
U-Boot v2017(next-dev) Developer Guide

ID: RK-KF-YF-45

Release Version: V2.34.0

Release Date: 2025-03-11

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Miniloader + RKIMG u-boot SPL + FIT u-boot

RV1108 Y

RK3036 Y

RK3126C Y

RK3128 Y

RK3229 Y

RK3288 Y

RK3308 Y

RK3326/PX30 Y

RK3328 Y

RK3368/PX5 Y

RK3399 Y

RK1808 Y

RV1126/RV1109 Y

RK3566/RK3568 Y

RK3588 Y

RV1106/RV1103 Y

RK3528 Y

RK3562 Y

RK3576 Y

RV1106B/RV1103B Y

RK3506 Y

Preface

Overview

The document aims to guide readers on how to develop projects in U-Boot v2017(next-dev) version.

Chip feature support

Target Reader

This document (this Guide) applies primarily to the following engineers:

Technical Support Engineer

Software Development Engineer

Revision History

Version Author Date Change Description

V1.00
Joseph
Chen

2018-
02-28

Initial version

V1.01
Jason
Zhu

2018-
06-22

fastboot description, OPTEE Client description

V1.10
Joseph
Chen

2018-
07-23

Document improvement, including updates and adjustments to most
chapters

V1.11 Jon Lin
2018-
07-26

Improved descriptions of Nand, SFC SPI Flash

V1.12
Liang
Chen

2018-
08-08

Added descriptions of HW-ID

V1.13
Qing
Zhang

2018-
09-20

Added CLK instructions

V1.20
Joseph
Chen

2018-
11-06

Added/Updated defconfig/rktest/probe/interrupt/kernel dtb/uart/atags

V1.21
Joseph
Chen

2019-
01-21

Added dtbo/amp/dvfs wide temperature range/fdt command
information

V1.22
Hisping
Lin

2019-
03-05

Added descriptions of optee client

V1.23

Joseph
Chen
Jason
Zhu

2019-
03-25

Added descriptions of kernel cmdline

V1.30
Joseph
Chen

2019-
03-25

reorganized and improved the documents, adjust contents to some
chapters

V1.31
Jason
Zhu

2019-
04-23

Added hardware description of CRYPTO

V1.32
Jason
Zhu

2019-
05-14

Complement kernel cmdline descriptions

V1.33
Jason
Zhu

2019-
05-29

Added MMC command section, AVB and A/B system description,
terminology descriptions

V1.40
Joseph
Chen

2019-
06-20

Added/updated:
memblk/sysmem/bi dram/statcktrace/hotkey/
fdt param/run_command/distro/led/reset/
env/wdt/spl/amp/crypto/
efuse/Android compatible/io-domain/bootflow/pack image

V1.41
Jason
Zhu

2019-
08-21

Added secure otp description

V1.42
Jason
Zhu

2019-
08-27

Added storage equipment/MTD description

Version Author Date Change Description

V1.43
Jason
Zhu

2019-
10-08

Added BCB description

V1.44
Jason
Zhu

2019-
10-15

Added SPL driver and function support description

V1.45
Jason
Zhu

2019-
11-15

Added instructions of SPL pinctrl

V2.0.0
Joseph
Chen

2020-
05-02

Version upgrade, reorganized formatting, contents,layouts etc.

V2.1.0
Joseph
Chen

2020-
05-29

Added FIT solution

V2.1.1 Jon Lin
2020-
06-07

Added open source framework storage support note

V2.1.2
Tao
Huang

2020-
07-08

Adjusted format

V2.2.0
David
Wu

2020-
07-09

Added Ethernet network support description

V2.3.0
Jeff
Chen

2020-
07-13

Added TPL support note

V2.4.0
Joseph
Chen

2020-
09-23

Updated chapters of FIT and compiling & programming

V2.5.0
Jason
Zhu

2020-
12-28

Updated FIT chapter

V2.6.0
Jason
Zhu

2020-
12-30

Added quick power-on chapter description

V2.7.0
Shawn
Lin

2021-
01-25

Added PCIe support description

V2.8.0
Joseph
Chen

2021-
03-12

Added description of U-Boot firmware format, storage capacity,
AMP and RK 3568 support

V2.9.0
Joseph
Chen

2021-
04-13

Updated chapters of FIT and USB upgrade

V2.10.0
Jason
Zhu

2021-
05-06

Add step-by-step safe operation

V2.11.0
Joseph
Chen

2021-
05-13

FIT Chapter: added recovery.img packaging and signature, pss
signature parameters

V2.12.0
Jason
Zhu

2021-
06-23

Updated efuse/OTP open region

V2.13.0
Qing
Zhang

2021-
07-21

Driver module chapter: Added booted CPU support SCMI interface

Version Author Date Change Description

V2.14.0
Frank
Wang

2021-
10-19

Added USB support description

V2.15.0
Joseph
Chen

2021-
10-19

Updated AMP chapter

V2.16.0
Joseph
Chen

2021-
10-20

Added chapters of RNG, Thermal and FS

V2.17.0
Nico
Cheng

2021-
11-01

Added DFU support description

V2.18.0
Joseph
Chen

2021-
12-23

Chip support list: Add rk3588

V2.19.0
Joseph
Chen

2022-
03-10

Added ENVF support description

V2.20.0
Jason
Zhu

2022-
08-29

Added RV1106 OTP safe region

V2.21.0
Joseph
Chen

2023-
01-15

Updated and simplified "chip feature support" in the first page.
Updated and organized the differences of platforms to the chapter of
"platform definition"

V2.22.0
Joseph
Chen

2023-
02-21

Updated chapters of clock/otp
Added RK3562

V2.23.0
Joseph
Chen

2023-
03-21

Adjusted the sorting of Chapter 2, added storage type differentiation
and GPIO compatible interface description

V2.24.0 Jon Lin
2023-
04-03

Updated the chapter of PCle

V2.25.0 Jon Lin
2023-
08-17

Updated the chapter of SPI

V2.26.0 Jon Lin
2023-
09-13

Updated the chapter of PCIe

V2.27.0
Joseph
Chen

2024-
01-18

Updated description of ENVF suitability and FIT firmware
replacement

V2.28.0 Jon Lin
2024-
01-26

Added SPI rate description

V2.29.0
Xuhui
Lin

2024-
04-22

Chip support list: Added rk3576

V2.30.0
Damon
Ding

2024-
08-27

Updated the chapter of Display

V2.31.0
Xuhui
Lin

2024-
09-23

Chip support list: Added rv1103b, rv1106b, rk3506

Version Author Date Change Description

V2.31.1
Owen
Chen

2024-
11-21

Fix typo

V2.31.2 Jon Lin
2025-
01-06

Fix typo

V2.32.0
Shawn
Lin

2025-
02-06

Add descriptions for new PCIe and NVMe commands.

V2.33.0
Joseph
Chen

2025-
02-26

Updated the U-Boot Image section to add note for modifying uboot
backup.

V2.34.0
Joseph
Chen

2025-
03-11

Add HW-ID DTB auto pack description

Contents

U-Boot v2017(next-dev) Developer Guide
1. Chapter-1 Basic Introduction

1.1 Feature
1.2 Version
1.3 DM
1.4 Security
1.5 Boot-order
1.6 Driver-probe
1.7 Shell
1.8 Boot-command
1.9 TPL/SPL/U-Boot Proper
1.10 Build-output
1.11 Environment-variables
1.12 U-Boot DTS
1.13 Relocation

2. Chapter-2 RK Architecture
2.1 Preface
2.2 Platform Documentation
2.3 Platform Configuration
2.4 Boot Process
2.5 Memory Layout
2.6 Storage Layout
2.7 Aliases
2.8 AMP
2.9 Atags
2.10 Bidram/Sysmem
2.11 Fuse/OTP
2.12 Hotkey
2.13 Image Decompress
2.14 Image Kernel
2.15 Image U-Boot
2.16 Interrupt
2.17 Kernel-DTB
2.18 MMU Cache
2.19 Make.sh
2.20 HW-ID DTB
2.21 Partition Table
2.22 Relocation
2.23 Reset
2.24 Sd/Udisk
2.25 Stacktrace
2.26 TimeCost
2.27 TimeStamp
2.28 Vendor Storage

3. Chapter-3 Compile and Download
3.1 Preparations
3.2 Firmware Compiling
3.3 Firmware Downloading
3.4 Firmware Size
3.5 Special Packaging

4. Chapter-4 System Module
4.1 AArch32
4.2 ANDROID AB

4.2.1 Configuration Item
4.2.2 Partition Table

4.2.3 Notes
4.3 ANDROID BCB
4.4 AVB Secure Boot

4.4.1 Feature
4.4.2 Configuration
4.4.3 Reference

4.5 Cmdline
4.5.1 Data Sources
4.5.2 Data Meaning

4.6 DFU Update Firmware
4.7 DTBO/DTO

4.7.1 Principle Introduction
4.7.2 Enable DTO
4.7.3 DTO Result

4.8 ENV
4.8.1 Framework Support
4.8.2 Relevant Interface
4.8.3 Advanced Interface
4.8.4 Storage Location
4.8.5 General Options
4.8.6 Fw_printenv Tool
4.8.7 ENVF

4.9 Fastboot
4.9.1 Configuration Options
4.9.2 Trigger Method
4.9.3 Command Support
4.9.4 Command Details

4.10 FileSystem
4.10.1 Framework Support
4.10.2 Relevant Interface
4.10.3 Example of Command

4.11 HW-ID DTB
4.11.1 Design Principle
4.11.2 Hardware Reference
4.11.3 DTB Naming
4.11.4 DTB Packaging
4.11.5 Feature Enablement
4.11.6 Load Results

4.12 SD and USB Flash Drives
4.12.1 Mechanisms and Principles
4.12.2 Firmware Creation
4.12.3 SD Configuration
4.12.4 USB Configuration
4.12.5 Functions Taking Effect
4.12.6 Notes

5. Chapter-5 Driver Module
5.1 AMP

5.1.1 Ideas for Implementation
5.1.2 Framework Support
5.1.3 Feature Enablement

5.2 Charge
5.2.1 Framework Support
5.2.2 Packaging Pictures
5.2.3 DTS Configuration
5.2.4 System Hibernation
5.2.5 Replacement of Pictures
5.2.6 Charging Indicator

5.3 Clock

5.3.1 Framework Support
5.3.2 Relevant Interface
5.3.3 Clock Initialization
5.3.4 CPU Frequency Boost
5.3.5 Clock Tree

5.4 Crypto
5.4.1 Framework Support
5.4.2 Relevant Interface
5.4.3 DTS Configuration

5.5 Display
5.5.1 Framework Support
5.5.2 Relevant Interface
5.5.3 DTS Configuration
5.5.4 Defconfig
5.5.5 LOGO Partition
5.5.6 Analysis of Common Problems

5.6 Dvfs
5.6.1 Wide Temperature Strategy
5.6.2 Framework Support
5.6.3 Relevant Interface
5.6.4 Enable Wide Temperature
5.6.5 Wide Temperature Results

5.7 Efuse/Otp
5.7.1 Framework Support
5.7.2 Relevant Interface
5.7.3 DTS Configuration
5.7.4 Recall Example
5.7.5 Open Area

5.8 Ethernet
5.8.1 Framework Support
5.8.2 Relevant Interface
5.8.3 DTS Configuration
5.8.4 Usage Example
5.8.5 Network Troubleshooting

5.9 Gpio
5.9.1 Framework Support
5.9.2 DM Interface
5.9.3 Legacy Interface

5.10 Interrupt
5.10.1 Framework Support
5.10.2 Related Interface

5.11 I2C
5.11.1 Framework Support
5.11.2 Relevant Interface

5.12 IO-Domain
5.12.1 Framework Support
5.12.2 Relevant Interface

5.13 Key
5.13.1 Framework Support
5.13.2 Relevant Interface

5.14 Led
5.14.1 Framework Support
5.14.2 Relevant Interface
5.14.3 DTS Node

5.15 Mtd
5.15.1 Framework Support
5.15.2 Relevant Interface
5.15.3 Usage Example

5.16 Mtd_blk
5.16.1 Framework Support
5.16.2 Relevant Interface

5.17 Optee Client
5.17.1 Framework Support
5.17.2 Firmware Description
5.17.3 Interface Description

5.17.3.1 Suitability
5.17.3.2 Return Value
5.17.3.3 trusty_base_write_security_data
5.17.3.4 trusty_base_read_security_data
5.17.3.5 trusty_read_vbootkey_hash
5.17.3.6 trusty_write_vbootkey_hash
5.17.3.7 trusty_read_vbootkey_enable_flag
5.17.3.8 trusty_read_attribute_hash
5.17.3.9 trusty_write_attribute_hash
5.17.3.10 trusty_write_oem_otp_key
5.17.3.11 trusty_oem_otp_key_is_written
5.17.3.12 trusty_set_oem_hr_otp_read_lock
5.17.3.13 trusty_oem_otp_key_cipher
5.17.3.14 trusty_read_oem_ns_otp
5.17.3.15 trusty_write_oem_ns_otp
5.17.3.16 trusty_write_ta_encryption_key
5.17.3.17 trusty_ta_encryption_key_is_written
5.17.3.18 trusty_write_oem_encrypt_data
5.17.3.19 trusty_oem_encrypt_data_is_written
5.17.3.20 trusty_check_security_level_flag
5.17.3.21 trusty_write_oem_huk

5.17.4 Shared Memory
5.17.5 Test Command
5.17.6 Common Misprints

5.18 PCIe
5.18.1 Development Notes
5.18.2 Framework Support
5.18.3 DTS Configuration
5.18.4 Usage Example

5.18.4.1 PCIe CMD
5.18.4.2 NVMe
5.18.4.3 RK3588 RC dma
5.18.4.4 RK3568 RC dma

5.18.5 Analysis of Common Problems
5.19 Pinctrl

5.19.1 Framework Support
5.19.2 Relevant Interface

5.20 Pmic/Regulator
5.20.1 Framework Support
5.20.2 Relevant Interface
5.20.3 Init Voltage
5.20.4 Skip Initialization

5.21 Reset
5.21.1 Framework Support
5.21.2 Relervant Interface
5.21.3 DTS Configuration

5.22 Rng
5.22.1 Framework Support
5.22.2 Relevant Interface
5.22.3 DTS Configuration

5.23 Spi

5.23.1 Framework Support
5.23.2 Relevant Interface
5.23.3 DTS Configuration
5.23.4 Recall Example
5.23.5 Test Command
5.23.6 Analysis of Common Problems

