelay = <1000000>; // Optional:
current CPU and then start the next CPU.
hash { // Required:
algo = "sha256";
}i
}i
amp2 {
description = "bare-mental-core2";
data = /incbin/ ("./amp2.bin") ;
type = "firmware";
compression = "none";
arch = "arm";
cpu = <0x200>;
thumb = <0>;
hyp = <0>;
load = <0x03800000>;
udelay = <1000000>;
hash {
algo = "sha256";
bi
}i
amp3 {
description = "bare-mental-core3";
data = /incbin/ ("./amp3.bin");
type = "firmware";
compression = "none";
arch = "arm";
cpu = <0x300>;
thumb = <0>;
hyp = <0>;
load = <0x05800000>;
udelay = <1000000>;
hash {
algo = "sha256";

}i
}i

}i

configurations {

default = "conf";
conf {
description = "Rockchip AMP images";

rollback-index =

<0x0>;

“arm64”: 64-bit, “arm”: 32-
cpu hardware id (mpidr)
0: arm or thumb2; 1: pure

0: ell/svc; 1: el2/hyp

Firmware load and run

delay after booting the

No change

// Specifies the firmware to be loaded and the order in which it

should be loaded and booted, but the master core is not subject to this order.

loadables =

signature {

Ilamplll, uamp2 n, namp3u;

algo = "sha256,rsa2048";

padding = "pss";

key-name-hint = "dev";

sign-images = "loadables";
}i

// Linux CPU runtime state designation:
// (1) Only the udelay attribute is optional;
// (2) The boot address is not assignable and is determined by U-

Boot's platform configuration file, e.g.: rk3568 common.h;
linux {
description = "linux-os";
arch = "arm64";
cpu = <0x000>; // CPUO runs linux
thumb = <0>;
hyp = <0>;
udelay = <1000000>;
bi
}i
i
}i
Notes:

¢ description: Description information..

e type: The default is “firmware”.

e compression: The default is “none”.

e data: Firmware path. The path is a relative path based on amp.its.

e arch: CPU 32/64 mode: ARMv7 can only be specified as “arm”; ARMvS can be specified as “arm64” or
“arm”, which means AArch64 or AArch32 respectively.

e cpu: CPU hardware ID, i.e. mpidr (Multiprocessor Affinity Register), take the lower 32 bits. For example:

cpus {
#address-cells = <2>;

#size-cells = <0>;

cpul: cpu@O {

device type = "cpu";
compatible = "arm,cortex-a55";
reg = <0x0 0x0>; // mpidr

cpul: cpu@l00 {
device type = "cpu";
compatible = "arm,cortex-a55";
reg = <0x0 0x100>; // mpidr

e thumb: CPU instruction mode. Specify 1 if pure THUMB, 0 otherwise.
e hyp: CPU VM mode.

¢ Jload: Firmware load and run address

e udelay: Delay after completion of boot (optional), in us. After booting the current CPU, do the
corresponding delay before booting the next CPU.

¢ loadables: The AMP firmware to be loaded and the order in which it is loaded and booted. The main CPU
must be the last to be booted and is not subject to the order here.

e linux node: For Linux + AMP combination programs. Please refer to the “Ideas for Implementation” in this

section.
2. Firmware packing:
// 0xe00 is the firmware header size and is not recommended to be changed
./tools/mkimage -f ./drivers/cpu/amp.its -E -p 0xe00 amp.img
A full compilation of U-Boot is required to automatically generate the mkimage tool.
3. Add amp partition to partition table
Add the “amp” partition to the parameter.txt partition table file and then download amp.img.

U-Boot is to directly load the contents of the entire amp partition into memory, so it is recommended that

the amp partition size is configured according to actual needs
4. Bring up

The U-Boot framework will automatically initiate the bring up of all AMPs at the right time. The following is
the boot information of CPU3 running AMP firmware as the main core and CPU0/1/2 running Linux firmware:

// the master core loading firmware amp3 firmware
Loading loadables from FIT Image at 7bdbcf80

Trying 'amp3' loadables subimage

Description: rtthread

Type: Firmware

Compression: uncompressed

Data Start: 0x7bdbdd80

Data Size: 311296 Bytes = 304 KiB

Architecture: ARM
Load Address: 0x01800000
Hash algo: sha256
Hash value:
d08db937e4d70bd4125056239154bb30d44a2fcca%e70aa8dead48fabdas838d5
Verifying Hash Integrity ... sha256+ OK
Loading loadables from 0x7bdbdd80 to 0x01800000
Booting FIT Image FIT: No fit blob
FIT: No FIT image
ANDROID: reboot reason: " (none)"
optee api revision: 2.0
TEEC: Waring: Could not find security partition
Not AVB images, AVB skip
ANDROID: Hash OK

// the master core loading Linux firmware
Booting IMAGE kernel at 0x03880000 with fdt at 0x0al100000...

Fdt Ramdisk skip relocation

Booting Android Image at 0x0387£800

Kernel load addr 0x03880000 size 21655 KiB

Flattened Device Tree blob at 0x0al00000
Booting using the fdt blob at 0x0al00000

XIP Kernel Image from 0x03880000 to 0x03880000 ... OK
'reserved-memory' ramoops@110000: addr=110000 size=£0000
Using Device Tree in place at 000000000al00000, end 000000000al2322a
vpl adjust cursor plane from 0 to 1
vp0, plane mask:0x2a, primary-id:5, curser-id:1
vpl adjust cursor plane from 1 to O
vpl, plane mask:0x15, primary-id:4, curser-id:0
vp2, plane mask:0x0, primary-id:0, curser-id:-1
Adding bank(fixed): 0x03880000 - 0x80000000 (size: 0x7c780000)

// At this point, all the firmware is loaded, and it starts to boot each CPU

according to the program's prioritization rules,as follows

// The main core boots CPUO to run Linux (CPUl/2 subsequently boots via Linux)
AMP: Brought up cpu[0] with state 0x12, entry 0x03880000 ...OK

// The main core boots itself (CPU3) to run the AMP firmware

AMP: Brought up cpu[300, self] with state 0x10, entry 0x01800000 ...OK

// Linux runs on CPUO:

[0.000000] Booting Linux on physical CPU 0x0000000000 [0x412£d050]

[0.000000] Linux version 4.19.193 (stevenliu@stevenliu) (gcc version 6.3.1
20170404 (Linaro GCC 6.3-2017.05), GNU 1ld (Linaro Binutils-2017.05)
2.27.0.20161019) #5 SMP Mon Sep 13 16:22:51 CST 2021

[0.000000] Machine model: Rockchip RK3568 EVB1 DDR4 V10 Board

The above print information may vary depending on the user's its configuration and is subject to actual

conditions.

5.2 Charge

5.2.1 Framework Support

The U-Boot native code doesn't support charging, however, RK implemented a set of its own.

Charging involves many modules including Display, PMIC, power meter, charging animation, pwrkey, led, CPU

low-power hibernation, Timer and so on.

Power meter support:
RK809/RK816/RK817/RK818/cw201x.
Configurations:

// Framework

CONFIG DM CHARGE DISPLAY
CONFIG_CHARGE ANIMATION
CONFIG DM FUEL GAUGE

// Driver
CONFIG_POWER FG CW201X
CONFIG_POWER FG RK818
CONFIG_POWER FG RK817
CONFIG_POWER FG RK816

af://n1831
af://n1832

Charging frame:
./drivers/power/charge-display-uclass.c
Charging animation driver:

// Responsible for managing the entire charging process, it will get the power
level, charging type, button events, initiate low-power hibernation, and more.

./drivers/power/charge animation.c
Power meter framework:
./drivers/power/fuel gauge/fuel gauge uclass.c
Power meter driver:

./drivers/power/fuel gauge/fg rk818.c
./drivers/power/fuel gauge/fg rk8l7.c // rk809 re-use
./drivers/power/fuel gauge/fg rk8l6.c

Logical process:

charge-display-uclass.c
=> charge_animation.c
=> fuel gauge uclass.c

=> fg rkxx.c

5.2.2 Packaging Pictures

Charging images are located in the . /tools/images/ directory and need to be packaged into resource.img

to be displayed by the charging frame.

The resource.img compiled by the kernel is not packed with charging images by default, and needs to be packed

separately in U-Boot.

$ 1ls tools/images/
battery O.bmp battery 1l.bmp battery 2.bmp battery 3.bmp battery 4.bmp
battery bmp battery fail.bmp

Packaging command:

./pack resource.sh <input resource.img> or

./scripts/pack resource.sh <input resource.img>

Packaging information:

af://n1849

./pack resource.sh /home/cjh/3399/kernel/resource.img

Pack ./tools/images/ & /home/guest/3399/kernel/resource.img to resource.img
Unpacking old image (/home/guest/3399/kernel/resource.img) :

rk-kernel.dtb logo.bmp logo kernel.bmp

Pack to resource.img successed!

Packed resources:

rk-kernel.dtb battery 1.bmp battery 2.bmp battery 3.bmp battery 4.bmp
battery bmp battery fail.bmp logo.bmp logo kernel.bmp battery 0.bmp

resource.img is packed ready

After success, a resource.img containing the image will be generated in the U-Boot root directory, and the

contents will be confirmed by the hd command:

hd resource.img | less

00000000 52 53 43 45 00 00 00 00 01 01 01 00 Oa 00 00 OO0 |RSCE.....cevu... |
00000010 00 00 00 00 0O OO 00 00O 00 00 OO0 00 00 00 00 00 |eweeruweweenennnn |

00000400 45 4e 54 52 62 61 74 74 65 72 79 5f 31 2e 62 6d |ENTRbattery 1.bm|
// picturel

00000410 70 00 00 00 OO 00 00 OO OO 00 00 OO0 OO 00 00 00 |Peweeeeeeeeeennn |
00000420 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.ewweewueeenneennnn |
*

00000500 00 00 00 OO 4d 00 00 00 9c 18 00 00 00 00 00 00 J....M..o.ooiennnn |
00000510 00 00 00 00O OO 00 00 OO OO0 00 00 OO0 OO 00 00 00 Jueweeeeeeeeeeennn |
*

00000600 45 4e 54 52 62 61 74 74 65 72 79 5f 32 2e 62 6d |ENTRbattery 2.bm|
// picture 2

00000610 70 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 [Peveeveeeneennnn |
00000620 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.eweeeuweeeneennnn |

5.2.3 DTS Configuration

DTS Charging Node:

charge-animation {

compatible = "rockchip,uboot-charge";

status = "okay";

rockchip, uboot-charge-on = <0>; // Whether to enable U-Boot
charging

rockchip,android-charge-on = <1>; // Whether to enable Android
charging

rockchip,uboot-exit-charge-level = <5>; // Minimum power allowed to

power on while U-Boot is charging.
rockchip, uboot-exit-charge-voltage = <3650>;// Minimum voltage allowed to

power on when U-Boot is charging.

af://n1859

rockchip, screen-on-voltage = <3400>; // Minimum voltage allowed to

light up the screen while U-Boot is charging.

rockchip, uboot-low-power-voltage = <3350>; // Minimum voltage for forcing

U-Boot to entry into charging mode unconditionally.

rockchip, system-suspend = <1>; // Whether to enter trust low-
power standby when the screen goes off (need to be supported by ATF)
rockchip,auto-off-screen-interval = <20>; // Timeout for automatic screen
going off, in seconds, default 15s
rockchip, auto-wakeup-interval = <10>; // Automatic wake-up time from
hibernation in seconds. If the value is 0 or no such attribute,
// hibernation automatic wake-up
is disabled,
// generally used for stress
test.
rockchip,auto-wakeup-screen-invert = <1>; // Whether or not to light up
the screen when automatic wake-up from hibernation.

}i

5.2.4 System Hibernation

Pwrkey pressing:

e Press pwrkey briefly to turn on/off the screen, when the screen is off, the system will enter the low power
mode;

e Press and hold pwrkey to boot into the system.
There are 2 low power modes, selected by rockchip, system-suspend = <VAL>:

e VAL is 0: cpu wfi mode. At this time, no peripherals are processed, only the cpu enters the low-power
mode;

e VAL is 1: system suspend mode, requires ATF/OPTEE support to be effective. Kernel-like system go deep
standby, the whole SoC goes into standby.

Minimum version number for ATF/OPTEE to support U-Boot low-power standby: Please refer to the

Platform Definition section.

5.2.5 Replacement of Pictures

1. Replace the images inthe . /tools/images/ directory (using 8bit or 24bit bmp), use the command 1s
| sort to make sure the images are sorted from low power to high power, and use the pack resource.sh
script to package the images into resource.img;

2. Modify . /drivers/power/charge animation.c inthe image and charge relationship;

* IF you want to use your own charge images, please:

* 1. Update the following 'image[]' to point to your own images;

* 2. You must set the failed image as last one and soc = -1 !!!
=Y
static const struct charge image image[] = {
{ .name = "battery O0.bmp", .soc = 5, .period = 600 },

{ .name = "battery 1l.bmp", .soc = 20, .period = 600 },

af://n1862
af://n1876

{ .name = "battery 2.bmp", .soc = 40, .period = 600 },

{ .name = "battery 3.bmp", .soc = 60, .period = 600 },

{ .name = "battery 4.bmp", .soc = 80, .period = 600 },

{ .name = "battery bmp", .soc = 100, .period = 600 },

{ .name = "battery fail.bmp", .soc = -1, .period = 1000 },

// @name: Name of the picture;
// @soc: Amount of electricity corresponding to the picture;
// @period: Image refresh time (unit: ms);

// Note: The last image must be a fail image and “soc=-1"” cannot be changed. U

5.2.6 Charging Indicator

In actual products, users have different control requirements for led, so the charging frame only supports 2 leds.

Charging indicator, Fully-Charged indicator:

¢ Charging Indicator: The led will be flipped when there is a change in power level while charging;
¢ Fully-Charged Indicator: The led will only light up when the battery is 100% full;

The above two Led configuration only serves as a demo, users need to modify the code according to your own

needs.

Configuration options:

CONFIG_LED CHARGING NAME
CONFIG LED CHARGING FULL NAME

These two configuration options are used to specify the label attribute of the led, please refer to the Led section.

5.3 Clock

5.3.1 Framework Support

The clock driver uses the clk-uclass framework and standard interfaces.

Configuration:
CONFIG CLK
Framework code:
./drivers/clk/clk-uclass.c
Platform Driver Code:

./drivers/clk/rockchip/...

5.3.2 Relevant Interface

af://n1883
af://n1894
af://n1895
af://n1903

// RApply Clock
int clk get by index(struct udevice *dev, int index, struct clk *clk);

int clk get by name(struct udevice *dev, const char *name, struct clk *clk);

// Enable/Disable Clock
int clk enable(struct clk *clk);
int clk disable(struct clk *clk);

// Configure/acquire frequency
ulong (*get rate) (struct clk *clk);

ulong (*set rate) (struct clk *clk, ulong rate);

// Configure/get phase
int (*get phase) (struct clk *clk);

int (*set phase) (struct clk *clk, int degrees);

5.3.3 Clock Initialization

There are a total of three categories of interfaces involved in clock initialization, for the sake of subsequent

introduction, here first list cru node information

cru: clock-controller@ff2b0000 {
compatible = "rockchip,px30-cru";
assigned-clocks =
<&pmucru PLL GPLL>, <&pmucru PCLK PMU PRE>,
<gpmucru SCLK WIFI PMU>, <&cru ARMCLK>,
<gcru ACLK BUS PRE>, <&cru ACLK PERI PRE>,
<&cru HCLK BUS PRE>, <&cru HCLK PERI PRE>,
<&cru PCLK BUS PRE>, <&cru SCLK _GPU>;
assigned-clock-rates =
<1200000000>, <100000000>,
<26000000>, <600000000>,
<200000000>, <200000000>,
<150000000>, <150000000>,
<100000000>, <200000000>;

Category I, default initialization of the platform base clock: rkelk_init() **:

Each platform cru driver probe will call rkclk init () to complete the pll/cpu/bus frequency initialization,

which is defined in cru_rkxxx.h . For example, RK3399:

#define APLL HZ 600 * MHz
#define GPLL HZ 800 * MHz
#define CPLL HZ 384 * MHz
#define NPLL HZ 600 * MHz

(
(
(
(
#define PPLL HZ (676 * MHz
(
(
(
(
(

#define PMU_PCLK HZ 48 * MHz
#define ACLKM CORE_HZ 300 * MHz
#define ATCLK CORE HZ 300 * MHz
#define PCLK DBG HZ 100 * MHz
#define PERIHP ACLK HZ (150 * MHz

af://n1905

#define PERIHP HCLK HZ 75 * MHz)
#define PERIHP PCLK HZ (37500 * KHz)
#define PERILPO ACLK HZ (300 * MHz

(
(
(
#define PERILPO HCLK HZ (100 * MHz
(
(
(

#define PERILPO PCLK HZ
#define PERILP1 HCLK HZ (100 * MHz
#define PERILP1 PCLK HZ (50 * MHz

Category II, secondary initialization of platform base clock : clk_set_defaults ()

Each platform cru driver probe may call c1k set defaults() to parse and configure the frequencies (i.e.,
reconfigure the frequencies) specified by assigned-clocks/assigned-clock-parents/assigned-clock-
rates within the cru node, but not the arm frequencies. The arm frequency is only reconfigured if

set_armclk rate() isimplemented, see CPU frequency boosting below.

In addition to cru, peripherals that require it can actively call c1k _set defaults () in their own probes, e.g.

vop, gmac.
Category III, clock initialization for each module: clk_set rate()

Most peripheral modules call c1k_set rate() to configure their frequency

5.3.4 CPU Frequency Boost

For the current CPU frequency boost support in U-Boot for each platform: Please refer to the Platform

Definition section.It is divided into the following three categories according to the different implementation

mechanisms:
Category I: CPU using APLL
cpu boot frequency boost implementation process:

e Step 1: Specify the arm target frequency in the assigned-clocks of the cru node.;

e Step 2: cru drives the probe with a call to c1k_set defaults() to get (but not configure) the arm target
frequency from step 1;

e Step 3: Implement set armclk rate () , set the arm target frequency obtained from step 2. Some
platforms that need it are already implemented by default, other platforms can refer to the existing

implementation to add it as needed, e.g.: arch\arm\mach-rockchip\px30\px30.c .;

int set armclk rate(void)

{
struct px30 clk priv *priv;
struct clk clk;

int ret;

ret = rockchip get clk(&clk.dev);

if (ret) {
printf ("Failed to get clk dev\n");
return ret;

}

clk.id = ARMCLK;

priv = dev_get priv(clk.dev);

ret = clk set rate(&clk, priv->armclk hz);

if (ret < 0) {

printf ("Failed to set armclk %$lu\n", priv->armclk hz);

af://n1916

return ret;

}

priv->set_armclk rate = true;

return 0;

e Step 4: Refer to the cpu opp-table (frequency and voltage table), add regulator-init-microvolt =
<...> to the regulator node of the arm to specify the init voltage, ensure the target frequency and voltage

can match.
Category II: CPU using SCMI CLK

For example, for RK356X, boot-up boost requires the use of the scmi interface to set CPU clock related

parameters.
The implementation process of cpu boot boost:

e Step 1: Specify the arm target frequency in rockchip, clk-init of the scmi node;

e Step 2: Verify that UBOOT has the SCMI, CONFIG_CLK SCMI macro turned on;

e Step 3: Implement set _armclk rate () , set the arm target frequency from the dts node of scmi. Some
platforms that require it have already implemented it by default, other platforms can refer to the existing

implementation to add it as needed, for example: arch\arm\mach-rockchip\rk3568\rk3568.c;

#ifdef CONFIG CLK SCMI
#include <dm.h>
/*
* armclk: 1104M:
* rockchip,clk-init = <1104000000>,
* vdd cpu : regulator-init-microvolt = <825000>;
* armclk: 1416M(by default):
* rockchip,clk-init = <1416000000>,
* vdd cpu : regulator-init-microvolt = <900000>;
* armclk: 1608M:
* rockchip,clk-init = <1608000000>,
* wvdd cpu : regulator-init-microvolt = <975000>;

=/
int set armclk rate(void)

struct clk clk;
u32 *rates = NULL;

int ret, size, num rates;

ret = rockchip get scmi clk(&clk.dev);
if (ret) {
printf ("Failed to get scmi clk dev\n");

return ret;

size = dev_read size(clk.dev, "rockchip,clk-init");
if (size < 0)

return 0;

num rates = size / sizeof (u32);
rates = calloc(num _rates, sizeof (u32));

if (!rates)

return -ENOMEM;

ret = dev_read u32 array(clk.dev, "rockchip,clk-init",
rates, num rates);
if (ret) {
printf ("Cannot get rockchip,clk-init reg\n");
return -EINVAL;
}
clk.id = 0;
ret = clk set rate(&clk, rates[clk.id]);
if (ret < 0) {
printf ("Failed to set armclk\n");
return ret;
}
return 0;

}
fendif

e Step 4: Refer to the cpu opp-table (frequency and voltage table), and add regulator-init-microvolt
= <...> to the regulator node of arm to sepcify ini voltage, ensure the target frequency and voltage can

match.
SCMI: Please refer to section CH17-Appendix.
Category III: CPU using SCMI CLK

The difference with the Category II is that you only need to perform step 4. the cpu frequency will be

automatically increased according to the voltage..

5.3.5 Clock Tree

The U-Boot framework does not provide clock tree management, and platforms have added soc_clk dump ()

for simple printing of clock information. Example:

CLK: (sync kernel. arm: enter 1200000 KHz, init 1200000 KHz, kernel 800000 KHz)
apll 800000 KHz
dpll 392000 KHz
cpll 1000000 KHz
gpll 1188000 KHz
npll 24000 KHz
ppll 100000 KHz
hsclk bus 297000 KHz
msclk bus 198000 KHz
lsclk bus 99000 KHz
msclk peri 198000 KHz
lsclk peri 99000 KHz

The meaning of the first printed line:

e sync kernel : The cru driver is configured with c1k set defaults() for each of the bus
frequencies specified within the kernel cru node (except for the ARM frequency); otherwise it is shown as
sync uboot;

e enter 1200000 KHz:The arm frequency at which the previous Loader enters U-Boot;

e init 1200000 KHz : U-Boot's arm initialization frequency as defined by APLL HZ;

af://n1949

¢ kernel 800000 KHz:Implemented set armclk rate() and set the arm frequency specified by

assigned-clocks in the kernel cru node; otherwise displays: “kernel ON/A”;

5.4 Crypto

The Crypto module is primarily used to implement hardware-level encryption and hashing algorithms and is

currently available in v1 and v2 IP versions
5.4.1 Framework Support

U-Boot doesn't have crypto framework support by default, RK has implemented a set by itself.

Configuration:

CONFIG_DM CRYPTO

// choose either one of the below two options, the defconfig of each platform
has enabled the corresponding configuration by default.

CONFIG ROCKCHIP CRYPTO V1

CONFIG ROCKCHIP CRYPTO V2

Framework Code:

./drivers/crypto/crypto-uclass.c

./cmd/crypto.c
Driver Code:

// crypto vl:
./drivers/crypto/rockchip/crypto vl.c

// crytpo v2:
./drivers/crypto/rockchip/crypto v2.c
./drivers/crypto/rockchip/crypto v2 pka.c
./drivers/crypto/rockchip/crypto v2 util.c

5.4.2 Relevant Interface

// Get crypto:
struct udevice *crypto get device(u32 capability):;
// SHA interface:
int crypto sha init(struct udevice *dev, sha context *ctx);
int crypto sha update(struct udevice *dev, u32 *input, u32 len);
int crypto sha final(struct udevice *dev, sha context *ctx, u8 *output);
int crypto sha csum(struct udevice *dev, sha context *ctx,
char *input, u32 input len, u8 *output);
// RSA interface:

int crypto rsa verify(struct udevice *dev, rsa key *ctx, u8 *sign, u8 *output);

¢ For interface usage, please refer to: ./cmd/crypto.c;

af://n1962
af://n1964
af://n1972

¢ Difference on SHA usage between v1 and v2: vl requires crypto_sha _init() to first assign the total length

of the data to be computed to ctx->length, while v2 does not;

5.4.3 DTS Configuration

crypto nodes must be defined in U-Boot dts, the main reason:

¢ The kernel dts of the old SDKs for each platform do not have crypto nodes, so you need to consider
compatibility with the old SDKs.
e The secure boot of U-Boot will use crypto, so it is safer and more reasonable for U-Boot to control the

crypto itself;

1. crypto vl configuration (RK3399 as an example):

crypto: crypto@ff8b0000 {

u-boot,dm-pre-reloc;

compatible = "rockchip, rk3399-crypto";

reg = <0x0 O0xff8b0000 0x0 0x10000>;

clock-names = "sclk cryptoO", "sclk cryptol";

clocks = <&cru SCLK CRYPTOO0>, <&cru SCLK CRYPTOl>; // No need to specify
frequency, default 100M

status = "disabled";

}i
2. crypto v2 configuration (px30 for example):

crypto: crypto@ff0b0000 ({

u-boot,dm-pre-reloc;

compatible = "rockchip,px30-crypto";
reg = <0x0 Oxff0b0000 0x0 0x4000>;
clock-names = "sclk crypto", "apkclk crypto";

clocks = <&cru SCLK CRYPTO>, <&cru SCLK CRYPTO APK>;

clock-frequency = <200000000>, <300000000>; // Generally need to specify the
frequency

status = "disabled";

}i

¢ The difference between crypto v1 and v2 dts configurations lies in the clk frequency specification.

5.5 Display

5.5.1 Framework Support

RK U-Boot currently supports the following display interfaces: RGB, LVDS, EDP, MIPI, HDMI, CVBS, DP,
etc. The logo images displayed by U-Boot are taken from the kernel root directory, logo.bmp and
logo_kernel.bmp, which are packaged in resource.img.

:Requirements for images.

e BI RGB 8bpp/16bpp/24bpp/32bpp and BI RLE4/BI_RLES format BMP images;

af://n1979
af://n1997
af://n1998

e RK312X/PX30/RK3308/RV1126/RV1106 and other chips based on VOP LITE architecture do not support
the mirror function in design. If the displayed logo has a mirror problem in the X/Y direction, please use

photoshop or ffmpeg and other tools to process the BMP image in advance to the expected effect.

Configuration:

CONFIG DM VIDEO

CONFIG_DISPLAY

CONFIG_DRM ROCKCHIP

CONFIG DRM ROCKCHIP PANEL

CONFIG_DRM ROCKCHIP DW HDMI

CONFIG_DRM ROCKCHIP DW_HDMI QP
CONFIG_DRM ROCKCHIP INNO HDMI

CONFIG ROCKCHIP INNO HDMI PHY
CONFIG_DRM ROCKCHIP INNO MIPI PHY
CONFIG_DRM ROCKCHIP INNO VIDEO PHY
CONFIG DRM ROCKCHIP INNO VIDEO COMBO PHY
CONFIG DRM ROCKCHIP DW MIPI DSI
CONFIG_DRM ROCKCHIP DW MIPI DSI2
CONFIG_DRM ROCKCHIP DW DP

CONFIG DRM ROCKCHIP ANALOGIX DP
CONFIG_DRM ROCKCHIP LVDS

CONFIG_DRM ROCKCHIP RGB

CONFIG DRM ROCKCHIP RK618

CONFIG DRM ROCKCHIP RK628
CONFIG_DRM ROCKCHIP SAMSUNG MIPI DCPHY
CONFIG_PHY ROCKCHIP SAMSUNG HDPTX HDMI
CONFIG ROCKCHIP DRM TVE

CONFIG SII902X

Framework Code:

drivers/video/drm/rockchip display.c
drivers/video/drm/rockchip display.h
drivers/video/drm/rockchip crtc.c
drivers/video/drm/rockchip crtc.h
drivers/video/drm/rockchip connector.c
drivers/video/drm/rockchip connector.h
drivers/video/drm/rockchip bridge.c
drivers/video/drm/rockchip bridge.h
drivers/video/drm/rockchip panel.c
drivers/video/drm/rockchip panel.h
drivers/video/drm/rockchip phy.c

drivers/video/drm/rockchip phy.h

Driver file:

vop:
drivers/video/drm/rockchip vop.c
drivers/video/drm/rockchip vop.h
drivers/video/drm/rockchip vop reg.c
drivers/video/drm/rockchip vop reg.h

drivers/video/drm/rockchip vop2.c

rgb:

drivers/video/drm/rockchip rgb.c

drivers/video/drm/rockchip rgb.h

lvds:
drivers/video/drm/rockchip lvds.c

drivers/video/drm/rockchip_lvds.h

mipi:
drivers/video/drm/drm mipi dsi.c
drivers/video/drm/dw_mipi dsi.c

drivers/video/drm/dw mipi dsi2.c

edp:
drivers/video/drm/rockchip analogix dp.c
drivers/video/drm/rockchip analogix dp.h
drivers/video/drm/rockchip analogix dp reg.c

drivers/video/drm/rockchip analogix dp reg.h

hdmi :
drivers/video/drm/dw_hdmi.c
drivers/video/drm/dw_hdmi.h
drivers/video/drm/rockchip dw hdmi.c
drivers/video/drm/rockchip dw hdmi.h
drivers/video/drm/dw_hdmi gp.c
drivers/video/drm/dw_hdmi gp.h
drivers/video/drm/rockchip dw hdmi gp.c
drivers/video/drm/rockchip dw hdmi gp.h

cvbs:
drivers/video/drm/rockchip tve.c

drivers/video/drm/rockchip tve.h

dp:

drivers/video/drm/dw-dp.c

bridge:
drivers/video/drm/rk618.c
drivers/video/drm/rk618.h
drivers/video/drm/rk618 lvds.c
drivers/video/drm/rk618 lvds.c
drivers/video/drm/rk628/

drivers/video/drm/sii902x.c

5.5.2 Relevant Interface

// Display U-Boot logo and kernel logo:

void rockchip show logo(void);

// Display bmp images, currently mainly used for charging image display:

void rockchip show bmp (const char *bmp);

// Passes some variables from U-Boot to the kernel via dtb.
// Including kernel logo size, address, format, bcsh/csc configuration, crtc
output scan timing and overscan configuration, etc.

void rockchip display fixup(void *blob);

af://n2012

5.5.3 DTS Configuration

reserved-memory {
#address-cells = <2>;
#size-cells = <2>;

ranges;

drm logo: drm-1ogo@00000000 {

compatible = "rockchip,drm-logo";

// Reserve buffer for kernel logo

will be modified in U-Boot
reg = <0x0 0x0 0x0 0x0>;
}i
i

&route-edp {

status = "okay";

logo,uboot = "logo.bmp";
the U-Boot logo

logo, kernel = "logo kernel.bmp";
the kernel logo

logo,mode = "center";
fullscreen display

logo, rotate = <90>;

charge logo,mode = "center";
fullscreen display

connect = <&vopb out edp>;

>edp->panelDetermine the display path,

}i

&edp {

status = "okay"; // enable edp
}i
&vopb {

status = "okay"; // enable vopb
}i
&panel {

"simple-panel";
status = "okay";
disp timings: display-timings ({

native-mode = <&timing0>;

timing0: timing0 {

5.5.4 Defconfig

storage, the exact address and size

// Enable U-Boot logo display function
// Specify the image to display for

// Specify the image to display for

// center: center display, fullscreen:

// Rotation angle: 90/180/270

// center: center display, fullscreen:

// Determine the display path, vopb-

vopb->edp->panel

af://n2014
af://n2016

Currently, except for some platforms that have requirements for boot speed or small memory, U-Boot's defconfig
already supports display by default, as long as the relevant information is configured in dts.
RK3308/RV1103/RV1106 and other platforms do not support display by default due to some reasons such as

boot speed, and the following modifications need to be added to defconfig:

--- a/configs/evb-rk3308 defconfig

+++ b/configs/evb-rk3308 defconfig

@@ -4,7 +4,6 @@ CONFIG SYS MALLOC F LEN=0x2000
CONFIG_ROCKCHIP RK3308=y
CONFIG_ROCKCHIP SPL_RESERVE IRAM=0x0
CONFIG_RKIMG BOOTLOADER=y

-# CONFIG USING_KERNEL DTB is not set
CONFIG TARGET EVB RK3308=y

CONFIG DEFAULT DEVICE TREE="rk3308-evb"
CONFIG_DEBUG UART=y

@@ -55,6 +54,11 @@ CONFIG USB GADGET DOWNLOAD=y
CONFIG G DNI_MANUFACTURER="Rockchip"
CONFIG_ G DNI VENDOR NUM=0x2207
CONFIG_G_DNL_PRODUCT NUM=0x330d
+CONFIG DM VIDEO=y

+CONFIG DISPLAY=y

+CONFIG_DRM ROCKCHIP=y
+CONFIG DRM ROCKCHIP RGB=y

+CONFIG LCD=y

CONFIG _USE_TINY PRINTF=y
CONFIG_SPL_TINY MEMSET=y

CONFIG_ERRNO STR=y

Or enable the corresponding .config configuration:

// rk3308

make rk3308 defconfig rk3308-display.config
// rv1103/rv1106

make rv1106 defconfig rvl11l06-display.config

Note on the upstream defconfig configuration
upstream maintains a set of Rockchip U-Boot display drivers, currently supporting the RK3288 and RK3399

platforms.:

./drivers/video/rockchip/

To use this driver, you can turn on CONFIG_VIDEO_ROCKCHIP and turn off CONFIG_DRM_ROCKCHIP,

which has some advantages over the display driver we currently use for the SDK:

¢ Supported platforms and display interfaces are more comprehensive;
e HDMI, DP and other display interfaces can output the specified resolution, overscan effect, display effect,
adjustment effect and so on according to the user's settings;

e The U-Boot logo can be smoothly transitioned to the kernel logo until the system boots.

5.5.5 LOGO Partition

af://n2032

Users who have a need to dynamically update the power-up LOGO (usually initiating the update at the
application layer) can do so through a separate LOGO partition.

Operational Steps:

¢ Add a separate LOGO partition to the partition table
e Users can dynamically update the images in the logo partition in a certain way according to their needs.
When updating, users can directly update the original image to the logo partition without any packaging.

When the image in the logo partition is invalid, the default image in the resource file is still used.
LOGO Partition Support:

If the code only contains the following commit, the logo partition only supports 1 image and can only replace the

default logo.bmp:

1d30bcc rockchip: resource: support parse "logo" partition picture

If the code contains the following commit, the logo partition supports 2 images: image 1 is used to replace
logo.bmp, and the image 2 is used to replace logo_kernel.bmp. The two images are placed next to each other,

with 512-byte alignment between the images, and the order is not replaceable

commit 07£987d8d495380787203e2bc2accd44100e6051

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Sun Dec 8 18:00:37 2019 +0800
rockchip: resource: support parse logo kernel.bmp from logo partition
"logo" partition layout, not change order:

| === m e | 0x00

e e ey | N*512-byte aligned

N: the sector count of logo.bmp

Signed-off-by: Joseph Chen <chenjh@rock-chips.com>
Change-Id: I2debal013d3963c99664c5bfd69693835a46bad8f

Assuming the images are logo.bmp and logo kernel.bmp. logo.img package command:

cat logo.bmp > logo.img && truncate -s %512 logo.img && cat logo kernel.bmp >>
logo.img

Just download the generated logo.img to the logo partition and you will see “LOGO:” printed after booting:

U-Boot 2017.09-g042c01531e-210512-dirty #cjh (May 14 2021 - 11:25:03 +0800)

Model: Rockchip RK3568 Evaluation Board
PreSerial: 2, raw, 0xfe660000

DRAM: 2 GiB

Sysmem: init

Relocation Offset: 7d34£000, fdt: 7b9£f8758

Using default environment

dwmmc@fe2b0000: 1, dwmmc@fe2c0000: 2, sdhci@fe310000: O
Bootdev (atags): mmc 0

MMCO: HS200, 200Mhz

PartType: EFI

boot mode: normal

FIT: No fdt blob

Android 11.0, Build 2021.4, v2

Found DTB in boot part

// The following printout indicates that the image in the logo.img partition was
recognized correctly.

LOGO: logo.bmp

LOGO: logo kernel.bmp

DTB: rk-kernel.dtb

HASH (c) : OK

5.5.6 Analysis of Common Problems

Q1: If you want the default mirror display in the X/Y direction, is there any way?

Al: The default mirror display in the Y direction is not supported. The default mirror display in the X direction
is not supported for the VOP LITE architecture platform, but for the VOP2 architecture platforms such as
RK3568 and RK3588, you can ensure that the X direction is mirrored from U-Boot through the following

configuration:

&vpl |
xmirror—-enable;

}i

Q2: Can it support BMP logo images with 4K resolution?

A2: Yes, it can, but the defconfig of each platform cannot support the normal display of 4K logo images. The
following modifications need to be added (taking the rk3576 platform as an example):

diff --git a/drivers/video/drm/rockchip display.c
b/drivers/video/drm/rockchip display.c
index bl1773ba6942..d1606dblba5 100644

--- a/drivers/video/drm/rockchip display.c
+++ b/drivers/video/drm/rockchip display.c
@@ -52,7 +52,7 @@

#define RK BLK SIZE 512

#define BMP_PROCESSED FLAG 8399

#define BYTES_ PER PIXEL sizeof (uint32_t)
-#define MAX IMAGE BYTES (8 * 1024 * 1024)
+#define MAX IMAGE BYTES (32 * 1024 * 1024)

DECLARE GLOBAL DATA PTR;
static LIST HEAD (rockchip display list);
diff --git a/include/configs/rk3576 common.h b/include/configs/rk3576 common.h
index 1l6abba314c5..b4a8ec3b898 100644
--- a/include/configs/rk3576_ common.h
+++ b/include/configs/rk3576 common.h
@@ -22,7 +22,7 @@
#endif
#define CONFIG_SPL_LOAD FIT ADDRESS 0x42000000

af://n2049

-#define CONFIG SYS MALLOC_ LEN (32 << 20)
+#define CONFIG SYS MALLOC LEN (32 << 21)
#define CONFIG SYS CBSIZE 1024

#ifdef CONFIG SUPPORT USBPLUG

And you need to change the configuration item CONFIG_DRM_MEM RESERVED SIZE MBYTES to 64

MB.

Due to memory usage and default parameter partition table configuration, it is not recommended to use too
large BMP logo images, so MAX_IMAGE BYTES is limited to 8 MB. If the size exceeds this, it is
recommended to use BI RLE4/BI_RLE8 format BMP images.

The common 4K BI RGB 24bpp BMP image size is about 24 MB. The default malloc heap size of each
platform is usually 32 MB, which will cause the BMP decode related functions to fail to apply for memory.
In order to ensure smooth switching from U-Boot to Kernel logo display, the two logo images are usually
of the same resolution and format, so the size of the memory area reserved for the logo display function
(determined by CONFIG_DRM_MEM RESERVED SIZE MBYTES, 32 MB by default) is not enough.

5.6 Dvfs

The DVFS in this chapter is different from the kernel, which is a dynamic frequency and voltage regulation

mechanism specialized for wide temperature chips.

5.6.1 Wide Temperature Strategy

The U-Boot framework doesn't support DVFS, in order to support the wide temperature function for some chips,

RK has implemented a set of DVFS wide temperature drivers to adjust the cpu/dmc frequency-voltage according

to the chip temperature. However, unlike the kernel DVFS driver, this wide-temperature driver perform control

only when the max/low temperature thresholds are triggered.

Wide temperature strategy:

1.

The wide temperature driver is used to adjust the frequency-voltage of cpu/dme, the control strategy can be
effective for both cpu and dmec, or only one of them, determined by the dts configuration; the control

strategy is the same for both cpu and dmc

. The wide-temperature driver parses the “trip-point-0” of the opp table, regulator, clock, and thermal zone

of the cpu/dmc node to get information about the frequency-voltage range, max/low temperature

thresholds, and the maximum voltage allowed;

. If rockchip,low-temp = <...> or rockchip,high-temp = <...> is specified in the opp table of the cpu/dmec, the

cpu/dmc will not be able to use it. > or rockchip,high-temp = <... >, or cpu/dmc references a trip node in

the thermal zone, then the cpu/dmc wide-temperature control policy will take effect;

. Key attributes:

rockchip,low-temp: Minimum temperature threshold, refered to as TEMP_min below;;
rockchip,high-temp and thermal zone: The maximum temperature threshold, refered to as TEMP_max
below (if both are valid, they will be compared with the current temperature, strategically);

rockchip,max-volt: The maximum permissible setting voltage is indicated by V_max below;

. Threshold-triggered processing:

If the temperature is higher than TEMP_max, reduce both frequency and voltage to the lowest gear;

af://n2064
af://n2066

¢ [fthe temperature is below TEMP_min, the default boost is SOmv. If boosting the voltage by 50mv causes

the voltage to exceed V_max, the voltage is set to V_max while lower the frequency by 2 gears;
6. The current wide temperature strategy is applied at 2 points:

e After the regulator and clk frameworks are initialized, the wide-temperature driver is initialized and the
wide-temperature policy is executed once, which is called in board _init() in the board.c file;

e During the preboot phase (i.e. before loading the firmware), the wide-temperature policy will be executed
once more: if attribute such as “repeat” has been specified in the dts node (see below), and the chip
temperature is still not within the temperature threshold after executing the current wide-temperature
policy, the system will stop booting and the wide-temperature policy will be executed continuously until
the chip temperature is back within the temperature threshold before continuing to boot the system. If there
is no attribute such as “repeat”, then the system will boot up directly after the current wide-temperature

policy is executed, generally, the repeat attribute is not needed at present.

5.6.2 Framework Support

Framework Code:

./drivers/power/dvfs/dvfs-uclass.c
./include/dvfs.h
./cmd/dvfs.c

Driver Code:

./drivers/power/dvfs/rockchip wtemp dvfs.c

5.6.3 Relevant Interface

// Execute the dvfs policy once

int dvfs_apply(struct udevice *dev);
// If the repeat attribute is specified, the dvfs policy will be executed

repeated when the temperature is not within the threshold range

int dvfs repeat apply(struct udevice *dev);

5.6.4 Enable Wide Temperature

1. Configuration Enable:

CONFIG DM DVFS=y
CONFIG_ROCKCHIP WTEMP DVFS=y

CONFIG DM THERMAL=y

CONFIG ROCKCHIP THERMAL=y
CONFIG_USING KERNEL DTB=y

2. Specify CONFIG_PREBOOT:

af://n2101
af://n2106
af://n2108

#ifdef CONFIG DM DVFS
#define CONFIG PREBOOT "dvfs repeat"
#else

#define CONFIG PREBOOT

#endif

3. kernel dts configure wide-temperature nodes:

uboot-wide-temperature {

compatible = "rockchip,uboot-wide-temperature";

// Optional. Indicates whether to have the wide temperature driver stop
booting the system when the maximum/low temperature threshold of the cpu is
triggered during the U-Boot phase,

// and to keep executing the wide temperature processing strategy until the
chip temperature returns to within the threshold range before continuing to boot
the system

cpu, low-temp-repeat;

cpu, high-temp-repeat;

// Optional. Indicates whether to stop the wide temperature driver from
booting the system when the U-Boot stage triggers the dmc's maximum/low
temperature threshold,

// and to keep enforcing the wide temperature processing strategy until the
chip temperature returns to within the threshold range before continuing to boot
the system.

dmc, low-temp-repeat;

dmc, high-temp-repeat;

status = "okay";
}i

In general, the repeat-related attributes described above do not need to be configured.