5.24 Storage
5.24.1 Framework Support
5.24.2 Relevant Interface
5.24.3 Boot Storage Type Differentiation
5.24.4 DTS Configuration
5.24.5 Dual Storage Expansion
5.24.6 Analysis of Common Problems

5.25 Thermal
5.25.1 Framework Support
5.25.2 Relevant Interface
5.25.3 DTS Configuration

5.26 Uart
5.26.1 Individual Replacement
5.26.2 Global Replacement
5.26.3 Turn off Printing
5.26.4 Relevant Interface

5.27 USB
5.27.1 Framework Support
5.27.2 Board Configuration
5.27.3 DTS Configuration
5.27.4 Related Commands

5.28 Vendor Storage
5.28.1 Principle Overview
5.28.2 Framework Support
5.28.3 Relevant Interface
5.28.4 Functionality Self-test

5.29 Watchdog
5.29.1 Framework Support
5.29.2 Relevant Interface

6. Chapter-6 Advanced Principle
6.1 Kernel-DTB

6.1.1 Design Background
6.1.2 Live Device Tree
6.1.3 Mechanisms to Achieve
6.1.4 U-Boot

6.2 Kernel Pass Parameter
6.2.1 Cmdline
6.2.2 Memory Capacity
6.2.3 Other Ways

6.3 AB System
6.3.1 AB Data Format
6.3.2 AB Activation Mode

6.3.2.1 Successful-boot
6.3.2.2 Reset-retry
6.3.2.3 Mode Comparison

6.3.3 Boot Process
6.3.4 Upgrade and Exceptions
6.3.5 Validation Methods

6.3.5.1 Successful-boot
6.3.5.2 Reset-retry

6.3.6 References
6.4 AVB Secure Boot

6.4.1 References
6.4.2 Terminology
6.4.3 Brief Introduction
6.4.4 Encryption Example
6.4.5 AVB

6.4.5.1 AVB Characteristics
6.4.5.2 Key+signature+certificate
6.4.5.3 AVB Lock
6.4.5.4 AVB Unlock
6.4.5.5 Kernel Configuration
6.4.5.6 Android SDK
6.4.5.7 Cmdline New Content

6.4.6 Partition Reference
6.4.7 Fastboot Command

6.4.7.1 Quick Overview of Commands
6.4.7.2 Command Usage

6.4.8 Firmware Downloading
6.4.9 Pre-loader Verified
6.4.10 U-boot Verified
6.4.11 System Verification Boot
6.4.12 Linux AVB

6.4.12.1 Operating Workflow
6.4.12.2 Verification Process

6.5 SD Boot and Upgrade
6.5.1 Brief Introduction
6.5.2 SD Card Category

6.5.2.1 Regular SD Card
6.5.2.2 SD Upgrade Card
6.5.2.3 SD Boot Card
6.5.2.4 SD Repair Card

6.5.3 Firmware Logo
6.5.4 Boot Process

6.5.4.1 Pre-loader Boot
6.5.4.2 U-Boot Boot
6.5.4.3 Recovery and PCBA

6.5.5 Notes
7. Chapter-7 Configuration Trimming
8. Chapter-8 Debugging Tools

8.1 DEBUG
8.2 Initcall
8.3 IO Command
8.4 IOMEM Command
8.5 I2C Command
8.6 GPIO Command
8.7 FDT Command
8.8 MMC Command
8.9 TimeStamp
8.10 DM Tree
8.11 DM Uclass
8.12 Stacktrace.sh
8.13 System Crash
8.14 CRC Check
8.15 HASH Check
8.16 Modify DDR Capacity
8.17 Jump Information
8.18 Boot Information

8.18.1 RK Firmware
8.18.2 Distro Firmware

8.18.3 No Valid Firmware
9. Chapter-9 Test Case
10. Chapter-10 SPL

10.1 Firmware Boot
10.1.1 FIT Firmware
10.1.2 RKFW Firmware
10.1.3 Storage Priority

10.2 Compilation and Packaging
10.2.1 Code Compilation
10.2.2 Firmware Packaging

10.3 System Module
10.3.1 GPT
10.3.2 A/B System
10.3.3 Boot Priority
10.3.4 ATAGS
10.3.5 Kernel Boot
10.3.6 Pinctrl
10.3.7 Secure Boot

10.4 Driver Module
10.4.1 MMC
10.4.2 MTD Block
10.4.3 OTP
10.4.4 Crypto
10.4.5 Uart

11. Chapter-11 TPL
11.1 Compiling and Packaging

11.1.1 Configuration
11.1.2 Compiling
11.1.3 Packaging

12. Chapter-12 FIT
12.1 Preface
12.2 Brief Introduction

12.2.1 Basic Introduction
12.2.2 Example Introduction
12.2.3 ITB Structure

12.3 Platform Configuration
12.3.1 Chip Support
12.3.2 Code Configuration
12.3.3 Mirror File
12.3.4 ITS File
12.3.5 Related Tools

12.4 Non-secure Boot
12.4.1 uboot.img
12.4.2 boot.img

12.5 Secure Boot
12.5.1 Principle

12.5.1.1 Checking Process
12.5.1.2 Key Storage
12.5.1.3 Key Usage
12.5.1.4 Signature Storage
12.5.1.5 Anti-rollback

12.5.2 Preliminary Preparation
12.5.2.1 Key
12.5.2.2 Configuration
12.5.2.3 Firmware

12.5.3 Compiling and Packaging
12.5.4 Checking Principles
12.5.5 Booting Information

12.6 Remote Signature
12.6.1 Implementation Idea
12.6.2 Signed Data
12.6.3 Detailed Steps
12.6.4 Other Solutions

12.7 Firmware Unpacking
12.8 Firmware Replacement
12.9 Safety Checking Step-by-Step

13. Chapter-13 Fast Boot
13.1 Chip Support
13.2 Storage Support
13.3 bootrom Support
13.4 U-Boot SPL Support
13.5 MCU Configuration
13.6 Kernel Support
13.7 Fast Boot Process

14. Chapter-14 Platform Definition
14.1 ATF/OPTEE
14.2 Clock
14.3 Defconfig
14.4 DFU
14.5 Optee

15. Chapter-15 Remarks
15.1 SDK Compatibility

15.1.1 androidboot.mode Compatibility
15.1.2 MISC Compatibility

16. Chapter-16 Tools
16.1 trust_merger
16.2 boot_merger
16.3 loaderimage
16.4 resource_tool
16.5 mkimage
16.6 stacktrace.sh
16.7 mkbootimg
16.8 unpack_bootimg
16.9 repack-bootimg
16.10 pack_resource.sh
16.11 buildman
16.12 patman

17. Chapter-17 Appendix
17.1 Download address

17.1.1 RKBIN
17.1.2 GCC

17.2 Terminology

1. Chapter-1 Basic Introduction

1.1 Feature

v2017(next-dev) is the version developed by RK from the official v2017.09 version of U-Boot, and it supports
all the mainstream chips sold by RK. The main features supported are:

Supports RK Android firmware booting;
Supports Android AOSP firmware booting;
Supports Linux Distro firmware booting;
Supports both Rockchip miniloader and SPL/TPL pre-loader boot;
Supports LVDS, EDP, MIPI, HDMI, CVBS, RGB and other display devices.
Support eMMC, Nand Flash, SPI Nand flash, SPI NOR flash, SD card, USB flash disk and other storage
devices;
Supports FAT, EXT2, and EXT4 file systems;
Supports GPT, RK parameter partition tables;
Supports power-on LOGO, charging animation, low power management, power management;
Supports I2C, PMIC, CHARGE, FUEL GUAGE, USB, GPIO, PWM, GMAC, eMMC, NAND, Interrupt,
etc;
Supports vendor storage saving user data and configuration.
Supports RockUSB and Google Fastboot USB gadget to write eMMC;
Supports mass storage, ethernet, HID and other USB devices;
Supports dynamic selection of kernel DTB by hardware state;

1.2 Version

There are two versions of RK's U-Boot including v2014 and v2017, internally named rkdevelop and next-dev,
respectively. Two methods are available for the user to confirm whether the current U-Boot is the v2017.

Method 1: Check whether or not the Makefile version number is 2017.

Method 2: Check whether or not the first official line of the boot print is U-Boot 2017.09.

#

Chapter-1 SPDX-License-Identifier: GPL-2.0+

#

VERSION = 2017

PATCHLEVEL = 09

SUBLEVEL =

EXTRAVERSION =

NAME =

......

U-Boot 2017.09-01818-g11818ff-dirty (Nov 14 2019 - 11:11:47 +0800)

......

af://n424
af://n425
af://n456

Project open source: v2017 has been open source and regularly updated to Github: https://github.com/rock
chip-linux/u-boot

kernel version: v2017 requires RK kernel version >= 4.4

1.3 DM

DM (Driver Model) is U-Boot's standard device-driver development model, which is very similar to the kernel's
device-driver model. v2017 also follows the DM framework to develop various functional modules. Hence, it is
recommended that readers read the DM documentation first to understand the principles and implementation of
the DM architecture.

README:

Brief summary:

uclass : Device driver model
driver
device

Core code:

1.4 Security

U-Boot belongs to Non-Secure World in ARM TrustZone security system, it can't directly access any secure
resources (e.g. secure memory, secure otp, efuse), and needs to use trust to access them indirectly. U-Boot
operates in the following mode on RK platforms.

1.5 Boot-order

./doc/driver-model/README.txt

Terminology

Uclass - a group of devices which operate in the same way. A uclass provides

 a way of accessing individual devices within the group, but always

 using the same interface. For example a GPIO uclass provides

 operations for get/set value. An I2C uclass may have 10 I2C ports,

 4 with one driver, and 6 with another.

Driver - some code which talks to a peripheral and presents a higher-level

 interface to it.

Device - an instance of a driver, tied to a particular port or peripheral.

./drivers/core/

32-bit platform: Non-Secure PL1

64-bit platform: EL2(Always be Non-Secure)

https://github.com/rockchip-linux/u-boot
af://n465
af://n480
af://n483

The RK platform currently has two sets of startup methods, depending on whether the front-level Loader code is
open source or not:

TPL is equivalent to ddr bin, SPL is equivalent to miniloader. the combination of TPL+SPL realizes the same
function as RK closed source ddr.bin+miniloader, and can be replaced by each other.

1.6 Driver-probe

Although U-Boot introduces the device-driver development model, it will not automatically initiate the probe of
the registered device-driver as kernel does during the initialization phase. The probe of the driver must be
initiated with the user's active call. The interface is as follows:

Core calls to the above interfaces:

1.7 Shell

U-Boot's Shell is called CLI(Command Line Interface), users can customize CMD according to their needs. In
addition to through the Shell, CMD can be called as code through run_command() and run_command_list()`.

1.8 Boot-command

// Front loader closed source

BOOTROM => ddr bin => Miniloader => TRUST => U-BOOT => KERNEL

// Front loader open source

BOOTROM => TPL => SPL => TRUST => U-BOOT => KERNEL

int uclass_get_device(enum uclass_id id, int index, struct udevice **devp);

int uclass_get_device_by_name(enum uclass_id id, const char *name,

 struct udevice **devp);

int uclass_get_device_by_seq(enum uclass_id id, int seq, struct udevice **devp);

int uclass_get_device_by_of_offset(enum uclass_id id, int node, struct udevice

**devp);

int uclass_get_device_by_ofnode(enum uclass_id id, ofnode node, struct udevice

**devp);

int uclass_get_device_by_phandle_id(enum uclass_id id,

 int phandle_id, struct udevice **devp);

int uclass_get_device_by_phandle(enum uclass_id id,

 struct udevice *parent, struct udevice **devp);

int uclass_get_device_by_driver(enum uclass_id id,

 const struct driver *drv, struct udevice

**devp);

int uclass_get_device_tail(struct udevice *dev, int ret, struct udevice **devp);

......

int device_probe(struct udevice *dev); // Users are recommended to understand

the internal implementation!

int run_command(const char *cmd, int flag)

int run_command_list(const char *cmd, int len, int flag)

af://n487
af://n492
af://n495

U-Boot eventually boots the kernel with the boot command defined by CONFIG_BOOTCOMMAND . The
CONFIG_PREBOOT pre-boot command is also executed before the execution of CONFIG_BOOTCMD , which is
usually defined as empty.

1.9 TPL/SPL/U-Boot Proper

By using different compilation conditions, U-Boot can, with the same set of code, get three different functional
Loaders, TPL/SPL/U-Boot-proper.

TPL (Tiny Program Loader) and SPL (Secondary Program Loader) are loaders at an earlier stage than U-Boot:

TPL: Running in sram, responsible for completing ddr initialization;

SPL: Running in ddr, responsible for completing the lowlevel initialization of the system, and loading the
later firmware (trust.img and uboot.img);

U-Boot proper: Running in the ddr, we usually call it “U-Boot”, responsible for booting the kernel;

Note: The term U-Boot proper is used to distinguish it from SPL. For the sake of convention, all
references to U-Boot proper in subsequent chapters will be abbreviated to U-Boot.

Booting process:

For more, please refer to doc/README.TPL and doc/README.SPL

1.10 Build-output

U-Boot will generate some important files in the root directory after successful compilation of U-Boot(TPL/SPL
generated files are only available when TPL/SPL compilation is supported):

BOOTROM => TPL(ddr bin) => SPL(miniloader) => TRUST => U-BOOT => KERNEL

// U-Boot phase

./u-boot.map // MAP table file

./u-boot.sym // SYMBOL table file

./u-boot // ELF files, kernel-like vmlinux (important!)

./u-boot.dtb // u-boot's own dtb file

./u-boot.bin // Executable binary file that will be packaged as

uboot.img for programming

// SPL phase

./spl/u-boot-spl.map // MAP table file

./spl/u-boot-spl.sym // SYMBOL table file

./spl/u-boot-spl // ELF files, kernel-like vmlinux (important!)

./spl/u-boot-spl.dtb // spl's own dtb file

./spl/u-boot-spl.bin // Executable binary file that will be packaged into a

loader for programming

// TPL phase

./tpl/u-boot-tpl.map // MAP table file

./tpl/u-boot-tpl.sym // SYMBOL table file

./tpl/u-boot-tpl // ELF files, kernel-like vmlinux (important!)

./tpl/u-boot-tpl.dtb // tpl's own dtb file

af://n497
af://n513

1.11 Environment-variables

ENV (Environment-Variables) is a global data management and delivery method supported by U-Boot, the
principle is to build a HASH mapping table, and manage user data as “key-data” table entries.