5.6.5 Wide Temperature Results

The following will be printed when cpu temperature control is enabled:

// <NULL> indicates that no low temperature threshold is specified
DVFS: cpu: low=<NULL>'c, high=95'c, Vmax=1350000uV, tz temp=88.0'c, h repeat=0,
1 repeat=0

There will be an adjustment message when the cpu temperature control triggers the high temperature threshold:

DVFS: 90.352'c
DVFS: cpu(high): 600000000->408000000 Hz, 1050000->950000 uVv

There will be an adjustment message when the cpu temperature control triggers the low temperature threshold:

DVFS: 10.352'c
DVFS: cpu(low): 600000000->600000000 Hz, 1050000->1100000 uVv

af://n2122

Similarly, when dmc triggers the high and low temperature thresholds, the above message will be printed with

the prefix “dmc™:

DVFS: dmc:
DVFS: dmc (high):
DVFS: dmc(low):

5.7 Efuse/Otp

5.7.1 Framework Support

The efuse/otp driver uses the misc-uclass.c framework and standard interfaces. Genrally, efuse/otp is divided
into secure and non-secure, with U-Boot providing access to non-secure and U-Boot SPL providing access to

certain areas of secure otp.

non-secure configuration:

CONFIG_MISC
// choose either one of the below two options, the defconfig of each platform
has enabled the corresponding configuration by default.

CONFIG_ROCKCHIP EFUSE

CONFIG_ROCKCHIP OTP

secure configuration:

CONFIG_SPL MISC=y
CONFIG_SPL_ROCKCHIP SECURE_OTP=y

framework code:
./drivers/misc/misc-uclass.c
driver code:

// non-secure:
./drivers/misc/rockchip-efuse.c
./drivers/misc/rockchip-otp.c
// secure:

./drivers/misc/rockchip-secure-otp.S

5.7.2 Relevant Interface

// non-secure:

int misc read(struct udevice *dev, int offset, void *buf, int size)
// secure:

int misc_read(struct udevice *dev, int offset, void *buf, int size)

int misc write(struct udevice *dev, int offset, void *buf, int size)

af://n2131
af://n2132
af://n2142

5.7.3 DTS Configuration

Take k3308 as an example:

non-secure:

otp: otp@ff210000 {
compatible = "rockchip, rk3308-otp";
reg = <0x0 O0xff210000 0x0 0x4000>;
}i

secure:

secure otp: secure otplOxff2a8000 {
compatible = "rockchip, rk3308-secure-otp";
reg = <0x0 0xff2a8000 0x0 0x4000>;
secure conf = <0xff2b0004>;
mask addr = <0xf£540000>;

5.7.4 Recall Example

take non-secure as an example:

char data[10] = {0};

struct udevice *dev;

/* retrieve the device */
ret = uclass get device by driver (UCLASS MISC,
DM GET DRIVER (rockchip otp), &dev);
if (ret) {
printf ("no misc-device found\n");

return 0;

misc read(dev, 0x10, &data, 10);
secure example:

char datal[l10] = {0};
struct udevice *dev;

int 1i;

dev = misc otp get device (OTP_S);
if (!dev)
return -ENODEV;

for (i = 0; 1 < 10; 1i++)

datal[i] = i;

misc otp write(dev, 0x10, &data, 10);
memset (data, 0, 10);
misc otp read(dev, 0x10, &data, 10);

af://n2144
af://n2150

5.7.5 Open Area

Secure-OTP only opens part of the region to read and write, please refer to the document: “Rockchip OTP

Development Guide”.

5.8 Ethernet

5.8.1 Framework Support

Framework code:

./net/*
./drivers/net/*

./drivers/net/phy/*
Driver code:

./drivers/net/designware.c
./drivers/net/dwc_eth gos.c

./drivers/net/gmac_rockchip.c

menuconfig configuration:

e Driver configuration
There are two sets of Rockchip Ethernet drivers, if in doubt about the driver selection, please refer to our

corresponding sdk config.

// designware:
CONFIG DM ETH=y
CONFIG_ETH DESIGNWARE=y
CONFIG_GMAC ROCKCHIP=y

// dwc_eth gos:
CONFIG DM ETH=y
CONFIG DM ETH PHY=y
CONFIG DWC ETH QOS=y
CONFIG_GMAC_ROCKCHIP=y

In addition the dwc_eth_qos driver needs to be configured with nocache memory, refer to RV1126:.

af://n2155
af://n2157
af://n2158

diff --git a/include/configs/rv1126 common.h b/include/configs/rv1126 common.h
index 933917£3f0..9d70795fb8 100644

--- a/include/configs/rv1126 common.h

+++ b/include/configs/rv1126 common.h

@@ -50,6 +50,7 Q@

#define CONFIG_SYS SDRAM BASE 0
#define SDRAM MAX SIZE 0x£d000000
+#define CONFIG_SYS NONCACHED MEMORY (1 << 20) /* 1 MiB */

#ifndef CONFIG_SPL_BUILD

e cmd configuration

Manually configure the required features .

Command line interface ---> Network commands --->

] bootp, tftpboot

] tftp put

] tftp download and bootm
] tftp download and flash
] tftpsrv

] rarpboot

== ElagP

-*- pxe

[] nfs

=%= il

=¥= [P

[] cdp

[1 sntp

[] dns

[1 linklocal
[]

ethsw

5.8.2 Relevant Interface

e Data Structure Initialization Interface

void net init(void);
int eth register(struct eth device *dev);

int phy init(void);
e Device Registration Interface

int eth register(struct eth device *dev);

int phy register(struct phy driver *drv);

e Network data read/write and phy read/write
U-Boot's data sending and receiving needs to be called actively, no interrupt or polling method is used, the

specific implementation can refer to NetLoop().

af://n2175

int eth send(void *packet, int length);

int eth rx(void);

int phy read(struct phy device *phydev, int devad, int regnum);
int phy write(struct phy device *phydev, int devad, int regnum, ulé6 val);

5.8.3 DTS Configuration

DTS nodes, like kernels, need to be concerned with the configuration of the following board-related attributes:

e phy interface configuration (phy-mode)

¢ phy rreset pin and reset time (snps,reset-gpio) (snps,reset-delays-us)

¢ Clock output direction for mcu (clock in_out)

¢ Clock source selection and frequency setting (assigned-clock-parents) (assigned-clock-rates)
¢ RGMII Delayline, RGMII interface requirement (tx_delay) (rx_delay)

&gmac {
phy-mode = "rgmii";
clock in out = "input";

snps, reset-gpio = <&gpio3 RK PAO GPIO ACTIVE LOW>;
snps, reset-active-low;

/* Reset time is 20ms, 100ms for rtl8211f */

snps, reset-delays-us = <0 20000 100000>;

assigned-clocks = <&cru CLK GMAC SRC>, <&cru CLK GMAC TX RX>, <&cru
CLK GMAC ETHERNET OUT>;

assigned-clock-parents = <&cru CLK GMAC SRC Ml>, <&cru RGMII MODE CLK>;

assigned-clock-rates = <125000000>, <0>, <25000000>;

pinctrl-names = "default";

pinctrl-0 = <&rgmiiml pins &clk out ethernetml pins>;

tx delay = <0x2a>;

rx delay = <0Oxla>;

phy-handle = <&phy>;

status = "okay";

5.8.4 Usage Example

Commonly used network commands:
e DHCP

Usage:

dhcp [loadAddress] [[hostIPaddr:]bootfilename]

With this command, there is no need to set serverip, ipaddr, and gateway.
When dhcp successfully gets the ip address from the dhep server, it will abtain the file by tftp from the
hostIPaddr address.

af://n2188
af://n2202

100M environment:

=> dhcp 0x20000000 192.168.0.100:kernel.img

ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done
BOOTP broadcast 1

DHCP client bound to address 192.168.0.106 (2 ms)

Using ethernet@ffc40000 device

TFTP from server 192.168.0.100; our IP address is 192.168.0.106

Filename

'kernel.img'.

Load address: 0x20000000

Loading:

done

iffdisadtdssdddtdsddadddsddattddaattaidndRidadddRdddddhdddEdEid
FHEFF AR AR R R R R R R R R
B o i
S i i
B i i
FHA AR A R R R S R
S o
S i i i
g st dsdsdsssdssssadttssssassdsdatssEEddddEid
G i
S i i i
FHEHHE R H AR R R
SRR R R R R R R
FHAF A A AR A R R S R 1 4
C i i i
FhEFEF AR R R AR R R R R R R R
R o
S i
C i i
HEFF AR R AR R R R R R
1.5 MiB/s

Bytes transferred = 19054084 (122be04 hex)

e PING

=> ping 192.168.0.1
ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done
Using ethernet@ffc40000 device

host 192.

o TFTP

168.0.1 is alive

1000M environment:

Usage:

tftp [loadAddress] [[hostIPaddr:]bootfilename]

You can also set your own IP address:

=> setenv ipaddr 192.168.1.101
=> setenv serverip 192.168.1.100

=> tftp kernel.img 0x20000000
ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done

Using ethernet@ffc40000 device

TFTP from server 192.168.1.100; our IP address is 192.168.1.101

Filename 'kernel.img'.

Load address: 0x20000000

Loading: ##########4###444HEHHHHHHHERHHHHFHEHHHHHFHERHHHFHSHHHHHFHERRSHHS
FHEHH AR A R R S R 1 4
S i i i
S i i
FHAF A AR R R A A
S i
S i i
S
SRR R R R R R R R R R
S i i
S i i
FHAFHH AR F AR A R A R R R R A
S i
S i i i
S i i
FHA A A R R R 4
S o i
S i i
FHAFHH AR F AR AR A R A R R R R A
SEREE SRR R EEE R R R R R
S i i
HHHHAEE AR AE
12.2 MiB/s

done

Bytes transferred = 20275220 (1356014 hex)

5.8.5 Network Troubleshooting

1. Networked environments trouble, commonly traced in the following directions

e Is the firewall on the computer not turned off?

o Ifitis cross-network segments, confirm whether the gateway is set or not;
e Is the TFTP server configured correctly;

e Whether the TFTP function is disabled on some routers.

2. Code issues, in general, are traced in 3 main aspects:

¢ Check the pinctrl configuration is correct or not. Check if the iomux and drive strength of the relevant pins
is correct or not, you can also dump the relevant registers and compare them with the kernel to see if they
are the consistent. In most cases, we adjust the kernel's network first before adjusting U-Boot.

¢ Check the clock configuration is correct or not. The clock configuration check is relatively more
troublesome, mainly checking the division ratio, clock source, and clock direction, most of the registers in
the CRU, there are also some chips whose registers in the GRF. You can also dump the relevant registers to
compare with the kernel to see if they are consistent.

e PHY reset pin. It mainly detects whether the reset pin is configured correctly and whether the reset

waveform meets the PHY requirements.

5.9 Gpio

af://n2222
af://n2241

5.9.1 Framework Support

GPIO driver using gpio-uclass framework and standard interfaces

Configurations:

CONFIG DM GPIO
CONFIG ROCKCHIP GPIO

Framework Code:
./drivers/gpio/gpio-uclass.c
Driver Code:

./drivers/gpio/rk _gpio.c

5.9.2 DM Interface

DM standard interface. To access gpio, the user must pass struct gpio desc, the recommended type.

// Request/Release GPIO
int gpio request by name (struct udevice *dev, const char *list name,
int index, struct gpio desc *desc, int flags);
int gpio request by name nodev (ofnode node, const char *list name, int index,
struct gpio desc *desc, int flags);
int gpio request list by name(struct udevice *dev, const char *list name,
struct gpio desc *desc list, int max count, int
flags);
int gpio request list by name nodev (ofnode node, const char *1list name,
struct gpio desc *desc list, int max count,
int flags):;

int dm gpio_ free(struct udevice *dev, struct gpio desc *desc)

// Configure GPIO direction.@flags: GPIOD IS OUT (output) and GPIOD IS IN
(input)
int dm gpio set dir flags(struct gpio desc *desc, ulong flags);

// Set/Get GPIO level
int dm_gpio_get_value(const struct gpio_desc *desc)

int dm gpio_set value(const struct gpio desc *desc, int value)
Notes:

The return value of dm gpio get value () indicates the active state, not a high or low level. Example:

e gpios = <&gpio2 RK _PDO0 GPIO_ACTIVE _LOW?>, the return value is 1 for a low level and 0 for a high
level.
e gpios = <&gpio2 RK PDO0 GPIO_ACTIVE_ HIGH>, the return value is 0 for a low level and 1 for a high

level.

The same is true for the dm gpio set value () parameter valuel: atcive, 0: inactive.

af://n2242
af://n2250

5.9.3 Legacy Interface

Compatible interface type. This interface type is mainly compatible with the old U-Boot API, the internal
implementation of the function is still essentially going through the DM framework, but externally shield with
struct gpio_desc . The function is available, but from the point of view of DM code standardization, it is

not recommended.

int gpio_ request (unsigned gpio, const char *label)
int gpio free(unsigned gpio)

int gpio direction input (unsigned gpio)

int gpio direction output (unsigned gpio, int value)
int gpio _get value(unsigned gpio)

int gpio set value (unsigned gpio, int value)

The @gpio is calculated based on the rule that each group of GPIOs has 32 pins and each bank has 8 pins.

Example:
gpio0_a7 = (0 * 32) + (0 * 8) + 7 =7
gpiol b6 = (1 * 32) + (1 * 8) + 6 = 46
gpio3 c2 = (3 * 32) + (2 * 8) + 2 = 114

@value : The function is consistent with the interface of type dm gpio above.

5.10 Interrupt

5.10.1 Framework Support

U-Boot native code does not have an interrupt framework, RK has implemented a set of interrupts framework to
support GICv2/v3, which are enabled by default.

Scenarios currently need interrupt framework:

e Pwrkey: When U-Boot is charging, the CPU will enter low-power hibernation, and you need to wake up
the CPU through Pwrkey interrupt;

e Timer: Timer interrupts are used in U-Boot charging and test cases;

e Debug: Enable CONFIG ROCKCHIP DEBUGGER debugging;

Configuration:

CONFIG IRQ
CONFIG GICV2
CONFIG GICV3

Framework code:

./drivers/irq/irg-gpio-switch.c
./drivers/irqg/irg-gpio.c
./drivers/irqg/irg-generic.c
./drivers/irqg/irg-gic.c
./drivers/irq/virqg.c

./include/irg-generic.h

af://n2261
af://n2267
af://n2268

5.10.2 Related Interface

// CPU local interrupt switch
void enable interrupts(void);

int disable interrupts (void);

// GPIO converted to Interrupt Number

int gpio to irg(struct gpio desc *gpio);

int phandle gpio to irg(u32 gpio phandle, u32 pin);
int hard gpio to_irqg(unsigned gpio);

// Registering/Releasing Interrupt Callbacks
void irg install handler(int irqg, interrupt handler t *handler, void *data);

void irg free handler(int irq);

// Enable/disable interrupt
int irg handler enable(int irq);

int irg handler disable(int irq);

// Interrupt trigger type
int irg set irq type(int irqg, unsigned int type);

IRQ Request

e Peripherals with separate hardware interrupt numbers do not require additional conversions, e.g. pwm,
timer, etc.
¢ The pinof the GPIO does not have a separate hardware interrupt number and requires an additional

conversion request.
There are three ways to request the interrupt number of the pin of the GPIO:

1. Input struct gpio desc structure

// This method can dynamically parse the dts configuration, which is more
flexible and commonly used.

int gpio to irg(struct gpio desc *gpio);

Example:

battery {
compatible = "battery,rk817";

dc_det gpio = <&gpio2 7 GPIO ACTIVE LOW>;

af://n2282

struct gpio desc dc det;

int ret, irqg;

ret = gpio request by name nodev(dev ofnode (dev), "dc det gpio", O,
&dc_det, GPIOD IS IN);
// For the sake of simplicity of the example, the return value judgment is
omitted.
if (!'ret) {
irg = gpio _to irqg(s&dc det);
irg install handler (irg, ...);
irqg set irqg type(irqg, IRQ TYPE EDGE FALLING) ;

irg handler enable(irq);

2. Input gpio ‘s phandle and pin

// This method can dynamically parse the dts configuration, which is more
flexible and commonly used.

int phandle gpio to irg(u32 gpio phandle, u32 pin);

Example (rk817 interrupt pin is GPIO0_A7)

rk817: pmic@20 {

compatible = "rockchip,rk817";

reg = <0x20>;

interrupt-parent = <&gpio0>; // "&gpioO": the phandle pointing
to the gpio0 node;;

interrupts = <7 IRQ TYPE LEVEL LOW>; // "1": pin;

u32 interrupt([2], phandle;

int irqg, ret;

phandle = dev _read u32 default (dev->parent, "interrupt-parent", -1);
if (phandle < 0) {
printf ("failed get 'interrupt-parent', ret=%d\n", phandle);

return phandle;

ret = dev read u32 array(dev->parent, "interrupts", interrupt, 2);
if (ret) {
printf ("failed get 'interrupt', ret=%d\n", ret);

return ret;

// For the sake of simplicity of the example, the return value judgment is
omitted.

irg = phandle gpio to irg(phandle, interrupt([0]);

irq install handler(irqg, pwrkey irqg handler, dev);

irqg set irg type(irqg, IRQ TYPE EDGE FALLING) ;

irg handler enable(irq);

3. force to specify gpio

// This method forces the gpio to be specified directly, and the incoming gpio
must be declared by a special macro, which is not flexible enough and is not
recommended.

int hard gpio to irg(unsigned gpio);
Example (GPIOO A0 request is interrupted)

int gpio0_al, irqg;

// For the sake of simplicity of the example, the return value judgment is
omitted.

gpio0 a0 = RK_IRQ GPIO(RK GPIOO, RK_PAO);

irq = hard gpio to irqg(gpio0O_a0);

irg install handler(irqg, ...);

irqg handler enable(irq);

5.11 12C

5.11.1 Framework Support

The i2¢ driver uses the i2c-uclass framework and standard interfaces.

Configuration:

CONFIG DM I2C
CONFIG_SYS I2C_ROCKCHIP

Framework code:
./drivers/i2c/i2c-uclass.c
Driver code:

./drivers/i2c/rk_i2c.c
./drivers/i2c/i2c-gpio.c // gpio emulates i2c communication, which is not

used at the moment

5.11.2 Relevant Interface

// i2c read/write
int dm i2c read(struct udevice *dev, uint offset, uint8 t *buffer, int len)
int dm i2c write(struct udevice *dev, uint offset, const uint8 t *buffer, int

len)

// encapsulation of the above interface
int dm i2c reg read(struct udevice *dev, uint offset)

int dm i2c reg write(struct udevice *dev, uint offset, unsigned int val);

af://n2311
af://n2312
af://n2320

5.12 10-Domain

5.12.1 Framework Support

The U-Boot framework does not have io-domain support by default, but RK implements a set by itself.

Configuration:

CONFIG IO DOMAIN
CONFIG ROCKCHIP IO DOMAIN

Framework code:
./drivers/power/io-domain/io-domain-uclass.c
Driver conde:

./drivers/power/io-domain/rockchip-io-domain.c

5.12.2 Relevant Interface

void io domain init (void)

Users don't need to actively call io_domain_init(), just enable the above configuration and the U-Boot

framework will automatically initialize the

5.13 Key

5.13.1 Framework Support

The U-Boot framework does not support keystrokes by default, RK implements a set of keystrokes by itself.
Realization rules:

e All keys are specified through the kernel and U-Boot's DTS. U-Boot does not use hard code to define any
keys;;

e U-Boot prioritizes the search for the keys in the kernel dts, and then looks for keys in the U-Boot dts if it
can't find them..

¢ Only the downloading keys are defined in the U-Boot dts..

 If the user wants to update the b downloading key definitions, it is needed to update both the kernel and U-
Boot dts.

Configuration:

af://n2322
af://n2323
af://n2331
af://n2334
af://n2335

CONFIG DM KEY
CONFIG RK8XX PWRKEY
CONFIG_ADC_KEY
CONFIG_GPIO KEY
CONFIG RK KEY

Framework code:

./include/dt-bindings/input/linux-event-codes.h
./drivers/input/key-uclass.c
./include/key.h

Driver code:

./drivers/input/rk8xx pwrkey.c // Support PMIC

pwrkey (RK805/RK809/RK816/RK817)

./drivers/input/rk_key.c // Support compatible = "rockchip, key"
./drivers/input/gpio key.c // Support compatible = "gpio-keys"
./drivers/input/adc key.c // Support compatible = "adc-keys"

pwrkey is recognized only in interrupt mode, the rest of the gpio keys are recognized in polling mode.

5.13.2 Relevant Interface

Interface:

int key read(int code)

code definition:

/include/dt-bindings/input/linux-event-codes.h

Returned value:

enum key state {

KEY PRESS NONE, // Non-complete short press (no key release) or non-
complete long press (not pressed long enough);;

KEY PRESS_ DOWN, // One complete short press (press => release);

KEY PRESS LONG DOWN, // One full long press (can be unreleased);

KEY NOT EXIST, // key does not exist

}i

KEY_PRESS LONG_DOWN Default duration 2000ms, currently only used for U-Boot charging pwrkey long

press event.

#define KEY LONG DOWN_ MS 2000

Example:

af://n2354

int ret;

ret = key read(KEY VOLUMEUP) ;

5.14 Led

5.14.1 Framework Support

The Led driver uses the led-uclass.c framework and standard interfaces.

Configuration:

CONFIG_LED GPIO
Framework code:

drivers/led/led-uclass // Default Compilation
Driver code:

drivers/led/led gpio.c // Support compatible = "gpio-leds"

5.14.2 Relevant Interface

// obtain led device

int led get by label (const char *label, struct udevice **devp);

// set/obtain led status

int led set state(struct udevice *dev, enum led state t state);

enum led state t led get state(struct udevice *dev);

// Please ignore this, no underlying driver implementation done currently

int led set period(struct udevice *dev, int period ms);

5.14.3 DTS Node

U-Boot's led gpio.c is relatively simple, parsing only 3 attributes under the led node:

e gpios: led control pins and active states;
e label: led label;

¢ default-state: default states, set when the probe is driven;

leds {
compatible = "gpio-leds";
status = "okay";
blue-led {

gpios = <&gpio2 RK_PAl GPIO ACTIVE LOW>;
label = "battery full";

af://n2365
af://n2366
af://n2374
af://n2376

default-state = "off";
}i

green-led {
gpios = <&gpio2 RK PAO GPIO ACTIVE LOW>;
label = "greenled";
default-state = "off";

5.15 Mtd

MTD (Memory Technology Device) i.e. Memory Technology Device, supports parallel port nand, spi nand, spi

nor

5.15.1 Framework Support

CONFIG MTD=y
CONFIG_CMD MTD=y

5.15.2 Relevant Interface

Common interfaces are listed below:

struct mtd info *get mtd device nm(const char *name);

int mtd read(struct mtd info *mtd, loff t from, size t len, size t *retlen,
u_char *buf);

int mtd write(struct mtd info *mtd, loff t to, size t len, size t *retlen, const
u_char *buf);

int mtd erase(struct mtd info *mtd, struct erase info *instr);

int mtd block isbad(struct mtd info *mtd, loff t ofs);

int mtd block markbad(struct mtd info *mtd, loff t ofs);

5.15.3 Usage Example

spi nor loading firmware example
Take flash offset 0x400000 byte, 0x800 bytes data to memory address 0x4000000 as an example:
#include <mtd.h>
#define MTD SPINOR NAME "nor0"
static int mtd demo (void)
{

char *mtd name = MTD SPINOR NAME;

struct mtd info *mtd;

af://n2386
af://n2388
af://n2390
af://n2393

size t retlen, off, size;
u char *des buf;

int ret;

mtd = get mtd device nm(mtd name);
if (IS_ERR OR NULL (mtd)) {
printf ("MTD device %s not found, ret %1d\n",
mtd name, PTR ERR (mtd)) ;
return CMD RET FAILURE;

des buf = (u_char *)0x4000000;

off = 0x4000000;

size = 0x800;

ret = mtd read(mtd, off, size, &retlen, des buf);
if (ret || size != retlen) {
pr _err("mtd read fail, ret=%d retlen=%1d size=%1d\n", ret, retlen,
size);

}

return ret;

Nand Example
Recommendations:

e Refer to drivers/mtd/nand/nand_util.c, use the read/write/erase interface with bad block identification.
¢ For a complete write with a small amount of data (usually less than 2KB per power-up), consider using the

MTD_BLK related interface, as frequent calls to this interface will affect the flash lifetime.

5.16 Mtd_blk

RK has designed MTD block layer based on MTD interface, which supports parallel port nand, spi nand, spi nor,

and registers the corresponding MTD block device to support the corresponding block interface.
Features:

e The unit is sector, i.e. 512B
¢ No matter how much data is written in a single write request, the flash block corresponding to the data will

be erased, so calling this interface for piecemeal and frequent writes will affect the lifetime of the flash.

5.16.1 Framework Support

U-Boot Configuration:

af://n2404
af://n2412

// MTD driver

CONFIG MTD=y
CONFIG_CMD MTDPARTS=y
CONFIG MTD DEVICE=y

// MTD block device driver
CONFIG_CMD MTD BLK=y
CONFIG_MTD BLK=y

// Other nand device drivers config

SPL configuration:

CONFIG_MTD=y
CONFIG_CMD MTDPARTS=y
CONFIG_MTD DEVICE=y
CONFIG SPL_MTD SUPPORT=y

// Other nand device drivers config

Framework Code:

drivers/mtd/mtd-uclass.c
drivers/mtd/mtdcore.c
drivers/mtd/mtd uboot.c
drivers/mtd/mtd blk.c

The drivers are individual controller drivers that hook up interfaces such as read/write to the MTD layer.

5.16.2 Relevant Interface

unsigned long blk dread(struct blk desc *block dev, lbaint t start,
lbaint t blkcnt, void *buffer)

unsigned long blk dwrite(struct blk desc *block dev, lbaint t start,
lbaint t blkcnt, const void *buffer)

5.17 Optee Client

U-Boot belongs to Non-Secure World in ARM TrustZone and requires OPTEE Client to access secure resources.

5.17.1 Framework Support

The U-Boot framework does not support the OPTEE Client feature by default, However, RK implements a set
by itself.

Configuration:

af://n2420
af://n2422
af://n2424

// Enabled all the time
CONFIG _OPTEE CLIENT

// Used on older platforms, such as RK312x, RK322x, RK3288, RK3228H, RK3368,
RK3399

CONFIG OPTEE V1

// Used on new platforms, such as RK3326, RK3308

CONFIG OPTEE V2

// This configuration must be enabled when RPMB for eMMC is not available, i.e.,
enable security partitioning!

CONFIG_OPTEE ALWAYS USE SECURITY PARTITION

Frameworks and drivers:

lib/optee clientApi/

5.17.2 Firmware Description

The trust.img used must have TA enabled or it will not be able to interact with the OPTEE Client.

5.17.3 Interface Description

The Optee client driver is in the lib/optee_client directory, for the Optee Client Api, please refe
to {TEE_Client API_Specification-V1.0_c.pdf) .

The download address is: https://globalplatform.org/specs-library/tee-client-api-specification/

Based on Optee's built-in TA functionality, RK encapsulates an interface to use the built-in TA functionality in
the Optee client. The source code of the interface can be found
in lib\optee clientApi\OpteeClientInterface.c, when using it, please include the header file

include\optee_include\OpteeClientInterface.h’.

Please see the following explainations for APIs .

5.17.3.1 Suitability

The following interfaces are available on each platform: Please refer to the Platform Definition section.

trusty base write security data()
trusty base read security data()
trusty read vbootkey hash ()
trusty write vbootkey hash()
trusty read vbootkey enable flag()
trusty read attribute hash()
trusty write attribute hash ()
trusty write oem otp key()

trusty oem otp key is written()
trusty set oem hr otp read lock()
trusty oem otp key cipher ()
trusty read oem ns otp()

trusty write oem ns_ otp()

trusty write ta encryption key ()

af://n2430
af://n2432
https://globalplatform.org/specs-library/tee-client-api-specification/
af://n2436

trusty ta encryption key is written()
trusty write oem encrypt data ()
trusty oem encrypt data is written()
trusty check security level flag()

trusty write oem huk()

5.17.3.2 Return Value

If not otherwise noted, the return values for the following APIs are shown in the Return Codes section of the

above document TEE Client API Specification-V1.0 c.pdf.

5.17.3.3 trusty_base_write_security data

uint32 t trusty base write security data(char *filename,
uint32 t filename size,
uint8 t *data,

uint32 t data size)
Functions

U-Boot writes data to secure storage.

If it is an EMC/UFS device, the data is stored in the RPMB partition, while other devices such as NAND are
stored in the security partition.

If CONFIG_OPTEE_ALWAYS USE SECURITY_ PARTITION is defined, it will be fixedly stored in the
security partition.

Parameter

¢ [in] filename - File name

e [in] filename size - Length of file name
¢ [in] data - The data to be written

¢ [in] data_size - Length of data

5.17.3.4 trusty_base_read_security_data

uint32 t trusty base read security data(char *filename,
uint32 t filename size,
uint8 t *data,

uint32 t data size)
Functions

U-Boot reads data from secure storage.

If it is an EMMC/UFS device, data is read from the RPMB partition, while other devices such as NAND are read

from the security partition.

If CONFIG_OPTEE _ALWAYS USE SECURITY_ PARTITION is defined, it is fixed to read from the security

partition.

Parameter

af://n2439
af://n2441
af://n2456

¢ [in] filename - File name

e [in] filename size - Length of file name
[in] data - The data to be read

¢ [in] data_size - Length of data

5.17.3.5 trusty_read_vbootkey_hash

uint32 t trusty read vbootkey hash(uint32 t *buf, uint32 t length);

Functions

Retrieves the hash of the secure boot public key from OTP or eFuse.
Related explainations on Secure boot, please refe

to Rockchip Developer Guide Secure Boot Application Note EN .
Parameter

¢ [out] buf - The hash buffer to be read
¢ [in] length - Hash length, the specific length of the supported hash algorithms to secure boot documents,
the length unit is in word (32bits).

5.17.3.6 trusty_write_vbootkey hash

uint32 t trusty write vbootkey hash(uint32 t *buf, uint32 t length);

Function

Write the hash value of the secure boot public key in OTP or eFuse, enable the secure boot flag, turn on

secure boot.
Secure boot related describtion, please refer

to Rockchip Developer Guide Secure Boot Application Note EN file.
Parameter

¢ [in] buf - The hash buffer to be written
¢ [in] length - hash length, the length of the supported hash algorithms is based on the secure boot
documentation, the length unit is in word (32bits).

5.17.3.7 trusty_read_vbootkey_enable flag

uint32 t trusty read vbootkey enable flag(uint8 t *flag);

Function

read the flag indicating secure boot is on or not.
Secure boot related explaination please

se¢ Rockchip Developer Guide Secure Boot Application Note EN file.
Parameters

e [in] flag - 1 Byte, 1 means secure boot is on, 0 means off.

af://n2472
af://n2482
af://n2492

5.17.3.8 trusty_read_attribute_hash

uint32 t trusty read attribute hash(uint32 t *buf, uint32 t length)

Function

U-Boot reads the hash of atx_permanta_attributes.bin. This hash is used to verify the legality of
atx_personent_attribies.bin.

Parameters

¢ [out] buf - Hash data
e [in] length - Length of hash

5.17.3.9 trusty_write_attribute hash

uint32 t trusty write attribute hash(uint32 t *buf, uint32 t length)

Function
U-Boot writes the hash of atx_permanta_attributes.bin.
Parameters

e [in] buf - Hash data
e [in] length - Length of hash

5.17.3.10 trusty_write_oem_otp_key

uint32 t trusty write oem otp key(enum RK OEM OTP KEYID key id,
uint8 t *byte buf,
uint32 t byte len);

Function

Write the plaintext key to the specified OEM OTP area.
For a description of the relevant features of the OEM OTP, see the Rockchip Developer Guide OTP_CN

document.
Parameter

e [in] key id - the key id that will be written, default support RK_OEM OTP_KEYO - 3 total 4 keys, for
rv1126/rv1109, additional support for key id is RK_OEM OTP KEY FW key.
RK _OEM OTP KEY FW : the key used by Boot ROM to decrypt the loader, the
trusty oem otp key cipher interface supports to use this key to do the business data encryption and
decryption or decrypt the kernel image.

e [in] byte buf - plaintext key

e [in] byte len - Plaintext key length, for RK_OEM OTP KEY FW, byte len supports 16 only, for other keys,
byte len supports 16, 24, 32.

5.17.3.11 trusty_oem_otp_key_is_ written

af://n2500
af://n2510
af://n2520
af://n2532

uint32 t trusty oem otp key is written(enum RK OEM OTP KEYID key id, uint8 t

*value) ;

Function

Determines whether the key has been written to the specified OEM OTP area.
For a description of the relevant features of the OEM OTP, see the Rockchip Developer Guide OTP CN

document.
Parameter

e [in] key id - index of the key area to be written, default support RK_OEM OTP _KEYO - 3 total 4 keys, for
rv1126/rv1109, additionally support key with key_id RK OEM OTP _KEY FW
¢ [out] value - Determines whether the secret key has been written, 1 means it has been written, 0 means it

has not been written.
Return value
The return value is meaningful when the value is #define TEEC_SUCCESS 0x00000000

The RK3588 platform will also determine whether the key _id is locked or not, if the corresponding key id is
locked then it will return #define TEEC_ERROR_ACCESS DENIED 0xFFFF0001 error.

5.17.3.12 trusty_set_oem_hr_otp _read lock

uint32 t trusty set oem hr otp read lock(enum RK OEM OTP KEYID key id);

Function

Set the read lock flag of the specified OEM OTP region, after successful setting, the region is prohibited to write
data, and the existing data in the region is not readable by the CPU software, and the key can be used through the
trusty oem otp key cipher interface.

For a description of the relevant features of the OEM OTP, see the Rockchip Developer Guide OTP_CN

document.

Note: When the key_id is set to RK_ OEM OTP_KEYO or RK_OEM OTP_KEY1 or RK_OEM OTP_KEY2, it will

affect the attributes of the other OTP areas after the successful setup, e.g., some of the OTP areas become

unwritable, see Rockchip Developer Guide OTP_CN documentation

Parameter

e [in] key_id - key_id to be set, Support RK _OEM OTP KEYO - 3

5.17.3.13 trusty_oem_otp _key cipher

uint32 t trusty oem otp key cipher (enum RK _OEM OTP KEYID key id,
rk cipher config *config,
uint32 t src phys_ addr,
uint32 t dst phys addr,
uint32 t len);

Function

Select the key for the OEM OTP region to perform a cipher single calculation.

af://n2545
af://n2554

Parameter

e [in] key_id - the key_id to be used, RK_OEM OTP _KEYO - 3 are supported by default, for rv1126/rv1109,
RK OEM OTP KEY FW is additionally supported.

e [in] config - Algorithms, patterns, keys, iv, etc.
Support AES, SM4 algorithms
Support ECB/CBC/CTS/CTR/CFB/OFB modes

The key length supports 16, 24, 32 Bytes, if it is rv1109/rv1126 platform, the key length only supports 16, 32,
when the key_id is RK_OEM OTP_KEY FW the key length only supports 16.

e [in] src_phys_addr - The buffer address of the data to be computed, which supports the same as
dst_phys_addr, i.e. supports in-place encryption and decryption

¢ [out] dst_phys addr - The buffer address of the result of the calculation, which supports the same as
src_phys_addr

¢ [in] len - Byte length of the input and output data buffer, required to be aligned with the block of the

algorithm used

5.17.3.14 trusty_read_oem_ns_otp

uint32 t trusty read oem ns otp(uint32 t byte off, uint8 t *byte buf, uint32 t
byte len)

Function

U-Boot reads Non-Protected OEM Zone data from secure OTP.

Parameter

¢ [in] byte off - The position offset of the OTP area to be read
¢ [out] byte_buf - Returned OTP data
e [in] byte len - Length to be read

5.17.3.15 trusty_write_oem_ns_otp

uint32 t trusty write oem ns otp(uint32 t byte off, uint8 t *byte buf, uint32 t
byte len)

Function

U-Boot writes data to the Non-Protected OEM Zone in secure OTP.

Parameters

e [in] byte off - Position offset of OTP area to be written
e [in] byte buf - Data to be written to OTP
e [in] byte len - Length to be written

5.17.3.16 trusty_write_ta_encryption_key

uint32 t trusty write ta encryption key(uint32 t *buf, uint32 t length)

af://n2574
af://n2586
af://n2598

Function
U-Boot writes TA encryption key.
Parameters

¢ [in] buf - Key data
e [in] length - Length of key data

5.17.3.17 trusty_ta_encryption_Kkey_is_written

uint32 t trusty ta encryption key is written(uint8 t *value)

Function
U-Boot checks if the TA encryption key has been written.
Parameter

¢ [out] value - 0 not written, 1 written

5.17.3.18 trusty_write_oem_encrypt_data

uint32 t trusty write oem encrypt data(uint32 t *buf, uint32 t length)

Function
U-Boot writes private data for the anti copy board.
Parameters

e [in] buf - Private data
e [in] length - Length of private data

5.17.3.19 trusty_oem_encrypt_data_is_written

uint32 t trusty oem encrypt data is written(uint8 t *value)

Function
U-Boot checks whether private data has been written.
Parameter

¢ [out] value - 0 not written, 1 written

5.17.3.20 trusty_check_security level flag

uint32 t trusty check security level flag(uint8 t flag)

Function

U-Boot sets the security levels of TEE.

af://n2608
af://n2616
af://n2626
af://n2634

Parameter

e [in] flag - Security levels

5.17.3.21 trusty_write_oem_huk

uint32 t trusty write oem huk(uint32 t *buf, uint32 t length)

Function
U-Boot writes OEM HUK.
Parameters

e [in] buf - Data to be written

¢ [in] length - Length of data

5.17.4 Shared Memory

When U-Boot communicates with Optee, the data should be put in shared memory. Users can request shared
memory through TEEC AllocateSharedMemory () , butitis recommended not to exceed 1M, if it exceeds
1M, it is recommended to split the data for multiple passes, and call TEEC ReleaseSharedMemory () to

release the shared memory after use.

5.17.5 Test Command

Purpose: To test the secure storage feature. the U-Boot command line:
=> mmc testsecurestorage

This test case will cycle through the secure storage read and write functions, testing both rpmb and security
partition secure storage when the hardware is using emmc, and only security partition secure storage when the

hardware is using nand.

5.17.6 Common Misprints

e No emmc or nand device was found. Check if the U-Boot is missing configuration or if the hardware is

damaged.
"TEEC: Could not find device"

¢ No security partition found. When no RPMB is available, you need to define the security partition in

parameter.txt.
"TEEC: Could not find security partition"

¢ This printout appears the first time a security partition is used for secure storage or if the security partition

data has been illegally tampered with.

af://n2642
af://n2652
af://n2654
af://n2658

"TEEC: verify [%d] fail, cleanning"

¢ There is not enough space in the secure storage. Please check if the stored data is too large, or if a large

amount of data was previously stored but not deleted.

"TEEC: Not enough space available in secure storage !"

5.18 PClIe

5.18.1 Development Notes

Confirm at which stage of u-boot boot the PCle is applied and configure the dts accordingly:

1. The NVME, as a boot device, needs to be initialized as early as possible, and all subsequent firmware is in
this NVME, so the PCle can only be configured using the dts of the u-boot

2. Devices that are not used as boot devices, such as those that support network cards, are allowed to initialize
later, and since the u-boot framework supports the use of the kernel dtb, use the configuration in the kernel
dtb in the boot.img

3. In u-boot phase, PCIe RC only registers mem 32bits range, not applicable to mem 64bits-pref space

5.18.2 Framework Support

Framework code:

./drivers/pci/*

./drivers/phy/*
Driver code:

drivers/pci/pcie dw rockchip.c
drivers/phy/phy-rockchip-snps-pcie3.c
drivers/phy/phy-rockchip-naneng-combphy.c

menuconfig configuration:
e Driver configuration

For the currently supported platforms of the Rockchip PCle driver, please check the compatible attribute in the
pcie_dw_rockchip.c file, and if you are in doubt about the driver selection, please refer to our corresponding sdk

config.

CONFIG_DM REGULATOR GPIO=y
CONFIG DM REGULATOR FIXED=y

CONFIG PCI=y

CONFIG DM PCI=y
CONFIG DM PCI_COMPAT=y
CONFIG PCI PNP=y

CONFIG PCIE DW ROCKCHIP=y

CONFIG_PHY ROCKCHIP SNPS PCIE3=y
CONFIG_PHY ROCKCHIP NANENG COMBOPHY=y

af://n2672
af://n2673
af://n2682

CONFIG PHY=y

CONFIG CMD PCI=y

//Add NVMe support

CONFIG_NVME=y

CONFIG_CMD NVME=y

// Add PCIe to USB support
CONFIG USB_XHCI PCI=y

//Add Embedded DTB support, the image size will be bigger after adding Embedded
DTB support.

CONFIG EMBED KERNEL DTB ALWAYS=y
CONFIG SPL_FIT IMAGE KB=2560

5.18.3 DTS Configuration

Loading Program Selection Recommendations:

¢ flash + PCle NVMe dual storage solution: use PCle before loading kernel dtb
e Using PCle support in AMP scenarios: using PCle after loading Embedded dtb

¢ Common practice: load the kernel dtb and then use PCle.
Use PCle before loading kernel dtb

It is recommended to refer to the kernel DTB node configuration to set up the uboot dtsi related nodes and add

the u-boot,dm-pre-reloc attribute:

e phy power supply, can be left off if already enabled by default
e vcc 3v3 power supply
e phy nodes

e controller node

Take the RK3588 PCle3x4 as an example:

diff --git a/arch/arm/dts/rk3588-u-boot.dtsi b/arch/arm/dts/rk3588-u-boot.dtsi
index 3fe8054aac..a8e2defbad 100644
--- a/arch/arm/dts/rk3588-u-boot.dtsi
+++ b/arch/arm/dts/rk3588-u-boot.dtsi
@R -22,6 +22,28 @@

compatible = "rockchip,rk3588-secure-otp";

reg = <0x0 0xfe3a0000 0x0 0x4000>;

}i

+
+ vcel2v _decin: vecl2v-dcin

+ u-boot,dm-pre-reloc;

+ compatible = "regulator-fixed";

i regulator-name = "vccl2v dcin";

+ regulator-always-on;

+ regulator-boot-on;

+ regulator-min-microvolt = <12000000>;
+ regulator-max-microvolt = <12000000>;
+ }i

+

1 vce3v3 pcie30: vec3v3-pcie30 |

S u-boot, dm-pre-reloc;

+ compatible = "regulator-fixed";

+ regulator-name = "vcc3v3 pcie30";

+

regulator-min-microvolt = <3300000>;

af://n2693

regulator-max-microvolt = <3300000>;
enable-active-high;

gpio = <&gpio3 RK_PC3 GPIO ACTIVE HIGH>;
startup-delay-us = <5000>;

vin-supply = <&vccl2v _dcin>;

+ + o+ o+ o+ o+

}i

sfirmware {
@@ -117,6 +139,19 @@
status = "okay";
}i

+&pcie30phy {

+ u-boot,dm-pre-reloc;

+ rockchip,pcie30-phymode = <PHY MODE PCIE AGGREGATION>;
+ status = "okay";

+1;

+

+&pcie3dx4d {

+ u-boot,dm-pre-reloc;
+ reset-gpios = <&gpio4 RK_PB6 GPIO ACTIVE HIGH>;
+ vpcie3v3-supply = <&vcc3v3 pcie30>;
+ status = "okay";
+}7
+
sguart2 {

u-boot,dm-spl;

status = "okay";

Take RK3566 as an example:

From b58a47956bbd03deOfcef572falb6cdeecad74e2a9 Mon Sep 17 00:00:00 2001
From: Jon Lin <jon.lin@rock-chips.com>

Date: Thu, 9 Mar 2023 15:29:37 +0800

Subject: [PATCH] TEST: uboot: rk3566 evb2 vll: nvme

Change-Id: I87b3786a433691£3c385460fa8636291bce8edla

Signed-off-by: Jon Lin <jon.lin@rock-chips.com>
arch/arm/dts/rk3568-u-boot.dtsi | 43 +++++++tttttttttttttttttttttttt++
configs/rk3568 defconfig | 13 ++++++++++

2 files changed, 56 insertions(+)

diff --git a/arch/arm/dts/rk3568-u-boot.dtsi b/arch/arm/dts/rk3568-u-boot.dtsi
index a0678e35db..lab8ead4436 100644
--- a/arch/arm/dts/rk3568-u-boot.dtsi
+++ b/arch/arm/dts/rk3568-u-boot.dtsi
@R -26,6 +26,27 Q@

cru rst addr = <0xfdd20470>;

u-boot,dm-spl;

}i

+
+ dc 12v: dc-12v {

+ compatible = "regulator-fixed";
+ regulator-name = "dc_12v";

+

regulator-always-on;

+ regulator-boot-on;
+ regulator-min-microvolt = <12000000>;
i regulator-max-microvolt = <12000000>;
+ }i
+
+ vcc3v3 pcie: gpio-regulator
+ u-boot,dm-pre-reloc;
+ compatible = "regulator-fixed";
+ regulator-name = "vcc3v3 pcie';
+ regulator-min-microvolt = <3300000>;
+ regulator-max-microvolt = <3300000>;
+ enable-active-high;
+ gpio = <&gpio0 RK PC2 GPIO ACTIVE HIGH>;
i startup-delay-us = <5000>;
+ vin-supply = <&dc_12v>;
+ i
}i
&psci |
@@ -386,6 +407,28 @@

status = "okay";
}i

+&pipegrf {

i u-boot,dm-pre-reloc;
+ status = "okay";

+}i

+

+&pipe phy grf2 {

+ u-boot,dm-pre-reloc;
+ status = "okay";

+}i

+

+&combphy2 psqg {

+ u-boot,dm-pre-reloc;
+ status = "okay";

+}i

+

+&pcie2xl {
+ u-boot,dm-pre-reloc;
+ reset-gpios = <&gpiol RK PB2 GPIO ACTIVE HIGH>;
+ vpcie3v3-supply = <&vcc3v3 pcie>;
+ status = "okay";
+1};
+

&pinctrl {

u-boot,dm-pre-reloc;

status = "okay";

Using PCle after loading Embedded dtb

The u-boot project supports the Embedded dtb scheme, which avoids the impact from kernel dtb changes,
including product schemes without kernel support. Usually, the Embedded dtb source is the kernel standard dtb

file, and the main steps are as follows:

¢ Compile kernel firmware, generate target dtb file
e U-Boot Enabling Embedded dtb Configuration

CONFIG EMBED KERNEL DTB=y
CONFIG_EMBED KERNEL DTB ALWAYS=y
CONFIG_EMBED KERNEL DTB PATH="./dts/rkTarget Chip-Target Device.dtb“™ # for
example, CONFIG EMBED KERNEL DTB PATH="dts/rk3588-evbl.dtb"

e Compile and generate u-boot image
Recommendation:

¢ For some AMP scenarios, where there is no PCle early init requirement and no kernel, and in order to
complete PCle enumeration before AMP is loaded, the following patch can be used to enumerate PCle

during the boot process

diff --git a/arch/arm/mach-rockchip/board.c b/arch/arm/mach-rockchip/board.c
index 979598ff7b..87d131ell8 100644
-—-- a/arch/arm/mach-rockchip/board.c
+++ b/arch/arm/mach-rockchip/board.c
@@ -537,6 +537,11 Q@ int board init(void)
io _domain init();
#endif
set armclk rate();
+
+#ifdef CONFIG_PCI
+ pci init();
+#endif
+
#ifdef CONFIG DM DVFS
dvfs init (true);
#endif

Using PCle after loading the kernel dtb

You can consider reusing the kernel DTB directly by placing the relevant call in the “RK u-boot using kernel
DTB phase”, please refer to the Kernel PCle Configuration for related explaination.

5.18.4 Usage Example

Common Command:

5.18.4.1 PCle CMD

Chapter-5 PCI enumeration, where CFG maps to memory address
0x00000000£0000000

=> pci enum

pcie@fel50000: PCIe Linking... LTSSM is 0x1
pcie@fel50000: PCIe Linking... LTSSM is 0x6
pcie@fel50000: PCIe Linking... LTSSM is 0x4
pcie@fel50000: PCIe Linking... LTSSM is 0x210023

pcie@fel50000: PCIe Link up, LTSSM is 0x230011

pcie@fel50000: PCIE-0: Link up (Gen3-x2, BusO)

pcie@fel50000: invalid flags type!

pcie@fel50000: Config space: [0x00000000£0000000 - 0x00000000£0100000, size
0x100000]

af://n2735
af://n2737

Chapter-5 Scanning all devices

=> pci

BusDevFun VendorId DeviceId Device Class Sub-Class
00.00.00 0x1d87 0x3588 Bridge device 0x04
01.00.00 0x144d 0xa809 Mass storage controller 0x08

Chapter-5 Display bus 01 device details
=> pci 01 long

Scanning PCI devices on bus 1

Found PCI device 01.00.00:

vendor ID = 0x144d
device ID = 0xa809
command register ID = 0x0006
status register = 0x0010
revision ID = 0x00

class code = 0x01 (Mass storage controller)
sub class code = 0x08
programming interface = 0x02

cache line = 0x08
latency time = 0x00
header type = 0x00

BIST = 0x00

base address 0 = 0x£0300004
base address 1 = 0x00000000
base address 2 = 0x00000000
base address 3 = 0x00000000
base address 4 = 0x00000000
base address 5 = 0x00000000
cardBus CIS pointer = 0x00000000
sub system vendor ID = 0x144d

sub system ID = 0xa801l
expansion ROM base address = 0x00000000
interrupt line = Oxff
interrupt pin = 0x01

min Grant = 0x00

max Latency = 0x00

Chapter-5 display bdf 01.00.00 device bar mapping address, sample code shows
bar0 mapping memory address 0xf0300000, size 0x4000.

=> pci bar 01.00.00

ID Base Size Width Type

0 0x00000000£0300000 0x0000000000004000 64 MEM

Chapter-5 Read bdf 01.00.00 device CFG space information
=> pci d.w 01.00.00 O

00000000: 144d a809 0006 0010 0200 0108 0008 0000

00000010: 0004 £030 0000 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 0000 0000 144d a801

00000030: 0000 0000 0040 0000 0000 0000 OLff 0000

Chapter-5 AER function, used to read the AER register information of the
specified device, with the output format consistent with that of the Linux lspci
tool.

=> pci aer 01.00.0

AER Capability found at offset 0x40

UESta: DLP-- SDES-- TLP-- FCP-- CmpltTO-- CmpltAbrt-- UnxCmplt-- RxOF--
MalfTLP-- ECRC-- UnsupReg-- ACSViol--

UEMsk: DLP-- SDES-- TLP-- FCP-- CmpltTO-- CmpltAbrt-- UnxCmplt-- RxOF--
MalfTLP-- ECRC-- UnsupReqg-- ACSViol--

UESvrt: DLP+ SDES- TLP+ FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP-
ECRC- UnsupReg- ACSViol-

CESta: RxErr-- BadTLP-- BadDLLP-- Rollover-- Timeout-- NonFatalErr--

CEMsk: RxErr-- BadTLP-- BadDLLP-- Rollover-- Timeout-- NonFatalErr--

AERCap: First Error Pointer: 00, GenCap- CGenEn- ChkCap- ChkEn-

Chapter-5 The retrain link function is used for link re-establishment.
=> pci x 01.00.0

Retrain triggered for device 0001:0000

Link Status for device 0001:0000: 0x1022

Speed: Gen3

Width: x2

Link Up: Yes

Chapter-5 The FLR (Function Level Reset) function is used to reset peripheral
functions.
=> pci flr 01.00.0

FLR completed and state restored for device 01:00.0

5.18.4.2 NVMe

Chapter-5 Initiate nvme scan

=> nvme scan

Chapter-5 List nvme equipment details
=> nvme details

Blk device 0: Optional Admin Command Support:
Namespace Management/Attachment: no
Firmware Commit/Image download: yes
Format NVM: yes
Security Send/Receive: no

Blk device 0: Optional NVM Command Support:
Reservation: yes
Save/Select field in the Set/Get features: yes
Write Zeroes: yes
Dataset Management: yes
Write Uncorrectable: yes

Blk device 0: Format NVM Attributes:
Support Cryptographic Erase: No
Support erase a particular namespace: Yes
Support format a particular namespace: Yes

Blk device 0: LBA Format Support:

Blk device 0: End-to-End DataProtect Capabilities:
As last eight bytes: No
As first eight bytes: No
Support Type3: No
Support Type2: No
Support Typel: No

Blk device 0: Metadata capabilities:

As part of a separate buffer: No

af://n2739

As part of an extended data LBA: No

Chapter-5 Seeing a 256GB NVMe, if you cannot see the capacity, you need to
unplug the device to make sure it's completely powered down and start over.
=> nvme info
Device 0: Vendor: 0x144d Rev: EXD7201Q Prod: S444NAOM384608
Type: Hard Disk
Capacity: 244198.3 MB = 238.4 GB (500118192 x 512)

Chapter-5 Select the nvme device with ID 0

=> nvme device 0

Device 0: Vendor: 0x144d Rev: EXD7201Q Prod: S444NAOM384608
Type: Hard Disk
Capacity: 244198.3 MB = 238.4 GB (500118192 x 512)

is now current device

Chapter-5 Set 0x40000000 memory to bit 0x55aab5aa
=> md.l 0x40000000 1
40000000: d08ec033 3...
=> mw.l 0x40000000 Ox55aab5aa
=> md.l 0x40000000 1
40000000: 55aa55aa .U.U

Chapter-5 Take 1 block of data starting at 0x40000000 memory and write it to
the NVME LBA O address
=> nvme write 0x40000000 0x0 Ox1

nvme write: device 0 block # 0, count 1 ... 1 blocks written: OK

Chapter-5 Check the 0x44000000 memory to confirm the raw data
=> md.l 0x44000000 1
44000000: ffffffff

Chapter-5 Read 1 block of data from NVMe's LBA 0 address and write to memory
0x44000000
=> nvme read 0x44000000 0xO0 Ox1

nvme read: device 0 block # 0, count 1 ... 1 blocks read: OK

Chapter-5 Confirm that 0x44000000 memory data is read back from NVMe
=> md.l 0x44000000 1
44000000: 55aab5b5aa

Chapter-5 Erase a block starting from address 0.
=> nvme erase 0x0 Ox1

nvme erase: device 0 block # 0, count 1 ... 1 blocks erased: OK

Chapter-5 Read 1 block of data from the LBA (Logical Block Address) 0 of the
NVMe device and write it to the memory address 0x44000000.
=> nvme read 0x44000000 Ox0 Ox1

nvme read: device 0 block # 0, count 1 ... 1 blocks read: OK

Chapter-5 Confirm that the data in the memory at address 0x44000000 is read
from the NVMe device.
=> md.l 0x44000000 0x200 #The first block on the NVMe device has been cleared.
44000000: 00000000 00000000 00000000 00000000 .. iiineennnnn
44000010: 00000000 00000000 00000000 00000000 +.vieviennnnnnn

44000020: 00000000 00000000 00000000 00000000 .. vvvevnnennnn.

Chapter-5 Use the write zero function to clear the data of one block starting
from address 0x100.
=> nvme write zeroes 0x100 0xl

nvme write zeroces: device 0 block # 0x100, count 1 ... 1 blocks

write zeroed: OK

5.18.4.3 RK3588 RC dma

=> pci

BusDevFun VendorId DeviceId Device Class Sub-Class
00.00.00 0x1d87 0x3588 Bridge device 0x04
01.00.00 0x1d87 0x356a 227 0x00

=> pci 1 long

Scanning PCI devices on bus 1

Found PCI device 01.00.00:

vendor ID = 0x1d87
device ID = 0x356a
command register ID = 0x0006
status register = 0x0010
revision ID = 0x01
class code = 0x12 (2727?)
sub class code = 0x00
programming interface = 0x00
cache line = 0x08
latency time = 0x00
header type = 0x00
BIST = 0x00
base address 0 = 0x£0400000 # CPU address mapped by BARO.
Since RK PCIe uses CPU-BUS one-to-one mapping, the bus addr is the same value.
base address 1 = 0x00000000
base address 2 = 0x0400000c
base address 3 = 0x00000000
base address 4 = 0x£0800000
base address 5 = 0x00000000
cardBus CIS pointer = 0x00000000
sub system vendor ID = 0x0000
sub system ID = 0x0000
expansion ROM base address = 0x00000000
interrupt line = Oxff
interrupt pin = 0x01
min Grant = 0x00
max Latency = 0x00

Chapter-5 BAR CPU Access, PIO Access
md.l 0xf0400000 0x40

Chapter-5 DMA read
mw.l 0x3c000000 Oxffffffff
dcache flush 0x3c000000 0x100 # flush

af://n2741

mw.l 0xf£538002c Ox1

mw.l 0x£5380300 0x4000008
mw.l 0x£5380304 0x0

mw.l 0x£f5380308 0x100

mw.l 0x£538030c 0x£f0400000
mw.l 0x£5380310 0x0

mw.l 0x£f5380314 0x3c000000
mw.l 0xf5380318 0x0

mw.l 0xf5380030 0x0
dcache invalidate 0x3c000000 0x100 # invalidate
md.l 0x3c000000

Chapter-5 DMA write
mw.l 0x3c000000 Oxffffffff
dcache flush 0x3c000000 0x100 # flush
mw.l 0x£538000c Ox1
mw.l 0xf5380200 0x4000008
1 0x£5380204 0xO0
1 0x£5380208 0x100
1 0x£538020c 0x3c000000
mw.l 0xf£5380210 0x0
1 0x£5380214 0x£f0400000
1 0x£5380218 0x0
1 0x£5380010 0xO
1 0x3c000000 0x40

Notes:

¢ The dcache flush/clean macro switch, CONFIG_CMD_CACHE, requires the following support patches to
be added

commit b46a8lal2dd4al5l4a6522e33a1d16194£242d62

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Wed Sep 28 01:36:45 2022 +0000
cmd: cache: Add flush/invalidate dcache range support
Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

Change-Id: Id0e0cd9019072e8c557ebd2987b439057cb4ae3b

5.18.4.4 RK3568 RC dma

=> pci

BusDevFun VendorId Deviceld Device Class Sub-Class
00.00.00 0x1d87 0x356a Bridge device 0x04
01.00.00 0x1d87 0x356a 227 0x00

=> pci 1 long

Scanning PCI devices on bus 1

Found PCI device 01.00.00:

vendor ID = 0x1d87
device ID = 0x356a
command register ID = 0x0006

status register = 0x0010

af://n2748

revision ID = 0x01

class code = 0x12 (?2727?)

sub class code = 0x00

programming interface = 0x00

cache line = 0x08

latency time = 0x00

header type = 0x00

BIST = 0x00

base address 0 = 0x£0400000 # CPU address mapped by BARO.
Since RK PCIe uses CPU-BUS one-to-one mapping, the bus addr is the same value.

base address 1 = 0x00000000

base address 2 = 0x0400000c

base address 3 = 0x00000000

base address 4 = 0x£0800000

base address 5 = 0x00000000

cardBus CIS pointer = 0x00000000

sub system vendor ID = 0x0000

sub system ID = 0x0000

expansion ROM base address = 0x00000000

interrupt line = Oxff

interrupt pin = 0x01

min Grant = 0x00

max Latency = 0x00

Chapter-5 BAR CPU access, PIO access
md.l 0xf0400000 0x40

Chapter-5 DMA read

mw.l 0x3c000000 Oxffffffff

dcache flush 0x3c000000 0x100 # flush
mw.l 0x£f638002c Ox1

0x£f6380300 0x4000008

0x£6380304 0x0

mw.l 0x£f6380308 0x100

mw.l
1
1
mw.l 0xf638030c 0x£f0400000
1
1
1

mw.

0x£6380310 0x0

0xf6380314 0x3c000000

mw.l 0xf6380318 0x0

mw.l 0xf6380030 0x0

dcache invalidate 0x3c000000 0x100 # invalidate
md.l 0x3c000000

mw .

mw.

Chapter-5 DMA write

mw.l 0x3c000000 Oxffffffff

dcache flush 0x3c000000 0x100 # flush
mw.l 0xf638000c Ox1

0x£6380200 0x4000008

0x£6380204 0x0

0x£6380208 0x100

0x£638020c 0x3c000000

mw.l
1
1
1
mw.l 0xf6380210 0x0
1
1
1
1

mw .

mw .

0x£6380214 0x£f0400000
0x£6380218 0x0
0x£6380010 0x0
0x3c000000 0x40

Notes:
¢ The dcache flush/clean macro switch, CONFIG_CMD_CACHE, requires the following support patch to be
added:

commit b46a8lal2dd4al5l4a6522e33a1d16194£242d62
Author: Joseph Chen <chenjh@rock-chips.com>
Date: Wed Sep 28 01:36:45 2022 +0000

cmd: cache: Add flush/invalidate dcache range support

Signed-off-by: Joseph Chen <chenjh@rock-chips.com>
Change-Id: Id0e0cd9019072e8c557ebd29870439057cb4ae3b

5.18.5 Analysis of Common Problems

RK3568 Linux 5.10 uboot shutdown PCIE ASPM power saving

The default controller has ASPM support turned off, to confirm that the command mode under the PCIe3x2

uboot shell please refer to:
pci display.l 20.00.00 0x80 1
Where BITS[1:0] PCIE_CAP_ACTIVE_STATE LINK PM_CONTROL:

Values:

0x0 (DISABLED) : Disabled

Ox1l (LOS_ENTRY EN): LOs Entry Enabled

O0x2 (L1 _ENTRY En): L1 Entry Enabled

0x3 (LOS L1 ENTRY EN): LOs and L1 Entry Enabled

RC DMA access to FPGA limits

BAR access for FPGAs and most peripherals behaves differently:

¢ Some devices support memory read/write TLP packets of different lengths
e Some devices only support 4Bytes memory read/write TLP packets

So only 4Bytes memory read/write TLP is supported resulting in a

e CPU access to BAR space is normal
¢ RC DMA initiates requests that exceed the 4B address transfer length will bring up different errors, such as

ca abort

Chapter-5 RK3568 DMA read ca abort info
=> md.l 0xf63800b8 1
£63800b8: 00000100

Other notes:

¢ To catch this kind of problem, the PCle protocol analyzer should use a TLP trigger, not a memory trigger,
otherwise there is no cpl to trigger after an error.
¢ [t is suspected that PCle access to the bus is limited after the peripheral receives a tlp request that exceeds

4B length, resulting in a ca abort, but the specific requirements need to be analyzed with the assistance of

af://n2755

the peripheral's original manufacturer

5.19 Pinctrl

5.19.1 Framework Support

The pinctrl driver uses the pinctrl-uclass framework and standard interfaces.

Configuration:

CONFIG_PINCTRL GENERIC
CONFIG_PINCTRL_ ROCKCHIP

Framework code:
./drivers/pinctrl/pinctrl-uclass.c
Driver code:

./drivers/pinctrl/pinctrl-rockchip.c

5.19.2 Relevant Interface

int pinctrl select state(struct udevice *dev, const char *statename) // set
status
int pinctrl get gpio mux(struct udevice *dev, int banknum, int index) // Get
Status

The pinctrl framework will automatically set the “default” state for each driver when it probes, and users

generally do not need to call the pinctrl interface.

5.20 Pmic/Regulator

5.20.1 Framework Support

The PMIC/Regulator driver uses the pmic-uclass, regulator-uclass framework and standard interfaces.

PMIC support:
rk805/rk808/rk809/rk816/rk817/rk818

Regulator support:
rk805/rk808/rk809/rk816/rk817/rk818/syr82x/tcs452x/fan53555/pwm/gpio/fixed

Configuration:

af://n2781
af://n2782
af://n2790
af://n2793
af://n2794

CONFIG DM PMIC

CONFIG_ PMIC CHILDREN

CONFIG_PMIC RK8XX // Suitable for all current RK8XX series chips
CONFIG DM REGULATOR

CONFIG_REGULATOR_ PWM

CONFIG REGULATOR RK8XX // Suitable for all current RK8XX series chips
CONFIG REGULATOR FAN53555

Framework Code:

./drivers/power/pmic/pmic-uclass.c

./drivers/power/regulator/regulator-uclass.c
Driver file:

./drivers/power/pmic/rk8xx.c
./drivers/power/regulator/rk8xx.c
./drivers/power/regulator/fixed.c
./drivers/power/regulator/gpio-regulator.c
./drivers/power/regulator/pwm regulator.c

./drivers/power/regulator/fan53555 regulator.c

5.20.2 Relevant Interface

// ger regulator. @platname: name specified by“regulator-name”, e.g: vdd arm,
vdd logic;

int regulator get by platname(const char *platname, struct udevice **devp);

// Enable/Disable

int regulator get enable(struct udevice *dev);

int regulator set enable(struct udevice *dev, bool enable);

int regulator set suspend enable(struct udevice *dev, bool enable);

int regulator get suspend enable(struct udevice *dev);

// Configure/Get Voltage

int regulator get value(struct udevice *dev);

int regulator set value(struct udevice *dev, int uV);

int regulator set suspend value(struct udevice *dev, int uV);

int regulator get suspend value(struct udevice *dev);

5.20.3 Init Voltage

There are currently two ways to set the initialization voltage output for a particular regulator, provided that

regulator-boot-on is configured:

e Configure regulator-min-microvolt and regulator-min-microvolt to the same value;

e Configure regulator-init-microvolt = <...>

af://n2806
af://n2808

vdd arm: DCDC REG1 {
regulator-name = "vdd arm";
regulator-boot-on; // Must be configured
regulator-min-microvolt = <712500>;

<1450000>;

regulator-max-microvolt

regulator-init-microvolt = <1100000>; // Set initialization voltage to

5.20.4 Skip Initialization

Add regulator-loader-ignore if you want to skip the initialization of a certain way regulator.

vdd arm: DCDC REGL {
regulator-name = "vdd arm";
regulator-loader-ignore;// Only valid for regulator initialization in U-Boot

phase, not for kernel.

5.21 Reset

5.21.1 Framework Support

The reset driver uses the reset-uclass.c framework and standard interfaces. reset on the RK platform is
essentially a soft reset of the CRU.

Configuration:

CONFIG DM RESET
CONFIG_RESET ROCKCHIP

Framework code:
./drivers/reset/reset-uclass.c
Driver code:

./drivers/reset/reset-rockchip.c

5.21.2 Relervant Interface

af://n2816
af://n2819
af://n2820
af://n2828

// Get reset handle

int reset get by index(struct udevice *dev, int index, struct reset ctl

*reset ctl);

int reset get by name(struct udevice *dev, const char *name,
struct reset ctl *reset ctl);

// release reset

int reset free(struct reset ctl *reset ctl);

// requesr reset

int reset request(struct reset ctl *reset ctl);

// trigger reset, release reset

int reset assert(struct reset ctl *reset ctl);

int reset deassert(struct reset ctl *reset ctl);
Example:

struct reset ctl reset ctl;

ret = reset get by name(dev, "mac-phy", &reset ctl);
if (ret) {
debug ("reset get by name() failed: %d\n", ret);

return ret;

ret = reset request (&reset ctl);
if (ret)

return ret;

ret = reset assert(&reset ctl);
if (ret)

return ret;

ret = reset deassert (&reset ctl);
if (ret)

return ret;

ret = reset free(&reset ctl);
if (ret)

return ret;

5.21.3 DTS Configuration

U-Boot enables reset function by default, users only need to specify the reset object to be operated in the

peripheral node:

// format:
reset-names = <name-string-list>

resets = <cru-phandle-list>

Take gmac2phy as an example:

af://n2832

gmac2phy: ethernet@ff550000 ({
compatible = "rockchip, rk3328-gmac";

// specify reset attribute
reset-names = "stmmaceth", "mac-phy";

resets = <&cru SRST GMAC2PHY A>, <&cru SRST MACPHY>;

5.22 Rng

5.22.1 Framework Support

RNG is used to implement the hardware random number function.

Framework code:
./drivers/rng/rng-uclass.c
Driver code:
./drivers/rng/rockchip rng.c
Configuration:

CONFIG DM RNG=y
CONFIG_RNG_ROCKCHIP=y

5.22.2 Relevant Interface

// Q@buffer: Save random number output
// @size: Random number length, Unit: byte

int dm rng read(struct udevice *dev, void *buffer, size t size)

5.22.3 DTS Configuration

Because RNG is one of the features of the Crypto hardware module, RNG nodes have V1/2 just like Crypto
nodes. there are two types of compatible fields for RNG nodes:

compatible = "rockchip,cryptovl-rng";

compatible = "rockchip, cryptov2-rng";

For complete node configuration, please refer to the rv1126.dtsi, rk3568.dtsi, rk3399.dtsi files.

5.23 Spi

af://n2837
af://n2838
af://n2846
af://n2848
af://n2852

5.23.1 Framework Support

Framework code:
./drivers/spi/spi-uclass.c
Driver code:
./drivers/spi/rk _spi.c
menuconfig :

CONFIG_ROCKCHIP SPI=y
CONFIG _CMD SPI=y

5.23.2 Relevant Interface

Jinclude/spi.h

// Initialize the corresponding SPI bus
struct spi slave *spi setup slave(unsigned int bus, unsigned int cs, unsigned

int max hz, unsigned int mode);

// Get/Release Bus
int spi claim bus(struct spi slave *slave);

void spi release bus(struct spi slave *slave);

// Common Read/Write Interfaces
int spi xfer(struct spi slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags);
int spi_write then read(struct spi_ slave *slave, const u8 *opcode,
size t n opcode, const u8 *txbuf, u8 *rxbuf,

size t n buf);

5.23.3 DTS Configuration

&spil {
u-boot,dm-pre-reloc;
status = "okay";
}i
5.23.4 Recall Example

We recommend that you refer to drivers/power/power_spi.c.

For simple reference you can check this demo:

static u32 spi bus_ test (int bus, int cs)

af://n2853
af://n2860
af://n2863
af://n2865

struct spi slave *spi slave;
u32 tx data, rx data;

int ret;

#ifdef CONFIG DM SPI
struct udevice *dev;

char name[30], *str;

snprintf (name, sizeof (name), "generic %d:%d", bus, cs);
str = strdup (name) ;
if (!str)
return -ENOMEM;
ret = spi get bus_and cs(bus, cs, 50000000, SPI MODE 0, "spi generic drv",
str, &dev, é&spi_slave);
if (ret)
return ret;
#else
spi slave = spi setup slave(bus, cs, 50000000, SPI MODE O0);
if (!spi slave) {
/*
* Invalid bus 1 (err=-19) means that spil is disabled in dts
* Invalid chip select 1:0 (err=-19) means that there is no dev under
spil bus in dts
* check it in uboot dtb or kernel dtb(if is enabled)
*
* btw, spi get bus and cs support no sub dev operation but
spi_ setup slave can't
*/
return -ENODEV;
}
#endif

if (spi claim bus(spi slave))
return -ENODEV;

tx data = 0x12345678;

ret = spi xfer(spi slave, 32, &tx data, &rx data, SPI XFER BEGIN |
SPI_XFER_END) ;

spi release bus(spi slave);

pr_err("%$s succuss\n", _ func_);

return ret;

Notes:

e The spi peripheral supports specifying the rate via the spi-max-frequency attribute of the dts device child

node, as well as transmitting the setup rate during spi_get bus and cs/spi_setup_slave

5.23.5 Test Command

Use the cmd_spi related commands:

af://n2873

sspi 3:0.0 24 AAA # bus3:csO0:mode0 Transmission length is 24bits

Transmission data is “AAA”

5.23.6 Analysis of Common Problems

QI: No signal?
Al: Please make sure the corresponding iomux and clock are configured properly.
Q2: RK3399 cmd_spi exception?

A2: The cmd stage uses kernel dtb by default, please make sure whether the corresponding spi is specified in
kernel rk3399.dtsi aliases.

Q3: Why SPI failed to call spi_setup_slave?

A3: SPI bus node has to go with the device before spi_setup_slave can work properly, but u-boot has a standard
dev with driver spi_generic_drv for the bus, the device name is generic_1:0, which shall be declared in the call

of spi_setup_slave.
Q4: How to confirm the frequency of spi in uboot stage?

Q4: Turn on the debug switch

diff --git a/drivers/spi/rk spi.c b/drivers/spi/rk spi.c
index 836b9%4a24ec..8aaa51lb%e84 100644

--- a/drivers/spi/rk_spi.c

+++ b/drivers/spi/rk spi.c

@@ -24,6 +24,8 Q@

DECLARE GLOBAL DATA PTR;

+#undef DEBUG

+#define DEBUG 1
/* Change to 1 to output registers at the start of each transaction */
#define DEBUG RK SPI 0

Testing power with cmd/spi.c, key debug log description:

=> sspi 0:0.0 24 AAA

rockchip spi ofdata to platdata: base=f£f500000, max-frequency=50000000,
deactivate delay=0 rsd=0

rockchip spi probe: probe

rockchip spi probe: rate = 200000000 # Controller Operating Clock
spi speed 50000000, div 4 # io clock, io clock is output from
the controller's operating clock in 4 divisions

rockchip spi xfer: dout=07£d640c, din=07fd63ec, len=3, flags=3

activate cs0

deactivate cs0

000000

5.24 Storage

af://n2876
af://n2888

: The storage driver uses the standard storage framework, and the access interface is interfaced to the BLK layer
for file system support. Currently, the supported storage devices are: eMMC, Nand flash, SPI Nand flash, SPI

Nor flash, of which the flash related framework is as follows:

A . Main
Main Registered
. . supported
Acronyms supported Host Control Driver flash Framework Device o
ile
particle types Type
systems
knand MLC TLC block FAT, EXT,
r ar.l drivers/rkand drivers/rkand 0?
solution Nand device SquashFS
kflash SLC Nand block FAT, EXT.
: a§ ané drivers/rkflash drivers/rkflash OC, ’ ’
solution SPI Nand device SquashFS
rkflash
] .) block or SquashFS,
solution (SPI SPI Nor drivers/rkflash drivers/rkflash .
mtd device JFFS2
Nor support)
SLC Nand
open source SLC Nand drivers/mtd/nand/raw drivers/mtd/nand/raw mtd device UBI
solution
SPI Nand
open source SPI Nand drivers/spi/rockchip_sfc.c drivers/mtd/nand/raw mtd device UBI
solution
SPI Nor open mtd or mtd
. SquashFs,
source SPI Nor drivers/spi/rockchip_sfc.c drivers/mtd/spi block TFFS2
solution device
Notes:

1. The main difference between rkflash and open source solutions for Nand flash support is that rkflash
integrates rk ftl (Flash Transfer Layer) in the storage driver, while open source ftl partially relies on
the file system's own flash management, for example, the UBI file system supports bad block
management, wear leveling, etc., which is suitable for Nand flash file system characteristics. For
example, the UBI file system supports bad block management, wear leveling, and other file system

features suitable for Nand flash.

5.24.1 Framework Support

rknand

rknand is a storage driver designed for high-capacity Nand flash devices, which communicates with Nand flash
devices through Nandc host. Refer to “RKNandFlashSupportList” for the selection of applicable particles, and
the following particles are applicable:

e SLC, MLC, TLC Nand flash

Configuration:
CONFIG_RKNAND
Driver file:

./drivers/rknand/

af://n2945

rkflash

rkflash is a storage driver designed for devices that use small capacity storage. Nand flash support is
accomplished through communication between the Nandc host and the Nand flash device, and SPI flash support
is accomplished through communication between the SFC host and the SPI flash devices, and the specific
selection of the applicable particles can be found in the “RK SpiNor and SLC Nand SupportList”. applicable to
the following particles

e 128MB, 256MB and 512MB SLC Nand flash
e Partial SPI Nand flash
e Partial SPI Nor flash particles

Configuration:

CONFIG_RKFLASH

CONFIG_RKNANDC NAND /* Small-capacity parallel port Nand flash */
CONFIG RKSFC NOR /* SPI Nor flash */
CONFIG_RKSFC_ NAND /* SPI Nand flash */

Driver file:

./drivers/rkflash/

Notes:

1. SFC (serial flash controller) is a specialized module designed by Rockchip for easy support of spi flash

2. Since the rknand driver is not compatible with the ftl of the rkflash driver's Nand code, hence

¢ CONFIG_RKNAND and CONFIG_RKNANDC NAND cannot be configured at the same time.
¢ CONFIG_RKNAND and CONFIG_RKSFC NAND cannot be configured at the same time.

MMC & SD

MMC is multimedia card, such as eMMC; SD is a new generation of memory device based on semiconductor
flash memory. On the rockchip platform, they share a common dw_mmc controller (except rk3399, rk3399pro).

Configuration:
CONFIG MMC DW=y

CONFIG_MMC DW_ROCKCHIP=y
CONFIG_CMD MMC=y

Driver file:

./drivers/mmc/

SLC Nand & SPI Nand & SPI Nor open-source program

Due to the continuous improvement of the open source community and the feasibility of the UBI file system, RK
has also improved the flash combined with more open source code programs, and the open source program
default pre loader for the SPL startup program, so most of the configurations are completed by combining with

the SPL related configuration.

Configuration:

// MTD driver support
CONFIG MTD=y
CONFIG CMD MTD BLK=y
CONFIG SPL MTD SUPPORT=y
CONFIG _MTD BLK=y
CONFIG _MTD DEVICE=y

// spi nand driver support
CONFIG _MTD SPI NAND=y

CONFIG ROCKCHIP SFC=y

CONFIG SPL SPI FLASH SUPPORT=y
CONFIG_SPL SPI SUPPORT=y

// nand driver support

CONFIG_NAND=y

CONFIG CMD NAND=y

CONFIG_NAND ROCKCHIP=y /* NandC v6 can be cinfirmed basing on the register TRM
NANDC->NANDC_ NANDC VER, 0x00000801 */

//CONFIG NAND ROCKCHIP V9=y /* NandC v9 can be confirmed basing on the register
TRM NANDC->NANDC NANDC VER, 0x56393030, For example: the version for RK3326/PX30
*/

CONFIG_SPL NAND SUPPORT=y

CONFIG SYS NAND U BOOT LOCATIONS=y

// The nand page size needs to be defined according to the real size, if you use
NAND with capacity greater than or equal to 512MB, you generally need to
configure it as 4096.

#define CONFIG SYS NAND PAGE SIZE 2048

// spi nor driver support
CONFIG _CMD_SF=y
CONFIG CMD SPI=y
CONFIG SPI FLASH=y

CONFIG SF DEFAULT MODE=0x1
CONFIG SF DEFAULT SPEED=50000000
CONFIG SPI_FLASH GIGADEVICE=y
CONFIG SPI FLASH MACRONIX=y
CONFIG_SPI FLASH WINBOND=y
CONFIG_SPI_FLASH MTD=y

CONFIG ROCKCHIP SFC=y

CONFIG SPL_SPI SUPPORT=y
CONFIG_SPL MTD SUPPORT=y
CONFIG SPL_SPI_FLASH SUPPORT=y

Removing the rkflash/rknand macro configuration:

CONFIG_RKFLASH=n
CONFIG_RKNAND=n

Driver file:

./drivers/mtd/nand/raw //SLC Nand Master Driver and Protocol Layer
./drivers/mtd/nand/spi //SPI Nand Protocol Layer
./drivers/spi/rockchip sfc.c //SPI Flash Master Driver

./drivers/mtd/spi //SPI Nor Protocol Layer

5.24.2 Relevant Interface

The storage driver's access interfaces are all pegged to the BLK layer, so whatever storage is accessed is

accessed through the following interfaces

// Getting a Storage Handle
struct blk desc *rockchip get bootdev (void)

// Access interface

unsigned long blk dread(struct blk desc *block dev, lbaint t start,
lbaint t blkcnt, void *buffer)

unsigned long blk dwrite(struct blk desc *block dev, lbaint t start,
lbaint t blkcnt, const void *buffer)

unsigned long blk derase(struct blk desc *block dev, lbaint t start,
lbaint t blkcnt)

5.24.3 Boot Storage Type Differentiation

U-Boot's current boot storage type is differentiated in two ways:

e Via the string corresponding to environment variables. devtype and devnum .

¢ via the if type and devnum member variables within the current struct blk_desc structure (handle).

devtype if_type devnum storage type Remarks

mmc IF TYPE MMC 0 eMMC -

mmc IF TYPE MMC 1 SD card -

mtd IF TYPE MTD 0 Nand mtd open-source program
mtd IF_ TYPE MTD 1 SPI Nand mtd open-source program
mtd IF TYPE MTD 2 SPI Nor mtd open-source program
rknand IF_TYPE RKNAND 0 Nand rkflash program

spinand IF_TYPE SPINAND 0 SPI Nand rkflash program

spinor IF_TYPE SPINOR 1 SPI Nor rkflash program

nvme IF_ TYPE NVME 0 SSD -

scsi IF_TYPE SCSI 0 SATA -

5.24.4 DTS Configuration

eMMC configuration:

af://n2993
af://n2996
af://n3070

// rkxxxx.dtsi configuration
dwmmc@££390000 {

compatible
<0x0 0xf£f390000 0x0 0x4000>;

emmc :

"rockchip, px30-dw-mshc",

reg
and length

max-frequency <150000000>;

50MHz, when configured as eMMC

is in effect

clocks <&cru HCLK EMMC>,
<gcru SCLK_EMMC DRV>,

Number Corresponding to the controler

clock-names = "biu", "ciu", "ciu-drv",
Name

fifo-depth = <0x100>;
configuration

interrupts = <GIC_SPI 53 IRQ TYPE LEVEL HIGH>;
Configuration

status = "disabled";

}i

// rkxxxx-u-boot.dtsi
gemmc {

u-boot,dm-pre-reloc;

<&cru SCLK
<&cru SCLK__

"rockchip, rk3288-dw-mshc";

// Controller register base address
// eMMCThe eMMC normal mode clock is
//

HS200 mode, this max-frequency

EMMC>,

EMMC_SAMPLE>; // Controller Clock

"ciu-sample"; // Controller Clock
// fifo depth, default

// Interrupt

status = "okay";
}
// rkxxxx.dts
gemmc {

bus-width = <8>; // Device Bus Bit Width

cap-mmc-highspeed; // Identifies this card slot as
supporting highspeed mmc

mmc-hs200-1 8v; // Support for HS200

supports-emmc; // Identifies this slot as eMMC capable,
must be added or peripheral cannot be initialized

disable-wp; // For no physical WP pins, you need to
configure

non-removable; // This item indicates that the slot is a
non-removable device. This item is mandatory

num-slots = <1>; // Marked as Slot No.

status = "okay";

}i

Nandc configuration:

&nandc0 {

u-boot,dm-pre-reloc;

status = "okay";

#address-cells = <1>;

#size-cells = <0>;

nand@0 {
u-boot,dm-pre-reloc;
reg = <0>;

nand-ecc-mode "hw_ syndrome";

<1l6>;

nand-ecc-strength

nand-ecc-step-size = <1024>;

SFC configuration:

&sfc {

u-boot,dm-pre-reloc;

status = "okay";

spi nand: flash@O {
u-boot,dm-spl;
compatible = "spi-nand";
reg = <0>;
spi-tx-bus-width = <1>;
spi-rx-bus-width = <4>;
spi-max-frequency = <96000000>;

bi

spi nor: flash@l {
u-boot,dm-spl;
compatible = "jedec,spi-nor";
reg = <0>;
spi-tx-bus-width = <1>;

spi-rx-bus-width <4>;

spi-max-frequency = <96000000>;

}i

Notes:

1. Considering the software compatibility, only one line SPI flash transfer with spi-tx-bus-width = <1>
is supported under u-boot.
5.24.5 Dual Storage Expansion
Refer to the Rockchip Developer Guide Dual Storage CN.pdf document for details
5.24.6 Analysis of Common Problems
Q1: How to adjust and confirm the clock frequency of the open source solution FSPI/SFC controller output?

Al: Set the value of the spi-max-frequency attribute for the device subnodes under the sfc node in rkxxxx-u-

boot.dtsi and turn off invalid subdevices, then turn on debug messages within the driver:

af://n3082
af://n3084

diff --git a/drivers/spi/rockchip sfc.c b/drivers/spi/rockchip sfc.c
index 939b48e377c..62a425a29f4 100644

--- a/drivers/spi/rockchip sfc.c

+++ b/drivers/spi/rockchip sfc.c

@@ -790,7 +790,7 @R static int rockchip sfc set speed(struct udevice *bus, uint

speed)
sfc->cur speed = speed;
sfc->cur real speed = clk get rate(&sfc->clk);
= dev_dbg (sfc->dev, "set freq=%dHz real freg=%dHz\n",
+ dev_err (sfc->dev, "set fregq=%dHz real freg=%dHz\n",
sfc->cur speed, sfc->cur real speed);
#else

dev_dbg (sfc->dev, "sfc failed, CLK not support\n") ;

5.25 Thermal

5.25.1 Framework Support

Thermal module is used to get the temperature of the chip collected by tsadc, the default is CPU temperature.

Framework code:
./drivers/thermal/thermal-uclass.c
Driver code:
./drivers/thermal/rockchip thermal.c
Configuration:

CONFIG DM THERMAL=y
CONFIG_ROCKCHIP THERMAL=y

5.25.2 Relevant Interface

// Q@temp: Save the acquired temperature

int thermal get temp(struct udevice *dev, int *temp)

5.25.3 DTS Configuration

The kernel's dts are generally fully configured and enabled by default.

5.26 Uart

af://n3088
af://n3089
af://n3097
af://n3099
af://n3101

serial uses the serial-uclass.c framework and standard interfaces, and is currently used mainly by the UART

debug.

Configuration:

// Enable configuration
CONFIG DEBUG UART
CONFIG_SYS NS16550

// Parameter configuration
CONFIG DEBUG_UART BASE
CONFIG_DEBUG UART CLOCK
CONFIG_BAUDRATE

Framework code:
./drivers/serial/serial-uclass.c
Driver code:

./drivers/serial/ns16550.c

5.26.1 Individual Replacement

The process for individual replacement of UART debug in U-Boot phase is as follows (take uart2 as an

example):

e CONFIG ROCKCHIP PRELOADER SERIAL disabled;

e Configure vart iomux in board debug uart init () (note: some platforms have m0, ml... modes to
configure).

¢ Configure the uvart clock in board debug uart init () to ensure that the clock source is 24Mhz;

¢ defconfig updates CONFIG BAUDRATE ;

¢ defconfig updates CONFIG DEBUG UART BASE;

e Add 2 required attributes to the U-Boot uart node and enable them.

&uart2 {
u-boot,dm-pre-reloc;
clock-frequency = <24000000>;
status = "okay";

}i

¢ Specify the stdout-path in the U-Boot chosen node:

chosen {
stdout-path = &uart2;
}i

5.26.2 Global Replacement

af://n3109
af://n3129

Pre-loader serial is a mechanism to realize the sharing of UART debug configuration among the previous
firmware, including: ddr, miniloader, bl31, op-tee, U-Boot. Its principle: the UART debug is configured by the
earliest ddr bin and is passed down through the ATAGS parameter passing mechanism, and all levels of

firmware get the UART debug configuration and use it (excluding the kernel).

Users can realize the global replacement of UART debug by modifying the serial port configuration in the ddr

bin, processes are as follows:
DDR bin configuration
The rkbin repository provides tools for the user to configure different parameters, including serial port

replacement:

tools/ddrbin tool
tools/ddrbin param.txt
tools/ddrbin_tool user guide.txt

U-Boot configuration

1 enable configuration:

CONFIG_ROCKCHIP PRELOADER SERIAL // Already enabled by default

2 rkxx-u-boot.dtsi adds the attribute “u-boot,dm-pre-reloc” to the uart nodes to be used.;

3 aliases establish serial aliases, since U-Boot finds the target node and initializes it through aliases.