EVN is usually used to define platform configuration parameters such as firmware load address, network
configuration (ipaddr, serverip), bootcmd, bootargs, which can be printed out by the user using the printenv
command at the command line.

Users can choose whether to save ENV data to local storage
ENV data is restricted to U-Boot only and cannot be passed directly to the kernel or parsed by the kernel.
The user layer can access ENV data through the fw_printenv tool provided by U-Boot

The storage address and size of ENV data on the RK platform are defined as follows (unit: byte):

1.12 U-Boot DTS

U-Boot has its own DTS file, and the corresponding DTB file is automatically generated when compiling, and
then being added at the end of u-boot.bin. File directory:

Which DTS file to use for each platform is specified by CONFIG_DEFAULT_DEVICE_TREE in defconfig.

1.13 Relocation

Usually, during the boot phase, U-Boot is loaded into the low DRAM address by the previous bootloader, and
after completing the board_f.c process, U-Boot will relocate itself to a reserved address at the end of the memory
(called as relocation, the location depends on the memory layout of the U-Boot). After completing the relocation,
the board_r.c process continues. This can be recognized by the boot message:

./tpl/u-boot-tpl.bin // Executable binary file that will be packaged into a

loader for programming

if ARCH_ROCKCHIP

config ENV_OFFSET

 hex

 depends on !ENV_IS_IN_UBI

 depends on !ENV_IS_NOWHERE

 default 0x3f8000

 help

 Offset from the start of the device (or partition)

config ENV_SIZE

 hex

 default 0x8000

 help

 Size of the environment storage area

endif

arch/arm/dts/

af://n516
af://n528
af://n532

U-Boot 2017.09-gabfd1c5e3d-210202-dirty #cjh (Mar 08 2021 - 16:57:31 +0800)

Model: Rockchip RK3568 Evaluation Board

PreSerial: 2, raw, 0xfe660000

DRAM: 2 GiB

Sysmem: init

// relocate to ddr where first address offset 0x7d304000. If the offset is 0, no

relocation is executed.

Relocation Offset: 7d304000, fdt: 7b9f8ed8

Using default environment

......

2. Chapter-2 RK Architecture

This chapter introduces users to some important basics, features, etc. on the RK platform.

2.1 Preface

All references to enable/disable CONFIG_ configuration item throughout the text refer to enable or disable it by
means of make menuconfig .

Except for some special CONFIG_ configuration items that are defined directly in the .h file.

Do not enable/disable the CONFIG_ configuration item directly in defconfig to avoid .config not taking effect
due to configuration dependencies defined in Kconfig.

Please use make savedefconfig when updating defconfig.

2.2 Platform Documentation

Platform catalog:

defconfig catalog:

Core public board-level documentation!

2.3 Platform Configuration

configuration file

Configuration items, parameters for each platforms are typically located in the following locations:

./arch/arm/include/asm/arch-rockchip/

./arch/arm/mach-rockchip/

./board/rockchip/

./include/configs/

./configs/

./arch/arm/mach-rockchip/board.c

af://n538
af://n540
af://n546
af://n553

Configuration note:

The following describes the important configurations defined in rockchip-common.h, rkxxx_common.h and
evb_rkxxx.h.

RKIMG_DET_BOOTDEV: Storage type detection command, detects the current storage device type in a
scan-by-scan fashion;
RKIMG_BOOTCOMMAND: Kernel boot command;
ENV_MEM_LAYOUT_SETTINGS: Firmware loading addresses, including ramdisk/fdt/kernel;
PARTS_DEFAULT: Default GPT partition table, used in some cases when no valid GPT partition table is
found in the store
ROCKCHIP_DEVICE_SETTINGS: Peripheral-related commands, mainly specifying stdio (which
typically includes display module boost commands);
BOOTENV: Booting device detection commands when booting linux in distro mode
CONFIG_SYS_MALLOC_LEN: The size of malloc memory pool;
CONFIG_SYS_TEXT_BASE: Starting address for U-Boot operation;
CONFIG_BOOTCOMMAND: Boot command, typically defined as RKIMG_BOOTCOMMAND;
CONFIG_PREBOOT: Pre-boot command, executed before CONFIG_BOOTCOMMAND;
CONFIG_SYS_MMC_ENV_DEV: when MMC is used as ENV storage medium, dev num is usually 0

The following is an example of the RK3399:

./include/configs/rockchip-common.h:

//Public documents for each platform (developers usually don't need to modify

them)

./arch/arm/mach-rockchip/Kconfig

./include/configs/rockchip-common.h

// Unique to each platform, here taking RK3399 as an example

./include/configs/rk3399_common.h

./include/configs/evb_rk3399.h

./configs/rk3399_defconfig

......

#define RKIMG_DET_BOOTDEV \ // Dynamically detects the

current storage type

 "rkimg_bootdev=" \

 "if mmc dev 1 && rkimgtest mmc 1; then " \

 "setenv devtype mmc; setenv devnum 1; echo Boot from SDcard;" \

 "elif mmc dev 0; then " \

 "setenv devtype mmc; setenv devnum 0;" \

 "elif rknand dev 0; then " \

 "setenv devtype rknand; setenv devnum 0;" \

 "elif rksfc dev 0; then " \

 "setenv devtype rksfc; setenv devnum 0;" \

 "fi; \0"

#define RKIMG_BOOTCOMMAND \

 "boot_android ${devtype} ${devnum};" \ // Booting android format

firmware

 "bootrkp;" \ // Booting RK format

firmware

 "run distro_bootcmd;" // Booting the linux

firmware

......

./include/configs/rk3399_common.h:

./include/configs/evb_rk3399.h:

2.4 Boot Process

The U-Boot boot process for the RK platform is as follows, only some of the important steps are listed

......

#ifndef CONFIG_SPL_BUILD

#define ENV_MEM_LAYOUT_SETTINGS \ // Firmware loading address

 "scriptaddr=0x00500000\0" \

 "pxefile_addr_r=0x00600000\0" \

 "fdt_addr_r=0x01f00000\0" \

 "kernel_addr_r=0x02080000\0" \

 "ramdisk_addr_r=0x0a200000\0"

#include <config_distro_bootcmd.h>

#define CONFIG_EXTRA_ENV_SETTINGS \

 ENV_MEM_LAYOUT_SETTINGS \

 "partitions=" PARTS_DEFAULT \ // Default GPT partition table

 ROCKCHIP_DEVICE_SETTINGS \

 RKIMG_DET_BOOTDEV \

 BOOTENV // Booting device detection command

when booting linux

#endif

#define CONFIG_PREBOOT // Pre-boot commands that are executed

before CONFIG_BOOTCOMMAND

......

......

#ifndef CONFIG_SPL_BUILD

#undef CONFIG_BOOTCOMMAND

#define CONFIG_BOOTCOMMAND RKIMG_BOOTCOMMAND // Define boot command (set to

 RKIMG_BOOTCOMMAND)

#endif

......

#define ROCKCHIP_DEVICE_SETTINGS \ // Enable display module

 "stdout=serial,vidconsole\0" \

 "stderr=serial,vidconsole\0"

......

start.s

 // assembly environment

 => IRQ/FIQ/lowlevel/vbar/errata/cp15/gic // ARM architecture related

lowlevel initialization

 => _main

 => stack // Prepare the stack needed for

the C environment

 // [Phase 1] Initialization of the C environment, initiating a series of

function calls

 => board_init_f: init_sequence_f[]

 initf_malloc

af://n589

 arch_cpu_init // [Lowlevel initialization of

SoCs]

 serial_init // Serial port initialization

 dram_init // [Getting ddr capacity

information]

 reserve_mmu // Reserve memory from the end of

ddr to a lower address.

 reserve_video

 reserve_uboot

 reserve_malloc

 reserve_global_data

 reserve_fdt

 reserve_stacks

 dram_init_banksize

 sysmem_init

 setup_reloc //Determine the address of the U-

Boot itself to be relocated

 // Compilation environment

 => relocate_code // Compilation of U-Boot code to

implement relocation

 // [Phase 2] C environment initialization, initiating a series of

function calls

 => board_init_r: init_sequence_r[]

 initr_caches // Enable MMU and I/Dcache

 initr_malloc

 bidram_initr

 sysmem_initr

 initr_of_live // Initialize of_live

 initr_dm // Initializing the dm framework

 board_init // [Platform initialization, the

core part]

 board_debug_uart_init // Serial port iomux, clk

configuration

 init_kernel_dtb // [Switch to kernel dtb]!

 clks_probe // Initialize system frequency

 regulators_enable_boot_on // Initialize system power

 io_domain_init // io-domain initialization

 set_armclk_rate // __weak, ARM boost (implemented

on demand by the platform)

 dvfs_init // wide-temperature chip

frequency modulation and voltage control

 rk_board_init // __weak, implemented by each

specific platform

 console_init_r

 board_late_init // [Platform late initialization]

 rockchip_set_ethaddr // Setting the mac address

 rockchip_set_serialno // Setting serialno

 setup_boot_mode // Parsing the “reboot xxx”

command

 // Recognizes key and loader

modes, recovery

 charge_display // U-Boot charge

 rockchip_show_logo // Display boot logo

 soc_clk_dump // print clk tree

 rk_board_late_init // __weak, implemented by each

specific platform

 run_main_loop // [Enter command line mode, or

execute the boot command]

Name
Start Addr
Offset

Size Usage Secure

ATF 0x00000000 1M
ARM Trusted
Firmware

Yes

SHM 0x00100000 1M SHM, Pstore No

OP-TEE 0x08400000 2M~30M
Refer to the TEE
Development
Manual

Yes

FDT fdt_addr_r - kernel dtb No

KERNEL kernel_addr_r - kernel image No

RAMDISK ramdisk_addr_r - ramdisk image No

…… - - - -

FASTBOOT - - Fastboot buffer No

…… - - -

SP - - stack No

FDT - sizeof(dtb) U-Boot dtb No

GD - sizeof(gd) - No

Board - sizeof(bd_t) - No

MALLOC - CONFIG_SYS_MALLOC_LEN System heap space No

U-Boot - sizeof(mon) u-boot image No

Video FB - fb size 32M No

TLB Table
RAM_TOP-
64K

32K MMU Page Table No

2.5 Memory Layout

The U-Boot is loaded by the predecessor loader to the CONFIG_SYS_TEXT_BASE address, and initializes by
probing the total memory capacity of the current system, which is assumed to be a maximum of 4GB available
on 32-bit platforms (but doesn't affect the kernel's recognition of the capacity), and all of the memory is assumed
to be available on 64-bit platforms. Then, through a series of reserve_xxx() interfaces, it reserves the memory it
needs from the end of the memory forward, and finally relocates itself to a certain reserved space. The overall
memory usage layout is as follows, using ARM64 as an example (the regular case):

The Start Addr Offset column in the above table indicates the address offset based on the DDR
base;

Fastboot address and size are determined by configuration: CONFIG_FASTBOOT_BUF_ADDR,
CONFIG_FASTBOOT_BUF_SIZE.

Video FB/U-Boot/Malloc/Board/Gd/Fdt/Sp is allocated from top to bottom based on actual requirement
size;;

af://n592

64-bit platforms: ATF is required for ARMv8, OP-TEE is optional; 32-bit platforms: only OP-TEE
available
kernel fdt/kernel/ramdisk is the address of the firmware that U-Boot needs to load, defined by
ENV_MEM_LAYOUT_SETTINGS ;
The address and size of the buffer needed for Fastboot functionality is defined in defconfig;
The space occupied by OP-TEE needs to be based on the actual demand, the maximum is 30M; where OP-
TEE on RK1808/RK3308 is placed at the low address, not at 0x8400000;

2.6 Storage Layout

The storage layout of the RK linux program is as follows, and the Android program is basically the same except
that the definition of boot/rootfs is different from that of the linux platform, which can be used for reference.

Picture reference: http://opensource.rock-chips.com/wiki_Partitions

2.7 Aliases

There are some special aliases in U-Boot that differ from those defined in the kernel DTS.

eMMC/SD are collectively referred to as mmc devices in U-Boot, using numbers 0 and 1 for differentiation; SD
has a higher boot priority than eMMC.

2.8 AMP

U-Boot for RK platform supports AMP (Asymmetric Multi-Processing) firmware boot.

For more references please check Driver Modules section.

2.9 Atags

mmc1: indicates sd

mmc0: indicates emmc

af://n717
http://opensource.rock-chips.com/wiki_Partitions
af://n722
af://n726
af://n730

The booting process of the RK platform:

Some configuration information can be passed between the various levels of firmware on the RK platform via
the ATAGS mechanism.

Scope of application: ddr-bin, miniloader, trust, U-Boot, excluding Kernel
Passed content: serial port configuration, storage type, memory occupied by ATF and OP-TEE, ddr
capacity, etc.

Code implementation:

2.10 Bidram/Sysmem

U-Boot can use all the memory of the system, and reserve the memory needed by the system from the high
address to the low address, after reserving the memory, there is usually still a large memory space left. U-Boot
does not have a mechanism to manage this space, so the RK platform introduces the mechanism of bidram,
sysmem memory block to manage this block of memory.

Thus, together with U-Boot's existing malloc management mechanism, the RK platform manages all system
memory through sysmem + bidram + malloc, preventing problems such as memory conflicts.

bidram: Manage memory blocks that are unavailable at u-boot and kernel stage and need to be eliminated,
e.g. space occupied by ATF and OP-TEE.
sysmem: Manages blocks of memory visible and available to the kernel. For example, the space occupied
by fdt, ramdisk, kernel, and fastboot.