For example: . /arch/arm/dts/rk1808-u-boot.dtsi creates aliases for all uarts for convenience;
aliases {

mmcO = &emmc;

mmcl = &sdmmc;

// Alias must be created

serial0 = &uartO;
seriall = &uartl;
serial?2 = &uart2;
serial3 = &uart3;
seriald4 = &uartid;
serialb = &uarth;
serial6 = &uart6;
serial7 = &uart7;

// Must add u-boot,dm-pre-reloc attribute
sguart0 {
u-boot,dm-pre-reloc;
}i
&uartl |
u-boot,dm-pre-reloc;
}i
sguart2 |
u-boot,dm-pre-reloc;
clock-frequency = <24000000>;

status = "okay";

}i

Sguart3 {
u-boot,dm-pre-reloc;

}i

Suartd {
u-boot,dm-pre-reloc;

}i

5.26.3 Turn off Printing

CONFIG DISABLE CONSOLE=y

5.26.4 Relevant Interface

// UART debug interface

void putc(const char c);

void puts(const char *s);

int printf (const char *fmt, ...);

void flushc (void);

// General UART interface for communication with peripherals
int serial dev getc(struct udevice *dev);

int serial dev tstc(struct udevice *dev);

void serial dev putc(struct udevice *dev, char ch);

void serial dev puts(struct udevice *dev, const char *str);
void serial dev setbrg(struct udevice *dev, int baudrate);

void serial dev clear(struct udevice *dev);

5.27 USB

U-Boot USB mainly includes Devcie, Host, PHY and USB peripheral driver, which will be detailed in this

section with their framework configuration, board-level configuration and the use of related commands

5.27.1 Framework Support

Device

Device is based on Gadget framework (without DM_USB), generally configured as rockusb or fastboot mode
for firmware upgrade, firmware verification, etc. The rockusb protocol is based on the UMS protocol, and its
state machine is embedded in the UMS framework in the form of HOOK, which can be referenced in the

implementation of the rockusb driver.

Currently, there are two kinds of USB Device controllers, DWC2 and DWC3, usually a chip will only integrate
one of the OTG controllers, so you only need to enable one kind of controller related configurations in the
CONFIG, for which controller you need to configure please refer to the chip's TRM or Rockchip USB
development guide.

Configuration:

af://n3142
af://n3144
af://n3146
af://n3148

CONFIG _USB=y

// gadget configuration

CONFIG_USB_GADGET=y

CONFIG USB GADGET MANUFACTURER="Rockchip"
CONFIG_USB_GADGET VENDOR NUM=0x%2207
CONFIG_USB_GADGET PRODUCT NUM=0x330a // Configured based on chip ID
CONFIG_USB_GADGET VBUS DRAW=2

CONFIG_USB_GADGET DUALSPEED=y

// rockusb configuration

#define CONFIG USB FUNCTION MASS STORAGE // placed in
include/configs/rkxxx common.h

CONFIG USB_GADGET DOWNLOAD=y

CONFIG_CMD ROCKUSB=y

// DWC3 Controller Configuration
CONFIG_USB_DWC3=y
CONFIG_USB_DWC3 GADGET=y

// DWC2 Controller Configuration
CONFIG_USB_GADGET DWC2 OTG=y

Framework code:

// gadget framework
drivers/usb/gadget/g dnl.c
drivers/usb/gadget/g dnl.c
drivers/usb/gadget/config.c
drivers/usb/gadget/epautoconf.c
drivers/usb/gadget/usbstring.c

drivers/usb/gadget/f mass storage.c

Driver code:

// rockusb
cmd/rockusb.c

drivers/usb/gadget/f rockusb.c

// controller
drivers/usb/gadget/dwc2 udc_otg* // dwc2 OTG controller
drivers/usb/dwc3 // dwc3 OTG controller

Host

Host controllers include OHCI, EHCI and xHCI, of which xHCI can support USB3 devices, but not all chips
have integrated XHCI controllers, the specific integration situation needs to be referred to the chip TRM or
Rockchip USB development guide. Host development is mainly about the adaptation of the controller to the
DTS.

Configuration:

CONFIG USB=y
CONFIG DM USB=y

// xHCI

CONFIG_USB_HOST=y
CONFIG _USB_XHCI HCD=y
CONFIG_USB_XHCI DWC3=y
CONFIG_USB_DWC3 GENERIC=y

// EHCI
CONFIG _USB EHCI HCD=y
CONFIG USB EHCI GENERIC=y

// OHCI
#define CONFIG USB OHCI NEW // in the include/configs/rkxxx common.h
#define CONFIG SYS USB OHCI MAX ROOT PORTS 1

CONFIG USB_OHCI HCD=y
CONFIG_USB_OHCI_GENERIC=y

Framwork code:

// Framwork code
cmd/usb.c

drivers/usb/host/usb-uclass.c

// EHCI
drivers/usb/host/ehci-generic.c

drivers/usb/host/ehci-hcd.c

// OHCI
drivers/usb/host/ohci-generic.c

drivers/usb/host/ohci-hcd.c

// xHCI
drivers/usb/host/xhci.c
drivers/usb/host/xhci-dwc3.c
drivers/usb/host/xhci-mem.c

drivers/usb/host/xhci-ring.c

PHY

U-Boot USB PHY mainly consists of USB2 and USB3 PHY drivers, using DM_USB configuration and is
compatible with the Linux kernel DTB. For specific PHY IP integration, you need to refer to the Chip TRM or
Rockchip USB PHY Development Guide.

Configuration:

CONFIG_PHY=y

// INNO USB2

CONFIG PHY ROCKCHIP INNO USB2=y

// INNO USB3

CONFIG_PHY ROCKCHIP INNO USB3=y

// NANENG USB2

CONFIG PHY ROCKCHIP NANENG USB2=y

// NANENG COMBOPHY
CONFIG_PHY ROCKCHIP NANENG COMBOPHY=y
// RK3399 USBDP PHY

CONFIG PHY ROCKCHIP TYPEC=y

Framework code:
drivers/phy/phy-uclass.c
Driver code:

// INNO USB2
drivers/phy/phy-rockchip-inno-usb2.c

// INNO USB3
drivers/phy/phy-rockchip-inno-usb3.c

// NANENG USB2
drivers/phy/phy-rockchip-naneng-usb2.c

// NANENG COMBOPHY
drivers/phy/phy-rockchip-naneng-combphy.c
// RK3399 USBDP PHY
drivers/phy/phy-rockchip-typec.c

** Other Peripherals**
U-Boot USB peripheral support is primarily about USB HUBs, USB keyboards and UMS devices.
Configuration:

// USB Keyboard

CONFIG USB KEYBOARD=y
CONFIG _USB KEYBOARD FN KEYS=y // Support F1-F12, INS, HOME and other shortcuts.

// USB storage device
CONFIG_USB_STORAGE=y

Framework code:

// Framework code
common/usb.c

drivers/usb/host/usb-uclass.c

// USB keyboard
drivers/input/usb_kbd.c

drivers/input/keyboard-uclass.c

// USB storage device

common/usb/usb_storage.c

5.27.2 Board Configuration

Device

Since the USB Device does not use the DM_USB method, you need to configure the Properties of the
corresponding controller in the Board file, such as the address of the USB controller, the size of the TX FIFO,

and so on.

// DWC3 Controller Configuration
// board/rockchip/evb rk3399/evb rk3399.c

af://n3178

#ifdef CONFIG USB DWC3
static struct dwc3 device dwc3 device data = {
.maximum speed = USB SPEED HIGH,
.base = 0xfe800000, // Modified according to different chip USB OTG
controller base address
.dr_mode = USB_DR MODE PERIPHERAL,
.index = 0,
.dis u2 susphy quirk = 1,
.usb2 phyif utmi width = 16,
}i

int usb_gadget handle interrupts(void)
{
dwc3 uboot handle interrupt(0);

return 0;

int board usb init(int index, enum usb init type init)
{

return dwc3 uboot init (&dwc3 device data);

}
#endif

// The DWC2 controller configuration is implemented in the rockchip generic

board.c file and generally does not need to be modified

// arch/arm/mach-rockchip/board.c

USB keyboard

If you use USB keyboard as U-Boot standard input device, you need to add usbkbd to the stdin environment

variable, the reference code is as follows.

// Environment variable configuration is located in each board header file
// include/configs/evb rk3568.h

#define ROCKCHIP DEVICE SETTINGS \
"stdin=serial,usbkbd\0" \

5.27.3 DTS Configuration

As mentioned earlier, USB Device does not use the DM_USB method, so it does not need the configuration of
the relevant DT node; USB Host and USB PHY drivers are compatible with the Linux kernel DTB, so you can
directly use the Linux kernel DTB, and if you want to configure the use of U-Boot DTB you can refer to the

implementation of the relevant node in the Linux kernel.

5.27.4 Related Commands

rockusb

af://n3185
af://n3187

rockusb - Use the rockusb Protocol

Usage:

rockusb <USB controller> <devtype> <dev[:part]> e.g. rockusb 0 mmc 0

There are three ways to enter the U-Boot loader upgrade mode as follows:

¢ Accessed by reset + revovery keystrokes
e Enter the U-Boot command line and execute the above command to turn on rockusb and enter upgrade
mode ;

e After entering the system, execute “reboot loader” on the command line to soft reboot into upgrade mode.
usb

usb - USB sub-system

Usage:

usb start - start (scan) USB controller

usb reset - reset (rescan) USB controller

usb stop [f] - stop USB [f]=force stop

usb tree - show USB device tree

usb info [dev] - show available USB devices

usb test [dev] [port] [mode] - set USB 2.0 test mode

(specify port 0 to indicate the device's upstream port)
Available modes: J, K, S[EO NAK], P[acket], F[orce Enable]
usb storage - show details of USB storage devices
usb dev [dev] - show or set current USB storage device
usb part [dev] - print partition table of one or all USB storage devices
usb read addr blk# cnt - read “cnt' blocks starting at block “blk#'
to memory address “addr'
usb write addr blk# cnt - write “cnt' blocks starting at block “blk#'

from memory address “addr'

U-Boot USB does not support hot plugging and unplugging of devices, so it is necessary to execute USB

commands to enumerate and disconnect devices.

¢ Parse the controller node and scan the devices conneted to all ports with the “usb start” or “usb reset”
command.

¢ Disconnect all devices and deconstruct the controller device with the “usb stop” command.

e View controller information and information about currently connected devices with the “usb info” and
“usb tree” commands.

¢ The “usb storage” and its following commands are used for UMS function, please refer to the command

description for details.
fastboot

Refer to section CHO04-System Module, chapter Fastboot for fastboot configuration and use.

5.28 Vendor Storage

Vendor Storage is used to store small data such as SN, MAC, etc. that does not require encryption. Data is stored
in a reserved partition of NVM (eMMC, NAND, etc.) with multiple backups, so that when updating data, the
data is kept with a high reliability and won't be lost.

Refer to the document “appnote rk vendor storage” for details.

af://n3212

5.28.1 Principle Overview

The vendor block is divided into 4 partitions, vendor0, vendor1, vendor2, and vendor3, and each vendorX (X=0,
1, 2, 3) has a monotonically incrementing version field in its hdr to indicate the point of time when the vendorX
was updated. Each read operation reads only the newest vendorX (i.e., the largest version), while a write
operation updates the version and moves all existing and new information to the vendorX+1 partition. For
example, if you read from vendor2, modify it and then write it back, you will write to vendor3. This is just a

simple security measure.

5.28.2 Framework Support

The U-Boot framework does not support Vendor Storage functionality, Rockchip has implemented its own set of

Vendor Storage drivers.

configure:
CONFIG_ROCKCHIP VENDOR PARTITION
driver file:

./arch/arm/mach-rockchip/vendor.c

./arch/arm/include/asm/arch-rockchip/vendor.h

5.28.3 Relevant Interface

int vendor storage read(ul6 id, void *pbuf, ul6 size)

int vendor storage write(ul6 id, void *pbuf, ul6 size)

For the definition and use of ids, see appnote rk vendor storage.

5.28.4 Functionality Self-test

The Vendor Storage function can be self-tested by using the “rktest vendor” command from the U-Boot serial

command line.

5.29 Watchdog

5.29.1 Framework Support

The watchdog driver uses the wdt-uclass.c framework and standard interfaces..

Configure:

CONFIG_WDT
CONFIG ROCKCHIP WATCHDOG

af://n3215
af://n3217
af://n3223
af://n3226
af://n3228
af://n3229

Framework Code:

./drivers/watchdog/wdt-uclass.c

Driver code

./drivers/watchdog/rockchip wdt.c

5.29.2 Relevant Interface

// Set the timeout for feeding the dog and start wdt (@flags is 0 by default)
int wdt start(struct udevice *dev, u64 timeout ms, ulong flags);

// Close wdt

int wdt stop(struct udevice *dev);

// feed the dog

int wdt reset(struct udevice *dev);

// Ignore this please, no underlying driver implementation done at this time

int wdt expire now(struct udevice *dev, ulong flags)

Currently, U-Boot does not enable or use the wdt function in the default process, users can enable it according to

their own product requirements.

af://n3237

6. Chapter-6 Advanced Principle

6.1 Kernel-DTB

6.1.1 Design Background

The native architecture of U-Boot requires that one board must correspond to one U-Boot dts, and the dtb
generated by U-Boot dts is packaged into U-Boot's own image. This results in N boards requiring N copies of
the U-Boot image on each SoC platform.

It is not difficult to find out that the main difference between different boards of a SoC platform is the
peripherals, and the core part of the SoC is the same. RK platform has added the kernel DTB mechanism in
order to realize that a SoC platform only needs one U-Boot image. The essence is to cut to the kernel DTB at an

earlier stage and initialize the peripherals with its configuration information.

So the RK platform can achieve compatibility with board differences such as display, pmic/regulator, pinctrl, clk,

etc. by supporting kernel DTB.

kernel DTB enablement relies on OF LIVE (live device tree, short: live-dt)

config USING KERNEL DTB
bool "Using dtb from Kernel/resource for U-Boot"
depends on RKIMG BOOTLOADER && OF LIVE
default y
help
This enable support to read dtb from resource and use it for U-Boot,
the uvart and emmc will still using U-Boot dtb, but other devices like

regulator/pmic, display, usb will use dts node from kernel.

6.1.2 Live Device Tree

Background and rationale:

After the introduction of the kernel DTB, there are two copies of the DTB in the U-Boot stage, where modules
such as Storage, Serial, Crypto are related to the U-Boot DTB and the rest of the modules are related to the
kernel DTB. Then in U-Boot stage, it may need to cross access to these two types of modules at different

moments, and at the same time, modules may need to access their own DTB node information.

So, these two types of modules belong to different DTBs, and gd->fdt_blob can only point to one of them
and it is not easy to switch between them, what should we do? Since the kernel dts will eventually be passed to

the kernel, you can't just overlay some nodes from the U-Boot dts to the kernel dts to make a single copy.

Live dt can solve this problem. the principle of live dt is: during the initialization phase, U-Boot scans the entire
DTB directly, converts all DTB nodes into struct device_node node list, and binds them to specific device-driver.
In the future, when the device-driver wants to access the DTB nodes, it can directly access its own device node,

and does not need to access the original DTB again.

So, it is equivalent to that both U-Boot and kernel DTBs are bound to their respective device-driver groups, and

there is no need to directly access to the DTB files.

af://n3243
af://n3244
af://n3245
af://n3251

This resolves the conflict caused by accessing two sets of DTBs.

More references:

./doc/driver-model/livetree.txt

fdt and live dt conversion:

The ofnode type (include/dm/ofnode.h) is an encapsulation format supported by both types of dt. device node is
used to access dt nodes when using live dt, and offset is used to access dt nodes when using fdt. When you need

to support both types of drivers, please use the ofnode type.

ofnode structure:

/*
* @np: Pointer to device node, used for live tree
* @of offset: Pointer into flat device tree, used for flat tree. Note that
this
& is not a really a pointer to a node: it is an offset value. See above.
*/
typedef union ofnode union {
const struct device node *np; /* will be used for future live tree */
long of offset;
} ofnode;

)

¢ Functions starting with “dev_”, “ofnode_ are functions that support both dt access methods;
¢ Functions starting with “of " are interfaces that only support live dt;

e Functions starting with “fdtdec_”, “fdt " are interfaces that only support fit;

6.1.3 Mechanisms to Achieve

The kernel dtb switch is implemented in . /arch/arm/mach-rockchip/board.c in
init kernel dtb () . At this point, U-Boot's dts have been scanned and the mmc/nand/nor storage drivers are

working properly.

At this point, read the kernel dtb from the firmware, then build live dt table and bind all device-drivers, and
finally update the gd->fdt blob pointer to point to the kernel dtb.

6.1.4 U-Boot

¢ After U-Boot is compiled it will generate two dtbs in the . /dts/ directory:

o dt.dtb: Compiled from the dts specified by CONFIG DEFAULT DEVICE TREE in defconfig;

o dt-spl.dtb: get from dt.dtb by extracting all the nodes with u-boot, dm-pre-reloc properties, and
then remove the properties specified by CONFIG OF SPL REMOVE PROPS in defconfig. Generally,
only the nodes that must be relied on by drivers for serial ports, DDR, storage, etc. are included:
DMC, UART, MMC, NAND, GRF, CRU, and so on.

e System uses dt.dtb when CONFIG USING KERNEL DTB is not enabled; system uses dt-spl.dtb when
CONFIG USING KERNEL DTB is enabled.

¢ Both dt.dtb or dt-spl.dtb are named u-boot.dtb at the end of U-Boot compilation and then appended to the

end of u-boot.bin. Users can check the content of u-boot.dtb by fdtdump command.

af://n3271
af://n3274

6.2 Kernel Pass Parameter

This chapter describes how U-Boot passes parameters to the kernel.

6.2.1 Cmdline

U-Boot reads /chosen/bootargs from the kernel DTB, modifies/appends it with the new content and then

rewrites it back to the /chosen/bootargs node for the purpose of passing the cmdline.

6.2.2 Memory Capacity

U-Boot modifies the /memory node in the kernel DTB, and fill in the available memory capacity information.

The boot information is printed:

Chapter-6 Booting Android Image at 0x0027£800
Kernel load addr 0x00280000 size 23387 KiB
RAM disk load addr 0x0a200000 size 782 KiB
Chapter-6 Flattened Device Tree blob at 08300000
Booting using the fdt blob at 0x8300000
XIP Kernel Image ... OK
'reserved-memory' ramoops@110000: addr=110000 size=£0000
Using Device Tree in place at 0000000008300000, end 0000000008314648

// Memory space available to the kernel
Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)
Adding bank: 0x0a200000 - 0x80000000 (size: 0x75e00000)

Total: 473.217 ms

Starting kernel

6.2.3 Other Ways

All other methods of passing parameters are essentially modifying the kernel DTB, as follows:

af://n3287
af://n3289
af://n3291
af://n3294

Nodes/attributes
/serial-number

/memory
/display-subsystem/route/route-edp/

/chosen/linux,initrd-start
/chosen/linux,initrd-end
/bootargs

mac-address or local-mac-address within the
GMAC node

arch/arm/mach-rockchip/board.c:
board fdt fixup()

6.3 AB System

6.3.1 AB Data Format

The data structure for A/B is located 2KB offset from the misc partition.

Operation
Create

Modify

Append

Create
Create

Modify

Modify

Modify

/* Magic for the A/B struct when serialized. */

#define AVB AB MAGIC "\OABO"
#define AVB_AB MAGIC LEN 4

Effects
serial number
Kernel Visible Memory

Show related parameters (edp for

example)
ramdisk starting address
ramdisk ending address

cmdline visible to kernel

mac address

board fdt fixup

/* Versioning for the on-disk A/B metadata - keep in sync with avbtool. */

#define AVB AB MAJOR VERSION 1
#define AVB AB MINOR VERSION 0

/* Size of AvbABData struct. */
#define AVB_AB DATA SIZE 32

/* Maximum values for slot data */

#define AVB_AB MAX PRIORITY 15

#define AVB AB MAX TRIES REMAINING 7

typedef struct AvbABSlotData {

/* Slot priority. Valid values range from 0 to AVB AB MAX PRIORITY,
* both inclusive with 1 being the lowest and AVB AB MAX PRIORITY

* being the highest. The special value 0 is used to indicate the

* slot is unbootable.
=/

uint8 t priority;

/* Number of times left attempting to boot this slot ranging from 0

* to AVB AB MAX TRIES REMAINING.
*/

uint8 t tries remaining;

af://n3333
af://n3334

/* Non-zero if this slot has booted successfully, 0 otherwise. */

uint8 t successful boot;

/* Reserved for future use. */
uint8 t reserved[l];
} AVB_ATTR_PACKED AvbABSlotData;

/* Struct used for recording A/B metadata.

*
* When serialized, data is stored in network byte-order.
./
typedef struct AvbABData {
/* Magic number used for identification - see AVB AB MAGIC. */
uint8 t magic[AVB AB MAGIC LEN];

/* Version of on-disk struct - see AVB AB {MAJOR,MINOR} VERSION. */
uint8 t version major;

uint8 t version minor;

/* Padding to ensure |slots| field start eight bytes in. */

uint8 t reservedl[2];

/* Per-slot metadata. */

AvbABSlotData slots([2];

/* Reserved for future use. */

uint8 t reserved2([12];

/* CRC32 of all 28 bytes preceding this field. */
uint32 t crc32;
} AVB ATTR PACKED AvbABData;

For small capacity storage that does not have a misc partition but does have a vendor partition, consider storing

to the vendor.

Add lastboot to mark the last bootable firmware. It is mainly used in low power situation or factory production

test when the retry count is used up and the boot_ctrl service has not yet been called by the system. The

reference is as follows:

typedef struct AvbABData ({
/* Magic number used for identification - see AVB_AB MAGIC. */
uint8 t magic[AVB AB MAGIC LEN];

/* Version of on-disk struct - see AVB AB {MAJOR,MINOR} VERSION. */
uint8 t version major;

uint8 t version minor;

/* Padding to ensure |slots| field start eight bytes in. */

uint8 t reservedl[2];

/* Per-slot metadata. */
AvbABSlotData slots([2];

/* mark last boot slot */
uint8_t last_boot;
/* Reserved for future use. */

uint8 t reserved2[11];

/* CRC32 of all 28 bytes preceding this field. */
uint32 t crc32;
} AVB ATTR PACKED AvbABData;

Also add the is_update flag bit to AvbABSlotData to flag the status of the system upgrade, changes as follows:

typedef struct AvbABSlotData {
/* Slot priority. Valid values range from 0 to AVB_AB MAX PRIORITY,
* both inclusive with 1 being the lowest and AVB AB MAX PRIORITY
* being the highest. The special value 0 is used to indicate the
* slot is unbootable.
*/

uint8 t priority;

/* Number of times left attempting to boot this slot ranging from 0
* to AVB AB MAX TRIES REMAINING.
*/

uint8 t tries remaining;

/* Non-zero if this slot has booted successfully, 0 otherwise. */

uint8 t successful boot;

/* Mark update state, mark 1 if the slot is in update state, 0 otherwise. */
uint8 t is update : 1;
/* Reserved for future use. */
uint8 t reserved : 7;
} AVB ATTR PACKED AvbABSlotData;

The table illustrates the meaning of each parameter:

AvbABData:
Parameter Meaning
priority Flag slot priority, 0 is not bootable, 15 is the top priority
tries_remaining Number of attempts to start, set to 7

This parameter is configured after the system boots up successfully, 1: the slot boots

successful_boot
- up successfully, 0: the slot does not boot up successfully

. dat Marks the upgrade status of the slot, 1: the slot is being upgraded, 0: the slot has not
is_update
e been upgraded or has been upgraded successfully.

AvbABSlotData:

Parameter Meaning

magic Structure header information:\0ABO

version_major Major Version Information

version_minor Minor version information

slots slot boot information, see AvbABData

last_boot Last successful boot slot, 0: slot A last boot succeeded, 1: slot B last boot succeeded
crc32 data validation

6.3.2 AB Activation Mode

Currently, system bootctrl is designed with two control modes, and the bootloader supports both modes.

6.3.2.1 Successful-boot

After entering the system normally, boot_ctrl is based on androidboot.slot_suffix to set the current slot variable:

successful boot = 1;

priority = 15;

tries remaining = 0;

is update = 0;

last _boot = 0 or 1; :refer to androidboot.slot suffix

Upgrade the system with the boot_ctrl setting:

Upgraded slot settings:
successful boot = 0;
priority = 14;

tries remaining = 7;

is update = 1;

lastboot = 0 or 1; :refer to androidboot.slot suffix

Current Slot Settings:
successful boot = 1;
priority = 15;
tries_remaining = 0;

is update = 0;

last_boot = 0 or 1; :refer to androidboot.slot suffix

System upgradation complete, boot_ctrl set:

af://n3383
af://n3385

Upgraded slot settings:
successful boot = 0;
priority = 15;

tries remaining = 7;

is update = 0;

lastboot = 0 or 1; :refer to androidboot.slot suffix

Current Slot Settings:
successful boot = 1;
priority = 14;

tries remaining = 0;
is update = 0;

last boot = 0 or 1; :refer to androidboot.slot suffix

6.3.2.2 Reset-retry

After entering the system normally, boot_ctrl is based on androidboot.slot_suffix to set the current slot variable:

successful boot = 0;

priority = 15;

tries remaining = 7;

is update = 0;

last boot = 0 or 1; :refer to androidboot.slot suffix

Upgrade the system with the boot_ctrl setting:

Upgraded slot settings:
successful boot = 0;

priority = 14;

tries remaining = 7;
is update = 1;
lastboot = 0 or 1; :refer to androidboot.slot suffix

Current Slot Settings:
successful boot = 0;
priority = 15;

tries remaining = 7;
is update = 0;

last boot = 0 or 1; :refer to androidboot.slot suffix

Upgrade system complete, boot ctrl set:

af://n3392

Upgraded slot settings:
successful boot = 0;
priority = 15;

tries remaining = 7;

is update = 0;

lastboot = 0 or 1; :refer to androidboot.slot suffix

Current Slot Settings:
successful boot = 0;
priority = 14;

tries remaining = 7;
is update = 0;

last boot = 0 or 1; :refer to androidboot.slot suffix

6.3.2.3 Mode Comparison

¢ successful_boot mode

o Advantage: As long as the system is booted normally, it will not revert back to an older firmware
version unless system bootctt] is configured

o Disadvantage: After the device has been working for a long time, if it stores some particles
abnormally, it will cause the system to reboot all the time

e reset retry mode

o Advantage: always keep the retry mechanism, can cope with storage exception problems

o Disadvantage: May falls back to an older firmware version

6.3.3 Boot Process

af://n3399
af://n3415

Maskrom

?Jl] ﬁ "E ETJ pre- loader

B misc ab#¥ 18

Hal BE1slot ?

ML A EislotHluboot +
trust

B3l uboot

pame S o EEIHIslot?

tries_remainingig—

ik L fboot. img

RELE
androidboot._slot_suffixin
275 Slsystem

Yes

Eh:n:rt_n:trlﬂ?ﬁ

AB successful_boot mode data flow:

NIRRT

Slot A

successful_boot =0;

priorty = 15;
tries_remaining = 7;
is_update = 0;

Last_boot=0
Mslot ABEN

Slot B

successful_boot =0;
priority = 14

tries_remaining = 7;
is_update = 0;

l Slot A

successful_boot =0;

Slot B

successful_boot = O;

riorty = 15; riorty = 14;
Bootloader e i
tries_remaining = tries_remaining = 7
is_update = ; last boot=0 is_update = ;
H.slot ABTH
l Slot A Slot B
successful_boot = 1; successful_boot = O
riority = 15; riority = 14;
system | PEORENE =2 PRBRENE S
tries_remaining = 0 b N tries_remaining = 7;
is_update = ; Last_boot =0 is_update = ;
I
l Slot A Slot B
successful_boot = 1; successful_boot = O
cerm priority = 15; FiRslot B priority = 14;
=Y tries_remaining = O L b -0 tries_remaining = 7;
is_update = 0; ast_boot = is_update = 1;
R
Slot B
successful_boot = 1; i&zlct B% i successful_boot = 0
t prionty = 14; prionty = 15;
system tries_remaining = O Lagt_bc: ot=0 tries_remaining = 7;
is_update = 0; is_update = 0;
Slot A Slot B
successful_boot = 1; successful_boot = O
bootloader priority = 14; priority = 15;

tries_remaining = O

is_update = 0;

Last_boot =0

—
¥

tries_remaining = 7,

is_update = 0;

I - 575

successful_boot =1;
prionty = 14;
tries_remaining =

successful_boot = 1;

system Last_boot =1 priority = 15;

tries_remaining = 0;

is_update = 0; is_update = 0;

AB reset retry mode data flow:

IRARZS

Slot A

successful_boot =0;
priority = 15;

tries_remaining = 7;
is_update = 0;

Last_boot=0

Mslot ABTH

S5lot B

successful_boot =0;
priority = 14

tries_remaining = 7;
is_update = O;

l Slot A

successful_boot =0;

Slot B

successful_boot = O;

riorty = 15; riorty = 14;
Bootloader i o i o
tries_remaining = g tries_remaining = 7;
is_update = 0; last boot=0 is_update = 0;
M.slot ABTH
lﬂﬂﬁ Slot B
successful_boot =0; successful_boot = O
stem prionty = 15; prionty = 14;
Y tries_remaining = 7; L b -0 tries_remaining = 7;
is_update = 0; ast_boot = is_update = 0;
l Slot A Slot B
successful_boot =0; successful_boot = 0;
priority = 15; g priority = 14,
system tries_remaining = 7, ?l‘:ﬁ‘,;httﬂ_q:['} tries_remaining = 7;
is_update = O; ast_boot= is_update = 1;
5lot B
successful_boot =0; gE:Sk:t B% W% successful_boot =0
priorty = 14; priorty = 15;
tries_remaining = 7; as oot = tries_remaining = 7;
system . _ - Last_boot = 0 S L -
is_update = 0; is_update = 0;
reboot
successful_boot =0; successful_boot = O
riority = 14; riority = 15;
bootloader e ' e '

tries_remaining = 7;
is_update = 0;

Last_boot=0

tries_remaining = 7;
is_update = 0;

I - ¢

Slot A Slot B
b

successful_boot =0;
priorty = 14;

successful_boot =0

system LEIS't_bCICI't =1 Ll 2 = s

tries_remaining =7;
is_update = 0;

tries_remaining = 7;
is_update = 0;

6.3.4 Upgrade and Exceptions

¢ System Upgrade: Refer to the Rockchip Linux Upgrade Program Development Guide.

¢ Recovery upgrades: The AB system does not consider supporting recovery upgrades.

6.3.5 Validation Methods

6.3.5.1 Successful-boot

1. Write only slot A, the system boots from slot A. Setup to boot from slot B, system boots from slot A. Test
completed, clear the misc partition.

2. Write slot A and slot B, boot the system, the current system is slot A. Set the system to boot from slot B,
reboot the system, the current system is slot B. Test completed, clear the misc partition.

3. Write slot A and slot B and quickly resetting the system 14 times, the retry counter runs out and the system
can still boot from the system specified by last_boot, i.e., it can boot from slot A normally. Test completed,
clear the misc partition

4. Write slot A and slot B, boot the system, current system is slot A. Set the system to boot from slot B,
reboot the system, current system is slot B. Set the system to boot from slot A, reboot the system, current

system is slot A. Test completed, clear the misc partition.

6.3.5.2 Reset-retry

1. Write only slot A, the system boots from slot A. Setup to boot from slot B, system boots from slot A. Test
completed, clear misc partition

2. Write slot A and slot B, boot the system, the current system is slot A. Set the system to boot from slot B,
reboot the system, the current system is slot B. Test completed, clear the misc partition.

3. Writing slot A and slot B and quickly resetting the system 14 times, the retry counter runs out and the
system can still boot from the system specified by last_boot, i.e., it can boot from slot A normally. Test
completed, clear the misc partition

4. Write slot A and slot B, where the boot.img of slot B is corrupted, boot the system, the current system is
slot A. Set the system to boot from slot B, reboot the system, the system will reboot 7 times, then boot the
system from slot A normally. Test completed, clear the misc partition

5. Write slot A and slot B, boot the system, current system is slot A. Set the system to boot from slot B,
reboot the system, current system is slot B. Set the system to boot from slot A, reboot the system, current

system is slot A. Test completed, clear the misc partition.

af://n3421
af://n3427
af://n3428
af://n3438

6.3.6 References

Rockchip-Secure-Boot2.0.md
Rockchip-Secure-Boot-Application-Note.md

Android Verified Boot 2.0

6.4 AVB Secure Boot

6.4.1 References

Rockchip-Secure-Boot-Application-Note.md
Android Verified Boot 2.0

Rockchip Developer Guide Linux4.4 SecureBoot CN.pdf

6.4.2 Terminology

AVB : Android Verified Boot

OTP & efuse : One Time Programmable

Product RootKey (PRK): AVB's root key is verified by the signature loader, uboot & trust's root key.
ProductIntermediate Key (PIK): Intermediate key, intermediary role

ProductSigning Key (PSK): The key used to sign the firmware

ProductUnlock Key (PUK): For unlocking devices

Separation of various keys and clear responsibilities can reduce the risk of key leakage..

6.4.3 Brief Introduction

This chapter describes the Rockchip security verification bootstrap process. The so-called security verification
bootstrap process is divided into security verification and integrity verification. Security verification is the
verification of the cryptographic public key, the process is to read the public key hash from the secure storage
(OTP & efuse), compare it with the calculated public key hash to see if it is the same, and then the public key is
used to decrypt the firmware hash. Integrity verification is to verify the integrity of the firmware, the process is
to load the firmware from the storage, and then calculate the firmware's hash and decrypted hash to see if it is the

same.

6.4.4 Encryption Example

The security verification initiation process of the device is similar to the data encryption verification process in
communication, and the example can accelerate the understanding of the avb verification process. If Alice now
transmits a digital message to Bob, in order to ensure the confidentiality, authenticity, integrity and non-
repudiation of the message transmission, it is necessary to digitally encrypt and sign the transmitted message,

and the transmission process is:

af://n3450
af://n3454
af://n3455
af://n3459
af://n3467
af://n3469

1.Alice prepares the digital information (plaintext) to be transmitted;
2.Alice performs a hash operation on a digital message to obtain a message digest;

3.Alice encrypts the message digest with her own private key to get Alice's digital signature and attaches it to the

digital message;

4.Alice randomly generates an encryption key and uses this cipher to encrypt the message to be sent to form a

ciphertext;

5.Alice uses Bob's public key to encrypt the randomly generated encryption key, and transmits the encrypted
DES key along with the ciphertext to Bob;

6.Bob receives the ciphertext and encrypted DES key from Alice, and first decrypts the encrypted DES key with
his own private key to get the encryption key randomly generated by Alice;

7.Bob then decrypts the received ciphertext with a random key to get the digital information in plaintext, and

then discards the random keys;
8.Bob decrypts Alice's digital signature with Alice's public key to get the message digest;
9.Bob uses the same hashing algorithm to hash the received plaintext again to get a new message digest

10.Bob compares the summary of the received message with the summary of the newly generated message, and

if it agrees, the received message has not been modified.

The DES algorithm mentioned above can be replaced with other algorithms, such as AES encryption algorithm,

and the public-private key algorithm can be replaced with RSA algorithm, the process is as follows:

Bob
FEHE 4R |

Alice:

Bob:

6.4.5 AVB

AVB is short for Android Verified Boot, a set of firmware verification process designed by Google, mainly used
to verify the boot system and other firmware. rockchip Secure Boot achieve a complete set of Secure Boot

verification program with reference to AVB and the verification method used in communication.

6.4.5.1 AVB Characteristics

e safety check

¢ integrity check

¢ anti-rollback protection

e persistent partition support

 chained partitions support, can be consistent with boot, system signing private key, or oem can save private
key by itself, but must be signed by PRK.

6.4.5.2 Key-+signature+certificate

af://n3483
af://n3485
af://n3497

#!/bin/sh

touch temp.bin

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey prk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey psk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey pik.pem

python avbtool make atx certificate --output=pik certificate.bin --
subject=temp.bin --subject key=testkey pik.pem --

subject is intermediate authority --subject key version 42 --

authority key=testkey prk.pem

python avbtool make atx certificate --output=psk certificate.bin --
subject=product id.bin --subject key=testkey psk.pem --subject key version 42 --
authority key=testkey pik.pem

python avbtool make atx metadata --output=metadata.bin --

intermediate key certificate=pik certificate.bin --

product key certificate=psk certificate.bin

permanent_attributes.bin gernerate:

python avbtool make atx permanent attributes --output=permanent attributes.bin -

-product id=product id.bin --root authority key=testkey prk.pem
Among them, product_id.bin needs to be defined by yourself, which occupies 16 bytes and can be used as the
product ID definition.
boot.img signature example:

avbtool add hash footer --image boot.img --partition size 33554432 --
partition name boot --key testkey psk.pem --algorithm SHA256 RSA4096

Note: The partition size should be at least 64K larger than the original firmware, the size should be 4K
aligned, and not larger than the partition size defined in parameter.txt.
sytem.img signature example:

avbtool add hashtree footer --partition size 536870912 --partition name system -

-image system.img --algorithm SHA256 RSA4096 --key testkey psk.pem

Generate vbmeta which includes metadata.bin, command example is as follows:

python avbtool make vbmeta image --public key metadata metadata.bin --
include descriptors from image boot.img --include descriptors from image
system.img --generate dm verity cmdline from hashtree system.img --algorithm

SHA256 RSA4096 --key testkey psk.pem --output vbmeta.img

The resulting vbmeta.img is eventually written to the corresponding partition, e.g. the vbmeta partition.

Generate PrivateKey.pem and PublicKey.pem with SecureBootTool.

EA cecureBootTool v1.0 ﬁ

Basic Function hdvanced Function
[Generate Key Pairs] (11024 () 2048 @) 2048 pem [Sign Loader]
[Load Eey] Chip: [Sign File]
: : | Sign DIE File |
i
[Sign Firmware] [Clear Info]
[]

S1gn:Hard SHA:little P55:disable Checlr Sign File

INFD:Start to sign file (uboot. img).
INFD: Sign file succeed, Blapsed (312 S

b

Sign permanent_attributes.bin:

openssl dgst -sha256 -out permanent attributes cer.bin -sign PrivateKey.pem

permanent attributes.bin

permanent_attributes.bin is the secure authentication data for the whole system, it needs to write its hash to efuse
or OTP, or its data is securely authenticated by the previous level (pre-load). Since there is insufficient efuse
made by rockchip platform, the authentication of permanent_attributes.bin is authenticated by the public key of
the preload plus the certificate of permanent_attributes.bin. For platforms with OTP with enough secure data

space, the hash of permanent_attributes.bin will be written directly to the OTP.

efuse and OTP support by platform:Please refer to the Driver Module section.

efuse platform pub_key download:

fastboot stage permanent attributes.bin
fastboot oem fuse at-perm-attr
fastboot stage permanent attributes cer.bin

fastboot oem fuse at-rsa-perm-attr

OTP platform pub_key download:

fastboot stage permanent attributes.bin

fastboot oem fuse at-perm-attr

The entire signature process:

4 Publickey.pem

SecureBootTool

g Private Key.pem

permanent_attri
Product ID avbtool butes_cer.bin

permanent_attri
butes.bin

pik_certificate. bi
n

metadata bin

sk_certificate. bi
n

N -

boot.img boot_s.img vbmeta.img

6.4.5.3 AVB Lock

fastboot oem at-lock-vboot

How to enter fastboot? please see the fastboot command support section.

6.4.5.4 AVB Unlock

Currently Rockchip uses strict security checksums, which need to be added to the corresponding defconfig.

CONFIG_RK_AVB LIBAVB ENABLE ATH UNLOCK=y

Otherwise you can just enter fastboot oem at-unlock-vboot to unlock the device, and boot vbmeta.img
verification, and the device will be booted successfully even boot.img fails.
First, a PUK needs to be generated:

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey puk.pem

af://n3522
af://n3525

unlock credential.bin is the certificate that needs to be downloaded to the device to be unlocked, and its

generation process is as follows:

python avbtool make atx certificate --output=puk certificate.bin --
subject=product id.bin --subject key=testkey puk.pem --
usage=com.google.android.things.vboot.unlock --subject key version 42 --

authority key=testkey pik.pem

Get unlock credential.bin from the device, use the avb-challenge-verify.py script to get unlock credential.bin,

execute the following command to get unlock credential.bin:

python avbtool make atx unlock credential --output=unlock credential.bin --
intermediate key certificate=pik certificate.bin --

unlock key certificate=puk certificate.bin --challenge=unlock challenge.bin --
unlock key=testkey puk.pem

Eventually you can download the certificate to the device and unlock the device with the fastboot command as
follows:

fastboot stage unlock credential.bin

fastboot ocem at-unlock-vboot

Final OTP device unlocking process:

U-Boot
h N

FREL
unlock_credenti
al.bin

icat

iy

S
challenge

signature2

G IERA?

FEHRL T

Final efuse device unlocking process:

Trust OS

permanent_attribut

M efusezkOTP N
permanent_attr
es.binfhash

Generate data with avbtool

sha256

permanent_attribut
es_h:

unlock_credenti

avmmﬂ?

avbtool

avb

raw_unlo

ge

Operation on PC

fastboot oem at-
get-vboot-unlock-
challenge

oot get_staged

aw_unlock_challen

a3
unlock_credential.bi
n

unlock_credenti.
n

fastboot oem at-
unlock-vboot

RESHRLTH

U-Boot Trust OS Generate data with avbtool Operation on PC

MRPM Biﬁsecurity
SEmE
permanent_attribut
es.bin

perman ent._attn but 1 avbtool
es.bin
fastboot cem at-
get-vboot-unlock-
challenge

rsa2048

avbtool

MRPM Bﬁxse:urity
STEmE

permanent_attribut
es_cer.bin

permanent_attribut
es_cer.bin

fastboot get_staged

raw_unlock_challen

unlock_credential.bi

unlock_credential.bi
n

fastboot stage
unlock_creder
n

raw_unlock challen
. <
ge.bin

fastboot cem at-
unlock-vboot

RESHRLTH

e

challenge

signature2

G IERA?

The final operating procedure is as follows:

1. The device enters fastboot mode, and on the computer side, enter

fastboot oem at-get-vboot-unlock-challenge

fastboot get staged raw unlock challenge.bin

Get the data with version, Product Id and 16 bytes random number, take out the random number as

unlock_challenge.bin.

1. Use avbtool to generate unlock credential.bin, refer to make unlock.sh.
2. Input the following from PC

fastboot stage unlock credential.bin

fastboot oem at-unlock-vboot

Note: At this point, the device is always in fastboot mode for the first time, and cannot be powered off, shut
down, or rebooted during this period. Because after step 1, the device stores the generated random number, if
you power off or reboot, the random number will be lost, and the subsequent verification of challenge signature

will fail because of the random number mismatch.

If enable:

CONFIG MISC=y
CONFIG ROCKCHIP EFUSE=y
CONFIG_ROCKCHIP OTP=y

It will use the CPUID as the challenge number, and the CPUID is matched with the machine, so the data will not
be lost because of the shutdown, and the generated unlock credential.bin can be reused. It saves the steps of
generating unlock challenge.bin and making unlock credential.bin repeatedly. The steps to unlock again are

changed to:

fastboot oem at-get-vboot-unlock-challenge
fastboot stage unlock credential.bin

fastboot ocem at-unlock-vboot

1. The device enters the unlocked state and begins to unlock.

make unlock.sh refer to

#!/bin/sh

python avb-challenge-verify.py raw unlock challenge.bin product id.bin

python avbtool make unlock credential --output=unlock credential.bin --
intermediate key certificate=pik certificate.bin --

unlock key certificate=puk certificate.bin --challenge=unlock challenge.bin --

unlock key=testkey puk.pem

avb-challenge-verify.py source code

#/user/bin/env python

"This is a test module for getting unlock challenge.bin"
import sys

import os

from hashlib import sha256

def challenge verify():
if (len(sys.argv) != 3)
print "Usage: rkpublickey.py [challenge file] [product id file]"
return
if ((sys.argv[l] == "-h") or (sys.argv[l] == "--h")):
print "Usage: rkpublickey.py [challenge file] [product id file]"
return
try:
challenge file = open(sys.argv([l], 'rb')
product id file = open(sys.argv([2], 'rb')
challenge_random_file = open('unlock challenge.bin', 'wb')
challenge_data = challenge_ file.read(52)
product id data = product id file.read(16)
product id hash = sha256 (product id data).digest ()
print ("The challege version is %d" sord(challenge data[0]))
if (product id hash != challenge data[4:36])
print ("Product id verify error!")
return
challenge random file.write(challenge data[36:52])

print ("Success!")

finally:
if challenge file:

challenge file.close()
if product id file:

product_id file.close()
if challenge random file:

challenge_random_file.close()

if name == ' main_':

challenge verify ()

4.5.5 Enable U-boot

Enabling avb requires trust support, which needs to be configured by U-Boot in the defconfig file:

CONFIG OPTEE CLIENT=y
CONFIG_OPTEE Vl=y
CONFIG_OPTEE ALWAYS USE_SECURITY PARTITION=y // Security data is stored in the

security partition

CONFIG_OPTEE V1: suitable for platforms with 312x,322x,3288,3228H,3368,3399.
CONFIG_OPTEE_V2: suitable for platforms with 3326,3308.
CONFIG_OPTEE ALWAYS USE SECURITY_ PARTITION: This macro is turned on when rpmb for emmc is

not available; it is not turned on by default.

The enablement of avb needs to be configured in the defconfig file:

CONFIG_AVB LIBAVB=y

CONFIG AVB LIBAVB AB=y

CONFIG AVB LIBAVB ATX=y

CONFIG AVB LIBAVB USER-y

CONFIG RK AVB LIBAVB USER=y

// The above options are mandatory, the following options support AVB and A/B
features, the two features can be used separately.

CONFIG_ANDROID AB=y //This supports A/B

CONFIG ANDROID AVB=y //This supports A/B

// The following macros are for efuse-only platforms

CONFIG_ROCKCHIP PRELOADER PUB KEY=y

// The following macros need to be turned on for strict unlock checksums
CONFIG RK AVB LIBAVB ENABLE ATH UNLOCK=y

// Enable security check

CONFIG AVB VBMETA PUBLIC KEY VALIDATE=y

// If you need the cpuid as a challenge number, enable the following macro
CONFIG MISC=y

CONFIG_ROCKCHIP EFUSE=y

CONFIG ROCKCHIP OTP=y

6.4.5.5 Kernel Configuration

The checksums for system, vendor, oem, etc. are loaded by the kernel's dm-verify module, so you need to enable

this module.
To enable AVB, you need to configure the parameter avb on the kernel dts as follows:
&firmware android {

compatible = "android, firmware";

boot devices = "fe330000.sdhci";

af://n3571

}i

vbmeta {

i

compatible = "android, vbmeta";

parts = "vbmeta,boot,system,vendor,dtbo";

fstab {

compatible = "android, fstab";
vendor {
compatible = "android, vendor";
dev = "/dev/block/by-name/vendor";
type = "ext4d";
mnt flags = "ro,barrier=1,inode readahead blks=8";
fsmgr flags = "wait,avb";
}i

To enable the A/B system, you need to configure the slotselect parameter as follows:

firmware {

android {

compatible = "android, firmware";
fstab {
compatible = "android, fstab";
system {
compatible = "android, system";
dev = "/dev/block/by-name/system";
type = "ext4d";
mnt flags = "ro,barrier=1,inode readahead blks=8";
fsmgr flags = "wait,verify,slotselect";
}i
vendor {
compatible = "android, vendor";
dev = "/dev/block/by-name/vendor";
type = "ext4d";
mnt flags = "ro,barrier=1,inode readahead blks=8";
fsmgr flags = "wait,verify,slotselect";
}i
}i
bi
}i
6.4.5.6 Android SDK

The following describes some of the configuration instructions on the Android SDK.

AVB Enable

Enable BOARD AVB_ENABLE

A/B system

There are three main categories of these variables:

e Variables that must be defined by the 2/B system

o

o

AB OTA UPDATER := true
AB _OTA_PARTITIONS := boot system vendor

af://n3577

© BOARD BUILD SYSTEM ROOT IMAGE := true

© TARGET NO RECOVERY := true

© BOARD USES RECOVERY AS BOOT := true

© PRODUCT PACKAGES += update engine update verifier

e Variables that is optionally defined for A/B system

© PRODUCT PACKAGES DEBUG += update engine client

e Variables that cannot be defined in the A/B system

© BOARD RECOVERYIMAGE PARTITION SIZE

© BOARD CACHEIMAGE PARTITION SIZE

© BOARD CACHEIMAGE FILE SYSTEM TYPE

6.4.5.7 Cmdline New Content

Kernel command line: androidboot.verifiedbootstate=green

androidboot.slot suffix= a dm="1 vroot none ro 1,0 1031864 verity 1
PARTUUID=b2110000-0000-455a-8000-44780000706f PARTUUID=b2110000-0000-455a-8000-
44780000706f 4096 4096 128983 128983 shal
90d1d406caac04b7e3fbf48b9%addcd6992cch28e
4172683f0d6b6085c09f6cel65cf152fe3523¢c89 10 restart on corruption
ignore_zero_blocks use_fec_ from device PARTUUID=b2110000-0000-455a-8000-
44780000706f fec_roots 2 fec blocks 130000 fec start 130000" root=/dev/dm-0

androidboot.
androidboot.
androidboot.

androidboot.

vbmeta
vbmeta
vbmeta

vbmeta

.device=PARTUUID=£24£f0000-0000-4e1b-8000-791700006a98
.avb_version=1.1 androidboot.vbmeta.device state=unlocked
.hash alg=sha5l2 androidboot.vbmeta.size=6528
.digest=41991c02c82eal1191545c645e2ac9cc7cal8b3dalaze3115aff479

d2df6lfeaccdd35b6360cfad936£6£4381e4557ef18e381£4b236000ebecc9adadlledadcae

androidboot.vbmeta.invalidate on error=yes androidboot.veritymode=enforcing

Notes on a few parameters:

1. Why pass the PARTUUID of the vbmeta? To ensure the legitimacy of the subsequent use of the vbmeta

hash-tree, the kernel needs to verify the vbmeta again, with digest as androidboot.vbmeta.digest.

2. skip_initramfs: boot ramdisk is packed to boot.img or not, in A/B system, ramdisk is not packed to

boot.img, cmdline need to pass this parameter.

3. root=/dev/dm-0 enables dm-verify, specifies system.

4. androidboot.vbmeta.device_state: the state of android verify.

5. androidboot.verifiedbootstate: verification results.

green: If in LOCKED state and an the key used for verification was not set by the end user.

yellow: If in LOCKED state and an the key used for verification was set by the end user.

orange: If in the UNLOCKED state.

Special remarks on the dm=*“1 vroot none ro......” parameter is generated:

avbtool make vbmeta image --include_descriptors_from image boot.img --

include descriptors from image system.img --

generate dm verity cmdline from hashtree system.img --

include descriptors from image vendor.img --algorithm SHA512 RSA4096 --key

testkey psk.pem --public key metadata metadata.bin --output vbmeta.img

af://n3613

When avbtool generates vbmeta, add --generate_dm_verity cmdline_from_hashtree to the system firmware.
dm="“1 vroot none ro......” will be saved to vbmeta. This part is Android-specific, if the partition only checksums

to boot.img, you don't need to add this parameter.

Enabling BOARD AVB_ENABLE in the Android SDK will add this information to the vbmeta.

6.4.6 Partition Reference

Newly added vbmeta partition and security partition, vbmeta partition stores firmware verification information,

security partition stores encrypted security data.

FIRMWARE VER:8.0

MACHINE MODEL:RK3326

MACHINE ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT
CMDLINE:mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot), 0x00002000@0x00006000 (t
rust), 0x00002000@0x00008000 (misc), 0x00008000@0x0000a000 (resource), 0x00010000@0x0
0012000 (kernel), 0x00002000@0x00022000 (dtb),0x00002000@0x00024000 (dtbo) ,0x0000080
0@0x00026000 (vbmeta) , 0x00010000@0x00026800 (boot), 0x00020000@0x00036800 (recovery)
,0x00038000@0x00056800 (backup),0x00002000@0x0008e800 (security), 0x000c0000@0x0009
0800 (cache),0x00514000@0x00150800 (system) ,0x00008000@0x00664800 (metadata), 0x000c
0000@0x0066c800 (vendor) ,0x00040000@0x0072c800 (oem) , 0x00000400@0x0076c800 (frp) , -
@0x0076cc00 (userdata:grow)

uuid:system=af01642c-9b84-11e8-9b2a-234eb5e198a0

A/B System Partition Definition Reference:

FIRMWARE VER:8.1

MACHINE MODEL:RK3326

MACHINE ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK _MASK: 0x80

PWR HLD: 0,0,A,0,1

TYPE: GPT

CMDLINE:
mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot a),0x00002000@0x00006000 (uboot b
), 0x00002000@0x00008000 (trust _a),0x00002000€0x0000a000 (trust b),0x00001000@0x000
0c000 (misc), 0x00001000@0x0000d000 (vbmeta a),0x00001000@0x0000e000 (vbmeta b), 0x00
020000@0x0000e000 (boot _a),0x00020000@0x0002e000 (boot b),0x00100000@0x0004e000 (sy
stem a),0x00300000@0x0032e000 (system b),0x00100000@0x0062e000 (vendor_a),0x001000
00@0x0072e000 (vendor b),0x00002000@0x0082e000 (oem_a), 0x00002000@0x00830000 (oem b
) ,0x0010000@0x00832000 (factory),0x00008000@0x842000 (factory bootloader),0x000800
00@0x008cal00 (oem) ,-@0x0094a000 (userdata)

6.4.7 Fastboot Command

af://n3634
af://n3639

Under U-Boot, you can enter fastboot by entering the command:

fastboot

usb 0

6.4.7.1 Quick Overview of Commands

fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot
fastboot

flash < partition
erase < partition
getvar < variable | all
set active < slot
reboot
reboot-bootloader
flashing unlock
flashing lock
stage [< filename >]

get _staged [< filename >]
oem fuse at-perm-attr-data
oem fuse at-perm-attr

oem fuse at-rsa-perm-attr
oem at-get-ca-request

oem at-set-ca-response

oem at-lock-vboot

oem at-unlock-vboot

oem at-disable-unlock-vboot

oem fuse at-bootloader-vboot-key

oem format

[< filename >]

oem at-get-vboot-unlock-challenge

oem at-reset-rollback-index

6.4.7.2 Command Usage

1. fastboot flash < partition > [< filename >]

Function: Write Partition .

Example: fastboot flash boot boot.img

1. fastboot erase < partition >

Function: Erase the partition.

Example: fastboot erase boot

1. fastboot getvar < variable > | all

Function: Get device information

Example: fastboot getvar all (get all information about the device)

Parameters that can be brought with variable:

version

version-bootloader

version-baseband

product

serialno

/*
/*

/*
/*

fastboot version */

U-Boot version */

Product Information */

Serial number*/

af://n3642
af://n3644

secure

max-download-

size

/*
/*

fastboot in a single transfer */

logical-block-size

erase-block-s

partition-type

partition-siz

unlocked

ize

€

off-mode-charge

battery-voltage

variant
battery-soc-o
slot-count
has-slot:
slot*/
current-slot
slot-suffixes

*/

its name.

slot-successful:

verified and

slot-unbootable:

unbootable */
slot-retry-co
partition */
at-attest-dh
at-attest-uui
at-vboot-stat

k

< partition >

fastboot getvar all example:

PS E:\U-Boot-
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)
bootloader)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(bootloader)

< a | b>
booted*/

< a | b>
unt: < a | b
d
e
AVB\adb>

version:0.4

< partition >

< partition >

/*
/*
/*
/*
/*

/*
/*

/*
/*

/*

/*

> /*

Whether to enable security checking */
maximum number of bytes supported by

Number of logical blocks */
Number of erased blocks*/
Partition type */
Partition size*/

Device lock status */

Number of slots*/

Check if the partition name is in the

Currently booted slots */

The current slot of the device, print
Check if the partition is properly

Check if the partition is set to

Checkthe number of retry-counts for

.\fastboot.exe getvar all

version-bootloader:U-Boot 2017.09-gc277677

version-baseband:N/A

product:rk3229

serialno:702239270042£8b8

secure:yes

max-download-size:0x04000000

logical-block-size:0x512

erase-block-size:0x80000

partition-type:
partition-type
partition-type:
partition-type:
partition-type
partition-type:
partition-type:
partition-type:
partition-type
partition-type
partition-type
partition-type
partition-type
partition-type:
partition-type:

bootloader a:

:bootloader b:

tos_a:U-Boot
tos b:U-Boot

:boot a:U-Boot

boot b:U-Boot
system a:ext4

system b:ext4

:vbmeta a:U-Bo
:vbmeta b:U-Bo
:misc:U-Boot

:vendor a:ext4

:vendor b:ext4

oem bootloade

oem bootloade

U-Boot
U-Boot

ot

ot

r_a:U-Boot
r b:U-Boot

bootloader)

(

(bootloader) partition-type:factory bootloader:U-Boot
(bootloader) partition-type:oem a:extd
(bootloader) partition-type:oem b:extd
(bootloader) partition-type:userdata:ext4d
(bootloader) partition-size:bootloader a:0x400000
(bootloader) partition-size:bootloader b:0x400000
(bootloader) partition-size:tos a:0x400000
(bootloader) partition-size:tos b:0x400000
(bootloader) partition-size:boot a:0x2000000
(bootloader) partition-size:boot b:0x2000000
(bootloader) partition-size:system a:0x20000000
(bootloader) partition-size:system b:0x20000000
(bootloader) partition-size:vbmeta a:0x10000
(bootloader) partition-size:vbmeta b:0x10000
(bootloader) partition-size:misc:0x100000
(bootloader) partition-size:vendor a:0x4000000
(bootloader) partition-size:vendor b:0x4000000
(bootloader) partition-size:oem bootloader a:0x400000
(bootloader) partition-size:oem bootloader b:0x400000
(bootloader) partition-size:factory:0x2000000
(bootloader) partition-size:factory bootloader:0x1000000
(bootloader) partition-size:oem a:0x10000000
(bootloader) partition-size:oem b:0x10000000
(bootloader) partition-size:userdata:0x7ad80000
(bootloader) unlocked:no

(bootloader) off-mode-charge:0

(bootloader) battery-voltage:0Omv

(bootloader) variant:rk3229 evb

(bootloader) battery-soc-ok:no

(bootloader) slot-count:2

(bootloader) has-slot:bootloader:yes

(bootloader) has-slot:tos:yes

(bootloader) has-slot:boot:yes

(bootloader) has-slot:system:yes

(bootloader) has-slot:vbmeta:yes

(bootloader) has-slot:misc:no

(bootloader) has-slot:vendor:yes

(bootloader) has-slot:oem bootloader:yes
(bootloader) has-slot:factory:no

(bootloader) has-slot:factory bootloader:no
(bootloader) has-slot:oem:yes

(bootloader) has-slot:userdata:no

(bootloader) current-slot:a

(bootloader) slot-suffixes:a,b

(bootloader) slot-successful:a:yes

(bootloader) slot-successful:b:no

(bootloader) slot-unbootable:a:no

(bootloader) slot-unbootable:b:yes

(bootloader) slot-retry-count:a:0

(bootloader) slot-retry-count:b:0

(bootloader) at-attest-dh:1:P256

(bootloader) at-attest-uuid:

all: Done!

finished.

total time:

partition-type:

0.636s

factory:U-Boot

1. fastboot set_active < slot >
Function: Set the slot for reboot.
Example: fastboot set_active a

1. fastboot reboot
Function: Reboot the device for normal startup
Example: fastboot reboot

1. fastboot reboot-bootloader
Function: Reboot the device to enter fastboot mode.
Example: fastboot reboot-bootloader

1. fastboot flashing unlock
Function: Unlock the device and allow firmware downloading
Example: fastboot flashing unlock

1. fastboot flashing lock
Function: Lock the device, prohibit dowloading
Example: fastboot flashing lock

1. fastboot stage [< filename > |

Function: Download data to device-side memory, the memory start address is
CONFIG_FASTBOOT BUF_ ADDR.

Example: fastboot stage permanent_attributes.bin
1. fastboot get staged [< filename > |
Function: Getting data from the device side
Example: fastboot get staged raw_unlock challenge.bin
1. fastboot oem fuse at-perm-attr
Function: write permanent_attributes.bin and hash
Example: fastboot stage permanent_attributes.bin
fastboot oem fuse at-perm-attr
1. fastboot oem fuse at-perm-attr-data
Function: Burn only permanent_attributes.bin to the secure storage area (RPMB)
Example: fastboot stage permanent_attributes.bin
fastboot oem fuse at-perm-attr-data

1. fastboot oem at-get-ca-request
2. fastboot oem at-set-ca-response

3. fastboot oem at-lock-vboot
Function: Lock device

Example: fastboot oem at-lock-vboot

1. fastboot oem at-unlock-vboot
Function: Unlock the device, now support authenticated unlock

Example: fastboot oem at-get-vboot-unlock-challenge

fastboot get staged raw_unlock challenge.bin

/make unlock.sh (refer to make unlock.sh)
fastboot stage unlock credential.bin

fastboot oem at-unlock-vboot
1. fastboot oem fuse at-bootloader-vboot-key
Function: download bootloader key hash
Example: fastboot stage bootloader-pub-key.bin
fastboot oem fuse at-bootloader-vboot-key
1. fastboot oem format
Function: reformat partitions, partition information depends on $partitions
Example: fastboot oem format
1. fastboot oem at-get-vboot-unlock-challenge
Function: authenticated unlock, need to get unlock challenge data
Example: please refer to 16. fastboot oem at-unlock-vboot
1. fastboot oem at-reset-rollback-index
Function: Reset the rollback data of the device
Example: fastboot oem at-reset-rollback-index
1. fastboot oem at-disable-unlock-vboot
Function: Disables the fastboot oem at-unlock-vboot command.

Example: fastboot oem at-disable-unlock-vboot

6.4.8 Firmware Downloading

The following is the windows firmware downloading tool

af://n3752

| BSEFFETE v258 T Ree

THER | FEEE | S5 |

it EF HiE -
(0x00000000 Leader E:\RK\PK3OSRKI3Z6\Image‘ImageMimil...

2 F Cz00000000 Parameter E: WREAPEI0&REA326 Inage Image \param. . .

3 F 000004000 Thoot T:'eodeu-boot-baclupiuboot. img

4 F 000008000 trust T:'codeu-boot-bacluphtrust. img

=] |_ Oz 0000000 Mize E: \EENPHI0&RE3326 Inage Inage mise. img

& |[| 0x000O0ESDO Eoot E: WRENPEI0&REIIZE ImazehImaze \boot. img

T | | 0x0001ES00 Recowary E: WRENPEI0&RES3Z6 Image Image \recow. . .

& |[| 0x000ESS00 Swstem E: WREAPEI0&RES326 Imagze Image i syste. . .

g I_ Ox003C0200 vendor E: WREAPEI0&REI326 Inage Image iwendo. . .

10 I_ 000430800 oem E:\EENPHI0SREIZE6\ Image ' Image i oem. img

11 I_ 0x=0000C000 dtho E:\RENPHI0SRE3IZZ26 Image ' Image i dtbo. img

1z |_ Ox0000EQQD vbmeta E: “RENPXI0&FE3IZZ6 Y Image ' Inage ivbmeat. | .

I
Loader Ver:it07 | #06T | | R | | #EsEz || &=

THRH W&

A/B System downloading

| BEEFETE V258 N R

THIER | FmEY | e

0z00000000 Parameter
000004000 | bootloader_a
O0=00008000 | bootloader b
Oz=00002000 tos_a
000004000 tos_b Sheodetu-boothitrust. img

Qz0000D0a00 boot_a DArlk33ER-andr oi dhrockdevi Image—rl3. | .

CABENPRI0SREIIZ6 v r k3326 ab k3326 |

“heoodein-boothuboot. img

“heoodein-boothuboot. img

“heodein-boothtrust. img

Qx0004EQ00 system_a rk33E6-androidhrockdevh Image—rk3. . .
0x0032EQ00 system_b rk3326-andr ol dhvrockdevi Image—rk3. ..
Qx00&82EQ0D wvendor_a rkE3E6-androidvrockdevi Image-rlk3. | .
0=00T2E000 wendor_b Cirld33EE-andr oi dhrockdevi Image—rid3.

—_ =
=0

—_
2

E
Z
Z
A
A
z
Qx0002D000 boot_hb T wk3326-andr ol dhroclkdevh Imaze—rld. | .
Z
Z
Z
A
Z:

—_
L]

U U Y

Dz008CA000 | oem " hrk3EE-androi dirockdeviImage—rk3326_evbhioem.

Loader Ver:1.05 | W1 | | i | | #EsmEx || &=

BTHE XA xS

6.4.9 Pre-loader Verified

af://n3757

Please refer to {Rockchip-Secure-Boot-Application-Note.md)

HASH in OTP

MASKROM

.

Get Public Key

HASH(SHA256) of public
key

Get raw binary of first
loader

HASH(SHAZ256) of raw
binary

MATCH? 4

Boot failed

Get digital Signature

.

RSA2048 encryption |4

(Loading first Icader> Y

6.4.10 U-boot Verified

OTP Device Verification Process:

»| Boot failed |

af://n3760

perm_attr
hash

FRHL

vbmeta.img

Rhivbmetask T2 &
fa

perm-attra= & 1IEff?

10 pik_cer & psk_cer

SVbmeta.imgfEfigHe
psk_pubXtEL

Vbmeta.img#iZi&

Trust Zone

permanent_attribute
s.bin

M#boot.imgH
it E Hhash

= iR S Ahashat £

Efuse Device Verification Process:

Public key

FRER

vbmetaimg

<hrvbmetaZL A 2 &
iR

perm-attr 2 & IEFE 7

FEER
prk_pub

m_. Feipik_cer & psk_cer

Vbmeta. imgTEiE
psk_pubZtEE

Vbmeta. imghEis

Trust Zone

permanent_attribu

tes cer.bin

permanent_attribute

=.bin

6.4.11 System Verification Boot

B -
System

— =
Kernel

cmdline: androidboot. verifiedbootstate=green

uboot o
androidboot slot_suffiv=_a " root=/dev/dm-0 ====-

he system boots to the kernel, which first parses the cmdline parameters passed by U-Boot to verify whether the
system boots with dm-verify, then loads and enables the system fs_mgr service. fs mgr verifies that the
firmware is loaded based on the fsmgr flags parameter. The firmware hash & hash tree is stored in vbmeta.img

with the following parameters
avb: loads and verifies partition in avb mode

slotselect: The slotselect is for A/B, and will be loaded with the parameter “androidboot.slot_suffix=_a” in the

cmdline.

6.4.12 Linux AVB

The following describes the AVB operation and verification process based on linux environment.

6.4.12.1 Operating Workflow

1. Generate complete firmware

af://n3765
af://n3770
af://n3772

2. Generate PrivateKey.pem and PublicKey.pem using SecureBootConsole with rk_sign tool with the

following commands

rk sign tool cc --chip 3399
rk sign tool kk --out

3. load key

rk sign tool lk --key privateKey.pem --pubkey publicKey.pem

4. Signature loader

rk sign tool sl --loader loader.bin

5. Signature uboot.img & trust.img

rk sign tool si --img uboot.img

rk sign tool si --img trust.img

6. avb signature firmware preparations: Prepare empty temp.bin, 16-byte product_id.bin, boot.img to be

signed, and run the following code

#!/bin/bash

touch temp.bin

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey prk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey psk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
testkey pik.pem

python avbtool make atx certificate --output=pik certificate.bin --
subject=temp.bin --subject key=testkey pik.pem --

subject is intermediate authority --subject key version 42 --

authority key=testkey prk.pem

python avbtool make atx certificate --output=psk certificate.bin --
subject=product id.bin --subject key=testkey psk.pem --subject key version 42 --
authority key=testkey pik.pem

python avbtool make atx metadata --output=metadata.bin --

intermediate key certificate=pik certificate.bin --

product key certificate=psk certificate.bin

python avbtool make atx permanent attributes --output=permanent attributes.bin -
-product id=product id.bin --root authority key=testkey prk.pem

python avbtool add hash footer --image boot.img --partition size 33554432 --
partition name boot --key testkey psk.pem --algorithm SHA256 RSA4096

python avbtool make vbmeta image --public key metadata metadata.bin --

include descriptors from image boot.img --algorithm SHA256 RSA4096 --key
testkey psk.pem --output vbmeta.img

openssl dgst -sha256 -out permanent attributes cer.bin -sign PrivateKey.pem

permanent attributes.bin

generate vbmeta.img, permanent_attributes _cer.bin, permanent_attributes.bin.
This step signs boot.img......

7. Firmware downloading

rkdeveloptool
rkdeveloptool
rkdeveloptool
rkdeveloptool
rkdeveloptool
rkdeveloptool
rkdeveloptool

db loader.bin

ul loader.bin

gpt

wlx
wlx
wlx

wlx

parameter.txt
uboot uboot.img
trust trust.img
boot boot.img

system system.img

For rkdeveloptool, please refer tohttps://github.com/rockchip-linux/rkdeveloptool>

1. Download permanent_attributes_cer.bin, permanent_attributes.bin

OTP platform available:

fastboot stage permanent attributes.bin

fastboot oem fuse at-perm-attr

efuse platform available:

fastboot stage permanent attributes.bin

fastboot oem fuse at-perm-attr

fastboot stage permanent attributes cer.bin

fastboot oem fuse at-rsa-perm-attr

1. efuse downloading (efuse tool is only available in windows version at the moment), select a specific

loader, select the corresponding device, and click start download.

W EfuseTH v1.38

U=REERL X |

@ me @ £ “,Q‘@gﬁ& e

[Elf4:

R

[e e
LoaderfR#:1. 15
EE B REII0C

BEIE wEEE D FHEEE

o @ BoeE

5% RootHub20

& Portfl]
ey Port[2]
e Port[3]
-+ Port[d]
-+ Port[5]
-+ Port[6]
ey Port{7]
e Port[8]
%2 RootHub20
-9 por1] Hub 4
-+ Port[l]

& Port[2]

e Port[3]

-+ Port[d]

-+ Port[5]

-+ Port[6]
& Port(2]

L B, fRIRUSBIR O P X 48iaE, TERminEBIDRYIED. R fBUsERO.
2 hEAREHE, EER AR EHBERELT—B.

3. HREER, BITE, #ARE, LTS, TERiGRE.

4. HREHE, BNUSEEEET, AU AEEST.

5 fARNRESTRNRETET, FEANR ST ENERDET.

m

Bh:

B8

00000

00000

00000

1. OTP platform loader public key download

Please refer to Rockchip-Secure-Boot-Application-Note.md

https://github.com/rockchip-linux/rkdeveloptool

6.4.12.2 Verification Process

[TODO]

6.5 SD Boot and Upgrade

6.5.1 Brief Introduction

Rockchip now categorizes SD cards into regular SD cards, SD upgrade cards, SD boot cards, and SD repair
cards. You can download the update.img to the SD card through the Rockchip by creating upgrade-disk tool to

create different card types

SD Card .
Function
Category
Regular SD .
Common storage devices
card

SD Upgrade The device boots from the SD card to recovery, which is responsible for updating the

Card firmware in the sd to the device memory.
SD Boot . .
Device boots directly from SD card
Card
SD Repair . . .
il Copy the firmware from the SD card to the device memory, starting with the pre-loader.
ar

6.5.2 SD Card Category

6.5.2.1 Regular SD Card

A regular SD card is used exactly the same as a PC, and can be used as normal storage space in U-Boot and

Kernel systems without any tools to do anything with the SD card.

6.5.2.2 SD Upgrade Card

SD upgrade card is made by RK's tool to realize firmware upgrade from SD card to local storage (e.g. eMMC,
nand flash). SD card upgrade is a firmware upgrade method which can be detached from PC or network.
Specifically, the SD card boot code is written to the reserved area of the SD card, and then the firmware is
copied to the visible partition of the SD card, when the master control boots from the SD card, the SD card boot
code and upgrade code will download the firmware to the local master storage. At the same time, the SD
upgrade card supports PCBA testing and copying of demo files. These functions of the SD upgrade card can
make the firmware upgrade independent of the PC and improve the production efficiency.

If you only need to update the firmware and demo files on the SD card, you can follow the steps below to

complete the process:

1. Copy the firmware to the root directory of the SD card and rename it sdupdate.img
2. Copy the demo file to the demo directory in the root directory of the SD card.

af://n3815
af://n3817
af://n3818
af://n3836
af://n3837
af://n3839

SD bootable upgrade card format (not GPT)

Offset
disk sector 0
disk sector 64-4M
4M-8M
12M-16M

16M-20M

Room left

SD bootable upgrade card format (GPT)

Offset
disk sector 0
disk sector 1-34
disk sector 64-4M

4M-8M

Room left

6.5.2.3 SD Boot Card

Data segment
MBR
IDBLOCK(Start flag set to 0)
Parameter
uboot
trust
misc
resource
kernel
recovery

Fat32 stores update.img

Data segment
MBR
GPT partition
IDBLOCK(Start flag set to 0)
Parameter
uboot
trust
misc
resource
kernel
recovery

Fat32 stores update.img

The SD boot card is made by RK's tool to realize booting directly from the SD card, which greatly facilitates the
user to update and boot new firmware without having to re- download the firmware into the device storage. The

specific realization is to downlaod the firmware into the SD card and use the SD card as the main storage. When
the master control starts from the SD card, the firmware and temporary files are stored on the SD card, and it can

work normally with or without the local master storage. Currently, it is mainly used for device system booting

af://n3919

from SD card, or for PCBA testing. Note: PCBA test is only a function under recovery, it can be used for SD

upgrad card and SD boot card.

SD boot card format (not GPT)

Offset
disk sector 0
disk sector 64-4M
4M-8M
8M-12M

12M-16M

SD Boot Card Format (GPT)

Data segment
MBR
IDBLOCK(Start flag set to 0)
Parameter
uboot
trust
misc
resource
boot
kernel
recovery
system

user

Offset Data segment
disk sector 0 MBR
disk sector 1-34 GPT partition
disk sector 64-4M IDBLOCK(Start flag set to 1)
...... uboot
...... Boot
...... trust
...... resource
...... kernel
...... recovery
...... system
...... vendor
...... oem
...... user

the last 33 disk sector Backup GPT

6.5.2.4 SD Repair Card

The SD Repair Card is similar to the function of SD upgrade card, but the firmware upgrade is done by the
miniloader. First the tool writes the boot code to the reserved area of the SD card, then it copies the firmware to
the visible partitions of the SD card, and when the master is booted from the SD card, the SD card upgrade code
upgrades the firmware to the local master storage. It is mainly used when the firmware of the device is damaged
and the SD card can repair the device.

SD repair card format (not GPT)

af://n4009

Offset
disk sector 0
disk sector 64-4M
4M-8M
8M-12M

12M-16M

SD Repaid Card Format(GPT)

Offset
disk sector 0
disk sector 1-34

disk sector 64-4M

Last 33 sectors

6.5.3 Firmware Logo

Data segment
MBR
IDBLOCK(Start flag set to 2)
Parameter
uboot
trust
misc
resource
boot
kernel
recovery
system

user

Data segment
MBR
GPT Partition
IDBLOCK(Start flag set to 2)
uboot
Boot
trust
resource
kernel
recovery
system
vendor
oem
user

Backup GPT

af://n4098

SD cards are used as a variety of different functions and will make some markings inside the sd card.

At sector 64 of the SD card, if the start flag (magic number) is 0OXFCDC8C3B, then it is a special card that will
read the firmware from the SD card and boot the device. If not, it will be treated as a normal SD card. At sector

(64 + 616bytes), the various card logos are stored. There are currently three types:

Card logo Card Category
0 SD upgrade card or PCBA test card
1 SD Boot Card
2 SD Repair Card
6.5.4 Boot Process

The boot process of SD card can be divided into pre-loader boot process and uboot boot process. Both processes
need to load and detect the SD card and the Startup Flag in the IDB Block of the SD card, and will perform
different functions according to these flags. The process is as follows:

g e TR SO TR
I'..' I BT .:|I|'
i ! " mias ko
pre—loader
Sean 5D to Tind 11 M i di S0 IDR Rlock
car S0 1 I.| < nre—loader < .I IDE E . [
the vpdate Tlag Startup Flag

.

. . Sean S0 to fimd s T e
Find boot CHD . i e ¥

r . the update flag banl

POl milse -4 % L= +

: :_I . and update =

KA on

crdl ine
Judge cedline

Update 50 including

s B . | o+ FeCOveTy kerne

[1rmeare “Storagemediacs -

I

6.5.4.1 Pre-loader Boot

af://n4114
af://n4117

Mas o

.

pre=loador

v

Er Al i A

(S e

CEARE (B4 B[4 2 T
Glebyies) bobEd Blfbyres) bREs BlEbyLles) i
Q | 2
F-45 = aly PCBA] 5 . . A S
{8 =l PO, o e R

v v v

MEDFTE B R, MR ER
H a1 Koo

Loader T 50§ [

maskrom first finds a copy of the available miniloader firmware (you can determine the boot storage media
supported by Maskrom from the TRM and prioritize them, maskrom scans the available storage for firmware),
then jumps to the miniloader. miniloader re-finds the storage device, and if it detects an SD card, it detects if the
SD card contains IDB format firmware. If SD card is detected, check if SD card contains IDB format firmware.
If yes, then determine the card flag. If the SD card is available and the flag bit is '0' or '1', then read the U-Boot
firmware from the SD card and load and boot the U-Boot, if the flag is '2', then enter the process of repairing the
card and update the firmware under the loader. The normal boot process is to scan for other storage and load and

boot the next level loader.

6.5.4.2 U-Boot Boot

af://n4120

‘ Start }

Uboot

h 4

Find a storage device

no

SD card or not?

64 sector

start flag no

is/isn't
0xFCDC8C3B,

64 sector +
616bytes flag
is 0?

Set current device
as SD card

\ 4

cmdline add
sdfwupdate flag

h 4

MISC partition
flag enters
recovery

\ 4

load recovery,

PR R P

h 4

re-detect
all storage
device

only SD card?

cmdline add
storagemedia=sd
and read hardware from sd card

no storage device
detected

A

enable kernel

I erier recovelry riovue I

End

SD upgrade card: U-Boot re-search the storage device, if SD card is detected, check if SD card contains IDB
format firmware. If yes, then determine if the card bias flag is 0, and add 'sdfwupdate' to the cmdline passed to
the kernel. Finally, read the misc partition of the SD card, read the boot mode of the card, if it is recovery mode,
load and start recovery.

SD boot card: U-Boot re-search the storage device, if it detects SD card, it will check whether SD card contains
IDB format firmware, if yes, then determine whether the card flag is 1. Finally, read the misc partition of the SD
card and read the boot mode of the card, if it is recovery, load the boot recovery, if it is normal mode, load the

boot kernel.

6.5.4.3 Recovery and PCBA

For details, please refer to Rockchip Recovery User Operation Guide V1.03.pdf

6.5.5 Notes

¢ U-Boot needs to configure CONFIG_ RKPARM_PARTITION when making non-GPT format firmware.
e When making SD upgrade card, update.img must contain MiniloaderAll.bin, parameter.txt, uboot.img,

trust.img, misc.img, resource.img, recovery.img, or else the update.img will fail to write MBR.

af://n4123
af://n4125

7. Chapter-7 Configuration Trimming

TODO

af://n4132

8. Chapter-8 Debugging Tools

This section focuses on some of the common debugging tools used in the U-Boot stage, including the use of

commands, scripts, configuration options, boot printing, and so on.

8.1 DEBUG

Function: Enables global debug () printing.

This can be enabled by adding a macro definition to rkxxx_common.h for each platform:

#define DEBUG

8.2 Initcall

Function: Prints the boot process.

U-Boot's boot is essentially a series of initcall calls, changing debug () to printf () within the

initcall run list () function. Example:

U-Boot 2017.09-01725-g03b8d3b-dirty (Jul 06 2018 - 10:08:27 +0800)

initcall: 0000000000214388

initcall: 0000000000214724

Model: Rockchip RK3399 Evaluation Board

initcall: 0000000000214300

DRAM: initcall: 0000000000203£f68

initcall: 0000000000214410 // Combine with disassembly to find the function
corresponding to the address

initcall: 00000000002140dc

3.8 GiB
initcall: 00000000002143b8

Relocation Offset is: £5c03000
initcall: 00000000f5el76bc

initcall: 00000000002146a4 (relocated to 00000000f5el76a4)
initcall: 0000000000214668 (relocated to 00000000£5e17668)

8.3 10 Command

Function: Reads and writes memory.

af://n4136
af://n4138
af://n4142
af://n4146

// read
md - memory display

Usage: md [.b, .w, .1, .g] address [# of objects]

// write
mw - memory write (£fill)

Usage: mw [.b, .w, .1, .q] address value [count]

Read operation. Example: Displays 0x10 consecutive data starting at address 0x76000000.

=> md.l 0x76000000 0x10

76000000: fffffffe fEff£ff£ff £EE££££Ff £EEELEEF .o i,
760000108 EEEEITIECHE ITIEIEITIBEIIE BE@IEIDIEInIDIE ISINInIBInIEIEE ©000000000000000
76000020: ffffffff fEffFfFfFfff £EEEEFFF FEEEFFFE Lo it
76000030: ffffffff fffFfFffff £ELEFFFF FEFFFFFE Lo it

Write operation. Example: Assign 0x1234 to address 0x76000000;

=> mw.l 0x76000000 Oxffffl1234 // Higher 16 bits have mask

=> md.1l 0x76000000 0x10 // readback

76000000: f££f£f1234 ffffffff fEfEEFFFF FEFFFFFE L. it
76000010: ffffffdf ffffffff feffffff fEEL££££Ef
76000020: ffffffff fEfffffff fEEEFFFF F£EEEEEEE Lo it
76000030: ffffffff fEEfffff fEEEFFFF £EELEEEE Lo it

8.4 IOMEM Command

Function: Read memory. More flexible than the md command, obtains base address information by

automatically parsing DTS nodes.

=> iomem

iomem - Show iomem data by device compatible

Usage:
// @<compatible>: Keyword matching for the compatible part of the node
iomem <compatible> <start offset> <end offset>

eg: iomem -grf 0x0 0x200

Example: RK3228 reads the data from 0x00 to 0x20 in GRF:

// The keyword “-grf” is used here to distinguish it from “rockchip, rk3288-
pmugrf”.

=> iomem -grf 0x0 0x20

rockchip, rk3228-grf:

11000000: 00000000 00000000 00004000 00002000

11000010: 00000000 00005028 0000ab5a5 0000aaaa

11000020: 00009955

8.5 12C Command

af://n4153
af://n4158

Function: read/write i2¢ device .

=> 1i2c

i2c - I2C sub-system

Usage:

i2c dev [dev] - show or set current I2C bus

i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device

i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)

Read operation. Example:

=> i2c dev 0 // Switch to i12c0 (just specify once)
Setting bus to 0

=> i12c md Oxlb 0x2e 0x20 // The i2c device address is 1lb (7-bit
address) and reads 0x20 consecutive register values starting at 0x2e

002e: 11 0f 00 00 11 Of 00 00 01 00 00 00 09 00 00 0C +.ieiuriennnnennn
003e: 00 O0a O0a Oc Oc Oc 00 07 07 O0a 00 Oc Oc 00 00 00 ...ievniininvnnnnn

Write operation. Example:

=> 12c dev 0 // Switch to 12c0 (just specify once)
Setting bus to 0

=> 12c mw Ox1lb Ox2e 0x10 // The i2c device address is 1lb (7-bit
address), and the 0Ox2e register is assigned the value 0x10
=> i2c md Oxlb 0x2e 0x20 // readback

002e: 10 0f 00 00 11 Of 00 00 01 00 00 00 09 00 00 Oc +.iiiriennnnnnnn
003e: 00 Oa 0O0a Oc Oc Oc 00 07 07 Oa 00 Oc Oc 00 00 00 ...iinivininenenn.

8.6 GPIO Command

Function: read/write pin input/output

=> gpio

gpio - query and control gpio pins

Usage:
gpio <input|set|clear|toggle> <pin>
- input/set/clear/toggle the specified pin
gpio status [-a] [<bank> | <pin>] - show [all/claimed] GPIOs

Check pin status: e.g. RV1126

=> gpio status -a
Bank A:

AO: input: 0 []
Al: output: 1 []
A2: input: 1 []

A29: unused: 1 []

af://n4165

A30: unknown
A31: unused: 0 []

D6: input: 0 []
D7: output: 1 [x] vccl8-lcd-n.gpio

D31: input: 0 []

Bank E:
EO: input: 0 []
El: input: 0 []

pin input:
=> gpio input A7
pin output INACTIVE:
=> gpio clear A7
pin output ACTIVE:
=> gpio set A7
Pin state switching: e.g. A7: input: 0 to A7: output: 1

=> gpio toggle A7

8.7 FDT Command

Function: Prints the contents of the DTB.

=> fdt

fdt - flattened device tree utility commands

Usage:

fdt addr [-c] <addr> [<length>] - Set the [control] fdt location to <addr>
fdt print <path> [<prop>] - Recursive print starting at <path>

fdt list <path> [<prop>] - Print one level starting at <path>

NOTE: Dereference aliases by omitting the leading '/', e.g. fdt print ethernetO.
The following two commands together can dump the device-tree completely:

=> fdt addr $fdt addr r // Specify fdt address
=> fdt print // Print out the entire contents of the fdt

8.8 MMC Command

af://n4178
af://n4183

Function: MMC device read/write, switching.

MMC Device View:

=> mmc info

Device: dwmmc@f£f0£0000 // device node
Manufacturer ID: 15

OEM: 100

Name: 8GME4

Timing Interface: High Speed // Speed Mode
Tran Speed: 52000000 // current speed
Rd Block Len: 512

MMC version 5.1

High Capacity: Yes

Capacity: 7.3 GiB // storage capacity
Bus Width: 8-bit // Bus width
Erase Group Size: 512 KiB

HC WP Group Size: 8 MiB

User Capacity: 7.3 GiB WRREL

Boot Capacity: 4 MiB ENH

RPMB Capacity: 512 KiB ENH

MMC device switching:

=> mmc dev 0 // Switch to eMMC
=> mmc dev 1 // Switch to sd card

MMC device reads and writes:

mmc read addr blk# cnt
mmc write addr blk# cnt

mmc erase blk# cnt

Example:
=> mmc read 0x70000000 0 1 // Read the first block of the MMC device, data
size - 1 sector, into memory 0x70000000

=> mmc write 0x70000000 0 1 // Write 1 sector of data from memory 0x70000000
to the first block of memory
=> mmc erase 0 1 // Erase 1 sector of data from the first block of

memory.

If the MMC device reads or writes abnormally, you can quickly locate it by following these simple steps:

Change debug () to printf () in drivers/mmc/dw_mmc.c and recompile and download. View the print
information of the MMC device:

e Ifthe last print is Sending CMDO, please check the hardware power supply, pin connection; check whether
the software IOMUX is cut away by other IP;

¢ If the last print is Sending CMDS, in the Security Software section, configure the MMC device to allow
access to secure storage;

¢ If all the initialization commands have passed and the last printout is Sending CMD18, please check the
MMC hardware power supply, or check whether the capacitance of the power supply close to the MMC
side is sufficient (can replace to a larger capacitor), check the software (can reduce the clock frequency), or
try to switch the speed mode of the MMC device.

8.9 TimeStamp

Function: Adds a timestamp (relative time) to the U-Boot print message.
CONFIG BOOTSTAGE PRINTF TIMESTAMP
Example:

[0.259266] U-Boot 2017.09-01739-g856£373-dirty (Jul 10 2018 - 20:26:05
+0800)

[0.260596] Model: Rockchip RK3399 Evaluation Board

[0.261332] DRAM: 3.8 GiB

Relocation Offset is: £5b£fd000

Using default environment

.354038] dwmmc@fe320000: 1, sdhci@fe330000: O
.521125] Card did not respond to voltage select!
.521188] mmc_init: -95, time 9

.671451] switch to partitions #0, OK

.671500] mmcO (part 0) is current device

.675507] boot mode: None

.683738] DTB: rk-kernel.dtb

.706940] Using kernel dtb

O O O O O o o o

The timestamp only prints out the time of the current system timer, not do the timing from 0. So the timestamp

prints only the relative time, not the absolute time.