Related Code:

The following table shows the memory management information for bidram and sysmem, which is dumped
when a block is initialized or allocated abnormally. The following is a brief description.

bidram memory information table:

BOOTROM => ddr-bin => Miniloader => TRUST => U-BOOT => KERNEL

./arch/arm/include/asm/arch-rockchip/rk_atags.h

./arch/arm/mach-rockchip/rk_atags.c

low-addr

 high-addr

|---|-----------------|

| no management | system used |

|---|-----------------|

0x0 N

GB

./lib/sysmem.c

./lib/bidram.c

./include/memblk.h

./arch/arm/mach-rockchip/memblk.c

bidram_dump_all:

 --

af://n741

sysmem memory information table:

 // <1> Here shows the total capacity information of the ddr that U-Boot got

from the previous loader, which is 2GB in total

 memory.rgn[0].addr = 0x00000000 - 0x80000000 (size: 0x80000000)

 memory.total = 0x80000000 (2048 MiB. 0 KiB)

 --

 // <2> This shows information about the memory that has been set aside for

each firmware, which is unvisible to the kernel.

 reserved.rgn[0].name = "ATF"

 .addr = 0x00000000 - 0x00100000 (size: 0x00100000)

 reserved.rgn[1].name = "SHM"

 .addr = 0x00100000 - 0x00200000 (size: 0x00100000)

 reserved.rgn[2].name = "OP-TEE"

 .addr = 0x08400000 - 0x0a200000 (size: 0x01e00000)

 reserved.total = 0x02000000 (32 MiB. 0 KiB)

 --

 // <3> Here is how the core algorithm organizes the reserved information for

<2> above, e.g., it will merge adjacent blocks

 LMB.reserved[0].addr = 0x00000000 - 0x00200000 (size: 0x00200000)

 LMB.reserved[1].addr = 0x08400000 - 0x0a200000 (size: 0x01e00000)

 reserved.core.total = 0x02000000 (32 MiB. 0 KiB)

 --

sysmem_dump_all:

 --

 // <1> Here is the total amount of memory that sysmem can manage, i.e., the

amount of available ddr, excluding bidram <3>, visible to the kernel.

 memory.rgn[0].addr = 0x00200000 - 0x08400000 (size: 0x08200000)

 memory.rgn[1].addr = 0x0a200000 - 0x80000000 (size: 0x75e00000)

 memory.total = 0x7e000000 (2016 MiB. 0 KiB)

 --

 // <2> This shows information about the memory blocks allocated away by each

firmware

 allocated.rgn[0].name = "U-Boot"

 .addr = 0x71dd6140 - 0x80000000 (size: 0x0e229ec0)

 allocated.rgn[1].name = "STACK" <Overflow!> // Indicates stack

overflow

 .addr = 0x71bd6140 - 0x71dd6140 (size: 0x00200000)

 allocated.rgn[2].name = "FDT"

 .addr = 0x08300000 - 0x08316204 (size: 0x00016204)

 allocated.rgn[3].name = "KERNEL" <Overflow!> // Indicates a memory

block overflow

 .addr = 0x00280000 - 0x014ce204 (size: 0x0124e204)

 allocated.rgn[4].name = "RAMDISK"

 .addr = 0x0a200000 - 0x0a3e6804 (size: 0x001e6804)

 // <3> size of malloc_r/f

 malloc_r: 192 MiB, malloc_f: 16 KiB

 allocated.total = 0x0f874acc (248 MiB. 466 KiB)

 --

 // <4> Here's the information that the core algorithm organizes for the

above <2>, showing information about occupied memory blocks

The following are some common error printouts. When these exceptions occur, analyze them in conjunction with
the bidram and sysmem dump memory information above.

2.11 Fuse/OTP

The RK platform enables secure-boot mode (without the need of downloading efuse/otp) by signing the
firmware for easy debugging of secure-boot. Miniloader will append a cmdline to the kernel via U-Boot to
indicate whether the current efuse/otp enabling has been downloaded or not:

"fuse.programmed=1" : Secure-boot is enabled, efuse/otp is already downloaded.
"fuse.programmed=0" : Secure-boot is enbaled and efuse/otp has not been downloaded.
No fuse.programmed in cmdline: secure-boot is not enabled (Miniloader doesn't pass), or Miniloader is
too old to support passing.

U-Boot needs to include the following commits:

2.12 Hotkey

RK platform provides serial port key combination to trigger some events for debugging and downloading (if you
can't trigger it, please try again; invalid when secure-boot is enabled). when booting, long pressing :

ctrl+c: Enter U-Boot command line mode;
ctrl+d: Enter loader mode;
ctrl+b: Enter maskrom mode

 LMB.reserved[0].addr = 0x00280000 - 0x014ce204 (size: 0x0124e204)

 LMB.reserved[1].addr = 0x08300000 - 0x08316204 (size: 0x00016204)

 LMB.reserved[2].addr = 0x0a200000 - 0x0a3e6804 (size: 0x001e6804)

 LMB.reserved[3].addr = 0x71bd6140 - 0x80000000 (size: 0x0e429ec0)

 reserved.core.total = 0x0f874acc (248 MiB. 466 KiB)

 --

//The memory expected to be requested is already occupied by other firmware and

there is memory overlap. This indicates that the current system's memory block

usage is not planned properly

Sysmem Error: "KERNEL" (0x00200000 - 0x02200000) alloc is overlap with existence

"RAMDISK" (0x00100000 - 0x01200000)

// Memory expected to be requested could not be requested for some specific

reason (analyze sysmem and bidram messages)

Sysmem Error: Failed to alloc "KERNEL" expect at 0x00200000 - 0x02200000 but at

0x00400000 - 0x0420000

// sysmem manages space starting at 0x200000, so it simply can't claim space

starting at 0x100000

Sysmem Error: Failed to alloc "KERNEL" at 0x00100000 - 0x02200000

// Duplicate request for “RAMDISK” memory block.

Sysmem Error: Failed to double alloc for existence "RAMDISK"

83c9bd4 board: rockchip: pass fuse programmed state to kernel

af://n759
af://n770

ctrl+f: Enter fastboot mode;
ctrl+m: Print bidram/system information
ctrl+i: Enabling kernel initcall_debug
ctrl+p: Print cmdline information
ctrl+s: “Starting kernel...” After that, enter U-Boot command line;

2.13 Image Decompress

64-bit machines usually download Image, which is loaded by U-Boot to the target running address. U-
Boot for RK platforms can also support decompression of 64-bit LZ4 compressed kernels. However, to
achieve that, the user must enable:

The pre and post decompression addresses of the 64-bit LZ4 compression kernel must be defined in the
rkxxx_common.h file for each platform:

32-bit machines usually download zImage, which is loaded by U-Boot to the kernel_addr_r address,
and then self-decompressed by the kernel. U-Boot for RK platforms can also support Image format, which
is loaded by U-Boot to the target runtime address.

Currently the rkxxx_common.h file for each platform only defines the kernel_addr_r but not the
kernel_addr_c address. Users don't need to change the configuration, cause U-Boot will determine
whether it is currently zImage or Image, and process these 2 addresses dynamically. But user must disable:

32-bit kernel loading address definition.

2.14 Image Kernel

U-Boot for the RK platform supports three formats of kernel firmware boot:

CONFIG_LZ4=y

#define ENV_MEM_LAYOUT_SETTINGS \

 "scriptaddr=0x00500000\0" \

 "pxefile_addr_r=0x00600000\0" \

 "fdt_addr_r=0x01f00000\0" \

 "kernel_addr_no_bl32_r=0x00280000\0" \

 "kernel_addr_r=0x00680000\0" \ // Address of the LZ4

decompression kernel

 "kernel_addr_c=0x02480000\0" \ // Address of the LZ4 compression

kernel

 "ramdisk_addr_r=0x04000000\0"

CONFIG_SKIP_RELOCATE_UBOOT

#define ENV_MEM_LAYOUT_SETTINGS \

 "scriptaddr=0x60000000\0" \

 "pxefile_addr_r=0x60100000\0" \

 "fdt_addr_r=0x68300000\0" \

 "kernel_addr_r=0x62008000\0" \ // zImage compressed kernel address

 "ramdisk_addr_r=0x6a200000\0"

af://n789
af://n802

RK format

The magic of the image file is “KRNL”:

kernel.img = kernel;

resource.img = dtb + logo.bmp + logo_kernel.bmp;

boot.img = ramdisk;

recovery.img = ramdisk(for recovery) ;

Android format

The magic of the image file is “ANDROID!”:

boot.img = kernel + ramdisk+ resource + <dtb>;

recovery.img = kernel + ramdisk(for recovery) + resource + <recovery_dtbo> + <dtb>;

Notes: recovery_dtbo: images added only since Android-9.0; dtb: images added only since Android-
10.0;

Distro format

One common firmware packaging format for open source Linux is to package ramdisk, dtb, and kernel into
an image. This image usually exists in a sertain file system format, such as ext2, ext4, fat, etc. U-Boot
needs to access its contents through the file system. For more information, please refer to:

Boot priority: android > rk > distro, each type of firmware has a corresponding boot command, and the
three commands will be executed one by one in order of priority until the firmware is booted up. If all
commands fail, it stays in U-Boot command line mode.

Boot Priority Definition:

2.15 Image U-Boot

00000000 4B 52 4E 4C 42 97 0F 00 1F 8B 08 00 00 00 00 00

KRNL..y.........

00000010 00 03 A4 BC 0B 78 53 55 D6 37 BE 4F 4E D2 A4 69

.....xSU.7.ON..i

00000000 41 4E 44 52 4F 49 44 21 24 10 74 00 00 80 40 60

ANDROID!$.t...@`

00000010 F9 31 CD 00 00 00 00 62 00 00 00 00 00 00 F0 60

.1.....b.......`

./doc/README.distro

./include/config_distro_defaults.h

./include/config_distro_bootcmd.h

#define RKIMG_BOOTCOMMAND \

 "boot_android ${devtype} ${devnum};" \

 "bootrkp;" \

 "run distro_bootcmd;"

af://n829

There are two firmware formats for U-Boot and trust for RK platforms: the RK and FIT formats are booted by
Miniloader and SPL respectively. The current SDK released by Rockchip takes RV1126 as the seperating point,
platforms after RV1126 use FIT format, and platforms before RV1126 use RK format.

RK format

Rockchip's customized firmware formats, U-Boot and trust are packaged as uboot.img and trust.img
respectively. as follows:

The uboot.img and 32-bit trust.img images have the magic “LOADER”.

The 64-bit trust.img image file has the magic “BL3X”.

FIT format

The U-Boot mainline supports an extremely flexible firmware format, with U-Boot, trust and mcu
firmware packaged together as uboot.img.

The image file of uboot.img has the magic “d0 0d fe ed”, with the command fdtdump uboot.img you can
view the firmware header.

For more references: please check FIT section.

Firmware Size per copy Number of copies

RK uboot.img 1MB 4

RK 32-bit trust.img 1MB 4

RK 64-bit trust.img 2MB 2

FIT uboot.img 2MB 2

Backup Packaging

Usually, uboot.img and trust.img are packaged with multiple backups in order to cope with the possibility
of firmware corruption due to power failure during the OTA upgrade process and so on.

As you can see from the table above, both uboot.img and trust.img are 4MB in size by default.

Methods for modifying the size for per copy and number of copies

00000000 4c 4f 41 44 45 52 20 20 00 00 00 00 00 00 00 00 |LOADER

........|

00000010 00 00 20 00 78 d0 0f 00 06 99 c2 a8 20 00 00 00 |.. .x.......

...|

00000020 09 8a b0 e1 89 7a c2 89 0d e8 da ef 86 3e f2 24

 |.....z.......>.$|

00000000 42 4c 33 58 00 01 00 00 23 00 00 00 f8 00 04 00

 |BL3X....#.......|

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 |................|

00000000 d0 0d fe ed 00 00 06 00 00 00 00 58 00 00 04 c4

 |...........X....|

00000010 00 00 00 28 00 00 00 11 00 00 00 10 00 00 00 00 |...

(............|

RK format: add parameters to the compiling command. For example: -sz-uboot 2048 1 and -sz-

trust 4096 1 , means uboot.img single copy size is 2M, with 1 copy packaged; trust.img single
copy size is 4M, with 1 copy packaged.

FIT Format: change the configuration parameters: CONFIG_SPL_FIT_IMAGE_KB and
CONFIG_SPL_FIT_IMAGE_MULTIPLE, which indicate the single copy size (in KB) and the
number of packaged copies, respectively.

Note: SPL determines the location and number of backup items in uboot.img according to
CONFIG_SPL_FIT_IMAGE_KB or CONFIG_SPL_FIT_IMAGE_MULTIPLE.If the developer
changes these two options, it must append the parameter --spl-new to make.sh so that the
generated Loader will contain the u-boo-spl.bin generated by the real-time compilation.Otherwise,
the u-boo-spl.bin submitted in rkbin is packed by default (the default is to find the backup items in
uboot.img as per 2MB*2).

2.16 Interrupt

U-Boot's native code does not have full support for interrupts, and the RK platform improves this feature to
support GIC-V2 and GIC-V3.

Please refer to Driver Modules section for more.

2.17 Kernel-DTB

Native U-Boot only supports the use of U-Boot's own DTB, RK platform adds support for kernel DTB
mechanism, i.e., using kernel DTB to initialize peripherals. The main purpose is to be compatible with peripheral
board-level differences, such as: power, clock, display and so on.

Role of the two:

U-Boot DTB: Responsible for initializing devices such as devices for storaging and printing serial ports;
Kernel DTB: Responsible for initializing devices other than devices for storaging and printing serial ports;

When U-Boot initializes, it first uses the U-Boot DTB to complete the storage and print serial port initialization,
and then loads the Kernel DTB from the storage and turns to this DTB to continue to initialize the rest of the
peripherals.The code for the Kerne DTB is implemented in the function: init_kernel_dtb().

Developers generally do not need to modify the U-Boot DTB (unless the print serial port is replaced), the
defconfig used in the SDKs released for each platform has the kernel DTB mechanism enabled. So usually for
peripheral DTS modification, user should modify kernel DTB.

About U-Boot DTB:

DTS directory:

After enabling the kernel DTB mechanism: the compilation phase will filter out the nodes with u-boot,dm-

pre-reloc and u-boot,dm-spl attributes from the U-Boot DTS, and on top of that, it will exclude the
property specified by the CONFIG_OF_SPL_REMOVE_PROPS from defconfig, and finally generate the u-
boot.dtb file and append it to the end of the u-boot.bin.