8.10 DM Tree

Function: View the binding and probe status between all device-drivers.

=> dm tree

Class Probed Driver Name

root [+ 1 root driver root driver

syscon [] rk322x syscon |-— syscon@11000000

serial [+ 1 nsl6550 serial |-- serial@11030000 =*

clk [] clk rk322x |--— clock-controller@110e0000
sysreset [] rockchip sysreset | |-- sysreset

reset [] rockchip reset | ‘—-- reset

mmc [+ 1 rockchip rk3288 dw mshc | == dwmmc@30020000 *

blk [+] mmc_blk | "—- dwmmc@30020000.blk *
ram [] rockchip rk322x dmc | == dmc@11200000

serial [+ 1 nsl6550 serial |--— serial@11020000

i2c [+ 1 i2c rockchip |-— 1i2c@11050000

Print Meaning:

e List all the device-drivers that have completed the bind.

af://n4200
af://n4206

¢ List the affiliations between all uclass-device-driver

e [+] means the current driver has completed probe

e * Indicates that the current device-driver comes from the U-Boot DTB, otherwise it comes from the kernel
DTB.

8.11 DM Uclass

Function: View all devices under a certain class uclass.

=> dm uclass

uclass 0: root

- * root driver @ 7beb54c88, seq 0, (req -1)

uclass 11: adc
- * saradc@ffl100000 @ 7beb56220, seq 0, (req -1)

uclass 40: backlight
- * backlight @ 7be81178, seq 0, (reqg -1)

uclass 77: key
= rockchip-key @ 7be811£f0

8.12 Stacktrace.sh

Analyze the site of abort, dump_stack() using the call stack back mechanism. Please refer to the RK Architecture

section.

8.13 System Crash

Function: Print the current CPU scene and call stack, suitable for use when the system is stuck. The serial port

will dump similar information as abort every 5s.
CONFIG_ROCKCHIP DEBUGGER

Get the call stack information and then use the stacktrace script to convert it. Please refer to the RK Architecture

section.

8.14 CRC Check

Function: Checks the integrity of the firmware in RK format.

The image header of the RK format contains the CRC32 of the entire image, which can be used to verify the

integrity of the firmware by opening the following macro

CONFIG_ROCKCHIP CRC

af://n4219
af://n4222
af://n4224
af://n4228

Example:

=Booting Rockchip format image=

kernel image CRC32 verify... okay.
“fail!” if it fails)

boot image CRC32 verify... okay.
if it fails)

kernel @ 0x02080000 (0x01249808)
ramdisk @ 0x0a200000 (0x001e6650)

/7

//

kernel verifies success (or prints

boot verifies success (prints “faill!”

Chapter-8 Flattened Device Tree blob at 01£00000
Booting using the fdt blob at 0x1£00000

'reserved-memory'

Loading Ramdisk to 08019000,

Loading Device Tree to 0000000008003000,
size=0x08200000
size=0xede00000

Adding bank:
Adding bank:

start=0x00200000,
start=0x0a200000,

Starting kernel

8.15 HASH Check

secure-memory@20000000:
end 081ff650 ... OK

addr=20000000 size=10000000

end 0000000008018c97 ... OK

Function: Check the integrity of the firmware in Android format.

ANDROID BOOT IMAGE HASH

When this configuration is enabled, the integrity of the firmware is verified when loading firmware in Android

format.

For some historical reasons, if the above configuration does not verify the firmware correctly, please try turning

on the following configuration at the same time:

HASH ROCKCHIP LEGACY

8.16 Modify DDR Capacity

The DDR initialization code during boot passes the DDR capacity to U-Boot, which will remove some safe

memory before passing it to the kernel. The user can modify the DDR capacity to be passed to the kernel during

the U-Boot stage.

Example of Passing:

// The block of available memory passed to the kernel

block removed) .

Adding bank: 0x00200000 - 0x08400000
Adding bank: 0x0a200000 - 0x40000000
Total: 895.411 ms

Starting kernel

(size:

(size:

(with the safe memory

0x08200000)
0x35e00000)

[0.000000] Booting Linux on physical CPU 0xO0

af://n4234
af://n4240

Code Location:

./arch/arm/mach-rockchip/param.c

Modify the location:

struct memblock *param parse ddr mem(int *out count)

// Here is the capacity information that ddr passes to U-Boot.

// Because of the possibility of discontinuous addresses, they are passed in
blocks, specifying the starting address and size of each memory block
separately.

// PS: It's usually contiguous memory and won't need to be chunked.

for (1 = 0, n = 0; i < count; i++, n++) {

// For example, for a 2GB capacity (contiguous addresses): count = 1,
base = 0, size = 0x80000000.

// when debugging, users can modify here as needed.

base = t->u.ddr mem.bank[i];

size = t->u.ddr mem.bank[i + count];

/* 0~4GB */
if (base < SZ _4GB) {

mem[n] .base = base;

mem[n].size = ddr mem get usable size(base, size);
if (base + size > SZ 4GB) {
n++;

mem[n] .base u64 = SZ 4GB;

mem[n].size u64 = base + size - SZ 4GB;
}
} else {
/* 4GB+ */
mem[n] .base u64 = base;

mem[n].size u64 = size;

assert (n < count + MEM RESV_ COUNT) ;

8.17 Jump Information

Function: Confirm the firmware version and process. In some cases, the boot information can also help users to

locate some crash problems
1. Trust getting stuck after running

Possibility of trust getting stuck after running: There is a problem with the firmware packaging or downloading,
causing the trust to jump to the wrong U-Boot boot address. In this case, you can check the U-Boot boot address
printed on the trust.

64-bit platform U-Boot boot address is typically offset 0x200000 (DRAM starts at 0x0)

af://n4248

NOTICE: BL31l: vl.3(debug):d98dlé6e
NOTICE: BL31: Built : 15:03:07, May 10 2018
NOTICE: BL31l: Rockchip release version: vl.l

INFO: GICv3 with legacy support detected. ARM GICV3 driver initialized in EL3
INFO: Using opteed sec cpu context!

INFO: boot cpu mask: 0

INFO: plat rockchip pmu init(1151): pd status 3e

INFO: BL31l: Initializing runtime services

INFO: BL31l: Initializing BL32

INFO: BL31: Preparing for EL3 exit to normal world

INFO: Entry point address = 0x200000 // U-Boot address

INFO: SPSR = 0x3cH9

The 32-bit platform U-Boot boot address is typically offset 0x0 (DRAM starts at 0x60000000):

INF [0x0] TEE-CORE:init primary helper:378: Release version: 1.9

INF [0x0] TEE-CORE:init primary helper:379: Next entry point address: 0x60000000
// U-Boot address

INF [0x0] TEE-CORE:init teecore:83: teecore inits done

2. U-Boot version backtracking:

The U-Boot boot information can be used to trace back the build version. The following commit point

corresponds to commit: b34f08b.

U-Boot 2017.09-01730-gb34£f08b (Jul 06 2018 - 17:47:52 +0800)

The fact that “dirty” appears in the boot message means that there are local changes that were not committed to

the repository during compilation, and the compilation point is not clean.

U-Boot 2017.09-01730-gb34£f08b-dirty (Jul 06 2018 - 17:35:04 +0800)

8.18 Boot Information

Users can know the current U-Boot process and the status of each peripheral through the U-Boot boot

information, which is convenient to quickly locate the abnormality.

Currently U-Boot supports three types of firmware boot: Android format > RK format > DISTRO format. the
SDK released by RK is mainly for the first two firmware formats, and DISTRO is generally used by open source

users.

Note: If the user's code is not new enough, some prints may not be visible, this does not affect the user's overall

understanding of the U-Boot boot message.

17.1 Android firmware

// The first line of U-Boot prints, containing information such as commit
version, compiling time, etc.

// Note: This is only “relatively early” first regular line printout from U-
Boot, not the earliest printout that U-Boot can make.

// Open the debug message, you can see earlier debug prints

U-Boot 2017.09-03033-g81b79f7-dirty (Jul 04 2019 - 15:04:00 +0800)

af://n4265

// The content of the “model” field of the U-Boot dts, which tells us which U-
Boot dts we are using.

Model: Rockchip RK3399 Evaluation Board

// The preloader-serial function is enabled, i.e., it follows the serial port
configuration of the previous loader, and the print port currently used is
UART2.

PreSerial: 2

// The total memory capacity of the board is 2GB

DRAM: 2 GiB

// The current version supports the sysmem memory card management mechanism
Sysmem: init

// U-Boot will self-move its own code from the current ddr forward position to a
backward position (see the U-Boot development documentation for details on the
boot process)

// The starting address of the self-moved code is 0x7dbe2000, which may be
useful for disassembly and debugging.

Relocation Offset is: 7dbe2000

// ENV is saved in ddr by default. If you choose to save it in eMMC, Nand, etc.,
it will not be printed.

Using default environment

// The current storage medium is mmc0O, i.e. eMMC (or mmcl if it is a sd card)
dwmmc@fe320000: 1, sdhci@fe330000: O

// The storage media type is informed to U-Boot via atags, passed as a
parameters by the previous miniloader

Bootdev (atags) : mmc 0

// Current eMMC operates in HS400 mode with a clock frequency of 150M

MMCO: HS400, 150Mhz

// Currently using GPT partition table (if RK parameter partition table used,
print: RKPARM)

PartType: EFI

// It's currently in recovery mode

// The “reboot xxx” command executed in the kernel is ultimately represented by
this printout

boot mode: recovery

// The Kernel DTB comes from recovery.img, which is loaded normally

Load FDT from recovery part

DTB: rk-kernel.dtb

HASH: OK(c)

// ==> Note: Since then, U-Boot has swithed to the kernel dtb and all subsequent

peripheral drivers use information from the kernel dtb!

// DTBO executed successfully

ANDROID: fdt overlay OK

// I2C speed, this is one of the influencing factors of U-Boot boot speed,
especially for PMICs with very many DCDCs and LDOs, if the I2C speed is slow,
// Then it will hinder the booting speed to some extent. If users care about
boot speed, they can pay attention to this information

I2c speed: 400000Hz

// Current PMIC is RK818

// The on value corresponds to the ON SOURCE register and indicates the reason
for this current PMIC power-up

// The off value corresponds to the OFF SOURCE register and indicates the reason
for the previous shutdown or power loss

// on and off information, which is valuable in the event of an abnormal reboot
or shutdown of the system

PMIC: RK818 (on=0x20 off=0x40)

// The current voltage value of each regulator, is generally DCDC and
corresponding to the RK platform arm, logic, center and other voltages.
// vdd_center 900000 uV- This is valuable information in the event of problems
such as abnormal system startups, erratic booting, etc.
vdd cpu 1 900000 uv
vdd log 900000 uv
// The content of the “model” field of the Kernel dts, which tells us which
Kernel dts we are using.
Model: Rockchip RK3399 Excavator Board edp avb (Android)
enter Recovery mode!
// Display driver related information
Rockchip UBOOT DRM driver version: v1.0.1
Using display timing dts
Detailed mode clock 200000 kHz, flags[al
H: 1536 1548 1564 1612
V: 2048 2056 2060 2068
bus format: 100e
// clk-tree information, please refer to the CLK section of the U-Boot
development documentation for details.
CLK: (uboot. arml: enter 816000 KHz, init 816000 KHz, kernel ON/A)
CLK: (uboot. armb: enter 24000 KHz, init 24000 KHz, kernel ON/A)
aplll 816000 KHz
apllb 24000 KHz
dpll 800000 KHz
cpll 200000 KHz
gpll 800000 KHz
npll 600000 KHz
vpll 24000 KHz
aclk perihp 133333 KHz
hclk perihp 66666 KHz
pclk perihp 33333 KHz
aclk perilp0 266666 KHz
hclk perilpO 88888 KHz
pclk perilpQO 44444 KHz
hclk perilpl 100000 KHz
pclk perilpl 50000 KHz
// GMAC driver enable
Net: ethO: ethernet@fe300000
// Boot and long press ctrl+c to enter U-Boot command line mode after the
following printout
Hit key to stop autoboot ('CTRL+C'): O
// Once again, we know that we are currently in recovery mode.
ANDROID: reboot reason: "recovery"
// vboot=0 means secureboot is not enabled; it's currently AVB firmware, so it
will go through AVB's regular checking flow
Vboot=0, AVB images, AVB verify
// kWhether the device is unlocked
read is device unlocked() ops returned that device is UNLOCKED
// Native U-Boot by default loads the entire boot.img/recovery.img, and then
ramdisk, fdt, kernel
// A single move (called relocation) to an address predetermined by the user,
which is time-consuming, especially if the ramdisk is very large.
// The RK platform was modified to move ramdisk, fdt, and kernel directly from
storage to the intended memory address all at once.
// A printout such as the following indicates that this one-time move is
enabled, saving you time

Fdt Ramdisk skip relocation

// Load the firmware in Android format, load kernel to 0x00280000, fdt to
0x8300000

// If it is an LZ4 compressed kernel, it may print here:

// Booting LZ4 kernel at 0x00680000 (Uncompress to 0x00280000) with fdt at
0x8300000...

Booting IMAGE kernel at 0x00280000 with fdt at 0x8300000...

// Ignore, no need to concern.
Booting Android Image at 0x0027£800
// \kernel and ramdisk load address and size
Kernel load addr 0x00280000 size 19081 KiB
RAM disk load addr 0x0a200000 size 9627 KiB
// fdt load address
Flattened Device Tree blob at 08300000
Booting using the fdt blob at 0x8300000
// Ignore, no need to concern
XIP Kernel Image ... OK
// This simply prints the reserved-memory specified by the kernel dts, which can
be used as a piece of information to analyze if the kernel has problems booting.
'reserved-memory' secure-memory@20000000: addr=20000000 size=10000000
// Start and end address of fdt
Using Device Tree in place at 0000000008300000, end 000000000831c6f7
// Passed to the kernel to inform the kernel of the range of memory space
available to the kernel (ATF, optee, etc. space has been removed)
Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)
Adding bank: 0x0a200000 - 0x80000000 (size: 0x75e00000)
// U-Boot phase boot time consuming
Total: 367.128 ms

// Printed by U-Boot, after this print, U-Boot will complete some ARM
architecture related (e.g., clearing cache, turning off interrupts,

// cpu state switching, etc.) and U-Boot's dm device logout and other clearing
work, the probability of problems is extremely low.

// Once the above work's done, it jump to the kernel, so it can also be
understood as that this printout means you've reached the kernel stage.

Starting kernel

// Printed information from the kernel phase

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

[0.000000] Initializing cgroup subsys cpuacct

[0.000000] Initializing cgroup subsys schedtune

[0.000000] Linux version 4.4.167 (hgc@ubuntu) (gcc version 6.3.1 20170404
(Linaro

GCC 6.3-2017.05)) #83 SMP PREEMPT Thu Mar 21 09:31:08 CST 2019

[0.000000] Boot CPU: AArch64 Processor [410f£d034]

[0.000000] earlycon: Early serial console at MMIO32 0xff1a0000 (options ''")
[0.000000] bootconsole [uart0] enabled

[0.000000] Reserved memory: failed to reserve memory for node 'stb-
devinfo@00000000': base 0x0000000000000000, size 0 MiB

[0.000000] cma: Reserved 16 MiB at 0x000000007£000000

8.18.1 RK Firmware

af://n4271

U-Boot 2017.09-03352-gbl1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board
PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

Using default environment

Hit key to stop autoboot ('CTRL+C'): O

ANDROID: reboot reason: "recovery"

// Since it's RK format firmware, it can't be AVB format

Not AVB images, AVB skip

// Because it is RK format firmware, so here will prompt that load android
format firmware fails

// Because the current startup priority is: android format > RK format > distro
format

** Invalid Android Image header **

Android image load failed

Android boot failed, error -1.

// Currently in recovery mode

boot mode: recovery

// Boot RK-formatted firmware, load ramdis, kernel, fdt

=Booting Rockchip format image=

fdt @ 0x08300000 (0x00012dd0)

kernel @ 0x00280000 (0x0119e008)

ramdisk @ 0x0a200000 (0x00754540)

// The following is basically similar to the boot information for android-
formatted firmware
Fdt Ramdisk skip relocation
Flattened Device Tree blob at 08300000
Booting using the fdt blob at 0x8300000
Using Device Tree in place at 0000000008300000, end 0000000008315dcf
Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)
Adding bank: 0x0a200000 - 0x80000000 (size: 0x75e00000)
Total: 508.11 ms

Starting kernel

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu

8.18.2 Distro Firmware

U-Boot 2017.09-03352-gbl1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board
PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

af://n4273

Using default environment

// find mmcO, i.e. eMMCswitch to partitions #0, OK

mmcO (part 0) is current device

// Find the firmware for the 6th partition on the eMMC storage (in the GPT
partition table, 6 corresponds to the boot.img partition, which is indicated by
the “-bootable” attribute in the GPT)

Scanning mmc 0:6...

// Found the configuration file extlinux.conf

Found /extlinux/extlinux.conf

Retrieving file: /extlinux/extlinux.conf

// Loading kernel

205 bytes read in 82 ms (2 KiB/s)

1g rockchip-kernel-4.4

Retrieving file: /Image

13484040 bytes read in 1833 ms (7 MiB/s)

// Specified cmdline information when packaging
append: earlycon=uart8250,mmio32,0xff1a0000 console=ttyS2,1500000n8 rw
root=/dev/mmcblkOp7 rootwait rootfstype=ext4 init=/sbin/init

// Loading fdtLoad fdt
Retrieving file: /rk3399.dtb
61714 bytes read in 54 ms (1.1 MiB/s)

// ==> If there is no ramdisk at the time of packing, no ramdisk information

will be printed; otherwise it will be printed here as well.

Flattened Device Tree blob at 01£00000
Booting using the fdt blob at 0x1£00000
Loading Device Tree to 000000007df14000, end 000000007df26111 ... OK

Starting kernel

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu

8.18.3 No Valid Firmware

U-Boot 2017.09-03352-gbl1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board
PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

Using default environment

af://n4275

// Find mmc0O, the eMMCFind mmcO, the eMMC

Can't find boot message for firmware

switch to partitions Can't find boot message for firmware#0, OK

mmcO (part 0) is current device

// Find the firmware for the 6th partition on the eMMC storage (in the GPT
partition table, 6 corresponds to the boot.img partition, which is indicated by
the “-bootable” attribute in the GPT)

Scanning mmc 0:6...

// Found the configuration file extlinux.conf

Found /extlinux/extlinux.conf

Retrieving file: /extlinux/extlinux.conf

// Loading kernel Load kernel

205 bytes read in 82 ms (2 KiB/s)

1l rockchip-kernel-4.4

Retrieving file: /Image

13484040 bytes read in 1833 ms (7 MiB/s)

// Specified cmdline information when packaging
append: earlycon=uart8250,mmio32,0xf£f1a0000 console=ttyS2,1500000n8 rw
root=/dev/mmcblk0p7 rootwait rootfstype=ext4 init=/sbin/init

// Loading fdt Load fdt
Retrieving file: /rk3399.dtb
61714 bytes read in 54 ms (1.1 MiB/s)

// ==> If there is no ramdisk at the time of packing, no ramdisk information

will be printed; otherwise it will be printed here as well.

Flattened Device Tree blob at 01£00000
Booting using the fdt blob at 0x1£00000
Loading Device Tree to 000000007df14000, end 000000007df26111 ... OK

Starting kernel

[0.000000] Booting Linux on physical CPU 0xO0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu

U-Boot 2017.09-03352-gbl1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board
PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

Using default environment

Net: eth0: ethernet@fe300000

Hit key to stop autoboot ('CTRL+C'): 0 ANDROID: reboot reason: "recovery"
// Not Android format firmware

Not AVB images, AVB skip

** Invalid Android Image header **

Android image load failed

Android boot failed, error -1.

boot mode: recovery

// Not RK format firmware
=Booting Rockchip format image=
kernel: invalid image tag(0x45435352)

boot rockchip image kernel part read error

// Not DISTRO format firmware. All of the latter prints come in the distro load
command because the distro command will try to get from mmc, nand, net,

// usb and all our predefined devices (see the macro definition in rockchip-
common.h: BOOT_TARGET_DEVICES).

// Looking for distro firmware, i.e. scanning one by one to search

switch to partitions #0, OK

mmcO (part 0) is current device

Failed to mount ext2 filesystem...

** Unrecognized filesystem type **

starting USB...

USBO: Register 2000140 NbrPorts 2

Starting the controller

USB XHCI 1.10

USB1: Register 2000140 NbrPorts 2

Starting the controller

USB XHCI 1.10

USB2: USB EHCI 1.00
USB3: USB OHCI 1.0
USB4: USB EHCI 1.00
USB5: USB OHCI 1.0
scanning bus 0 for devices... 1 USB Device(s) found
scanning bus 1 for devices... 1 USB Device(s) found
scanning bus 2 for devices... 1 USB Device(s) found
scanning bus 3 for devices... 1 USB Device(s) found
scanning bus 4 for devices... 1 USB Device(s) found
scanning bus 5 for devices... 1 USB Device(s) found
scanning usb for storage devices... 0 Storage Device(s) found
Device 0: unknown device
ethernet@fe300000 Waiting for PHY auto negotiation to complete......... TIMEOUT

!
Could not initialize PHY ethernet@fe300000

missing environment variable: pxeuuid

missing environment variable: bootfile

Retrieving file: pxelinux.cfg/01-7a-1d-33-50-3d-al
ethernet@fe300000 Waiting for PHY auto negotiation to complete..

// Eventually the distro command scanned all possible storage media and couldn't
find the firmware, so it stopped in U-Boot command line mode

=>

9. Chapter-9 Test Case

af://n4278

10. Chapter-10 SPL

10.1 Firmware Boot

SPL replaces the miniloader in loading and booting trust.img and uboot.img. SPL currently supports booting two

types of firmwares

e FIT firmware: enabled by default
e RKFW firmware: disabled by default, needs to be configured and enabled separately by the user;

10.1.1 FIT Firmware

FIT (flattened image tree) format is a relatively new firmware format supported by SPL, which supports multiple
images to be packaged and verified, FIT uses DTS syntax to describe the packaged image, the description file is
u-boot.its, and the final FIT firmware generated is u-boot.itb.

Advantages of FIT: reuse dts syntax and compilation rules, more flexible, firmware parsing can directly use
libfdt library

u-boot.its file:

e /images : Statically defines all accessible resource configurations (last available, optional), similar to the
role of dtsi;

e /configurations : Each config node describes a set of bootable configurations, similar to a board-level
dts

e Usedefault = Specifies the currently selected default configuration;
Templates:

/dts-vl1l/;

/A

description = "Configuration to load ATF before U-Boot";

#address-cells = <1>;

images {

uboot@1 {
description = "U-Boot (64-bit)";
data = /incbin/ ("u-boot-nodtb.bin");
type = "standalone";
os = "U-Boot";
arch = "arm64";
compression = "none";
load = <0x00200000>;

}i

atf@l {
description = "ARM Trusted Firmware";
data = /incbin/(”blBl_OxOOOlOOOO.bin”);
type = "firmware";

arch = "arm64";

af://n4282
af://n4283
af://n4290

os = "arm-trusted-firmware";
compression = "none";
load = <0x00010000>;
entry = <0x00010000>;
}i

atf@2 {
description = "ARM Trusted Firmware";
data = /incbin/ ("bl31 0x£ff091000.bin");

type = "firmware";

arch = "arm64";

os = "arm-trusted-firmware";
compression = "none";

load = <0xff091000>;
}i

optee@l {
description = "OP-TEE";
data = /incbin/ ("bl32.bin");
type = "firmware";
arch = "armo4d";
os = "op-tee";
compression = "none";

load = <0x08400000>;
}i

fdt@l {
description = "rk3328-evb.dtb";
data = /incbin/ ("arch/arm/dts/rk3328-evb.dtb") ;
type = "flat dt";
compression = "none";
}i
bi

configurations {

default = "config@l";
config@l {
description = "rk3328-evb.dtb";
firmware = "atf@l";
loadables = "uboot@l", "atf@2", "optee@l" ;
fdt = "fdtel";

u-boot.itb file:

mkimage + dtc

[u-boot.its] + [images] ==> [u-boot.itb]

The above is the process of generating the itb file. the FIT firmware can be understood as a special kind of DTB

file, except that its content is image. the user can view the itb file with the fdtdump command:

cjh@ubuntu:~/uboot-nextdev/u-boot$ fdtdump u-boot.itb | less

/dts-v1l/;

// magic: 0xd00dfeed

// totalsize: 0x497 (1175)

// off dt struct: 0x38

// off dt strings: 0x414

// off mem rsvmap: 0x28

// version: 17

// last comp version: 16

// boot cpuid phys: 0x0

// size dt strings: 0x83

// size dt struct: 0x3dc

/A
timestamp = <0x5d099c85>;
description = "Configuration to load ATF before U-Boot";
#address-cells = <0x00000001>;
images {

uboot@1 {

data-size = <0x0009f8a8>;
data-offset = <0x00000000>;
description = "U-Boot (64-bit)";
type = "standalone";
os = "U-Boot";
arch = "armo64";
compression = "none";
load = <0x00600000>;
}i
atf@l {
data-size = <0x0000c048>; // This field is automatically added by
the compilation process to describe the atf@l firmware size
data-offset = <0x0009f8a8>; // This field is automatically added by
the compilation process to describe the atf@l firmware offset
description = "ARM Trusted Firmware";
type = "firmware";
arch = "arm64";
os = "arm-trusted-firmware";
compression = "none";
load = <0x00010000>;
entry = <0x00010000>;
}i
atf@2 {
data-size = <0x00002000>;
data-offset = <0x000ab8f0>;
description = "ARM Trusted Firmware";
type = "firmware";
arch = "armo64";
os = "arm-trusted-firmware";
compression = "none";
load = <0xff£f82000>;
}i
fdtel {
data-size = <0x00005793>;
data-offset = <0x000ad8f0>;
description = "rk3308-evb.dtb";
type = "flat dt";

}i

For more information on FIT, please refer to:

./doc/ulImage.FIT/

10.1.2 RKFW Firmware

In order to replace the miniloader more directly without modifying the partitioning and packaging format of the
later firmware, RK platform adds the RKFW format (i.e., independently partitioned firmware: trust.img and
uboot.img) to the boot.

Configuration:
CONFIG_SPL_LOAD RKFW // Enable switch
CONFIG_RKFW _TRUST SECTOR // trust.img partition address, shall be

consistent with the definition of the partition table
CONFIG RKFW U BOOT SECTOR // uboot.img partition address, shall be

consistent with the definition of the partition table
Code:

./include/spl rkfw.h
./common/spl/spl rkfw.c

10.1.3 Storage Priority

The boot priority of the storage device is specified in U-Boot dts via u-boot, spl-boot-order .

/A
aliases {
mmcO0 = &emmc;
mmcl = &sdmmc;
}i
chosen {

u-boot, spl-boot-order = &sdmmc, &nandc, &emmc;
stdout-path = &uart2;

10.2 Compilation and Packaging

10.2.1 Code Compilation

af://n4309
af://n4315
af://n4318
af://n4319

U-Boot compiles the same U-Boot code according to different compilation paths to obtain SPL firmware, and
automatically generates the CONFIG SPL BUILD macro when compiling the SPL. U-Boot will continue to

compile the SPL after compiling u-boot.bin, and create a separate output directory . /spl/.

// compile u-boot

DTC arch/arm/dts/rk3399-puma-ddrl866.dtb
DTC arch/arm/dts/rv1108-evb.dtb
make[2]: “arch/arm/dts/rk3328-evb.dtb' is up to date.

SHIPPED dts/dt.dtb
FDTGREP dts/dt-spl.dtb
CAT u-boot-dtb.bin
MKIMAGE u-boot.img
COPY u-boot.dtb
MKIMAGE u-boot-dtb.img
COPY u-boot.bin

// Compile spl, with separate spl/ directory

LD spl/arch/arm/cpu/built-in.o

cC spl/board/rockchip/evb rk3328/evb-rk3328.0
LD spl/dts/built-in.o

ccC spl/common/init/board init.o

COPY tpl/u-boot-tpl.dtb

cC spl/cmd/nvedit.o

cc spl/env/common.o

cC spl/env/env.o

LD spl/drivers/block/built-in.o

At the end of the compilation you will get

./spl/u-boot-spl.bin

10.2.2 Firmware Packaging

10.3 System Module

10.3.1 GPT

SPL uses the GPT partition table.

Configurations:

CONFIG_SPL_LIBDISK SUPPORT=y
CONFIG_SPL_EFI_PARTITION=y
CONFIG PARTITION TYPE GUID=y

Drivers:

af://n4324
af://n4325
af://n4326

./disk/part.c
./disk/part_efi.c

Interfaces:

int part get info(struct blk desc *dev desc, int part, disk partition t *info);
int part get info by name(struct blk desc *dev desc,

const char *name, disk partition t *info);

10.3.2 A/B System

SPL supports A/B system boot,

Configuration:
CONFIG_SPL_AB=y

Driver:
./common/spl/spl ab.c

Interface:

int spl _get current slot(struct blk desc *dev_desc, char *partition, char
*slot);

int spl get partitions sector (struct blk desc *dev desc, char *partition,u32

*sectors) ;

10.3.3 Boot Priority

e SPL uses the boot order defined by u-boot, spl-boot-order , located at rkxxxx-u-boot.dtsi:

chosen {

stdout-path = &uart2;

u-boot, spl-boot-order = &sdmmc, &sfc, &nandc, &emmc;
i

e Maskrom's boot priority:
spi nor > spi nand > emmc > sd
¢ Pre-loader(SPL) boot priority:
sd > spi nor > spi nand > emmc

Maximizing the priority of the sd card makes it easier for the system to boot from the sd card.

10.3.4 ATAGS

af://n4334
af://n4342
af://n4354

SPL and U-Boot implement the passing of parameters through the ATAGS mechanism. The information passed

is: the storage device started, the print serial port, and so on.

Configuration:

CONFIG_ROCKCHIP PRELOADER ATAGS=y

Driver:

./arch/arm/include/asm/arch-rockchip/rk atags.h

./arch/arm/mach-rockchip/rk_atags.c

Interface:

int atags_set tag(u32 magic, void *tagdata);
struct tag *atags get tag(u32 magic);

10.3.5 Kernel Boot

Usually kernel is loaded and booted by U-Boot, SPL can also support to load kernel, currently support to load

android head version 2 boot.img, support RK format firmware.

Boot sequence

Maskrom -> ddr -> SPL -> Trust -> Kernel

10.3.6 Pinctrl

Configuration:

CONFIG_SPL_PINCTRL GENERIC=y
CONFIG_SPL_PINCTRL=y

Driver:

./drivers/pinctrl/pinctrl-uclass.c
./drivers/pinctrl/pinctrl-generic.c

./drivers/pinctrl/pinctrl-rockchip.c
DTS configuration:
Take sdmmc for example

&pinctrl {

u-boot,dm-spl;
}i

&pcfg pull none 4ma {
u-boot,dm-spl;
}i

af://n4362
af://n4366

&pcfg pull up 4ma {
u-boot,dm-spl;

}i

&sdmme {
u-boot,dm-spl;

}i

&sdmmc_pin {
u-boot,dm-spl;

}i

&sdmmc_clk |
u-boot,dm-spl;

}i

&sdmmc_cmd {
u-boot,dm-spl;

}i

&sdmmc_buséd {
u-boot,dm-spl;

}i

&sdmmc_pwren {

u-boot,dm-spl;
}i

Notes:

To enable pinctr] for SPL, modify the CONFIG OF SPL REMOVE PROPS definition in defconfig to remove the

pinctrl-0 pinctrl-names field.

10.3.7 Secure Boot

[TODO]

10.4 Driver Module

10.4.1 MMC

Configuration:

CONFIG_SPL MMC_ SUPPORT=y // Enabled by default

Driver:

./common/spl/spl mmc.c

Interface:

af://n4376
af://n4378
af://n4379

int spl mmc load image (struct spl image info *spl image,

struct spl_boot_device *bootdev) ;

10.4.2 MTD Block

SPL unifies the nand, spi nand, and spi nor interfaces to the block layer.

Configuration:

// MTD driver support
CONFIG MTD=y
CONFIG_CMD _MTD BLK=y
CONFIG_SPL MTD SUPPORT=y
CONFIG_MTD BLK=y
CONFIG_MTD DEVICE=y

// spi nand driver support
CONFIG MTD SPI NAND=y
CONFIG_ROCKCHIP_ SFC=y
CONFIG_SPL_SPI_FLASH SUPPORT=y
CONFIG SPL_SPI_SUPPORT=y

// nand driver support

CONFIG NAND=y

CONFIG_CMD NAND=y

CONFIG_NAND ROCKCHIP=y /* NandC v6 can be confirmed based on TRM NANDC-
>NANDC NANDC VER register, 0x00000801 */

//CONFIG NAND ROCKCHIP V9=y /* NandC v9 can be confirmed based on TRM NANDC-
>NANDC NANDC VER register, 0x56393030, Take RK3326/PX30 as an example */
CONFIG_SPL NAND SUPPORT=y

CONFIG SYS NAND U BOOT LOCATIONS=y

CONFIG_SYS NAND U BOOT OFFS=0x8000

CONFIG SYS NAND U BOOT OFFS_REDUND=0x10000

// The nand page size needs to be defined according to the real size, if you use
NAND with a capacity greater than or equal to 512MB, you generally need to
configure it as 4096.

#define CONFIG_SYS NAND PAGE SIZE 2048

// spi nor driver support
CONFIG CMD SF=y
CONFIG_CMD_SPI=y

CONFIG_SPI FLASH=y

CONFIG SF DEFAULT MODE=0x1
CONFIG_SF_DEFAULT SPEED=50000000
CONFIG_SPI FLASH GIGADEVICE=y
CONFIG_SPI FLASH MACRONIX=y
CONFIG_SPI FLASH WINBOND=y
CONFIG_SPI_FLASH MTD=y
CONFIG_ROCKCHIP_ SFC=y

CONFIG SPL_SPI_SUPPORT=y
CONFIG_SPL MTD SUPPORT=y
CONFIG_SPL_SPI FLASH SUPPORT=y

Driver:

af://n4386

./common/spl/spl mtd blk.c
Interface:

int spl mtd load image(struct spl image info *spl image,

struct spl boot device *bootdev);

10.4.3 OTP

Used to store non-modifiable data, used in secure boot.

Configuration:

CONFIG_SPL MISC=y
CONFIG SPL ROCKCHIP SECURE OTP=y

Driver:

./drivers/misc/misc-uclass.c

./drivers/misc/rockchip-secure-otp.S
Interface:

int misc_read(struct udevice *dev, int offset, void *buf, int size);

int misc write(struct udevice *dev, int offset, void *buf, int size);

10.4.4 Crypto

Secure-boot will use crypto to complete the hash, ras calculation.

Configuration:

CONFIG_SPL DM CRYPTO=y

// The defconfig of each platform has enabled the corresponding configuration by
default.

CONFIG_ SPL ROCKCHIP CRYPTO Vl=y

or

CONFIG_SPL ROCKCHIP CRYPTO V2=y
Driver:

./drivers/crypto/crypto-uclass.c
./drivers/crypto/rockchip/crypto vl.c
./drivers/crypto/rockchip/crypto v2.c
./drivers/crypto/rockchip/crypto v2 pka.c
./drivers/crypto/rockchip/crypto v2 util.c

Interfaces:

af://n4394
af://n4402

u32 crypto algo nbits(u32 algo);
struct udevice *crypto get device(u32 capability):;
int crypto sha init(struct udevice *dev, sha context *ctx);
int crypto sha update(struct udevice *dev, u32 *input, u32 len);
int crypto sha final(struct udevice *dev, sha context *ctx, u8 *output);
int crypto sha csum(struct udevice *dev, sha context *ctx,
char *input, u32 input len, u8 *output);

int crypto rsa verify(struct udevice *dev, rsa key *ctx, u8 *sign, u8 *output);

10.4.5 Uart

The SPL serial port is specified via the chosen node of rkxxxx-u-boot.dtsi . Take the k3308 as an example:

chosen {
stdout-path = &uart2;
}i

guart2 {
u-boot,dm-pre-reloc;
clock-frequency = <24000000>;

status = "okay";

af://n4410

11. Chapter-11 TPL

TPL is a loader at an earlier stage than U-Boot, TPL runs in SRAM and its role is to replace the ddr bin which is
responsible for completing the initialization of DRAM.TPL is the open source version of the code and ddr bin is

the closed source version of the code.

11.1 Compiling and Packaging

11.1.1 Configuration

e UART configuration
CONFIG_DEBUG _UART BASE: UART base address
CONFIG_ROCKCHIP UART MUX SEL M: UART IOMUX GROUP.
Example:
RV 1126 configures UART2 M2 for printing DEBUG LOG.

Method 1) By modifying the rv1126_defconfig file

CONFIG_DEBUG UART BASE=0x££570000
CONFIG_ROCKCHIP UART MUX SEL M=2

Method 2) By making menuconfig

Device Drivers ---> Serial drivers ---> (0xff570000) Base address of UART

ARM architecture ---> (2) UART mux select

¢ DRAM TYPE configuration

Configure the DRAM TYPE supported by the TPL via CONFIG_ ROCKCHIP_TPL INIT DRAM TYPE.

DDR TYPE Configuration value
DDR2 2
DDR3 3
DDR4 0
LPDDR2 5
LPDDR3 6
LPDDR4 7
Example:

Configure RV1126 TPL DRAM TYPE to support DDR3.

af://n4415
af://n4417
af://n4418

Method 1) By modifying the rv1126_defconfig file
CONFIG_ROCKCHIP TPL INIT DRAM TYPE=3

Method 2) By making menuconfig; It is important to note that if make.sh is followed with chip model number
when compiling, there will be a make xxxdefconfig action when you make, which will overwrite the changes in
menuconfig. To prevent the changes in menuconfig from being overwritten, make.sh can be compiled without

parameters.
Device Drivers —---> (3) TPL select DRAM type

Example:

make rv1126_defconfig or . /make.sh rv1126 -> make menuconfig to modify the relevant configuration -> .

/make.sh.
¢ Quick boot configuration

If you need to compile and generate a tpl.bin that supports quick boot, you can do so by opening
CONFIG_SPL_KERNEL BOOT.

Currently only the RV1126/RV 1109 platforms are supported.
e Wide-temperature support

If you need to compile and generate a tpl.bin that supports wide temperature, you can do so by opening
CONFIG_ROCKCHIP_ DRAM_EXTENDED_ TEMP_SUPPORT.

Currently only the RV1126/RV 1109 platforms are supported.
¢ Other parameter modifications

The ddr initialization source code is located in the drivers/ram/rockchip directory, other ddr related parameters
such as frequency, drive strength, ODT strength, etc. need to be modified in the source code. For
RV1126/RV1109, the ddr related parameters are centralized in “sdram_inc/rv1126/sdram-rv1126-

loader params.inc” in this directory, and the corresponding parameters can be modified directly in this file.

Other platform parameters need to be modified in the corresponding sdram_xxx.c.

11.1.2 Compiling

U-Boot compiles the same U-Boot code according to different compilation paths to obtain the TPL firmware,
and automatically generates the CONFIG TPL BUILD macro when compiling the TPL. U-Boot will continue to

compile the TPL after compiling the u-boot.bin, and creates a separate output directory . /tpl/ .

// Compile u-boot

DTC arch/arm/dts/rv1108-evb.dtb
DTC arch/arm/dts/rk3399-puma-ddrl866.dtb
DTC arch/arm/dts/rvl1l26-evb.dtb

FDTGREP dts/dt.dtb
FDTGREP dts/dt-spl.dtb
FDTGREP dts/dt-tpl.dtb

CAT u-boot-dtb.bin
MKIMAGE u-boot.img
COPY u-boot.dtb

MKIMAGE u-boot-dtb.img

af://n4478

COPY u-boot.bin
ALIGN u-boot.bin

// Compile tpl, with a separate tpl/directory

cC tpl/common/init/board init.o
ccC tpl/disk/part.o

LD tpl/common/init/built-in.o
LD tpl/u-boot-tpl

OBJCOPY tpl/u-boot-tpl-nodtb.bin
COPY tpl/u-boot-tpl.bin

At the end of the compilation you'll get:
./tpl/u-boot-tpl.bin

Example:
Compile RV1126 uboot.

./make.sh rvl1126

11.1.3 Packaging

1. The u-boot-tpl.bin generated from compiling needs to replace the first 4 bytes with the tag of the
corresponding platform to be a legal ddr bin, such as tag “110B” for RV1126/RV 1109 platform. If you only
need the ddr bin, you need to manually complete the tag replacement action, the action can refer to
scripts/spl.sh script.

Example: Replace the tage of RV1126 u-boot-tpl.bin

dd bs=4 skip=1 if=tpl/u-boot-tpl.bin of=tpl/u-boot-tpl-tag.bin && sed -i
'1s/7/110B&/"' tpl/u-boot-tpl-tag.bin

2. If you need to generate a complete Loader file that can be downloaded into the board, you can use the
following commands to automatically replace the u-boot-tpl.bin tag and package it with spl.bin to form a

complete Loader file.

./make.sh tpl

af://n4485

12. Chapter-12 FIT

12.1 Preface

This section describes the FIT format and details of secure/non-secure boot schemes based on the FIT format.

For the sake of presentation, this section is mainly focused on boot.img, but the same applies to recovery.img.

12.2 Brief Introduction

12.2.1 Basic Introduction

FIT (flattened image tree) is a new firmware type of boot scheme supported by U-Boot, which supports any
number of image packages and checksums. FIT uses its (image source file) to describe the image information,
and then generates itb (flattened image tree blob) image by mkimage tool. The its file uses DTS syntax rules,
which is very flexible and can be used directly with the libfdt library and related tools.

FIT is the default and preferred firmware format supported by U-Boot, and both SPL and U-Boot phases support

booting to FIT-formatted firmware. For more information, please refer to:
./doc/uImage.FIT/

Because the official FIT function can not meet the actual product demand, so the RK platform has adapted and
optimized the FIT. Therefore, the mkimage tool compiled by RK U-Boot must be used in the FIT program but

not the mkimage that comes with the PC.

12.2.2 Example Introduction

The following is an introduction to u-boot.its and u-boot.itb as examples.

e /images : Statically defines all resources, equivalent to a dtsi file;

e /configurations : Each config node describes a set of bootable configurations, equivalent to a board-
level dts file.

e default = : Specifies the config that is enabled by default;

/dts-v1/;

/A
description = "Simple image with OP-TEE support";

#address-cells = <1>;

images {
uboot {
description = "U-Boot";
data = /incbin/ ("./u-boot-nodtb.bin");
type = "standalone";

os = "U-Boot";

af://n4497
af://n4498
af://n4500
af://n4501
af://n4506

arch = "arm";
compression = "none";
load = <0x00400000>;
hash {
algo = "sha256";

}i

}i

optee {
description = "OP-TEE";
data = /incbin/ ("./tee.bin");
type = "firmware";
arch = "arm";
os = "op-tee";
compression = "none";
load = <0x8400000>;
entry = <0x8400000>;

hash {
algo = "sha256";
}i
}i
fdt {
description = "U-Boot dtb";
data = /incbin/ ("./u-boot.dtb");
type = "flat dt";
compression = "none";
hash {
algo = "sha256";

}i
}i
)z

// configurations Any number of different conf nodes can be defined under
the node, but in the actual product scenario we only need one conf.
configurations {
default = "conf";
conf {
description = "Rockchip armv7 with OP-TEE";
rollback-index = <0x0>;
firmware = "optee";
loadables = "uboot";
fdt = "fdt";
signature {
algo = "sha256,rsa2048";
padding = "pss";
key-name-hint = "dev";
sign-images = "fdt", "firmware", "loadables";

}i

An itb file can be generated using the mkimage tool and the its file:

mkimage + dtc

[u-boot.its] + [images] =========> [u-boot.itb]

The fdtdump command allows you to view the contents of the itb file:

cjh@ubuntu: ~/uboot-nextdev/u-boot$ fdtdump fit/u-boot.itb

/dts-vl/;

// magic: 0xd00dfeed
// totalsize: 0x600 (1536)
// off dt struct: 0x48
// off dt strings: 0x48c
// off mem rsvmap: 0x28
// version: 17

// last comp version: 16
// boot cpuid phys: 0x0

// size dt strings: Oxc3
// size dt struct: 0x444

/memreserve/ 7£34d3411000 600;

/A
version = <0x00000001>; // Add firmware
totalsize = <0x000bb600>;

of the entire itb file
timestamp = <0x5ecb3553>;

generation moment
description = "Simple image with OP-TEE support";
#address-cells = <0x00000001>;
images {
uboot {
data-size = <0x0007ed54>;
size
data-position = <0x00000a00>;
offsets
description =
type
os =

"U-Boot";
= "standalone";
"U-Boot";

arch = "arm";

compression = "none";

load = <0x00400000>;

hash {

// Added sha256 checksum for firmware
<0xeda8cd52 0x8f058118 0x00000003
0x0000009f 0x00000091 0x00000000>;

algo = "sha256";

value =

}i
}i
optee {
<0x0003a058>;
data-position = <0x0007£800>;
"OP-TEE";

data-size =

description =
type = "firmware";
arch = "arm";
os = "op-tee";
compression =
load = <0x08400000>;

<0x08400000>;

"none";

entry =
hash {
value = <0xa569b7fc 0x2450ed39 0x00000003
0x00001686 0x000b%9a00 0x552d426f>;
algo = "sha256";

}i

// Add new field to

| less

version number

// Add new field to describe the size

// Add timestamp for current firmware

// Add new field to describe firmware

describe firmware

0x35360000 O0x6£707465

0x35360000 0x66647400

}i

fdt {
data-size = <0x00001686>;
data-position = <0x000b%a00>;

description = "U-Boot dtb";
type = "flat dt";
compression = "none";

hash {

value = <0x0£718794 0x78ece7b2 0x00000003 0x35360000 0x00000001
0x6e730000 0x636f6e66 0x00000000>;
algo = "sha256";
}i
}i
}i

configurations {

default = "conf";
conf {
description = "Rockchip armv7 with OP-TEE";

rollback-index = <0x00000001>; // Firmware anti-rollback version

number, defaults to 0 if not specified manually.

firmware = "optee";
loadables = "uboot";
fdt = "fdt";
signature {
algo = "sha256,rsa2048";
padding = "pss";
key-name-hint = "dev";
sign-images = "fdt", "firmware", "loadables";

12.2.3 ITB Structure

The itb is essentially a collection of fdt_blob + images files, with the following two packaging methods, and the
RK platform solution adopts Structure 2.

fdt blob

|-——— - |

\ [—=———- I N | \

| | img0Q | | imgl | | img2 | | Structure 1: image within fdt blob, i.e.
itb =

\ |-————- [| === \ fdt blob(including img)
___________________________________ [

|————— | —===== |—————- [====== |

\ \ \ | \

fdt blob imgO0 imgl | img2 |Structure 2: image is outside the fdt blob,

i.e. itb =

\ \ \ | \ fdt blob + img

12.3 Platform Configuration

af://n4520
af://n4523

12.3.1 Chip Support

It has been released as an official Feature on the SDK's platform: Please refer to Home Page section for the

support status of each chip feature.

12.3.2 Code Configuration

Code coding:

// Framework Code:
./common/image.c
./common/image-fit.c

./common/spl/spl fit.c

// Platform Code:
./arch/arm/mack-rockchip/fit.c
./cmd/bootfit.c

// Tool Code:
./tools/mkimage.c

./tools/fit image.c
Configurations:

// U-Boot phase supports FIT
CONFIG ROCKCHIP_ FIT IMAGE=y

// U-Boot phase: secure boot, anti-rollback, hardware crypto
CONFIG_FIT SIGNATURE=y

CONFIG FIT ROLLBACK PROTECT=y

CONFIG DM CRYPTO=y

CONFIG FIT HW CRYPTO=y

// SPL phase: secure boot, anti-rollback, hardware crypto
CONFIG SPL FIT SIGNATURE=y

CONFIG SPL FIT ROLLBACK PROTECT=y

CONFIG_SPL DM CRYPTO=y

CONFIG_SPL FIT HW CRYPTO=y

// How many copies of uboot.itb does the uboot.img image contain, and how big is
a single copy of uboot.itb?

CONFIG_SPL_FIT IMAGE KB=2048

CONFIG SPL_FIT IMAGE MULTIPLE=2

//The default output of uboot project after compilation is uboot.img in fit
format; otherwise it is the traditional RK formats uboot.img and trust.img.

CONFIG ROCKCHIP FIT IMAGE PACK=y

Since crypto may be different for different platforms, the configuration parameters for the RSA function are also

different. Please refer to the general defconfig of the current platform for details.

af://n4524
af://n4526

CONFIG RSA N SIZE
CONFIG RSA E SIZE
CONFIG RSA_C SIZE

Generic defconfig: [chip] defconfig, e.g. rv1126 defconifg, k3568 defconifg.

If the FIT solution is a feature officially released as an SDK, then most of the base configuration is already

enabled, and the options that users need to configure themselves are:

// U-Boot Secure Boot and Anti-Rollback Mechanisms
CONFIG _FIT SIGNATURE=y
CONFIG_FIT ROLLBACK PROTECT=y

// SPL Secure Boot and Anti-Rollback Mechanism
CONFIG_SPL FIT SIGNATURE=y
CONFIG SPL _FIT ROLLBACK PROTECT=y

e CONFIG _FIT SIGNATURE not enabled: uboot can support booting three formats of firmware at the same
time: android, uimage, and fit (the released SDK will choose which ones to enable based on platform

requirements).
e CONFIG_FIT SIGNATURE enabled: uboot only supports booting fit firmware.

12.3.3 Mirror File

The final output on the FIT scheme is two FIT-formatted firmwares for downloading, uboot.img (without
trust.img) and boot.img, and an SPL file for packaging into a loader.
e uboot.img file
uboot.itb = trust + u-boot.bin + mcu.bin(option)
uboot.img = uboot.itb * N (N is normally 2 copies)
The trust and mcu files come from the rkbin project, and the build script automatically indexes and
retrives them from the rkbin project.
¢ boot.img file
boot.itb = kernel + fdt + resource + ramdisk(optional)
boot.img = boot.itb * M (M is normally 1 copies)
¢ MCU configuration

Some platforms may come with MCU firmware, which can be enabled or disabled based on the TRUST ini

configuration corresponding to different products. Example:

// File: RKTRUST/RV1126TOS TB.ini, for quick boot products, MCU enabled
[TOS]

TOSTA=bin/rv11l/rv1126 tee ta tb v1.04.bin

ADDR=0x00040000

// MCU configuration format: firmware path, boot address, status (okay or
disabled) .

// If disabled, mcu will not be packed into uboot.img.

[MCU]

MCU=bin/rv11/rv1126 mcu v1.02.bin,0x108000, okay

af://n4542

¢ Firmware Compression

Currently some platforms can support the compression of sub-firmware inside uboot.img, the support is as

follows:
Platform Compression Format Firmware
RV1126 gzip, none u-boot.bin, trust, mcu(optional)

Users can enable this by adding attributes to the corresponding TRUST ini in the rkbin project. Example:

// RKTRUST/RV1126TOS_SPI NOR TINY.ini, for small capacity SPI Nor products.
[TOS]

TOS=bin/rv11/rv1126 tee v1.02.bin

ADDR=0x08400000

[MCU]

MCU=bin/rv11/rv1126 mcu v1.00.bin, 0x208000,disabled

// Compression format: gzip or none, defaults to uncompressed if the
following configuration fields are not present.

[COMPRESSION]

COMPRESSION=gzip

e SPL file

SPL file refers to the spl/u-boot-spl.bin generated after the compilation, which is responsible for
booting the uboot.img in FIT format.Users need to use it to replace the non-open-source miniloader on the

RK platform, and eventually package as loader.
e ./fit directory

When U-Boot is done with compilation, it generates the . /fit folder in the directory, which contains a

number of intermediate files, as described in subsequent sections.

boot.img and uboot.img are compiled and generated under the sdk project and uboot project respectively.
However, boot.img with secure boot support must be repackaged and signed under the U-Boot project, as

described in the following sections.

12.3.4 ITS File

e The its file for uboot is . /fit/u-boot.its, dynamically created by the script specified by
CONFIG_SPL FIT GENERATOR in defconfig, and visible after the firmware is compiled successfully.
e The its file for boot is located under the SDK project:

device/rockchip/ [platform] /xxx.its // [platform] is the platform directory:

12.3.5 Related Tools

af://n4580
af://n4587

// Kernel packaging tools, which‘s automatically generated after compilation,
exist under both U-Boot and rkbin repositories(the one under U-Boot is generated
in real-time compilation).

./tools/mkimage

// Firmware Packaging Script

. /make.sh

// Firmware re-signing script

scripts/fit-resign.sh

// Firmware Unpacking Script

scripts/fit-unpack.sh

// Firmware Replacement Script

./scripts/fit-repack.sh

The use of the scripting tools will be covered in subsequent chapters, here let's focus on the parameters of

make.sh first.
Optional (users to decide whether to pass it on on a case-by-case basis)

e --spl-new : Passing this parameter means to use the currently compiled spl file to pack the loader;

otherwise, use the spl file in the rkbin project.
e -version-uboot [n] : Specifies the firmware version number of uboot.img. n must be a decimal

positive integer.

e -version-boot [n] : Specifies the firmware version number of boot.img. n must be a decimal positive
integer;

e -version-recovery [n] : Specifiesthe firmware version number of recovery.img. n must be a decimal

positive integer;
Required (when safe boot is enabled):

¢ -rollback-index-uboot [n] : Specifies the uboot.img firmware anti-rollback version number, n must

be a positive decimal integer
e -rollback-index-boot [n] : Specifies the boot.img firmware anti-rollback version number. n must be

a positive decimal integer;
e _—rollback-index-recovery [n] : Specifies the recovery.img firmware anti-rollback version number.

n must be a positive decimal integer;
e -no-check : Used when packaging secure firmware to skip the self-check of the secure firmware

packaging script.
Notes:

1. Firmware Anti-Rollback Version Number: It is only allowed to be activated for use if Secure Boot is
enabled, and the version number is saved in the OTP or other secure storage. Main function: To
prevent the firmware version from being rolled back for vulnerability attacks.

2. Firmware version number: optional, defaults to 0 if not specified. Main function: just as a firmware

version identifier to facilitate the user's version management of the firmware.

12.4 Non-secure Boot

12.4.1 uboot.img

Compile command:

af://n4617
af://n4618

./make.sh rv1126 --spl-new --uboot-version 10 // You may not specify --spl-new

and --uboot-version

Compilation results:

CcC spl/common/spl/spl.o

ccC spl/lib/display options.o
LD spl/common/spl/built-in.o
LD spl/lib/built-in.o

LD spl/u-boot-spl

OBJCOPY spl/u-boot-spl-nodtb.bin
CAT spl/u-boot-spl-dtb.bin
COPY spl/u-boot-spl.bin

CFGCHK u-boot.cfg

out:rvll26 spl loader v1.00.100.bin

fix opt:rvl1126 spl loader v1.00.100.bin

merge success(rvl1126_spl loader v1.00.100.bin)
/homed/cjh/uboot-nextdev

// generate rvl1126 spl loader v1.00.100.bin (Replaced the traditional miniloader
of the RK platform with spl

// loader ini file source

pack loader (SPL) okay! Input: /homed4/cjh/rkbin/RKBOOT/RV1126MINIALL.ini

// Hints from the --spl-new parameter; users can choose not to add this
parameter.

pack loader with new: spl/u-boot-spl.bin

// Generate uboot.img (with trust and uboot) with version 10
Image (no-signed, version=10): uboot.img (FIT with uboot, trust...) is ready
// trust ini file source

pack uboot.img okay! Input: /home4/cjh/rkbin/RKTRUST/RV1126TOS.ini

Platform RV1126 is build OK, with exist .config
Packaging backup: Specify multiple backups of uboot.img via defconfig configuration:

CONFIG SPL FIT IMAGE KB=2048 // the size of one itb
CONFIG SPL FIT IMAGE MULTIPLE=2 // Number of copies packaged

SPL detects and boots U-Boot and trust according to this configuration, mainly to cope with the problem of

unbootable firmware corruption caused by abnormal power loss during OTA upgrade.

12.4.2 boot.img

If the FIT solution is officially released as a feature of the SDK, a boot.img in FIT format will be generated after
the SDK is compiled.

If you want to generate boot.img for secure boot, you have to put the boot.img generated by SDK under U-Boot
project to repackage and re-sign the boot.img, because the signing tools, configurations, parameters, etc. of the

secure firmware package are all originated from U-Boot project.

af://n4626

12.5 Secure Boot

The FIT program supports secure boot, related FEATURES are as follows:

e sha256 + rsa2048 + pkcs-v2.1(pss) padding
¢ Firmware Anti-Rollback
¢ Firmware re-signing (remote signing)

¢ Crypto hardware acceleration

12.5.1 Principle

12.5.1.1 Checking Process

e Maskrom checks loader (including SPL, ddr, usbplug)
e SPL checks uboot.img (including trust, U-Boot...)
e U-Boot checks boot.img (including kernel, fdt, ramdisk...)

Currently only the sha256+rsa2048+pkes-v2.1(pss) padding security checksum mode is supported by default.

12.5.1.2 Key Storage

The RSA key is packaged by mkimage in u-boot.dtb and u-boot-spl.dtb, which are then packaged into u-boot.bin

and u-boot-spl.bin.

The format of the RSA key in u-boot.dtb is as follows (ditto for u-boot-spl.dtb):

cjh@ubuntu:~/uboot-nextdev$ fdtdump u-boot.dtb | less
/dts-v1/;

/A
#address-cells = <0x00000001>;
#size-cells = <0x00000001>;
compatible = "rockchip,rvll26-evb", "rockchip,rvl126";
model = "Rockchip RV1126 Evaluation Board";

// Signature nodes are automatically inserted and generated by the mkimage
tool. The nodes hold information such as RSA-SHA algorithm type, RSA core factor
parameters, and so on.

signature {

key-dev {
required = "conf";
algo = "sha256,rsa2048";

af://n4629
af://n4640
af://n4641
af://n4650

0x00000000
0x00000000
Oxc7aeadba
0x3e2d7ca8
0x£37e189c
0x00000000
0x00000000
0x00000004
0x00000010

0xf9f9£f690
0x5d7322cc
0x00000000
0x00000000
0x00000000
0x2£736572
0x726£636b
0x726£636b
0x30000000

0x00000000
0x00000000
0xe95771ch
0x30303000
0x00020000
0x£fe020000
0x00000003
0x0000003e
0x40666634

bi

rsa,np = <0x00000000

0x00000000
0x00000000
Oxb4c79£40
0x6a71762e
0x8cf00963
0x00000000
0x00000000
0x00000004
0x66633630

rsa,c =

rsa,r-squared =

rsa,modulus =

0x518d54a7
0x124cdc80
0x00000000
0x00000000
0x00000008
0x00000000
0x67726600
0x706d7567
0x726f636b

rsa,exponent-BN =

0x00000000
0x00000000
0x00000800
0x2f64776d
0x00000003
0x00000042
0x00001000
0x00000004
0x00000014

rsa,exponent =
rsa,n0-inverse =
rsa,num-bits =

key-name-hint =

0x00000000
0x00000000
0xa82bdf76
0x125f1828
0x00000100
0x00000000
0x00000000
0x00000002

0x00000000
0x00000000
0x1327£633
0xfb2£8387
0x36abladl
0x00000000
0x00000000
0x00000000
0x00000003

0x73797363>;

<0x00000000>;
<0x00000000>;
<0xc25ae693 0xc359f2a4 0xaB866c89d 0xb7b1994f

0xdaOb83e8
0xa0c3288a
0x00000000
0x00000000
0x00000003
0x2f64776d
0x00000008
0x00000003
0x706d7500

0x00000000
0x00000000
0264657600
0x00000002
0x00000002
0x0000006d
0x00000002
0x00000004
0x2c727631

0x06606el12
0x9265c3ae
0x00000000
0x00000000
0x00000003
0x00000003
0x00000003
0x00001000

0x00000000
0x00000000
0x00000003
OxaleO6dce
0xb7e9e852
0x00000000
0x00000000
0x00000000
0x69616c40

0Ox6adlcbf9
Ox6ac47adb
0x00000000
0x00000000
0x00000003
0x6d634066
0x00000004
0x00000003

0x00000008>;

0x00000000
0x00000000
0x616c6961
0x65303030
0x65303230
0x722d6d61l
0x6e74726f
0x00000004

0x00000000
0x00000000
0x0000002c
0x0000001b
0x0000001b
0x65303030
0x30000000
0x00000000

0x00000008>;

"dev" ;

<0x00000000 0x00000368>;
<0xe95771c5>;
<0x00000800>;

0x00000000
0x00000000
0x00000003
0xd451a706
0x7bd0011la
0x00000000
0x00000000
0x00000377
0x00000003

0x92438edd
0x00000003
0x00000000
0x00000000
0x00000002
0x00000001
0x00000001
0x00000002

0x00000000
0x00000003
0x30303030
0x3132362d
0x3132362d
0x0000001b
0x726£636b
0x00000050

0x00000000
0x00000000
0x00000003
0xc7£865e3
0x7279e0b8
0x00000000
0x00000000
0x00000004
0x6d634066

0x81e039c0
0x00000000
0x00000000
0x00000000
0x73657300
0x30303000
0x30303000
0x6e616765

<0x00000000 0x00000000 0x00000000 0x00000000

0x00000000
0x00010001
0x00000034
0x00000003
0x6e000000
0x3132362d
0x706d7563
0x636c6£63

SPL supports downloading key hash, the key-dev of u-boot-spl.dtb will have extra burn-key-hash =
<0x00000001>; .

12.5.1.3 Key Usage

Secure boot from Maskrom to kernel is unified using an RSA public key to complete the security check:

e Maskrom checks loader.

The RSA public key needs to be written into the loader's header using the PC tool rk _sign tool.
During secure booting, Maskrom first obtains the RSA public key from the loader firmware header and

verifies its legitimacy; it then uses the key to verify the loader's firmware signature.
rk_sign_tool is available from the rkbin repository. U-Boot will automatically sign the loader.

e SPL checks U-Boot and trust.

af://n4655

SPL saves the RSA public key in u-boot-spl.dtb, and then u-boot-spl.dtb is packed into u-boot-spl.bin file
(and finally packed into loader); SPL takes the RSA public key out of its own dtb file to perform a security

check on the uboot.img during secure boot.
e U-Boot checks boot.

U-Boot saves the RSA public key in u-boot.dtb, and then u-boot.dtb will be packed into u-boot.bin file
(and finally packed into uboot.img); U-Boot takes the RSA public key from its own dtb file to verify the

boot.img during the secure boot.

Therefore, the RSA Key of the current level has already been verified by the previous loader as part of its own

firmware, thus guaranteeing the security of the Key.

12.5.1.4 Signature Storage

The RSA signature result is saved in the itb file; and the signed content, specified by hashed-nodes , includes

the attributes of the entire conf node, the nodes of the packaged firmware, and so on.

The following is the signature information for u-boot.itb, ditto for boot.itb:

cjh@ubuntu:~/uboot-nextdev$ fdtdump uboot.img | less
/dts-v1l/;
configurations {
default = "conf";
conf {
description = "Rockchip armv7 with OP-TEE";
// Current firmware version number
rollback-index = <0x0000001c>;
firmware = "optee";
loadables = "uboot";
fdt = "fdt";
// Signed content and signature result, automatically inserted by
mkimage

signature {
hashed-strings = <0x00000000 0x000000da>;

// Specify the content to be signed

hashed-nodes = "/",

"/images/fdt/hash",

"/configurations", "/configurations/conf",

"/images/fdt", "/images/optee", "/images/optee/hash",

"/images/uboot", "/images/uboot/hash";
// Time of signing, version

timestamp = <0x5e9427b4d>;

signer-version = "2017.09-g8bb63db-200413-dirty #cjh";

"mkimage";

signer,

signer-name =
// signature results! ! (using sha256+rsa2048)

value = <0x78397d5d 0xb9219%a0b Oxa7cb9la7 0xelf32867 0x62719d9b

0x8901200c
0x5527864f
0x00000017
Ox6f6e006¢c
0x7a650074
0x00000000
0x00000000
0x00000000
0x00000000

OxfcbacO03a
0xbl3£f527e
0x77617265
0x72790064
0x75650073
0x00000000
0x00000000
0x00000000
0x00000000

0x1295ccc8
0xddf9eeb2
0x00000002
0x61636b2d
0x69676e65
0x00000000
0x00000000
0x00000000

Ox1cff9608
0xea50199d
0x00000009
0x7265006¢c
0x73686564
0x00000000
0x00000000
0x00000000

0x00000000>;

0xdf5£69d2
0x00000003
0x23616464
0x006b6579
0x642d7374
0x00000000
0x00000000
0x00000000

0x21391225
0x35362c72
0x6d616765
0x69676e2d
0x00000000
0x00000000
0x00000000
0x00000000

0x7afl0ca’
0x00000004
0x73006172
0x706£7369
0x00000000
0x00000000
0x00000000
0x00000000

af://n4670

algo = "sha256,rsa2048";
key-name-hint = "dev";

sign-images = "fdt", "firmware", "loadables";

12.5.1.5 Anti-rollback

e Secure boot supports specifying the current firmware version number for boot.img and uboot.img
respectively, if the current firmware version number is less than the minimum version number on the

machine, boot will not be allowed.
e Minimum version number update: After completing the security verification and confirming that the

system can be booted normally, it is updated to the OTP or secure storage.

12.5.2 Preliminary Preparation

12.5.2.1 Key

Execute the following three commands under U-Boot project to generate the RSA key pair for signing.
Normally, you only need to generate the key pair once, and then you will use this key pair to sign and verify the

firmware, so please take good care of it .

// 1. Directory for keys: keys
mkdir -p keys

// 2. Use “rk sign tool” to generate privateKey.pem and publicKey.pem for
RSA2048 (please refer to the manual of rk sign tool), and rename them as:

keys/dev.key and keys/dev.pubkey respectively.

// 3. Generate a self-signed certificate using -x509 and a private key:
keys/dev.crt (essentially equivalent to a public key)
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

If the error is reported there is no .rnd file in the user directory:

Can't load /home4/cjh//.rnd into RNG
140522933268928:error:2406F079:random number generator:RAND load_file:Cannot open
file:../crypto/rand/randfile.c:88:Filename=/home4/cjh//.rnd

Please create it manually first: touch ~/.rnd

1s keys/ view results:
dev.crt dev.key dev.pubkey

Note: The aforesaid names “keys”, “dev.key”, “dev.crt”, “dev.pubkey” cannot be changed. Because these

names are statically defined in the its file, if you change them, the package will fail.

12.5.2.2 Configuration

af://n4674
af://n4680
af://n4681
af://n4692

Enable the following configuration for U-Boot 's defconfig:

// Required
CONFIG _FIT SIGNATURE=y
CONFIG_SPL FIT SIGNATURE=y
// Optional

CONFIG_FIT ROLLBACK PROTECT=y // boot.img anti-rollback
CONFIG SPL FIT ROLLBACK PROTECT=y // uboot.img anti-rollback

It is recommended to check the configuration by make menuconfig and then update the original defconfig

file by make savedefconfig. This can avoid imposing a defconfig configuration and resulting in incorrect

dependencies, which may lead to compilation failures.

12.5.2.3 Firmware

Make a copy of the boot.img generated under the SDK project to the U-Boot root directory.

12.5.3 Compiling and Packaging

(1) Basic commands (no anti-rollback):
./make.sh rv1126 --spl-new --boot img boot.img --recovery img recovery.img

Compilation results:

// After compilation, generate signed uboot.img and boot.img.

start to sign rvl1126_spl loader v1.00.100.bin

Image (signed, version=0): wuboot.img (FIT with uboot, trust...) is ready

Image (signed, version=0): recovery.img (FIT with kernel, fdt, resource...) is
ready

Image (signed, version=0): boot.img (FIT with kernel, fdt, resource...) is ready
Image (signed): rv1126 spl loader v1.05.106.bin (with spl, ddr, usbplug) is
ready

pack uboot.img okay! Input: /home4/cjh/rkbin/RKTRUST/RV1126TOS.ini

Platform RV1126 is build OK, with new .config(make rvll26-secure defconfig)

(2) Extended command 1:

If anti-rollback is turned on, the rollback parameter must be appended to the aforesaid in (1) . Example:

// Specify the minimum version numbers of uboot.img and boot.img as 10 and 12,
respectively.
./make.sh rvl1l126 --spl-new --boot img boot.img --recovery img recovery.img --

rollback-index-uboot 10 --rollback-index-boot 12 --rollback-index-recovery 12

af://n4697
af://n4699

Compilation results:

// After compilation, the signed uboot.img and boot.img are generated and
contain the anti-rollback version number.

start to sign rv1126 spl loader v1.00.100.bin

Image (signed, version=0, rollback-index=10): uboot.img (FIT with uboot, trust)
is ready

Image (signed, version=0, rollback-index=12): recovery.img (FIT with kernel,
fdt, resource...) is ready

Image (signed, version=0, rollback-index=12): boot.img (FIT with kernel, f£fdt,
resource...) is ready

Image (signed): rv1126 spl loader v1.00.100.bin (with spl, ddr, usbplug) is
ready

(3) Extended command 2

If you want to download the public key hash to OTP/eFUSE, you must append the parameter --burn-key-hash
to the (1) or (2) above. Example:

// Specify the minimum version numbers of uboot.img and boot.img as 10 and 12,
respectively.

// it 1s require to download the public key hash into OTP/eFUSE at SPL stage
./make.sh rv1126 --spl-new --boot img boot.img --recovery img recovery.img --
rollback-index-uboot 10 --rollback-index-boot 12 --rollback-index-recovery 12 --

burn-key-hash

Compilation results:

// enable burn-key-hash
spl/u-boot-spl.dtb: burn-key-hash=1

// After compilation, the signed uboot.img and boot.img are generated and
contain the anti-rollback version number.

start to sign rvl1126_spl loader v1.00.100.bin

Image (signed, version=0, rollback-index=10): uboot.img (FIT with uboot, trust)
is ready

Image (signed, version=0, rollback-index=12): recovery.img (FIT with kernel,
fdt, resource...) 1is ready

Image (signed, version=0, rollback-index=12): Dboot.img (FIT with kernel, f£fdt,
resource...) is ready

Image (signed): rv1126 spl loader v1.00.100.bin (with spl, ddr, usbplug) is
ready

When powering up and booting, SPL will print: RSA: Write key hash successfully.

(4) Precautionary notes:

e --boot_ img: Optional, specifies the boot.img to be signed.
e --recovery img:Optional, specifies the recovery.img to be signed.

¢ --rollback-index-uboot, --rollback-index-boot, --rollback-index-recovery : Optional,

specifies the anti-rollback version number.

e --spl-new : If the compiling command doesn't have this parameter, the loader will be packaged with the
spl file in rkbin by default; otherwise, the loader will be packaged with the spl file of the current
compilation.

Because the u-boot-spl.dtb needs to be packed into the RSA public key (from the user), the SDK released
by RK will not submit the spl file in the rkbin repository to support secure boot. Therefore, the user has to
specify this parameter when compiling. However, users can also submit their own spl version to the rkbin
project, and after that they can compile the firmware without specifying this parameter, and use this stable

version of the spl file every time.

¢ The compilation generates three firmwares: loader, uboot.img, and boot.img, any of which are allowed to

be updated individually as long as the RSA key has not been changed.

12.5.4 Checking Principles

(1) Maskrom checks SPL
OTP without downloading key: Maskrom performs a non-secure boot process.

OTP with downloading key: Maskrom checks the key in the Loader, it must be the same as the one in the OTP to

start the security check, if not, it won't let it start.
(2) SPL checks U-Boot

CONFIG_SPL_FIT_SIGNATURE=y: SPL will surely perform a security check on uboot.img, and only if the
check succeeds the boot can be performed; And if uboot.img does not have a signature or the check fails, the

boot won't be performed.

CONFIG_SPL FIT SIGNATURE=n: SPL itself does not contain secure boot related code and must not check

uboot.img (no matter it is signed or not).
(3) U-Boot checks boot/recovery

CONFIG_FIT_SIGNATURE=y: U-Boot will definitely perform security checks on boot.img/recovery.img, and
boot only when the checks are successful; boot.img/recovery.img is not signed or fails to be checked, and does

not boot.

CONFIG_FIT_SIGNATURE=n: U-Boot itself contains no secure boot related code and must not check

boot.img/recovery.img (no matter it is signed or not).

Note: Whether or not the current level will check the later level has nothing to do with whether or not the
current level of firmware is signed. It only depends on whether it contains code for secure boot, i.e.

whether the above configuration is set to y or not.

12.5.5 Booting Information

The following is the information for Secure Boot:

BW=32 Col=10 Bk=8 CS0O Row=15 CS=1 Die BW=16 Size=1024MB

out

af://n4729
af://n4741

U-Boot SPL board init
U-Boot SPL 2017.09-gacb99c5-200408-dirty #cjh (Apr 09 2020 - 20:51:21)
unrecognized JEDEC id bytes: 00, 00, 00

Trying to boot from MMC1

// SPL completes signature checking

sha256,rsa2048:dev+

// Anti-rollback detection: the current uboot.img firmware version number is 10,
the minimum version number of this machine is 9.

rollback index: 10 >= 9, OK

// SPL completes hash checkings for each sub-mirror

Checking optee ... sha256+ OK
Checking uboot ... sha256+ OK
Checking fdt ... sha256+ OK

Jumping to U-Boot via OP-TEE

IL/mC8

E/TC:0 0 plat rockchip pmu init:2003 0

E/TC:0 0 plat rockchip pmu init:2006 cpu off

E/TC:0 0 plat rockchip pmusram prepare:1945 pmu sram prepare 0x14b10000
0x8400880 Oxlc

E/TC:0 0 plat rockchip pmu init:2020 pmu sram prepare

E/TC:0 0 plat rockchip pmu init:2056 remap

I/TC: OP-TEE version: 3.6.0-233-g35ecf936 #1 Tue Mar 31 08:46:13 UTC 2020 arm
I/TC: Next entry point address: 0x00400000

I/TC: Initialized

U-Boot 2017.09-gacb99c5-200408-dirty #cjh (Apr 09 2020 - 20:51:21 +0800)

Model: Rockchip RV1126 Evaluation Board
PreSerial: 2

DRAM: 1023.5 MiB

Sysmem: init

Relocation Offset: 00000000, fdt: 3df404e0

Using default environment

dwmmc@f£c50000: 0

Bootdev (atags): mmc 0
MMCO: HS200, 200Mhz
PartType: EFI

boot mode: normal

conf: sha256,rsa2048:dev+
resource: sha256+

DTB: rk-kernel.dtb

FIT: signed, conf required
HASH (c) : OK

I2c0 speed: 400000Hz

PMIC: RK8090 (on=0x10, off=0x00)
vdd logic 800000 uVv

vdd arm 800000 uVv

vdd npu init 800000 uVv

vdd vepu init 800000 uv

Hit key to stop autoboot ('CTRL+C'): O
Booting FIT Image at 0x3d8122c0 with size 0x0052b200

Fdt Ramdisk skip relocation
Loading kernel from FIT Image at 3d8122c0

Using

'conf'

configuration

// uboot completes signature checking

Verifying Hash Integrity

// Anti-rollback detection:

22,

Verifying Rollback-index

Trying

'kernel'

Description:
Type:
Compression:
Data Start:
Data Size:
Architecture:
0S:

Load Address:
Entry Point:
Hash algo:

Hash value:

sha256, rsa2048:dev+ OK

the current boot.img firmware version number is

the minimum version number of this machine is 21

22 >= 21, OK

kernel subimage

Kernel for arm

Kernel Image
uncompressed
0x3d8234c0
5349248 Bytes
ARM

Linux
0x02008000
0x02008000
sha256

= 5.1 MiB

64b4a0333£7862967be052a67ce3858884fcefebf4565db5c3828a941al5£f34a

Verifying Hash Integrity

verifications

sha256+ OK // Complete the kernel's hash

Loading ramdisk from FIT Image at 3d8122cO0

Using
Trying

'conf'

'ramdisk'

Description:
Type:
Compression:
Data Start:
Data Size:
Architecture:
0S:

Load Address:
Entry Point:
Hash algo:

Hash value:

configuration

ramdisk subi
Ramdisk for a
RAMDisk Image
uncompressed
0x3dd3d4c0
0 Bytes =
ARM

0 B

Linux
0x0a200000
unavailable
sha256

mage

rm

ytes

e3b0c44298fclcl49afbf4c8996fb92427ae41e46490934ca495991b7852b855

Verifying Hash Integrity
Hash of the ramdisk

Loading ramdisk from 0x3dd3d4cO to 0x0a200000
Loading fdt from FIT Image at 3d8122c0

Using
Trying

'conf’
'fdt!
Description:
Type:
Compression:
Data Start:
Data Size:
Architecture:
Load Address:
Hash algo:

Hash value:

configuration

fdt subimage

Device tree b
Flat Device T
uncompressed
0x3d812ecO
66974 Bytes =
ARM
0x08300000
sha256

sha256+ OK // Complete the verification for

lob for arm

ree

65.4 KiB

8fb1£f170766270ed4£37cced4b082a51614cb346c223£f96ddfe3526fafc5729d7

Verifying Hash Integrity

of fdt

sha256+ OK // Complete the verification for hash

Loading fdt from 0x3d812ecO to 0x08300000
Booting using the fdt blob at 0x8300000

Loading Kernel Image from 0x3d8234cO0 to 0x02008000 ... OK

Using Device Tree in place at 08300000, end 0831359d
Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)
Adding bank: 0x0848a000 - 0x40000000 (size: 0x37b76000)
Total: 236.327 ms

Starting kernel

[0.000000] Booting Linux on physical CPU 0xf00

[0.000000] Linux version 4.19.111 (cjh@ubuntu) (gcc version 6.3.1 20170404
(Linaro GCC 6.3-2017.05)) #28 SMP PREEMPT Wed Mar 25 16:03:27 CST 2020

[0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d

12.6 Remote Signature

From the above sections, it can be seen that the creation of secure firmware requires the user to complete it on
the local PC, i.e. the user must be in possession of: the RSA key pair and the firmware. However, in practical
scenarios, the user may need to upload the firmware to a remote server, which will sign it with the RSA private
key, and then return the signed firmware to the local user. In this case, RK's FIT scheme needs to be realized by

“re-signing”.
12.6.1 Implementation Idea

¢ Since it can only get the server's public key, users first uses the temporary private key + server public key
to pack and sign the firmware once on the local PC, which will generate the secure firmware with the

temporary signature and the signed data;

The purpose of the public key is to package the public key into a dtb file to be used during the

secure boot process; the purpose of the private key is for the temporary signature.

e The user sends the signed data to the server (no need to send the whole firmware, which saves time), the

server uses the private key to sign the signed data, and then returns the signature to the user;

e The user replaces the temporary signature in the secure firmware with this signature to obtain the final

secure firmware for downloading.
12.6.2 Signed Data

The signed data mentioned in the above section contains: fdt blob configuration + submirror hash set.

¢ fdt blob node configuration

‘“hashed-nodes specifies a series of nodes whose contents are incorporated into the signed data.

cjh@ubuntu:~/uboot-nextdev$ fdtdump uboot.img | less
/dts-vl/;

configurations {

default = "conf";
conf {
description = "Rockchip armv7 with OP-TEE";

rollback-index = <0x0000001c>;

af://n4744
af://n4746
af://n4756

firmware = "optee";
loadables = "uboot";

fdt = "fdt";

signature {
hashed-strings = <0x00000000 0x000000da>;
// The contents of these nodes are incorporated into the
signed data
hashed-nodes = "/", "/configurations/conf", "/images/fdt",
"/images/fdt/hash", "/images/optee", "/images/optee/hash", "/images/uboot",
"/images/uboot/hash";

¢ The set of submirror hashes.

mkimage automatically generates hash values for each submirror and appends them to the hash nodes. All
sub-mirror hash values specified by sign-images are incorporated into the signed data (essentially, the

hash nodes are specified via hashed-nodes). Example:

cjh@ubuntu:~/uboot-nextdev/u-boot$ fdtdump fit/u-boot.itb | less

/dts-v1l/;
/A
totalsize = <0x000bb600>;
timestamp <0x5ecb3553>;
description = "Simple image with OP-TEE support";
#address-cells = <0x00000001>;
images {
uboot {

data-size = <0x0007ed54>;
data-position = <0x00000a00>;

description = "U-Boot";
type = "standalone";

os = "U-Boot";

arch = "arm";
compression = "none";
load = <0x00400000>;
hash {

// The hash of the uboot image, automatically calculated and
generated by the mkimage tool
value = <0OxedaB8cd52 0x8£f058118 0x00000003 0x35360000
0x6£707465 0x0000009f 0x00000091 0x00000000>;
algo = "sha256";
}i

12.6.3 Detailed Steps

The RSA key pairs used to sign the firmware are: dev.key, dev.pubkey, and dev.crt. dev.key is held by the remote

server as the private key, and the user has only dev.pubkey and dev.crt.

Step 1:

af://n4767

113

In local U-Boot project environment: user put dev.crt into keys directory, then use RK's “rk_sign_tool” tool to
generate a random temporary private key, name it dev.key and put it into keys directory. Refer to the above
section (but add --no-check to the compilation parameter) to generate the signed firmware uboot.img and

boot.img (which won't actually be used in the end, what users need are the intermediate files).

Note: The compiling command should specify the parameter --no-check , otherwise the self-checking of the

packing script will fail due to the mismatch between dev.key and dev.crt. For example:

./make.sh rv1126 --spl-new --boot img boot.img --rollback-index-uboot 10 --

rollback-index-boot 12 --no-check

In addition to generating the signed firmware uboot.img and boot.img, users can also get intermediate files in the

fit/ directory

// Signed content (data2sign means: data to sign)
fit/uboot.data2sign
fit/boot.data2sign

// Signed itb files (using a temporary private key), our img files are obtained
from multiple backups of them

fit/uboot.itb

fit/boot.itb

Step 2:

The user sends uboot.data2sign to the remote server. Assuming that the remote server holds the private key

dev.key, use the following command to sign and output the signing result: uboot.sig

openssl dgst -sha256 -sign dev.key -sigopt rsa padding mode:pss -out uboot.sig
uboot.data2sign

The server returns the signature result file uboot.sig to the user, who uses uboot.sig to replace the temporary

signature in uboot.itb:

./scripts/fit-resign.sh -f fit/uboot.itb -s uboot.sig // A new uboot.img will be

generated and used for downloading.

Ditto for the boot.itb file. From this the user gets the final valid signed firmware uboot.img and boot.img.
Notes:

e The itb file specified by -f in fit-resign.sh is not an img file. The script will generate the img file after re-
signing the itb.

e The itb file used to execute fit-resign.sh must have been compiled in step 1, i.e., the itb file and the
data2sign file are in one-to-one correspondence because the data2sign information contains the timestamp
at which the itb file was generated, i.e., /timestamp = <... > . So even if there are no current code
changes, recompiling to get a new uboot.itb and replacing uboot.sig into the new uboot.itb will still cause a
secure boot failure!

¢ Since there is no private key, the loader needs to be sent separately to the server side for signing.

12.6.4 Other Solutions

af://n4789

Besides the “re-signing” method, is it possible to upload the whole firmware (boot.img, uboot.img) or discrete

images (u-boot.bin, fdt, ramdisk, kernel ...) directly to the server for signing?

Considering the design principles and implementation of FIT, other solutions are difficult to implement.
Explainations are as follows :
¢ Solution 1: Upload non-secure boot.img, uboot.img to server for repackaging + signing

Problematic point: You also need to upload the configuration information, u-boot-spl.bin file, etc. under the

local U-Boot compilation environment.
¢ Solution 2: Upload secure boot.img, uboot.img to server for repackaging + signing

Problematic point: The RSA public key has been packed when compiling the firmware locally, and the
server will pack the RSA public key twice.

e Solution 3: Upload all discrete images (kernel, dtb, ramdisk, resource...) for packaging + signing

Problematic point: It is cumbersome with so many files to upload, and has the same problem as solution

one.

The common problematic point of the above solutions: the server side must use RK's mkimage tool,

which is likely to be updated by RK.

In conclusion, the current “re-signing” is the easiest, dependency-free, least error-prone solution: all the user

need is uploading the signed data, and then the server uses the openssl command to sign it.

12.7 Firmware Unpacking

The user can unpack the firmware with the help of a script, such as boot.img:

cjh@ubuntu:~/uboot-nextdev$./scripts/fit-unpack.sh -f boot.img -o out

Unpack to directory out:

fdt : 82813 bytes... sha256+
kernel : 5844640 bytes... sha256+
ramdisk : 0 bytes... sha256+
resource : 120832 bytes... sha256+

If img contains multiple backups, the script only unpackages the first itb; sha256+ means the firmware is

not corrupted, otherwise it shows sha256-.

12.8 Firmware Replacement

Users can batch replace sub-firmware with the help of scripts. For example: replace self-own bl31.elf into

other‘s uboot_legacy.img:
1. Compile your own uboot.img with your own bl31.elf

2. Unpack uboot_legacy.img to the out/ directory with fit-unpack.sh

af://n4805
af://n4810

cjh@ubuntu:~/uboot-nextdev$./scripts/fit-unpack.sh -f uboot legacy.img -o

out/

uboot legacy.img: Device Tree Blob version 17,
block size=197,

Unpack to directory out:

uboot
atf-1
atf-2
atf-3
optee
fdt

576352 bytes.
69089 bytes..
36864 bytes...
24576 bytes..
228134 bytes.
8867 bytes...

3. Delete all atf-xxx files from the out/ directory.

DT structure block size=2204

.. sha256+

sha256+
sha256+
sha256+

.. sha256+

sha256+

size=2560,

boot CPU=0, string

4. Use fit-repack.sh to replace all the sub-mirrors in out/ into your own uboot.img. At this point, the new

uboot.img contains your own bl31 and the other sub-mirrors in uboot legacy.img, which achieves the

desired replacement effect.

cjh@ubuntu:~/uboot-nextdev$

uboot.img:

size=197,

DT structure block size=2204

Unpack to directory out/repack/:

uboot
atf-1
atf-2
atf-3
optee
fdt

Image (repack) :

Principle Explanation:

576352 bytes...
69089 bytes...
36864 bytes...
24576 bytes...
228134 bytes...
8867 bytes...

uboot.img is ready

Device Tree Blob version 17, size=2560,

sha256+
sha256+
sha256+
sha256+

sha256+
sha256+

./scripts/fit-repack.sh -f uboot.img -d out/

boot CPU=0, string block

The sub-mirror replacement strategy is not “replace my sub-mirror into his uboot.img”, but “replace his sub-

mirror into my uboot.img”.

Reason: the atf-xxx in uboot.img comes from bl31.elf, the number of atf-xxx contained in the old and new

bl31.elf may be different, and if it is different, it can't be replaced equally. Although the number of sub-mitrors

other than atf-xxx such as u-boot, bl32, mcu, etc. are fixed, this reverse substitution strategy is used in order to

support the replacement of bl31.elf.

The above describes the replacement of bl31.elf, and the same strategy is applicable for the replacement of other

submirrors.