Users can check the DTB content by fdtdump command after compiling U-Boot:

./arch/arm/dts/

af://n879
af://n883

For more references: please check Advanced Principles section

2.18 MMU Cache

RK platform enables MMU, Dcache and Icache by default, MMU adopts 1:1 linear mapping, and Dcache adopts
write-back policy. Related interfaces:

2.19 Make.sh

make.sh is both a compilation script and a packaging and debugging tool, can be used to disassemble and
package firmware.

fdtdump ./u-boot.dtb | less

// Icache interface:

void icache_enable (void);

void icache_disable (void);

void invalidate_icache_all(void);

// Dcache interface:

void dcache_disable (void);

void dcache_enable(void);

void flush_dcache_range(unsigned long start, unsigned long stop);

void flush_cache(unsigned long start, unsigned long size);

void flush_dcache_all(void);

void invalidate_dcache_range(unsigned long start, unsigned long stop);

void invalidate_dcache_all(void);

// Remap the Dcache attributes of a block of memory intervals

void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,

 enum dcache_option option)

// help command

./make.sh --help

// Functions of packaging firmware

./make.sh trust // packaging trust

./make.sh loader // packaging loader

./make.sh trust <ini-file> // Specify ini file when packaging trust

./make.sh loader <ini-file> // Specify ini file when packaging loader

./make.sh spl // Replace ddr and miniloader with tpl+spl, and

packaged as loader

./make.sh spl-s // Replace miniloader with spl, packaged as loader

./make.sh itb // Packaging u-boot.itb (64-bit platforms only

support packaging ATF and U-Boot, OP-TEE does not)

./make.sh env // Generate fw_printenv tool

// Disassembly Functions

./make.sh elf-[x] [type] // Disassembly: Use the -[x] parameter, [type] to

select whether to disassemble SPL or TPL.

./make.sh elf // Disassemble the u-boot file, using the -D

parameter by default.

af://n901
af://n904

2.20 HW-ID DTB

The U-Boot of the RK platform can filter the DTBs that match the hardware state from multiple DTB files to be
loaded based on the hardware state of the GPIOs or ADCs.

For more reference: please check the System Modules section.

2.21 Partition Table

U-Boot for RK platform supports two kinds of partition table: RK parameter format (old) and standard GPT
format (new), when there are two kinds of partition table on the machine, the GPT partition table is preferred.
No matter it is GPT format or RK parameter formatr, when making downloading, the partition table file used is
called parameter.txt, users can confirm whether it is GPT or not through the “TYPE: GPT” attribute.

2.22 Relocation

./make.sh elf-S // Disassemble the u-boot file, using the -S

parameter

./make.sh elf-d // Disassemble the u-boot file, using the -d

parameter

./make.sh elf spl // Disassemble the tpl/u-boot-tpl file, using the -

D parameter by default.

./make.sh elf tpl // Disassemble the spl/u-boot-tpl file, use the -D

parameter by default

./make.sh <addr> // Requires the function name and code location

corresponding to addr

./make.sh map // open u-boot.map

./make.sh sym // open u-boot.sym

FIRMWARE_VER:8.1

MACHINE_MODEL:RK3399

MACHINE_ID:007

MANUFACTURER: RK3399

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3399

CHECK_MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT // Partition table in GPT format is under using,

otherwise it is RK paramter format

CMDLINE:mtdparts=rk29xxnand:0x00002000@0x00004000(uboot),0x00002000@0x00006000(t

rust),0

x00002000@0x00008000(misc),0x00008000@0x0000a000(resource),0x00010000@0x00012000

(kernel

),0x00010000@0x00022000(boot),0x00020000@0x00032000(recovery),0x00038000@0x00052

000(bac

kup),0x00002000@0x0008a000(security),0x00100000@0x0008c000(cache),0x00500000@0x0

018c000

(system),0x00008000@0x0068c000(metadata),0x00100000@0x00694000(vendor),0x0010000

0@0x007

96000(oem),0x00000400@0x00896000(frp),-@0x00896400(userdata:grow)

af://n907
af://n911
af://n914

U-Boot will relocate itself to an address at the end of memory after completing the board_f.c process, depending
on the U-Boot memory layout. RK's U-Boot default:

32-bit platforms: CONFIG_SKIP_RELOCATE_UBOOT=y does not have relocation, otherwise it does.
64-bit platforms have relocation.

2.23 Reset

U-Boot reset, like kernel, eventually needs to be done in trust.
U-Boot command line mode can support the same reboot xxx commands as the kernel (depending on the
definition in the kernel dts)

2.24 Sd/Udisk

U-Boot for RK platform supports firmware booting or upgrading from SD/U disk. Among them:

SD booting/upgrading is supported from the bootrom level onwards
USB flash drive booting/upgrading is supported from the U-Boot level onwards

For more reference: please check System Modules section.

2.25 Stacktrace

Native U-Boot does not support call stack traceback mechanism, however, RK platform added the function.
Currently there are a total of 3 ways to trigger call stack printing:

Automatically triggered when the system crashes;
User-initiated call to dump_stack();
Enable CONFIG_ROCKCHIP_DEBUGGER ;

For example, system abort:

"Synchronous Abort" handler, esr 0x96000010

// abort reason, pc, lr, sp

* Reason: Exception from a Data abort, from current exception level

* PC = 000000000028f430

* LR = 00000000002608d0

* SP = 00000000f3dceb30

...

// Highlighting PC and LR

Call trace:

 PC: [< 0028f430 >]

 LR: [< 002608d0 >]

// Function call relationships

Stack:

 [< 0028f430 >]

 [< 0028da24 >]

 [< 00211600 >]

af://n921
af://n927
af://n936

According to the above instructions, the user copies the call stack information to any txt file (such as dump.txt)
and executes the following command:

Notes:

There are three types of conversion commands, please follow the instructions after the call stack printout to
determine which one to use

When executing this command, the firmware on the current machine must match the current
code environment to be meaningful!Otherwise you will get an incorrect conversion.

2.26 TimeCost

The end of U-Boot initialization prints the total elapsed time for this phase by default:

 [< 002117b0 >]

 [< 00202910 >]

 [< 00202aa8 >]

 [< 0027698c >]

 [< 002151ec >]

 [< 00201b2c >]

// Instructs the user to convert the above call stack information

Copy info from "Call trace..." to a file(eg. dump.txt), and run

command in your U-Boot project: ./scripts/stacktrace.sh dump.txt

cjh@Ubuntu:~/u-boot$./scripts/stacktrace.sh dump.txt

// Symbol Table Sources

SYMBOL File: ./u-boot.sym

// Highlight the code locations corresponding to PC and LR

Call trace:

 PC: [< 0028f430 >] strncpy+0xc/0x20 ./lib/string.c:98

 LR: [< 002608d0 >] on_serialno+0x10/0x1c ./drivers/usb/gadget/g_dnl.c:217

// Converted to get the real function name

Stack:

 [< 0028f430 >] strncpy+0xc/0x20

 [< 0028da24 >] hdelete_r+0xcc/0xf0

 [< 00211600 >] _do_env_set.isra.0+0x70/0x1b8

 [< 002117b0 >] env_set+0x3c/0x58

 [< 00202910 >] rockchip_set_serialno+0x54/0x140

 [< 00202aa8 >] board_late_init+0x5c/0xa0

 [< 0027698c >] initcall_run_list+0x58/0x94

 [< 002151ec >] board_init_r+0x20/0x24

 [< 00201b2c >] relocation_return+0x4/0x0

./scripts/stacktrace.sh ./dump.txt // Parsing Call Stack Information

from U-Boot

./scripts/stacktrace.sh ./dump.txt tpl // Parsing call stack information

from tpl

./scripts/stacktrace.sh ./dump.txt spl // Parsing call stack information

from spl

af://n956

The user can open debug() and DEBUG in lib/initcall.c to get the following process timings, the
function addresses can be obtained with the help of . /make.sh for disassembly.

2.27 TimeStamp

Kernel's print message has a timestamp by default, which is convenient for users to pay attention to the time.U-
Boot's print message doesn't have a timestamp by default, users can enable the configuration
CONFIG_BOOTSTAGE_PRINTF_TIMESTAMP if necessary.

Booting Android Image at 0x02007800 ...

Kernel load addr 0x02008000 size 8062 KiB

Flattened Device Tree blob at 08300000

 Booting using the fdt blob at 0x8300000

 XIP Kernel Image ... OK

 'reserved-memory' dma-unusable@fe000000: addr=fe000000 size=1000000

 'reserved-memory' ramoops@00000000: addr=8000000 size=f0000

 Using Device Tree in place at 08300000, end 08316ed1

Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)

Adding bank: 0x09200000 - 0x80000000 (size: 0x76e00000)

Total: 812.613 ms //Total elapsed time for the U-Boot phase

Starting kernel ...

U-Boot 2017.09-00019-g9b55ed0-dirty (Dec 26 2019 - 14:45:33 +0800)

 # 5212 us # 137.868 ms

initcall: 0020de1f

 # 1 us # 142.636 ms

initcall: 0020e015

Model: Evb-RK3288

 # 1646 us # 149. 48 ms

initcall: 0020dd61

PreSerial: 2

 # 1213 us # 155. 28 ms

initcall: 0020ddcd

DRAM: # 606 us # 160.401 ms

initcall: 00203719

 // The following 187 us is the time consumed by initcall: 00203719

call

 // The following 165.355 ms is the U-Boot boot time until

initcall: 00203719

 # 187 us # 165.355 ms

initcall: 0020de81

 # 2 us # 169.938 ms

initcall: 0020dc29

 # 1 us # 174.703 ms

initcall: 0020dc3d

 # 1 us # 179.469 ms

initcall: 0020ddad

 # 2 us # 184.237 ms

initcall: 0020de27

 # 1 us # 189. 2 ms

......

af://n961

Notes: The timestamp prints relative time, not absolute time.

2.28 Vendor Storage

The U-Boot of RK platform provides a Vendor storage area for users to save SN, MAC and other information.
The storage offset is as follows (see vendor.c for details):

[0.324987] U-Boot 2017.09-00019-g9b55ed0-dirty (Dec 26 2019 - 14:31:44

+0800)

[0.327215] Model: Evb-RK3288

[0.330039] PreSerial: 2

[0.332526] DRAM: 2 GiB

[0.336454] Relocation Offset: 00000000, fdt: 7be22c38

[0.346981] Using default environment

[0.351075] dwmmc@ff0c0000: 1, dwmmc@ff0f0000: 0

[0.394136] Bootdev(atags): mmc 0

[0.394272] MMC0: High Speed, 52Mhz

[0.395276] PartType: EFI

[0.400347] Android 9.0, Build 2019.6

[0.402070] boot mode: None

[0.405213] Found DTB in boot part

[0.407833] DTB: rk-kernel.dtb

[0.418211] ANDROID: fdt overlay OK

[0.432128] I2c0 speed: 400000Hz

[0.435916] PMIC: RK808

[0.439113] vdd_arm 1100000 uV

[0.444148] vdd_gpu 1100000 uV

......

[1.005018] ## Booting Android Image at 0x02007800 ...

[1.009917] Kernel load addr 0x02008000 size 8062 KiB

[1.014981] ## Flattened Device Tree blob at 08300000

[1.019970] Booting using the fdt blob at 0x8300000

[1.025185] XIP Kernel Image ... OK

[1.035469] 'reserved-memory' dma-unusable@fe000000: addr=fe000000

size=1000000

[1.037448] 'reserved-memory' ramoops@00000000: addr=8000000 size=f0000

[1.044412] Using Device Tree in place at 08300000, end 08316ed1

[1.064363] Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)

[1.064976] Adding bank: 0x09200000 - 0x80000000 (size: 0x76e00000)

[1.075259] Total: 812.613 ms

[1.075279] Starting kernel ...

......:

#define EMMC_VENDOR_PART_OFFSET (1024 * 7)

/* --- Spi Nand/SLC/MLC large capacity case define --- */

#define NAND_VENDOR_PART_OFFSET 0

/* --- Spi/Spi Nand/SLC/MLC small capacity case define --- */

#define FLASH_VENDOR_PART_OFFSET 8

......

af://n966

Users generally do not need to concern themselves with and modify storage offsets, only with the read and write
interfaces:

int vendor_storage_read(u16 id, void *pbuf, u16 size)

int vendor_storage_write(u16 id, void *pbuf, u16 size)

3. Chapter-3 Compile and Download

3.1 Preparations

Download rkbin

Rkbin is a toolkit repository for RK's non-open-source bin, script, and packaging tools. U-Boot compiles
from this repository and indexes the relevant files to package the loader, trust, and uboot firmware. Rkbin
and the U-Boot project must be kept in the same directory-level.

rkbin downloading: please refer to the Appendix.

Download GCC

The GCC compiler uses gcc-linaro-6.3.1 and is placed in the prebuilts directory. The prebuilts and U-Boot
shall maintain a sibling directory relationship.

GCC downloading: please refer to the Appendix section

select defconfig: Please refer to the Platform Definition section.

config fragment introduction

Due to the differentiated needs of products on a single platform, a defconfig can no longer satisfy. So from
RV1126 onwards, we support config fragment, i.e. overlaying the defconfig.

For example, if CONFIG_BASE_DEFCONFIG=“rv1126_defconfig” is specified in rv1126-emmc-
tb.config, when the . /make.sh rv1126-emmc-tb command is executed, it will first generate the
.config with rv1126_defconfig, and then overlay the .config with the configuration in rv1126-emmc-
tb.config. This command is equivalent to:

To make updates to the config fragment file, simply resort to . /scripts/sync-fragment.sh .
Example:

Command effect: diff the configuration difference entries of the current .config and rv1126_defconfig into
the rv1126-emmc-tb.config file.

3.2 Firmware Compiling

Compiling command:

// 32-bit:

prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-

gnueabihf

// 64-bit:

prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-

linux-gnu/

make rv1126_defconfig rv1126-emmc-tb.config && make

./scripts/sync-fragment.sh configs/rv1126-emmc-tb.config

af://n973
af://n974
af://n997

First- time compilation: Regardless of 32-bit or 64-bit platforms, the first time you specify defconfig or want to
re-specify defconfig, the compiling command must specify [board]. Example:

Secondary compilation: Regardless of 32-bit or 64-bit platforms, if you want to compile based on the current
“.config”, you don't need to specify [board] in the compiling command.:

Note: If the compilation fails due to strange problems during compilation, try make distclean and
recompile.

Firmware generation: When the compilation is complete, the following information is generated in the U-Boot
root directory: trust, uboot, loader.:

Eventually, downloadable firmware is generated in the root directory:

./make.sh [board] // [board]: configs/[board]_defconfig file.

./make.sh rk3399 // build for rk3399_defconfig

./make.sh evb-rk3399 // build for evb-rk3399_defconfig

./make.sh firefly-rk3288 // build for firefly-rk3288_defconfig

./make.sh

// compile...

....