12.9 Safety Checking Step-by-Step

1. Enter the u-boot directory, open configs/rxxxxx_defconfig of the corresponding platform and select the

following configuration:

af://n4827

// Required
CONFIG_FIT SIGNATURE=y
CONFIG_SPL FIT SIGNATURE=y

// Optional
CONFIG FIT ROLLBACK PROTECT=y // boot.img anti-rollback
CONFIG_SPL_FIT ROLLBACK PROTECT=y // uboot.img anti-rollback

2. Perform the following to generate keys:

mkdir -p keys

../rkbin/tools/rk_sign tool kk --bits 2048 --out

cp privateKey.pem keys/dev.key && cp publicKey.pem keys/dev.pubkey
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

Note: This step can be performed just once, and then save these keys properly.

3. Compile and sign, take rv1126 as an example (if compiling and signing other chip firmware, such as

k3566, just change rv1126 to rk3566 in the following command):

// Linux: Copy boot.img and recovery.img to the u-boot file, execute the
following script to sign loader,uboot,boot, recovery, set the anti-version
rollback number of uboot,boot,recovery, and note that the anti-rollback version
number is configured according to the need.

./make.sh rv1126 --spl-new --boot img boot.img --recovery img recovery.img --

rollback-index-uboot 1 --rollback-index-boot 2

// Android: signature loader, uboot, set uboot anti-version rollback number, and
note that the anti-rollback version number is configured according to the need.

./make.sh rv1126 --spl-new --rollback-index-uboot 1

If the compilation appears:

Can't load XXXXXX//.rnd into RNG

Execute:

touch ~/.rnd

4. Public key hash downloading:

// Linux: Copy boot.img and recovery.img to the u-boot file, execute the
following script to sign loader,uboot,boot, recovery, set the anti-rollback
version number of uboot,boot,recovery, note that the anti-rollback version
number is configured according to the need to enable the downloading of the key
hash

./make.sh rv1126 --spl-new --boot img boot.img --recovery img recovery.img --

rollback-index-uboot 1 --rollback-index-boot 2 --burn-key-hash

// Android: Sign loader,uboot, set the anti-rollback version number of uboot,
note that the anti-rollback version number is configured according to the need
to enable the downloading of the key hash

./make.sh rv1126 --spl-new --rollback-index-uboot 1 --burn-key-hash

Note: This step would configure --burn-key-hash after the entire product development has been verified,

otherwise security is turned on. And only signed firmware can be updated during product development.
5. Other firmware signatures for Android :

Please refer to {Rockchip Developer Guide Secure Boot for UBoot Next Dev_ CN.md)

13. Chapter-13 Fast Boot

13.1 Chip Support

e rvl126

13.2 Storage Support

e ecMMC

e spinor

13.3 bootrom Support

Currently the spi nor driver of bootrom supports 4-wire DMA mode to load the lower level firmware, this
support has been configured directly in the usbplug when burning firmware, customers do not need to configure

again.

eMMC has not been optimized for this.

13.4 U-Boot SPL Support

Quick boot in FIT format is supported under U-Boot SPL, as well as keystroke entry into loader mode and low
battery detection.

Configurations:
CONFIG SPL KERNEL BOOT=y // Enable quick boot function
CONFIG SPL BLK READ PREPARE=y // Enable preloading function
CONFIG_SPL MISC DECOMPRESS=y // Enable decompression function

CONFIG_SPL_ROCKCHIP HW DECOMPRESS=y
U-Boot SPL supports preload function, after enabling the preload function, the firmware can be loaded while
executing other programs. Currently it is mainly used to preload ramdisk.

For example, preloading a gzip-compressed ramdisk, the compression command:

cat ramdisk | gzip -n -f -9 > ramdisk.gz

The its file is configured as follows:

ramdisk {
data = /incbin/ ("./images-tb/ramdisk.gz");
compression = "gzip"; // compression format
type = "ramdisk";

arch = "arm";

af://n4856
af://n4857
af://n4861
af://n4867
af://n4870

os = "linux";

preload = <1>; // preloaded symbol

comp = <0x5800000>; // loading address

load = <0x2800000>; // decompression address

decomp-async; // asynchronous decompression
hash {
algo = "sha256";

uboot-ignore = <1>; // No hash checks.
}i
Compile firmware, e.g. compile rv1126 eMMC firmware:

./make.sh rvll26-emmc-tb && ./make.sh —--spl

13.5 MCU Configuration

Currently the main role of mcu is to assist the system to boot up and initialize the ISP and other modules in

advance. kernel will take over the control of these hardware modules after booting.

Configured within the chip file corresponding to rkbin/RKTRUST, using rv1126 as an example:

[MCU]
MCU=bin/rv11/rv1126 mcu v1.02.bin, 0x108000,0kay // Configure the corresponding

firmware location, boot address and enable flag
Address of mcu program:

https://10.10.10.29/admin/repos/rtos/rt-thread/rt-thread-amp
https://10.10.10.29/admin/repos/rk/mcu/hal

After U-Boot is compiled, it will package the mcu firmware into uboot.img. When the system boots, SPL will

parse and load the mcu firmware from uboot.img.

13.6 Kernel Support

Configuration:
CONFIG ROCKCHIP THUNDER BOOT=y // Enable quick boot function
CONFIG_ROCKCHIP THUNDER BOOT MMC=y // Enable the support for emmc
quick boot optimization
CONFIG ROCKCHIP THUNDER BOOT SFC=y // Enable the support for spi

nor quick boot optimization
CONFIG VIDEO ROCKCHIP THUNDER BOOT ISP=y // Enable the support for ISP

nor quick boot optimization
For quick booting, SPL does not modify the parameters of kernel dtb based on actual hardware parameters, so
some parameters need to be configured by the user, specifically

e memory

¢ Size of ramdisk before and after decompression

af://n4881
af://n4888

For details please refer: kernel/arch/arm/boot/dts/rv1126-thunder-boot.dtsi

memory: memory {

device type = "memory";

reg = <0x00000000 0x20000000>; //Need to be pre-defined based on real DDR
capacity, SPL does not correct it

}i

reserved-memory {
trust@0 {
reg = <0x00000000 0x00200000>; // trust space
no-map;
}i

trust@200000 {
reg = <0x00200000 0x00008000>;
}i

ramoops@210000 {
compatible = "ramoops";
reg = <0x00210000 0x000£0000>;
record-size = <0x20000>;
console-size = <0x20000>;
ftrace-size = <0x00000>;
pmsg-size = <0x50000>;

}i

rtos@300000 {
reg = <0x00300000 0x00100000>; // Reserved for use on the client side,
can be deleted if not in use
no-map;

}i

ramdisk r: ramdisk@2800000 {
reg = <0x02800000 (48 * 0x00100000)>; // Decompression source address,
can be changed according to the actual size

bi

ramdisk c: ramdisk@5800000 {
reg = <0x05800000 (20 * 0x00100000)>; // Compression source address, can
be changed based on actual size
}i
}i

Configuration for emmc:

/A
reserved-memory {
mmc_ecsd: mmc@20£000 {
reg = <0x0020f000 0x00001000>; // SPL upload ecsd region
to kernel

}i

mmc_idmac: mmc@500000 {
reg = <0x00500000 0x00100000>; //When preloading the
ramdisk, the memory area of idmac is reserved, and when the preloading is

finished, the memory in this area is released.

}i

thunder boot mmc: thunder-boot-mmc {
compatible = "rockchip, thunder-boot-mmc";
reg = <0xffc50000 0x4000>;
memory-region-src = <&ramdisk c>;
memory-region-dst = <&ramdisk r>;
memory-region-idmac = <&mmc_ idmac>;

bi

}i

Configuration for spi nor:

/A

thunder boot spi nor: thunder-boot-spi-nor {
compatible = "rockchip, thunder-boot-sfc";
reg = <0xffc90000 0x4000>;
memory-region-src = <&ramdisk c>;

memory-region-dst = <&ramdisk r>;

13.7 Fast Boot Process

af://n4903

Bootrom

=& 1#FU-Boor?

MEEIT

U-Boot

Jn#Emcu &1 Tmeu

#H{Treset & trust

mEREE

kernel/ramdisk

R HARER

& {Ttrust

iZfTkernel

Kernel f2ER0K
EFmcUTT a

RRRIRATIR 1L

kernel iIE{T

initFF 2

14. Chapter-14 Platform Definition

14.1 ATF/OPTEE

1. Minimum version of ATF/OPTEE for U-Boot charging standby requirements

af://n4908
af://n4909

Chips Type
RV1108
RK1808
RK1806
RK3036
RK3128x
RK3126
RK322x
RK3288
RK3368
RK3328
RK3399
RK3399Pro

RK3399Pro-npu

RK3308

PX30
RK3326

RV1126/RV1109

RK3568

RK3566

RK3588
RV1106/RV1103
RK3528

RK3562

RK3576
RV1106B/RV1103B

RK3506

14.2 Clock

Minimum Version Number
N/A

N/A

N/A

N/A

N/A

rk3126 tee ta v1.39.bin
N/A

k3288 tee ta v1.43.bin
rk3368h_bl31 v2.22.elf
N/A

k3399 bl31 vl.32.elf
k3399 bl131 vl.32.elf
rk3399 bl31 v1.32.elf

rk3308_bl31 v2.00.elf

rk3308 bl31 aarch32 v2.20.elf

px30 bl31 v1.05.elf
rk3326 bl31 v1.05.elf
N/A

k3588 bl31 v1.26.elf
rk3588 bl31 ultra v2.06.elf

rk3588 bl31 vl1.26.elf
rk3588 bl31 ultra v2.06.elf

k3588 _bl31_vl1.24.elf
N/A

N/A

In-process
tk3576_bl31_v1.04.elf
N/A

In-process

af://n4995

1. CPU Clocking Support List

Chips Clocking Frequency enhancement processor
RV1108 N/A N/A
RK1808 N/A N/A
RK1806 N/A N/A
RK3036 N/A N/A
RK3128x N/A N/A
RK3126 N/A N/A
RK322x N/A N/A
RK3288 N/A N/A
RK3368 N/A N/A
RK3328 N/A N/A
RK3399 N/A N/A
RK3399Pro N/A N/A
RK3399Pro-npu N/A N/A
RK3308 N/A N/A
PX30 Ordinary clock Voltage + Frequency
RK3326 Ordinary clock Voltage + Frequency
RV1126/RV1109 N/A N/A
RK3568 SCMI clock Voltage + Frequency
RK3566 SCMI clock Voltage + Frequency
RK3588 N/A N/A
RV1106/RV1103 N/A N/A
RK3528 SCMI clock Voltage
RK3562 SCMI clock Voltage
RK3576 N/A N/A
RV1106B/RV1103B N/A N/A
RK3506 N/A N/A

14.3 Defconfig

1. Defconfig support by platforms (subject to SDK release)

af://n5108

“[chip]_defconfig” or ‘[chip].config’ are usually full-featured versions, the rest are feature-specific.

Chips

RV1108
RK1808
RK1806
RK3036
RK3128x
RK3126
RK322x
RK3288
RK3368
RK3328
RK3399
RK3399Pro

RK3399Pro-npu

RK3308

PX30

RK3326

RV1126

RV1126

defconfig

evb-rv1108_defconfig
rk1808 defconfig
rk1806_defconfig
rk3036_defconfig
rk3128x_defconfig
rk3126_defconfig
rk322x_defconfig
rk3288 defconfig
rk3368 defconfig
rk3328 defconfig
k3399 defconfig
rk3399pro_defconfig
rknpu-lion_defconfig

rk3308 defconfig
rk3308-
aarch32_defconfig

px30_defconfig

rk3326_defconfig
rk3326-
aarch32_defconfig

rv1126_defconfig
rv1126-ab.config
rv1126-spi-nor-

tiny defconfig
rvl126-ramboot.config
rv1126-usbplug.config
rv1126-dfu.config
rv1126-ipc.config

rv1126-emmc-tb.config
rv1126-1p3-emmc-
tb.config
rv1126-spi-nor-tb.config

Support kernel
dtb

N

Remarks

generic version
generic version
generic version
generic version
generic version
generic version
generic version
generic version
generic version
generic version
generic version
generic version

generic version

generic version

Support aarch32 mode

generic version

generic version

Support aarch32 mode

generic version

generic version+supportA/B
Spi Nor small capacity

No memory device (memory
boot)

usbplug function

Support dfu

Use on ipc sdk

eMMC+DDR3 thunderboot
eMMC+LP3 thunderboot
Spi Nor+DDR3 thunderboot

Chips

RK3568

RK3566

RK3588

RV1106/RV1103

RK3528

RK3562

RK3576

RV1106B

RV1103B

defconfig

rk3568 defconfig
rk3568-dfu.config
rk3568-nand.config
rk3568-spl-spi-
nand_defconfig
rk3568-aarch32.config
rk3568-usbplug.config

rk3566.config
rk3566-eink.config

rk3588 defconfig
rk3588-ramboot.config
rk3588-sata.config
rk3588-aarch32.config
rk3588-ipc.config

rv1106_defconfig
rv1106-emmc-
tb_defconfig
rv1106-spi-nor-
tb_defconfig
rv1106-spi-nor_defconfig
rv1106-display.config
rv1106-dfu.config
rv1106-ipc.config

k3528 defconfig

k3562 defconfig

rk3576_defconfig
rk3576-usbplug.config
rk3576-car.config
rk3576-ab-car.config
rk3576-eink.config

rv1106b_defconfig
rv1106b-emmc-
tb_defconfig
rv1106b-spi-nand-
tb_defconfig

rv1103b_defconfig
rv1103b-optee.config
rv1103b-spi-
nor_defconfig

Support kernel
dtb

Remarks

generic version

Support dfu

Support MLC/TLC/ eMMC
SPI-nand dedicated SPL
Support aarch32 mode
Support usbplug mode

generic version

E-book version

generic version

No memory device (memory
boot)

Dual storage support for sata
booting

Support for aarch32 mode
Use on ipc sdk

generic version
eMMC thunderboot
Spi Nor thunderboot
Spi Nor small capacity
Support for boot logos
Support dfu

Use on ipc sdk

generic version
generic version

generic version

Open source usbplug
In-vehicle version

Support ab system in-vehicle
version

E-book version

generic version
eMMC thunderboot
Spi Nand thunderboot

generic version
Support OP-TEE
Spi Nor small capacity

Chips defconfig

rk3506_defconfig
rk3506 tb.config
rk3506-amp.config
rk3506b.config

RK3506

14.4 DFU

1. DFU Feature Support List:

Support kernel
dtb

Remarks

generic version
thunderboot version
Use on amp sdk
Use on RK3506B

af://n5260

Chips

RV1108
RK1808
RK1806
RK3036
RK3128x
RK3126
RK322x
RK3288
RK3368
RK3328
RK3399
RK3399Pro
RK3399Pro-npu
RK3308

PX30

RK3326
RV1126/RV1109
RK3568
RK3566
RK3588
RV1106/RV1103
RK3528
RK3562

RK3576

RV1106B/RV1103B

RK3506

14.5 Optee

defconfig

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
rv1126-dfu.config
N/A

N/A
rk3568-dfu.config
rv1106-dfu.config
N/A

N/A

N/A

N/A

N/A

1. The applicability of the optee client interface across platforms

af://n5346

API

trusty_read_vbootkey_hash
trusty_write_vbootkey_hash
trusty_read_vbootkey_enable_flag
trusty_write_oem_otp_key
trusty_oem_otp_key_is_written
trusty_set_oem_hr_otp_read_lock

trusty_oem_otp_key_cipher

RVI1109/RV1126

2 2 2

RK3566/RK3568

2 2 2

RK3588

RV1106/RV1103

N/A

N/A

N/A

N/A

N/A

N/A

N/A

RK3528

RK3562

P N N

RK3576

RV1106B/RV1103B

RK3506

N/A

N/A

N/A

N/A

N/A

N/A

N/A

others

N/A

N/A

N/A

N/A

15. Chapter-15 Remarks

15.1 SDK Compatibility

15.1.1 androidboot.mode Compatibility

For SDK versions earlier than Android 8.1, the following configurations must be enabled for the U-Boot to

properly boot Android:
CONFIG_RKIMG ANDROID BOOTMODE LEGACY
Please refer to the submission for the reason:

commit a7774£5911624928ed1d9%cfed5453aab206c512e
Author: Zhangbin Tong <zebulun.tong@rock-chips.com>
Date: Thu Sep 6 17:35:16 2018 +0800

common: boot rkimg: set "androidboot.mode=" as "normal" or "charger"

- The legacy setting rule is deprecated(Android SDK < 8.1).
- Provide CONFIG_RKIMG_ANDROID BOOTMODE_LEGACY to enable legacy setting.

Change-Id: I5c8b442b02df068a0ab98ccc81a4f008ebeb540cl
Signed-off-by: Zhangbin Tong <zebulun.tong@rock-chips.com>
Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

15.1.2 MISC Compatibility

The purpose of misc.img is to serve as the boot interaction between U-Boot and Android, and the main content is
BCB (Bootloader Control Block).

Due to the history of the RK platform, for SDK versions greater than or equal to Android-10.0, the BCB in
misc.img must be stored in the misc partition at offset 0; for versions lower than Android-10.0, the BCB must be
stored in the misc partition at offset 16KB.

Users don't need extra processing when they get the released SDK, U-Boot will adapt itself to be compatible.
However, if users take the misc.img of different SDKs and mix them, problems may occur. The phenomenon is

generally that Android will keep entering recovery mode.

af://n5449
af://n5450
af://n5451
af://n5456

16. Chapter-16 Tools

Paths to development tools related to this chapter (using the U-Boot root directory as a reference point):

./scripts/mkbootimg
./scripts/unpack bootimg
./scripts/repack-bootimg
./scripts/unpack resource.sh
./scripts/stacktrace.sh
./tools/patman/patman
./tools/buildman/buildman

./rkbin/tools/resource tool
./rkbin/tools/loaderimage
./rkbin/tools/trust merger

./rkbin/tools/boot_merger

16.1 trust_merger

Function: Pack bl30, bl31, bl32 bin files for 64-bit platforms according to ini configuration file and generate

trust.img.
ini file:

Take RK3368TRUST.ini as an example:

[VERSION]

MAJOR=0 ----major version number

MINOR=1 ----minor version number

[BL30 OPTION] --—-b130, Currently set to mcu bin

SEC=1 ----BL30 bin exists

PATH=tools/rk tools/bin/rk33/rk3368b130 v2.00.bin --—-Specify the bin path
ADDR=0xf£8c0000 ----Load and run addresses in firmware DDRs
[BL31 OPTION] -—-—--b131, currently set to multi-core and power
management related bin

SEC=1 ----BL31 bin exists

PATH=tools/rk tools/bin/rk33/rk33680131-20150401-v0.1.bin----Specify the bin
path

ADDR=0x00008000 ----Load and run address in firmware DDR

[BL32_ OPTION]

SEC=0 ----BL32 bin does not exist

[BL33 OPTION]

SEC=0 ----BL33 bin does not exist

[OUTPUT]

PATH=trust.img [OUTPUT] -—-—-Output firmware name

Packing command:

af://n5462
af://n5465

/*

* @<sha>: optional. sha related, refer to make.sh

* @<rsa>: optional. rsa related, refer to make.sh

* (@<size>: optional, formats: --size [KB] [count].the size of the output file,
When omitted, the default is 2M for a single copy and 2 copies for a package.

* @[ini file]: mandatory. ini file

*/

./tools/trust merger <sha> <rsa> <size> [ini file]

templates:

./tools/trust merger --rsa 3 --sha 2 ./ RKTRUST/RK3399TRUST.ini
out:trust.img

merge success (trust.img)

unpacking command:

// @[input image]: Mandatory, firmware for unpacking, typically trust.img

./tools/trust merger --unpack [input image]

Templates:

./tools/trust merger --unpack trust.img

File Size = 4194304
Header Tag:BL3X
Header version:256
Header flag:35
SrcFileNum:4
SignOffset:992
Component 0:
ComponentID:BL31
StorageAddr:0x4
ImageSize:0x1cO
LoadAddr:0x10000
Component 1:
ComponentID:BL31
StorageAddr:0xlc4
ImageSize:0x10
LoadAddr:0xf£8c0000
Component 2:
ComponentID:BL31
StorageAddr:0x1d4
ImageSize:0x48
LoadAddr:0xf£8c2000
Component 3:
ComponentID:BL32
StorageAddr:0x21c
ImageSize:0x2e0
LoadAddr:0x8400000

unpack success

16.2 boot_merger

Function: Pack miniloader + ddr + usb plug according to ini configuration file, generate loader firmware.
ini file:

Take the RK3288MINIALL.ini file as an example:

[CHIP NAME]

NAME=RK320A —---—Chip Name: “RK” plus the 4B chip type number
agreed with maskrom

[VERSION]

MAJOR=2 —-—---Major version number

MINOR=36 ----Minor version number

[CODE471 OPTION] —-—-—--code471, currently set to ddr bin
NUM=1

Pathl=tools/rk_tools/bin/rk32/rk3288 ddr 400MHz v1.06.bin

[CODE472 OPTION] ----code472, currently set to usbplug bin
NUM=1

Pathl=tools/rk tools/bin/rk32/rk3288 usbplug v2.36.bin
[LOADER OPTION]

NUM=2
LOADER1=FlashData ----flash data, currently set to ddr bin
LOADER2=FlashBoot ---—flash boot, Currently set to miniloader bin

FlashData=tools/rk tools/bin/rk32/rk3288 ddr 400MHz v1.06.bin
FlashBoot=tools/rk_tools/bin/rk32/rk3288 miniloader v2.36.bin
[OUTPUT] ----Output file name
PATH=rk3288 loader v1.06.236.bin

Packing command:

// @[ini file]: mandatory. ini file

./tools/boot merger [ini file]

Template:

./tools/boot merger ./RKBOOT/RK3399MINIALL.ini
out:rk3399 loader v1.17.115.bin

fix opt:rk3399 loader v1.17.115.bin

merge success(rk3399_loader_v1.17.115.bin)

Unpacking command:

// @[input image]: Mandatory. Firmware for unpacking, usually a loader file

./tools/boot merger --unpack [input image]

Template:

af://n5478

./tools/boot merger --unpack rk3399 loader v1.17.115.bin
unpack entry(rk3399 ddr 800MHz v1.17)

(
unpack entry(rk3399 usbplug v1.15)
unpack entry(FlashData)

(

unpack entry(FlashBoot)

unpack success

16.3 loaderimage

Functionality:

e Package u-boot.bin to generate uboot.img

e Package tee bin for 32-bit platforms to generate trust.img

Package u-boot:

/*

* @[input bin]: Required. bin source file

* @[output image]: Required. Output File

* @[load addr]: Required. the load Address

* @<size>: Optional, Format: --size [KB] [count]. Output file size, when it is
ommitted, defaulted as 1M for one copy, and four copies for a package.

*/

./tools/loaderimage --pack --uboot [input bin] [output image] [load addr] <size>
Template

./tools/loaderimage --pack --uboot ./u-boot.bin uboot.img 0x60000000 --size 1024
2

load addr is 0x60000000!
pack input u-boot.bin
pack file size: 701981
crc = 0xc595eb85
uboot version: U-Boot 2017.09-02593-gb6e59d9 (Feb 18 2019 - 13:58:53)

pack uboot.img success!
Unpacks u-boot:

/*
* @[input image]: Required. Unpacking source files

* @[output bin]: Required. Unpack the output file, any name will do
*/

./tools/loaderimage --unpack --uboot [input image] [output bin]

Templates:

./tools/loaderimage --unpack —--uboot uboot.img uboot.bin
unpack input uboot.img

unpack uboot.bin success!

af://n5491

Packaging trust:

/*

* @[input bin]: Required. bin file

* @[output image]: Required, output File

* @[load addr]: Required, the load Address

* @<size>: Optional, Format: --size [KB] [count]. Output file size, when it is

ommitted, defaulted as 1M for one copy, and four copies for a package.
*/

./tools/loaderimage --pack --trustos [input bin] [output image] [load addr]

<size>
Templates:

./tools/loaderimage --pack --trustos ./bin/rk32/rk322x tee v2.00.bin trust.img \
0x80000000 --size 1024 2

load addr is 0x80000000!
pack input bin/rk32/rk322x tee v2.00.bin
pack file size: 333896
crc = 0x2de93b46

pack trust.img success!
Unpacking trust:
/ *
* @[input image]: Required. Unpacking source files

* @[output bin]: Required. the output file after unoacking, any name will do
*/

./tools/loaderimage --unpack —--trustos [input image] [output bin]

Templates

./tools/loaderimage --unpack --trustos trust.img tee.bin
unpack input trust.img

unpack tee.bin success!

16.4 resource_tool

Function: Pack any resource file to generate resource.img.
Packing command:
./tools/resource tool [--pack] [--image=<resource.img>] <file list>

Templates:

./scripts/resource tool ./arch/arm/boot/dts/rk3126-evb.dtb logo.bmp
logo kernel.bmp

Pack to resource.img successed!

af://n5514

Unpacking command:

./tools/resource_tool --unpack --image=<resource.img> [output dir]

Templates:

./tools/resource tool --unpack --image=resource.img ./out/

Dump header:
partition version:0.0
header size:1l
index tbl:
offset:1 entry size:l entry num:3

Dump Index table:

entry (0) :

path:rk-kernel.dtb

offset:4 size:33728
entry (1) :

path:logo.bmp

offset:70 size:170326
entry(2) :

path:logo kernel.bmp
offset:403 size:19160

Unack resource.img to ./out successed!

16.5 mkimage

Function: Generate Loader firmware in SPL mode.

For example, the following command generates the IDBLOCK format required by Rockchip's bootrom. This
command also modifies the first 4 bytes of u-boot-tpl.bin to be the ID required by the bootrom:

./tools/mkimage -n rk3328 -T rksd -d tpl/u-boot-tpl.bin idbloader.img
Detailed reference:

./doc/mkimage.1l

16.6 stacktrace.sh

Function: parse the call stack information, please refer to RK Architecture chapter.

16.7 mkbootimg

Function: Package firmware to generate boot and recovery.img, source files to come in android project.

Templates:

af://n5524
af://n5530
af://n5532

./scripts/mkbootimg --kernel zImage --second resource.img --ramdisk ramdisk.img

--out boot.img

16.8 unpack bootimg

Function: used for boot and recovery.img unpacking, source files come in android project.

Templates:

./scripts/unpack bootimg --boot img boot.img --out out/

16.9 repack-bootimg

Function: Replace the firmware in boot and recovery.img.

Templates:

// For example, replace only the kernel

./scripts/repack-bootimg --boot img boot.img --kernel zImage -o boot repack.img

//Example: Replace only resource
./scripts/repack-bootimg --boot img boot.img --second resource.img -o

boot repack.img

16.10 pack_resource.sh

Function: Packs the charge images from the . /tools/images/ directory into resource.img.

Templates:

./scripts/pack resource.sh resource.img

Pack ./tools/images/ & resource.img to resource.img

Unpacking old image (resource.img) :

rk-kernel.dtb 1

Pack to resource.img successed!

Packed resources:

rk-kernel.dtb battery 1.bmp battery 2.bmp battery 3.bmp battery 4.bmp
battery 5.bmp battery fail.bmp battery O.bmp 8

resource.img is packed ready

16.11 buildman

Function: Batch compile code, ideal for verifying that commits to the current platform affect other platforms.

Detailed reference:

af://n5536
af://n5540
af://n5544
af://n5548

./tools/buildman/README
To use buildman you need to set the toolchain path in advance and edit the '~/.buildman' file:

[toolchain]

arm: ~/prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-x86 64 arm-linux-
gnueabihf/

aarch64: ~/prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-

x86 64 aarch64-linux-gnu/

Typical use cases, such as compiling U-Boot code for all Rockchip platforms:
./tools/buildman/buildman rockchip
The ideal results are as follows:

$./tools/buildman/buildman rockchip

boards.cfg is up to date. Nothing to do.

Building current source for 34 boards (4 threads, 1 job per thread)
34 0 0 /34 evb-rk3326

The first is the number of platforms that pass completely (green), the second is the number of platforms with
warning output (yellow), and the third is the number of platforms that fail to compile with error (red). If there are

warnings or errors during the compilation process, they will be displayed in the terminal.

16.12 patman

Function: a tool written in python, by calling other tools to complete the patch checking and submission, it is a
very good and necessary tool to do patch Upstream (U-Boot, Kernel). Key functions:

¢ Automatically format patches based on parameters;

e (Call checkpatch to check;

¢ make extractions from commit information and convert them into cover-letter, patch version, version
changes, etc. required for upstream mailing list;

¢ Automatically removes the change-id from the commit;

e Automatically extracts the required recipients for each patch based on Maintainer and file submission
information;

¢ Send out all patches according to '~/.gitconfig' or '. /.gitconfig' configuration.

Detailed reference
./tools/patman/README
Use the '-h' option to see all command options:

$ patman -h

Usage: patman [options]

Create patches from commits in a branch, check them and email them as

specified by tags you place in the commits. Use -n to do a dry run first.

af://n5558

Options:
-h, --help show this help message and exit
-H, --full-help Display the README file
-c COUNT, --count=COUNT

Automatically create patches from top n commits

-i, --ignore-errors Send patches email even if patch errors are found
-m, --no-maintainers Don't cc the file maintainers automatically
-n, —--dry-run Do a dry run (create but don't email patches)

-p PROJECT, --project=PROJECT
Project name; affects default option values and
aliases [default: u-boot]
-r IN REPLY TO, --in-reply-to=IN REPLY TO
Message ID that this series is in reply to
-s START, --start=START
Commit to start creating patches from (0 = HEAD)
-t, --ignore-bad-tags

Ignore bad tags / aliases

-—test run tests

-v, —-verbose Verbose output of errors and warnings
—--cc-cmd=CC_CMD Output cc list for patch file (used by git)
--no-check Don't check for patch compliance

--no-tags Don't process subject tags as aliaes

-T, --thread Create patches as a single thread

Typical use case: commit the latest 3 patches

patman -t -c3

After running the command, checkpatch will automatically abort if there is any error or warning, you need to

modify the patch to solve the problem and run it again.

Other common options

€,

e '-t',in'-t' headers, any text before “:” are treated as TAGs, most of which are not recognized by patman and
require the '-t' option;

e '-i', if there are some warnings (e.g. more than 80 characters) that we don't think need to be fixed, you can
just add the '-i' option to submit the patch;

e 's', if the patch you want to commit is not at the top of the current tree, you can skip the top N patches with
-s"

e '-n', if you don't want to commit a patch, but just want to verify that the latest patch passes checkpatch, you

can use the '-n' option;

Patchman generates the information needed for the upstream mailing list according to the keywords in the
commit message.

Typical commit:

commit 72aa9%9e3085e64e785680c3fa50a28651a8961feb
Author: Kever Yang <kever.yang@rock-chips.com>
Date: Wed Sep 6 09:22:42 2017 +0800

spl: add support to booting with OP-TEE

OP-TEE is an open source trusted 0OS, in armv7, its loading and
running are like this:

loading:

- SPL load both OP-TEE and U-Boot

running:
- SPL run into OP-TEE in secure mode;

- OP-TEE run into U-Boot in non-secure mode;

More detail:
<https://github.com/OP-TEE/optee os>
and search for 'boot arguments' for detail entry parameter in:

core/arch/arm/kernel/generic_entry a32.S

Cover-letter:

rockchip: add tpl and OPTEE support for rk3229

Add some generic options for TPL support for arm 32bit, and then
and TPL support for rk3229 (cortex-A7), and then add OPTEE support
in SPL.

Tested on latest u-boot-rockchip master.
END

Series-version: 4
Series-changes: 4

- use NULL instead of 'O’

- add fdt addr as arg2 of entry

Series-changes: 2

- Using new image type for op-tee

Change-Id: I3fd2b8305ba8fa%eat687ab7f3fdlffd2fac9eceb

Signed-off-by: Kever Yang <kever.yang@rock-chips.com>

When this patch is sent via the patman command, a Cover-letter is generated:

[PATCH v4 00/11] rockchip: add tpl and OPTEE support for rk3229

The title of the corresponding patch is as follows, containing the version information and the number of the

current patch in the series:

[PATCH v4,07/11] spl: add support to booting with OP-TEE

Patch commit messages are already processed, with change-id removed, cover-letter removed, and version-

changes converted to non-text information:

OP-TEE is an open source trusted 0OS, in armv7, its loading and
running are like this:

loading:

- SPL load both OP-TEE and U-Boot

running:

- SPL run into OP-TEE in secure mode;

- OP-TEE run into U-Boot in non-secure mode;

More detail:
<https://github.com/OP-TEE/optee os>
and search for 'boot arguments' for detail entry parameter in:

core/arch/arm/kernel/generic entry a32.S

Signed-off-by: Kever Yang <kever.yang@rock-chips.com>

Changes in v4:
- use NULL instead of '0'
- add fdt addr as arg2 of entry

Changes in v3: None
Changes in v2:

- Using new image type for op-tee

common/spl/Kconfig | 7 Attt
common/spl/Makefile | 1 +
common/spl/spl.c |9 4ttt
common/spl/spl optee.S | 13 +ddtttttttttt
include/spl.h | 13 444+ttt dtitit

5 files changed, 43 insertions (+)

create mode 100644 common/spl/spl optee.S

Please refer to the README for more information on the use of keywords such as “Series-prefix”, “Series-cc”,

etc.

17. Chapter-17 Appendix

17.1 Download address

17.1.1 RKBIN

e RK internal engineer: Log in to gerrit and search: “rk/rkbin”
e External engineer:

o Download the full SDK released by RK, or
o Download from the Github : https://github.com/rockchip-linux/rkbin

17.1.2 GCC

e RK internal engineer: Log in to gerrit and search: “gcc-linaro-6.3.1”
e External Engineers: Download the full SDK released by RK or Linaro website.

17.2 Terminology

e U-Boot: Universal Boot Loader

e AOSP: Android Open-Source Project
¢ AVB: Android Verified Boot

e DTB: Device Tree Binary

e DTS: Device Tree Source

¢ Fastboot: Originally a way to update firmware for Android, it is now widely used in the embedded space
e GPT: GUID Partition Table

e MMC: Multi Media Card, Includes: eMMC, SD card, etc.

e SPL: Secondary Program Loader

e TPL: Tertiary Program Loader

e DTB: noun, Device tree blob

e DTB: noun, Device tree blob for stacking
e DTC: noun, Device tree compiler

e DTO: noun, Device tree stacking operation
e DTS: noun, Device tree source file

e FDT: noun, Flattened device tree

e SCMI: System Control and Management Interface

af://n5601
af://n5602
af://n5603
https://github.com/rockchip-linux/rkbin
af://n5614
af://n5620
https://en.wikipedia.org/wiki/Das_U-Boot
https://en.wikipedia.org/wiki/Android_(operating_system)#Open-source_community
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Android_software_development#Fastboot
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/MultiMediaCard
https://developer.arm.com/documentation/den0056/latest

	U-Boot v2017(next-dev) Developer Guide
	Chapter-1 Basic Introduction
	Feature
	Version
	DM
	Security
	Boot-order
	Driver-probe
	Shell
	Boot-command
	TPL/SPL/U-Boot Proper
	Build-output
	Environment-variables
	U-Boot DTS
	Relocation

	Chapter-2 RK Architecture
	Preface
	Platform Documentation
	Platform Configuration
	Boot Process
	Memory Layout
	Storage Layout
	Aliases
	AMP
	Atags
	Bidram/Sysmem
	Fuse/OTP
	Hotkey
	Image Decompress
	Image Kernel
	Image U-Boot
	Interrupt
	Kernel-DTB
	MMU Cache
	Make.sh
	HW-ID DTB
	Partition Table
	Relocation
	Reset
	Sd/Udisk
	Stacktrace
	TimeCost
	TimeStamp
	Vendor Storage

	Chapter-3 Compile and Download
	Preparations
	Firmware Compiling
	Firmware Downloading
	Firmware Size
	Special Packaging

	Chapter-4 System Module
	AArch32
	ANDROID AB
	Configuration Item
	Partition Table
	Notes

	ANDROID BCB
	AVB Secure Boot
	Feature
	Configuration
	Reference

	Cmdline
	Data Sources
	Data Meaning

	DFU Update Firmware
	DTBO/DTO
	Principle Introduction
	Enable DTO
	DTO Result

	ENV
	Framework Support
	Relevant Interface
	Advanced Interface
	Storage Location
	General Options
	Fw_printenv Tool
	ENVF

	Fastboot
	Configuration Options
	Trigger Method
	Command Support
	Command Details

	FileSystem
	Framework Support
	Relevant Interface
	Example of Command

	HW-ID DTB
	Design Principle
	Hardware Reference
	DTB Naming
	DTB Packaging
	Feature Enablement
	Load Results

	SD and USB Flash Drives
	Mechanisms and Principles
	Firmware Creation
	SD Configuration
	USB Configuration
	Functions Taking Effect
	Notes

	Chapter-5 Driver Module
	AMP
	Ideas for Implementation
	Framework Support
	Feature Enablement

	Charge
	Framework Support
	Packaging Pictures
	DTS Configuration
	System Hibernation
	Replacement of Pictures
	Charging Indicator

	Clock
	Framework Support
	Relevant Interface
	Clock Initialization
	CPU Frequency Boost
	Clock Tree

	Crypto
	Framework Support
	Relevant Interface
	DTS Configuration

	Display
	Framework Support
	Relevant Interface
	DTS Configuration
	Defconfig
	LOGO Partition
	Analysis of Common Problems

	Dvfs
	Wide Temperature Strategy
	Framework Support
	Relevant Interface
	Enable Wide Temperature
	Wide Temperature Results

	Efuse/Otp
	Framework Support
	Relevant Interface
	DTS Configuration
	Recall Example
	Open Area

	Ethernet
	Framework Support
	Relevant Interface
	DTS Configuration
	Usage Example
	Network Troubleshooting

	Gpio
	Framework Support
	DM Interface
	Legacy Interface

	Interrupt
	Framework Support
	Related Interface

	I2C
	Framework Support
	Relevant Interface

	IO-Domain
	Framework Support
	Relevant Interface

	Key
	Framework Support
	Relevant Interface

	Led
	Framework Support
	Relevant Interface
	DTS Node

	Mtd
	Framework Support
	Relevant Interface
	Usage Example

	Mtd_blk
	Framework Support
	Relevant Interface

	Optee Client
	Framework Support
	Firmware Description
	Interface Description
	Suitability
	Return Value
	trusty_base_write_security_data
	trusty_base_read_security_data
	trusty_read_vbootkey_hash
	trusty_write_vbootkey_hash
	trusty_read_vbootkey_enable_flag
	trusty_read_attribute_hash
	trusty_write_attribute_hash
	trusty_write_oem_otp_key
	trusty_oem_otp_key_is_written
	trusty_set_oem_hr_otp_read_lock
	trusty_oem_otp_key_cipher
	trusty_read_oem_ns_otp
	trusty_write_oem_ns_otp
	trusty_write_ta_encryption_key
	trusty_ta_encryption_key_is_written
	trusty_write_oem_encrypt_data
	trusty_oem_encrypt_data_is_written
	trusty_check_security_level_flag
	trusty_write_oem_huk

	Shared Memory
	Test Command
	Common Misprints

	PCIe
	Development Notes
	Framework Support
	DTS Configuration
	Usage Example
	PCIe CMD
	NVMe
	RK3588 RC dma
	RK3568 RC dma

	Analysis of Common Problems

	Pinctrl
	Framework Support
	Relevant Interface

	Pmic/Regulator
	Framework Support
	Relevant Interface
	Init Voltage
	Skip Initialization

	Reset
	Framework Support
	Relervant Interface
	DTS Configuration

	Rng
	Framework Support
	Relevant Interface
	DTS Configuration

	Spi
	Framework Support
	Relevant Interface
	DTS Configuration
	Recall Example
	Test Command
	Analysis of Common Problems

	Storage
	Framework Support
	Relevant Interface
	Boot Storage Type Differentiation
	DTS Configuration
	Dual Storage Expansion
	Analysis of Common Problems

	Thermal
	Framework Support
	Relevant Interface
	DTS Configuration

	Uart
	Individual Replacement
	Global Replacement
	Turn off Printing
	Relevant Interface

	USB
	Framework Support
	Board Configuration
	DTS Configuration
	Related Commands

	Vendor Storage
	Principle Overview
	Framework Support
	Relevant Interface
	Functionality Self-test

	Watchdog
	Framework Support
	Relevant Interface

	Chapter-6 Advanced Principle
	Kernel-DTB
	Design Background
	Live Device Tree
	Mechanisms to Achieve
	U-Boot

	Kernel Pass Parameter
	Cmdline
	Memory Capacity
	Other Ways

	AB System
	AB Data Format
	AB Activation Mode
	Successful-boot
	Reset-retry
	Mode Comparison

	Boot Process
	Upgrade and Exceptions
	Validation Methods
	Successful-boot
	Reset-retry

	References

	AVB Secure Boot
	References
	Terminology
	Brief Introduction
	Encryption Example
	AVB
	AVB Characteristics
	Key+signature+certificate
	AVB Lock
	AVB Unlock
	Kernel Configuration
	Android SDK
	Cmdline New Content

	Partition Reference
	Fastboot Command
	Quick Overview of Commands
	Command Usage

	Firmware Downloading
	Pre-loader Verified
	U-boot Verified
	System Verification Boot
	Linux AVB
	Operating Workflow
	Verification Process

	SD Boot and Upgrade
	Brief Introduction
	SD Card Category
	Regular SD Card
	SD Upgrade Card
	SD Boot Card
	SD Repair Card

	Firmware Logo
	Boot Process
	Pre-loader Boot
	U-Boot Boot
	Recovery and PCBA

	Notes

	Chapter-7 Configuration Trimming
	Chapter-8 Debugging Tools
	DEBUG
	Initcall
	IO Command
	IOMEM Command
	I2C Command
	GPIO Command
	FDT Command
	MMC Command
	TimeStamp
	DM Tree
	DM Uclass
	Stacktrace.sh
	System Crash
	CRC Check
	HASH Check
	Modify DDR Capacity
	Jump Information
	Boot Information
	RK Firmware
	Distro Firmware
	No Valid Firmware

	Chapter-9 Test Case
	Chapter-10 SPL
	Firmware Boot
	FIT Firmware
	RKFW Firmware
	Storage Priority

	Compilation and Packaging
	Code Compilation
	Firmware Packaging

	System Module
	GPT
	A/B System
	Boot Priority
	ATAGS
	Kernel Boot
	Pinctrl
	Secure Boot

	Driver Module
	MMC
	MTD Block
	OTP
	Crypto
	Uart

	Chapter-11 TPL
	Compiling and Packaging
	Configuration
	Compiling
	Packaging

	Chapter-12 FIT
	Preface
	Brief Introduction
	Basic Introduction
	Example Introduction
	ITB Structure

	Platform Configuration
	Chip Support
	Code Configuration
	Mirror File
	ITS File
	Related Tools

	Non-secure Boot
	uboot.img
	boot.img

	Secure Boot
	Principle
	Checking Process
	Key Storage
	Key Usage
	Signature Storage
	Anti-rollback

	Preliminary Preparation
	Key
	Configuration
	Firmware

	Compiling and Packaging
	Checking Principles
	Booting Information

	Remote Signature
	Implementation Idea
	Signed Data
	Detailed Steps
	Other Solutions

	Firmware Unpacking
	Firmware Replacement
	Safety Checking Step-by-Step

	Chapter-13 Fast Boot
	Chip Support
	Storage Support
	bootrom Support
	U-Boot SPL Support
	MCU Configuration
	Kernel Support
	Fast Boot Process

	Chapter-14 Platform Definition
	ATF/OPTEE
	Clock
	Defconfig
	DFU
	Optee

	Chapter-15 Remarks
	SDK Compatibility
	androidboot.mode Compatibility
	MISC Compatibility

	Chapter-16 Tools
	trust_merger
	boot_merger
	loaderimage
	resource_tool
	mkimage
	stacktrace.sh
	mkbootimg
	unpack_bootimg
	repack-bootimg
	pack_resource.sh
	buildman
	patman

	Chapter-17 Appendix
	Download address
	RKBIN
	GCC

	Terminology