// uboot packaging process

load addr is 0x60000000!

pack input u-boot.bin

pack file size: 478737

crc = 0x840f163c

uboot version: v2017.12 Dec 11 2017

pack uboot.img success!

pack uboot okay! Input: u-boot.bin

// loader packaging process and the referenced ini file

out:rk3126_loader_v2.09.247.bin

fix opt:rk3126_loader_v2.09.247.bin

merge success(rk3126_loader_v2.09.247.bin)

pack loader okay! Input: /home/cjh/rkbin/RKBOOT/RK3126MINIALL.ini

// trust packaging process and the referenced ini file

 load addr is 0x68400000!

pack file size: 602104

crc = 0x9c178803

trustos version: Trust os

pack ./trust.img success!

trust.img with ta is ready

pack trust okay! Input: /home/cjh/rkbin/RKTRUST/RK3126TOS.ini

// Prompts for a successful compilation. Note: This is prompted even if the

above trust and loader packaging fails, indicating that at least uboot.img was

generated

Platform RK3126 is build OK, with new .config(make rk3126_defconfig)

Firmware packaging tool: Please refer to the Tools section.

3.3 Firmware Downloading

Downloading tool:

The firmware downloading tool for Windows/Linux is recommended to use the tool version released by the SDK
or the latest version.

Downloading mode:

The RK platform has a total of two downloading modes: Maskrom mode and Loader mode (U-Boot).

1. How to enter Loader mode:

When powering on, long press Volume + button
When powering on, the host computer long presses ctrl+d at the same time
U-Boot command line input: download or rockusb 0 $devtype $devnum

2. How to enter Maskrom mode:

When powering on, the host computer long presses ctrl+b at the same time.
U-Boot command line input: rbrom

Notes:

Currently U-Boot supports two types of partition tables: RK parameter (old) and GPT (new). If you want
to replace the current partition table with another partition table type, the Nand machine must be
rewritten/redownloaded with the whole firmware; eMMC machine can support replacing the partition table
individually.

If both partition tables exist on the machine, the GPT partition table is recognized first. This can be
confirmed by a boot message:

3.4 Firmware Size

Please refer to section: RK Architecture => U-Boot Image.

3.5 Special Packaging

./uboot.img

./trust.img // Note: If the firmware is in fit format, there is no trust.img.

the trust binary is packed in uboot.img.

./rk3126_loader_v2.09.247.bin

...

PartType: EFI // Currently it is the GPT partitioned table, otherwise print

“PartType: RKPARM”.

...

af://n1012
af://n1042
af://n1044

In addition to compiling code, . /make.sh integrates firmware packaging function with providing some additional
standalone packaging commands for developers to use. However, the prerequisite for that is the U-Boot has
already been compiled once.

Non-FIT format:

FIT format:

How toidentify old and new scripts? If the new command is in effect, make.sh is the new script.

./make.sh trust // package trust

./make.sh loader // package loader

./make.sh trust <ini-file> // Specify the ini file when packaging trust,

otherwise use the default ini file

./make.sh loader <ini-file> // Specify the ini file when packing the loader.

Otherwise, use the default ini file

// old script:

./make.sh spl // Replace ddr and miniloader with tpl+spl and

package them into loader

./make.sh spl-s // Replace the miniloader with spl and package it

into loader

// new script:

./make.sh --spl // Replace the miniloader with spl and package it

into loader

./make.sh --tpl // Replace ddr with tpl and package it into loader

./make.sh --tpl --spl // Replace ddr and miniloader with tpl and spl and

package them into loader

./make.sh --spl-new // ./make.sh--spl command do packages but not

compile. This command recompiles and repackages.

4. Chapter-4 System Module

4.1 AArch32

ARMv8's 64-bit chips support degradation from AArch64 to AArch32 mode (compatible with ARMv7), the
code must be compiled in 32-bit.

Users can use this macro to confirm whether the current mode is AArch32 of ARMv8:

4.2 ANDROID AB

The so-called A/B System divides the system firmware into two parts, called slot-a and slot-b respectively. The
system can be booted from any slot, and when one slot fails, it can also be booted from the other slot. Also,
when upgrading, it can be directly copied to the other slot without entering the system upgrade mode. Please
refer to the Advanced Principles section for detailed principles and procedures.

The current RK platform's pre-loader and U-Boot can support A/B systems.

4.2.1 Configuration Item

The A/B System depends on LIBAVB as follows

4.2.2 Partition Table

The A/B System has requirements for the partition table: partitions that need to support A/B must have the
suffixes _a and _b added. Parameter.txt is referenced below:

CONFIG_ARM64_BOOT_AARCH32=y

// A/B dependent libraries

CONFIG_AVB_LIBAVB=y

CONFIG_AVB_LIBAVB_AB=y

CONFIG_AVB_LIBAVB_ATX=y

CONFIG_AVB_LIBAVB_USER=y

CONFIG_RK_AVB_LIBAVB_USER=y

// Enable A/B function

CONFIG_ANDROID_AB=y

af://n1054
af://n1055
af://n1059
af://n1062
af://n1065

4.2.3 Notes

With the old U-Boot enabled A/B system, if the user accesses a partition with a/b, the partition name passed to
part_get_info_by_name() must have a slot suffix, e.g. “boot_a” or “boot_b” . This adds a lot of
redundant code: the user must first get the current system's slot, then do string splicing to get the partition name.

The new code optimizes this issue. If the user's version of the code is after the commit point below, the partition
a/b can be accessed with or without a slot suffix, and the framework layer automatically detects which slot is
currently used by the system. e.g. “boot” can be used directly in the above case.

4.3 ANDROID BCB

BCB (Bootloader Control Block) is a mechanism designed for Android to control the boot process and to
interact with the bootloader. The data structure is defined in the misc partition offset 16KB or 0 position.

data structure:

FIRMWARE_VER:8.1

MACHINE_MODEL:RK3326

MACHINE_ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK_MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT

CMDLINE:

mtdparts=rk29xxnand:0x00002000@0x00004000(uboot_a),0x00002000@0x00006000(uboot_b

),0x00002000@0x00008000(trust_a),0x00002000@0x0000a000(trust_b),0x00001000@0x000

0c000(misc),0x00001000@0x0000d000(vbmeta_a),0x00001000@0x0000e000(vbmeta_b),0x00

020000@0x0000e000(boot_a),0x00020000@0x0002e000(boot_b),0x00100000@0x0004e000(sy

stem_a),0x00300000@0x0032e000(system_b),0x00100000@0x0062e000(vendor_a),0x001000

00@0x0072e000(vendor_b),0x00002000@0x0082e000(oem_a),0x00002000@0x00830000(oem_b

),0x0010000@0x00832000(factory),0x00008000@0x842000(factory_bootloader),0x000800

00@0x008ca000(oem),-@0x0094a000(userdata)

commit c6666740ee3b51c3e102bfbaf1ab95b78df29246

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Thu Oct 24 15:48:46 2019 +0800

 common: android/rkimg: remove/clean android a/b (slot) code

 - the partition disk layer takes over the responsibility of slot suffix

 appending, we remove relative code to make file clean;

 - put android a/b code together and name them to be eary understood,

 this makes file esay to read.

 Change-Id: Id8c838da682ce6098bd7192d7d7c64269f4e86ba

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

struct android_bootloader_message {

af://n1068
af://n1072

Parameters Functionality

bootonce-bootloader Boot to entry U-Boot fastboot

boot-recovery Boot to entry recovery

boot-fastboot Boot to entry recovery fastboot (fastbootd)

command: boot command, currently supports the following three:

recovery: the incidental command to enter recovery mode, it starts with “recovery\n” and can be followed by
multiple parameters, starting with “--” and ending with “\n”, for example, "recovery\n--wipe_ab\n--

wipe_package_size=345\n--reason=wipePackage\n" :

 char command[32];

 char status[32];

 char recovery[768];

 /* The 'recovery' field used to be 1024 bytes. It has only ever

 * been used to store the recovery command line, so 768 bytes

 * should be plenty. We carve off the last 256 bytes to store the

 * stage string (for multistage packages) and possible future

 * expansion. */

 char stage[32];

 /* The 'reserved' field used to be 224 bytes when it was initially

 * carved off from the 1024-byte recovery field. Bump it up to

 * 1184-byte so that the entire bootloader_message struct rounds up

 * to 2048-byte. */

 char reserved[1184];

};

Parameters Functionality

update_package OTA upgrade

retry_count
the number of times to enter recovery upgrade, such as accidental power down
during upgrade, based on this value to re-enter recovery upgrade.

wipe_data erase user data (and cache), then reboot

wipe_cache wipe cache (but not user data), then reboot

show_text show the recovery text menu, used by some bootloader

sideload

sideload_auto_reboot an option only available in user-debug build, reboot the device without waiting

just_exit do nothing, exit and reboot

locale
save the locale to cache, then recovery will load locale from cache when
reboot

shutdown_after return shutdown

wipe_all Erase the entire userdata partition

wipe_ab
wipe the current A/B device, with a secure wipe of all the partitions in
RECOVERY_WIPE

wipe_package_size wipe package size

prompt_and_wipe_data
prompt the user that data is corrupt, with their consent erase user data (and
cache), then reboot

fw_update SD Card Firmware Upgrade

factory_mode Factory mode, mainly used to do some device testing, such as PCBA testing

pcba_test Access to PCBA Testing

resize_partition Resizing partitions, dynamic partitioning support in android Q

rk_fwupdate Specify rk SD/USB firmware upgrade, applicable scope limited to U-Boot

Generally, during U-Boot phase, it is no need to use and care about the above parameters, only for reference for
users .

4.4 AVB Secure Boot

 Android Verified Boot(AVB), a set of firmware verification process designed by Google, mainly used to verify
the boot system and other firmware. Rockchip Secure Boot achieve a complete set of Secure Boot verification
program with reference to verification method and AVB in communication .

4.4.1 Feature

safety check

af://n1153
af://n1155

integrity check
anti-rollback protection
persistent partition support
chained partitions support, can be consistent with boot, system signing private key, or oem can save private
key by itself, but must be signed by PRK.

4.4.2 Configuration

Enabling AVB requires trust support:

CONFIG_OPTEE_V1 : suitable for platforms with 312x,322x,3288,3228H,3368,3399.
CONFIG_OPTEE_V2 : suitable for platforms with 3326,3308.
CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION : This macro is only enabled when eMMC's rpmb
is not working, it is not enabled by default.

Enables AVB-related configuration:

4.4.3 Reference

Because AVB involves more content, please refer to the Advanced Principles sector for the rest of the principles
and configurations.

4.5 Cmdline

CONFIG_OPTEE_CLIENT=y

CONFIG_OPTEE_V1=y

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y //Security data is stored in the

security partition

CONFIG_AVB_LIBAVB=y

CONFIG_AVB_LIBAVB_AB=y

CONFIG_AVB_LIBAVB_ATX=y

CONFIG_AVB_LIBAVB_USER=y

CONFIG_RK_AVB_LIBAVB_USER=y

// The above options are mandatory, the following options support AVB and A/B

features, the two features can be used separately.

CONFIG_ANDROID_AB=y //This supports A/B

CONFIG_ANDROID_AVB=y //This supports A/B

// The following macros are for efuse-only platforms

CONFIG_ROCKCHIP_PRELOADER_PUB_KEY=y

// The following macros need to be turned on for strict unlock checksums

CONFIG_RK_AVB_LIBAVB_ENABLE_ATH_UNLOCK=y

// Enable Security check

CONFIG_AVB_VBMETA_PUBLIC_KEY_VALIDATE=y

// If you need the cpuid as a challenge number, enable the following macro

CONFIG_MISC=y

CONFIG_ROCKCHIP_EFUSE=y

CONFIG_ROCKCHIP_OTP=y

af://n1167
af://n1179
af://n1181

The cmdline is an important means for U-Boot to pass parameters to the kernel, such as boot storage, device
status, etc. Currently, there are several sources of cmdlines, which are spliced by U-Boot and filtered for
duplicates before being passed to the kernel. cmdlines from the U-Boot phase are stored in the bootargs
environment variable.

U-Boot ultimately implements cmdline passing via /chosen/bootargs in the modified kernel DTB.

4.5.1 Data Sources

parameter.txt

If the partition table is in RK format, you can store the cmdline information in parameter.txt, for example:

If the partition table is in GPT format, it is not valid to store cmdline information in parameter.txt.

/chosen/bootargs of kernel dts, e.g.

U-Boot: Depending on the current running state, U-Boot will dynamically append something to the
cmdline. for example:

The ones in the boot/recovery.img firmware header usually have the cmdline field information as well.

4.5.2 Data Meaning

The following is a list of cmdline parameters that are commonly used on the RK platform. For more information,
please refer to the kernel documentation: Documentation/admin-guide/kernel-parameters.txt.

sdfwupdate: sd upgrade card logo, required by the recovery program ;

root=PARTUUID: Specify the UUID of the rootfs(system) partition, supported only by the GPT table

skip_initramfs: kernel uses the ramdisk in rootfs(system) but not the ramdisk loaded by uboot,

storagemedia: Storage boot type;

console: kernel print port configuration information

earlycon: Specify the serial port and its configuration before the serial node is created

 CMDLINE: console=ttyFIQ0 androidboot.baseband=N/A

androidboot.selinux=permissive androidboot.hardware=rk30board

androidboot.console=ttyFIQ0 init=/init

mtdparts=rk29xxnand:0x00002000@0x00002000(uboot),0x00002000@0x00004000(trust

),

chosen {

 bootargs = "earlyprintk=uart8250,mmio32,0xff30000 swiotlb=1

console=ttyFIQ0

 androidboot.baseband=N/A androidboot.veritymode=enforcing

 androidboot.hardware=rk30board androidboot.console=ttyFIQ0

 init=/init kpti=0";

};

storagemedia=emmc androidboot.mode=emmc

af://n1184
af://n1199

loop.max_part: max_part is used to set the number of partitions that can be supported by each loop's
device.

rootwait: Used in cases where the file system is not immediately available, for example, emmc
initialization is not complete, if you do not set root_wait at this time, mount rootfs failed, but if you add
this parameter, you can wait for the driver to finish loading, then copy the rootfs from the storage device
and mount it again, then it will not prompt the Failed

ro/rw: Load rootfs attributes, read-only/read-write

firmware_calss.path: Specify driver location, e.g. wifi, bt, gpu, etc.

dm="lroot none 0, 0 4096 linear 98:3 0, 4096 4096 linear 98:32" root=/dev/dm-0: Will boot to a rw dm-
linear target of 8192 sectors split across two block devices identified by their major:minor numbers.After
boot, udev will rename this target to /dev/mapper/lroot (depending on the rules).No uuid was
assigned.please refer to https://android.googlesource.com/kernel/common/+/android-3.18/Documentation/
device-mapper/boot.txt>

androidboot.slot_suffix: Specify a slot for the kernel to boot from during AB System.

androidboot.serialno: Provide serial numbers for the kernel and upper layers, e.g. adb's serial number, etc.

androidboot.verifiedbootstate: Android requirements, which provide the upper layers with the state of the
uboot verifivation firmware, it has three states, as follows

1. green: If in LOCKED state and the key used for verification was not set by the end user
2. yellow: If in LOCKED state and the key used for verification was set by the end user
3. orange: If in the UNLOCKED state

androidboot.hardware: boot the device, e.g. rk30board

androidboot.verifymode: Specify the true mode/state of the verification partition (i.e., verify the integrity
of the firmware)

androidboot.selinux: SELinux is a mandatory access control (MAC) security system based on the domain-
type model There are three models:

1. enforcing: enforcing mode, meaning that SELinux is running and has started restricting the
domain/type correctly.

2. permissive: Tolerant Mode: This means that SELinux is running, but only warning messages will be
displayed without actually restricting access to the domain/type. This mode can be used for
debugging SELinux.

3. disabled: Shutdown, SELinux does not actually work!
androidboot.mode: Android boot method: normal and charger.

1. normal: Normal boot up
2. charger: After powering off and on, androidboot.mode is set to charger, which is set to the bootargs

environment variable by uboot after detecting power charging.
androidboot.wificountrycode: Set wifi country code, e.g. US, CN

androidboot.baseband: Configure baseband, RK does not have this feature, set to N/A

androidboot.console: android message output port configuration

androidboot.vbmeta.device=PARTUUID: Specify the location of vbmeta in the storage

androidboot.vbmeta.hash_alg: Set the vbmeta hash algorithm, e.g. sha512

androidboot.vbmeta.size: Specify the size of the vbmeta

androidboot.vbmeta.digest: Upload a digest of the vbmeta to the kernel, the kernel loads the vbmeta,
calculates the digest, and compares it to this digest

androidboot.vbmeta.device_state: avb2.0 specifying system lock and unlock

https://android.googlesource.com/kernel/common/+/android-3.18/Documentation/device-mapper/boot.txt

4.6 DFU Update Firmware

DFU is Device Firmware Update, which is used to update the firmware of the device. For the platforms that
supporting DFU Please refer to the Platform Definition section.

To enable the DFU feature, the macros that need to be enabled include:

 Depending on the storage media used, you can choose to turn on the following switches

Platforms that support DFU usually provide a separate config file, for example, compiling the RV1126 firmware
with DFU support can be done by executing the following compile command

Download the firmware into the development board and connect the OTG connector to the PC, execute the
following in the U-Boot command line

where devtype can be mmc or mtd, at this point you will find a USB download gadget device on your PC, use
Zadig to replace the device driver, the screenshot after successful replacement is as follows

Execute the followings from the Windows command line using the host computer software

At this point the device will upload the partition table, which is defined in
include/configs/evb_rv1126.h .

CONFIG_CMD_DFU=y

CONFIG_USB_FUNCTION_DFU=y

CONFIG_DFU_MMC

CONFIG_DFU_MTD

CONFIG_DFU_NAND

CONFIG_DFU_RAM

CONFIG_DFU_SF

./make.sh rv1126-dfu

dfu 0 $devtype $devnum

./dfu-util.exe -l

af://n1273

The Windows command line executes the following command to transfer files to the development board in the
command line format

dfu-util.exe VID:PID -a (partition name) -D (file name) -R (reboot option)

The log of a successful download is as follows

F:\Prj\20210901-Hisense-AB\dfu-util-0.9-win64>dfu-util.exe -l

dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.

Copyright 2010-2016 Tormod Volden and Stefan Schmidt

This program is Free Software and has ABSOLUTELY NO WARRANTY

Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1, intf=0, path="1-12", alt=5,

name="userdata", serial="UNKNOWN"

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1, intf=0, path="1-12", alt=4,

name="rootfs", serial="UNKNOWN"

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1, intf=0, path="1-12", alt=3,

name="boot", serial="UNKNOWN"

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1, intf=0, path="1-12", alt=2,

name="uboot", serial="UNKNOWN"

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1, intf=0, path="1-12", alt=1,

name="loader", serial="UNKNOWN"

Found DFU: [2207:0107] ver=0223, devnum=16, cfg=1, intf=0, path="1-12", alt=0,

name="gpt", serial="UNKNOWN"

F:\Prj\20210901-Hisense-AB\dfu-util-0.9-win64>dfu-util.exe -d 2207:0107 -a

system_b -D rootfs.img -R

dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.

Copyright 2010-2016 Tormod Volden and Stefan Schmidt

This program is Free Software and has ABSOLUTELY NO WARRANTY

Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Invalid DFU suffix signature

A valid DFU suffix will be required in a future dfu-util release!!!

Opening DFU capable USB device...

ID 2207:0107

Run-time device DFU version 0110

Claiming USB DFU Interface...

Setting Alternate Setting #8 ...

Determining device status: state = dfuIDLE, status = 0

dfuIDLE, continuing

DFU mode device DFU version 0110

Device returned transfer size 4096

Copying data from PC to DFU device

Download [=========================] 100% 49938432 bytes

Download done.

state(7) = dfuMANIFEST, status(0) = No error condition is present

state(2) = dfuIDLE, status(0) = No error condition is present

Done!

can't detach

 If you need to download other partitions, you only need to replace the partition name after the -a option of the
download command and the file name after the -D option; the -R parameter appended to the download
command indicates that the board will be rebooted after the download is completed.

4.7 DTBO/DTO

In order to facilitate the user's understanding of the contents of this chapter, here we recommend you first read
the Appendix Section to recognize the terminology: DTB, DTBO, DTC, DTO, DTS, FDT.

The relationship between them can be described as:

DTS is the file used to describe the FDT;
DTS is compiled by DTC, can generate DTB/DTBO;
DTB and DTBO can be combined into a new DTB through a DTO operation;

Usually, many users are used to replace the action meaning of the word “DTO” with “DTBO”. In the following,
to avoid this mixing concepts, we make it clear that DTO is a verb concept, which stands for operation; while
DTBO is a noun concept, which refers to the number of dtb, indicating aggregation.

More knowledge of this chapter can be found at: : https://source.android.google.cn/devices/architecture/dto.

4.7.1 Principle Introduction

DTO (Devcie Tree Overlay) is a mandatory feature introduced with Android P that allows a secondary device
tree Blob (DTBO) to be overlayed on top of an existing primary device tree Blob. DTO maintains the system-on-
chip SoC device tree and dynamically overlays device-specific device trees to add nodes to the tree and make
changes to properties in the existing tree.

The Primary Device Tree Blob (*.dtb) is usually provided by the Vendor, while the Secondary Device Tree Blob
(*.dtbo) can be provided by ODM/OEM, etc., and finally merged by the bootloader before passing to the kernel.
as shown in the figure below:

Resetting USB to switch back to runtime mode

af://n1295
https://source.android.google.cn/devices/architecture/dto
af://n1307

Image from: https://source.android.google.cn/devices/architecture/dto

Note: The compilation of DTB and DTBO for DTO operations is different from the normal DTB compilation,
and there is a special syntax difference:

When compiling .dts with dtc, you must add the option -@ to add the _symbols_ node to the resulting .dtbo. The
symbols node contains a list of all nodes with labels that the DTO library can use the list as a reference. The
following is an example:

1. Sample commands for compiling the main .dts:

2. Sample commands for compiling the overlay DT .dts :

4.7.2 Enable DTO

1. Configuration Enable:

2. Implementation of the board_select_fdt_index() function. This is a __weak function that can be
reimplemented by the user. The function is to get the DTBO used to perform DTO operation among
multiple DTBOs (return index index, the smallest starts from 0), the default weak function returns index 0.

4.7.3 DTO Result

dtc -@ -O dtb -o my_main_dt.dtb my_main_dt.dts

dtc -@ -O dtb -o my_overlay_dt.dtbo my_overlay_dt.dts

CONFIG_CMD_DTIMG=y

CONFIG_OF_LIBFDT_OVERLAY=y

/*

* Default return index 0.

*/

__weak int board_select_fdt_index(ulong dt_table_hdr)

{

 /*

 * User can use "dt_for_each_entry(entry, hdr, idx)" to iterate

 * over all dt entry of DT image and pick up which they want.

 *

 * Example:

 * struct dt_table_entry *entry;

 * int index;

 *

 * dt_for_each_entry(entry, dt_table_hdr, index) {

 *

 * (use entry)

 * }

 *

 * return index;

 */

 return 0;

}

https://source.android.google.cn/devices/architecture/dto
af://n1323
af://n1332

1. After DTO execution is complete, you can see the result in the boot message of U-Boot:

Often the cause of failure is generally due to incompatibility between the contents of the primary/secondary
device book blob, so the user needs to be clear about their generation syntax and compatibility.

2. The following message is appended to the cmdline of the kernel after successful DTO execution, indicating
which DTBO is being used for the DTO operation:

3. After the DTO is successfully executed you can use the fdt command at the U-Boot command line to
view the contents of the DTB to confirm that the changes have taken effect.

4.8 ENV

4.8.1 Framework Support

ENV is a very important data management method in U-Boot framework, which constructs “key value” and
“data” through hash table for mapping management, and supports “add/delete/modify/check” operations.
Usually, we call the keys and data it manages as environment variables.U-Boot supports saving ENV data in
various storage media: NOWHERE/eMMC/FLASH/EEPROM/NAND/SPI_FLASH/UBI ...

configurations:

Framework code:

// The printout when it succeed

ANDROID: fdt overlay OK

// The printout when it failed

ANDROID: fdt overlay failed, ret=-19

androidboot.dtbo_idx=1 // The idx starts from 0. Here it means that the DTBO

with idx=1 is selected for DTO operation.

// Default configuration: ENV saved in memory

CONFIG_ENV_IS_NOWHERE

// ENV saved on various storage media

CONFIG_ENV_IS_IN_MMC

CONFIG_ENV_IS_IN_NAND

CONFIG_ENV_IS_IN_EEPROM

CONFIG_ENV_IS_IN_FAT

CONFIG_ENV_IS_IN_FLASH

CONFIG_ENV_IS_IN_NVRAM

CONFIG_ENV_IS_IN_ONENAND

CONFIG_ENV_IS_IN_REMOTE

CONFIG_ENV_IS_IN_SPI_FLASH

CONFIG_ENV_IS_IN_UBI

// Any storage media (except mmc) that has been accessed to the BLK framework

layer is recommended by the RK platform !

CONFIG_ENV_IS_IN_BLK_DEV

af://n1345
af://n1346

4.8.2 Relevant Interface

env_load(): The user does not need to call it, the U-Boot framework will call it in the appropriate boot
process;
env_save(): User-initiated invocation at the moment of need will save all ENV information to the storage
medium specified by CONFIG_ENV_IS_NOWHERE_XXX;

4.8.3 Advanced Interface

RK provides two high-level interfaces that unify the handling of ENVs with create, append, and replace
functionality. This is primarily for handling bootargs environment variables, but is equally applicable to other
environment variable operations.

./env/nowhere.c

./env/env_blk.c

./env/mmc.c

./env/nand.c

./env/eeprom.c

./env/embedded.c

./env/ext4.c

./env/fat.c

./env/flash.c

......

// Getting Environment Variables

char *env_get(const char *varname);

ulong env_get_ulong(const char *name, int base, ulong default_val);

ulong env_get_hex(const char *varname, ulong default_val);

// Modify or create environment variables, value NULL is equivalent to deletion.

int env_set(const char *varname, const char *value);

int env_set_ulong(const char *varname, ulong value);

int env_set_hex(const char *varname, ulong value);

// Load all the ENV information saved on the storage media

int env_load(void);

// Save all current ENV information to a storage medium

int env_save(void);

/**

 * env_update() - update sub value of an environment variable

 *

 * This add/append/replace the sub value of an environment variable.

 *

 * @varname: Variable to adjust

 * @valude: Value to add/append/replace

 * @return 0 if OK, 1 on error

 */

int env_update(const char *varname, const char *varvalue);

/**

af://n1352
af://n1359

1 Rules for using env_update():

Create: creates varname and varvalue if varname does not exist;
Append: append varvalue if varname already exists and varvalue does not;
Replace: If varname already exists and varvalue already exists, replace the original with the current
varvalue. For example: the original is “storagemedia=emmc”, the current input varvalue is
“storagemedia=rknand”, then the final update will be “storagemedia=rknand”. rknand”.

2 env_update_filter() is an extended version of env_update(): it strips out a keyword from varvalue while
updating env;

3 Special note: env_update() and env_update_filter() both use space and “=” as separator to split ENV content,
so the unit of operation is: single word, “key=value” combination word:

single word: sdfwupdate, ……
"key=value"combination word: storagemedia=emmc, init=/init, androidboot.console=ttyFIQ0, ……
The above two interfaces cannot handle long string units. For example, it is not possible to operate
“console=ttyFIQ0 androidboot.baseband=N/A androidboot.selinux=permissive” as a whole unit.

4.8.4 Storage Location

env_save() saves the ENV to the storage medium. The storage location and size of the ENV for the RK platform
are defined below:

Normally, neither ENV_OFFSET nor ENV_SIZE are recommended for modification.

 * env_update_filter() - update sub value of an environment variable but

 * ignore some key word

 *

 * This add/append/replace/igore the sub value of an environment variable.

 *

 * @varname: Variable to adjust

 * @valude: Value to add/append/replace

 * @ignore: Value to be ignored that in varvalue

 * @return 0 if OK, 1 on error

 */

int env_update_filter(const char *varname, const char *varvalue, const char

*ignore);

if ARCH_ROCKCHIP

config ENV_OFFSET

 hex

 depends on !ENV_IS_IN_UBI

 depends on !ENV_IS_NOWHERE

 default 0x3f8000

 help

 Offset from the start of the device (or partition)

config ENV_SIZE

 hex

 default 0x8000

 help

 Size of the environment storage area

endif

af://n1379

4.8.5 General Options

Currently, the commonly used storage media are: eMMC/sdmmc/Nandflash/Norflash, etc. However, U-Boot's
native Nand and Nor ENV drivers all follow the MTD framework, while all the supported storage media in RK
follow the BLK framework, so these ENV drivers cannot be used.

Hence, RK provides the CONFIG_ENV_IS_IN_BLK_DEV configuration option for storage accessing the BLK
framework

For the eMMC/sdmmc case, select CONFIG_ENV_IS_IN_MMC ;
For Nand, Nor case, select CONFIG_ENV_IS_IN_BLK_DEV;

Users please first read the definition CONFIG_ENV_IS_IN_BLK_DEV of Kconfig

Note: Whichever CONFIG_ENV_IS_IN_XXX configuration you choose, read the definition description in
Kconfig first, which contains subconfiguration descriptions.

4.8.6 Fw_printenv Tool

fw_printenv is an env tool provided by U-Boot for linux. With this tool, users can access and modify the
contents of env on linux. Using this tool requires that the env region be located on a kernel-visible partition
(separate partitions are recommended), essentially accessing the env region through the storage node under the
kernel sys.

Tool Acquisition Methods:

after executing the command, you will obtained :

Please refer to the README documentation for usage.

4.8.7 ENVF

This feature currently only applies to SDK firmware existed with env.img (mainly IPC-type products). If it does
not exist, please ignore this section.

// It is already specified by default and does not need to be changed.

CONFIG_ENV_OFFSET

CONFIG_ENV_SIZE

// It won't be used usually.

CONFIG_ENV_OFFSET_REDUND (optional)

CONFIG_ENV_SIZE_REDUND (optional)

CONFIG_SYS_MMC_ENV_PART (optional)

./make.sh env

./tools/env/fw_printenv // env read/write tool

./tools/env/fw_env.config // env configuration file

./tools/env/README // env read/write tool documentation

af://n1385
af://n1396
af://n1403

U-Boot's native ENV function is to save all environment variables to a specified storage area, which can be
modified at will externally. If system-related variables are modified incorrectly, the system fail to boot normally,
or be maliciously attacked. For example, the boot command bootcmd can be erased or pointed to a malicious
boot process. Therefore, we have added the ENV Fragment function to separate U-Boot system environment
variables from external user environment variables. Users have to define an env fragment for storing customized
environment variables and set up a whitelist in U-Boot, U-Boot only allows importing/exporting/modifying
whitelisted environment variables from the env fragment.

ENVF process:

The user creates env.txt on demand and specifies the contents, then uses mkenvimage to generate and download
env.img to storage 0 address. Loader and U-Boot load and parse the content of env.img at boot time, and import
legal environment variables according to the CONFIG_ENVF_LIST whitelist. Where: for different storage
types, different sizes of env.img need to be made.

Configuration:

Code:

Tools:

PC development process (example)

1. Creat env.txt:

CONFIG_ENVF

CONFIG_SPL_ENVF

CONFIG_ENVF_LIST="blkdevparts mtdparts sys_bootargs app reserved"

// eMMC:

// Specifies the storage address of Primary env.img. Unit: bytes.

CONFIG_ENV_OFFSET=0x0

// Specifies the storage address of Backup env.img, which is the same as

CONFIG_ENV_OFFSET when there is no backup. Unit: bytes.

CONFIG_ENV_OFFSET_REDUND=0x0

// Size of Primary and Backup env.img. Unit: bytes.

CONFIG_ENV_SIZE=0x8000

// spi-nor: the same usage as above.

CONFIG_ENV_NOR_OFFSET=0x0

CONFIG_ENV_NOR_OFFSET_REDUND=0x0

CONFIG_ENV_NOR_SIZE=0x10000

// spi-nand/slc-nand: the same usage as above.

CONFIG_ENV_NAND_OFFSET=0x0

CONFIG_ENV_NAND_OFFSET_REDUND=0x0

CONFIG_ENV_NAND_SIZE=0x40000

./env/envf.c

// By default, it participates in U-Boot compilation and generates

tools/mkenvimage, which is used to package env.img.

./tools/mkenvimage.c

Formatting requirements:

(1) Use “key=value” key-value pairs.

(2) “=” in key-value pairs: no spaces in left or right, no single/double quotes

(3) Use newlines to indicate the end of a key-value pair

sys_bootargs : The effect is equivalent to bootargs in kernel dts. if this field is specified, U-Boot will
use sys_bootargs to overlay the bootargs in kernel dts, and sys_bootargs will have a higher priority when
there are the same entries.

Partition table: Support kernel-standard mtdparts and blkdevparts partition table format, please choose
according to your needs (choose one). The partition formats for different storage are listed below:

2. Generate env.img:

3. env.img is downloaded to memory 0 address.

U-Boot-side development process (example):

1. Enable and configure env.img on demand

// The system partition table must be defined or it will not boot properly.

Example:

blkdevparts=mmcblk0:4M@8M(uboot),4M(trust),32M(boot),32M(recovery),32M(backup),-

(rootfs)

sys_bootargs=rootwait earlycon=uart8250,mmio32,0xff570000 console=ttyFIQ0

......

// eMMC:

blkdevparts=mmcblk0:32K(env),512K@32K(idblock),256K(uboot),32M(boot),2G(rootfs),

1G(oem),2G(userdata),-(media)

// spi-nor:

mtdparts=sfc_nor:64K(env),128K@64K(idblock),128K(uboot),2M(boot),4M(rootfs),6M(o

em),-(userdata)

// spi-nand/slc-nand:

mtdparts=rk-

nand:256K(env),256K@256K(idblock),256K(uboot),8M(boot),64M(rootfs),32M(userdata)

,-(media)

Chapter-4 eMMC:

./tools/mkenvimage -s 0x8000 -p 0x0 -o env.img env.txt

Chapter-4 spi-nor:

./tools/mkenvimage -s 0x10000 -p 0x0 -o env.img env.txt

#spi-nand/slc-nand:

./tools/mkenvimage -s 0x40000 -p 0x0 -o env.img env.txt

// enable ENVF

CONFIG_ENVF=y

CONFIG_SPL_ENVF=y

CONFIG_ENVF_LIST="blkdevparts mtdparts sys_bootargs app reserved"

// eMMC:

2. Recompile and download uboot.img.
3. Power-on message display

4. The user can save env from the U-Boot command line with the following command, or use code
env_save()

4.9 Fastboot

Fastboot is a way provided by Android to interact with U-Boot via USB, which is generally used for getting
device information, downloading firmware, etc.

4.9.1 Configuration Options

CONFIG_ENV_SIZE=0x8000

CONFIG_ENV_OFFSET=0x0

CONFIG_ENV_OFFSET_REDUND=0x0

// spi nor:

CONFIG_ENV_NOR_OFFSET=0x0

CONFIG_ENV_NOR_OFFSET_REDUND=0x0

CONFIG_ENV_NOR_SIZE=0x10000

// spi nand/slc nand:

CONFIG_ENV_NAND_OFFSET=0x0

CONFIG_ENV_NAND_OFFSET_REDUND=0x0

CONFIG_ENV_NAND_SIZE=0x40000

......

dwmmc@ffc50000: 0, dwmmc@ffc60000: 1

Bootdev(atags): mmc 0

MMC0: HS200, 200Mhz

// printout as follows:

ENVF: Primary 0x00000000 - 0x00008000

ENVF: OK

PartType: ENV

DM: v1

boot mode: normal

FIT: no signed, no conf required

DTB: rk-kernel.dtb

......

=> env save

Saving Environment to env... // Exporting and saving whitelisted environment

variables

af://n1452
af://n1454

4.9.2 Trigger Method

Fastboot uses Google adb's VID/PID by default, with the following trigger methods:

Command line execution of the kernel: reboot fastboot
Command line execution of U-Boot: fastboot usb 0
Power on and long press combination-key : ctrl+f

4.9.3 Command Support

4.9.4 Command Details

fastboot flash < partition > [< filename >]

Function: Partition download

Example: fastboot flash boot boot.img

fastboot erase < partition >

// Enabled Configuration

CONFIG_FASTBOOT

CONFIG_FASTBOOT_FLASH

CONFIG_USB_FUNCTION_FASTBOO

// Parameter Configuration

CONFIG_FASTBOOT_BUF_ADDR

CONFIG_FASTBOOT_BUF_SIZE

CONFIG_FASTBOOT_FLASH_MMC_DEV

CONFIG_FASTBOOT_USB_DEV

fastboot flash < partition > [< filename >]

fastboot erase < partition >

fastboot getvar < variable > | all

fastboot set_active < slot >

fastboot reboot

fastboot reboot-bootloader

fastboot flashing unlock

fastboot flashing lock

fastboot stage [< filename >]

fastboot get_staged [< filename >]

fastboot oem fuse at-perm-attr-data

fastboot oem fuse at-perm-attr

fastboot oem at-get-ca-request

fastboot oem at-set-ca-response

fastboot oem at-lock-vboot

fastboot oem at-unlock-vboot

fastboot oem at-disable-unlock-vboot

fastboot oem fuse at-bootloader-vboot-key

fastboot oem format

fastboot oem at-get-vboot-unlock-challenge

fastboot oem at-reset-rollback-index

af://n1456
af://n1465
af://n1467

Function: Erase Partition

Example: fastboot erase boot

fastboot getvar < variable >

Function: Get device information

Example: fastboot getvar version-bootloader

< variable > parameters:

fastboot getvar all

Function: Get all device information

fastboot set_active < slot >

Function: Set the slot for reboot

Example: fastboot set_active _a

fastboot reboot

Function: Reboot the device for normal startup

Example: fastboot reboot

fastboot reboot-bootloader

Function: Reboot the device to enter fastboot mode.

version /* fastboot version */

version-bootloader /* uboot version */

version-baseband

product /* Product Information */

serialno /* sertial number */

secure /* security checking enabled or not*/

max-download-size /* the maximum number of bytes

supported by fastboot in a single transfer */

logical-block-size /* Number of logical blocks */

erase-block-size /* Number of erased blocks */

partition-type : < partition > /* Partition type*/

partition-size : < partition > /* Partition size */

unlocked /* Device lock status */

off-mode-charge

battery-voltage

variant

battery-soc-ok

slot-count /* Number of slots*/

has-slot: < partition > /* Check if the partition name is in

the slot */

current-slot /* Currently booted slots*/

slot-suffixes /* The current slot of the device,

print its name. */

slot-successful: < _a | _b > /* See if the partition is properly

verified and booted*/

slot-unbootable: < _a | _b > /* Check if the partition is set to

unbootable */

slot-retry-count: < _a | _b > /* Check the number of retry-counts

for a partition */

at-attest-dh

at-attest-uuid

at-vboot-state

Example: fastboot reboot-bootloader

fastboot flashing unlock

Function: Unlock the device and allow firmware downloading

Example: fastboot flashing unlock

fastboot flashing lock

Function: Lock the device, prohibit downloading

Example: fastboot flashing lock

fastboot stage [< filename >]

Function: Download data to device-side memory, the memory start address is
CONFIG_FASTBOOT_BUF_ADDR.

Example: fastboot stage permanent_attributes.bin

fastboot get_staged [< filename >]

Function: Getting data from the device side

Example: fastboot get_staged raw_unlock_challenge.bin

fastboot oem fuse at-perm-attr

Function: Download permanent_attributes.bin and hash.

Example:

 fastboot stage permanent_attributes.bin

 fastboot oem fuse at-perm-attr

fastboot oem fuse at-perm-attr-data

Function: Download only permanent_attributes.bin to the secure storage area (RPMB)

Example:

 fastboot stage permanent_attributes.bin

 fastboot oem fuse at-perm-attr-data

fastboot oem at-get-ca-request

fastboot oem at-set-ca-response

fastboot oem at-lock-vboot

Function: Lock device

Example: fastboot oem at-lock-vboot

fastboot oem at-unlock-vboot

Function: Unlock the device, now support authenticated unlock

Example:

 fastboot oem at-get-vboot-unlock-challenge
 fastboot get_staged raw_unlock_challenge.bin

 ./make_unlock.sh (See make_unlock.sh for reference)

 fastboot stage unlock_credential.bin
 fastboot oem at-unlock-vboot

 You can refer to “how-to-generate-keys-about-avb.md”.

fastboot oem fuse at-bootloader-vboot-key

Function: Download bootloader key hash

Example:

 fastboot stage bootloader-pub-key.bin

 fastboot oem fuse at-bootloader-vboot-key

fastboot oem format

Function: reformat partitions, partition information depends on $partitions

Example: fastboot oem format

fastboot oem at-get-vboot-unlock-challenge

Function: authenticated unlock, need to get unlock challenge data

Example: please refer to 16. fastboot oem at-unlock-vboot

fastboot oem at-reset-rollback-index

Function: Reset the rollback data of the device

Example: fastboot oem at-reset-rollback-index

fastboot oem at-disable-unlock-vboot

Function: Disables the fastboot oem at-unlock-vboot command.

Example: fastboot oem at-disable-unlock-vboot

4.10 FileSystem

4.10.1 Framework Support

FAT and EXT2/4 are commonly used file system formats. Among them, FAT uses DOS (MBR) partition table,
and the common devices are: SD card, USB flash drive.

These two file systems are generally accessed more often in U-Boot today.

FAT configuration:

FAT command:

EXT2/4 configuration:

EXT2/4 command:

CONFIG_DOS_PARTITION=y

CONFIG_FS_FAT=y

CONFIG_FAT_WRITE=y

CONFIG_FS_FAT_MAX_CLUSTSIZE=65536

CONFIG_CMD_FAT=y

CONFIG_CMD_FS_GENERIC=y

fatinfo fatload fatls fatsize fatwrite

CONFIG_CMD_EXT2=y

CONFIG_CMD_EXT4=y

CONFIG_CMD_FS_GENERIC=y

af://n1565
af://n1566

4.10.2 Relevant Interface

FAT function header file . /include/fat.h:

 EXT2/4 function header file include/ext4fs.h:

4.10.3 Example of Command

ext2load ext2ls ext4load ext4ls ext4size

int file_fat_detectfs(void);

int fat_exists(const char *filename);

int fat_size(const char *filename, loff_t *size);

int file_fat_read_at(const char *filename, loff_t pos, void *buffer,

 loff_t maxsize, loff_t *actread);

int file_fat_read(const char *filename, void *buffer, int maxsize);

int fat_set_blk_dev(struct blk_desc *rbdd, disk_partition_t *info);

int fat_register_device(struct blk_desc *dev_desc, int part_no);

int file_fat_write(const char *filename, void *buf, loff_t offset, loff_t len,

 loff_t *actwrite);

int fat_read_file(const char *filename, void *buf, loff_t offset, loff_t len,

 loff_t *actread);

int fat_opendir(const char *filename, struct fs_dir_stream **dirsp);

int fat_readdir(struct fs_dir_stream *dirs, struct fs_dirent **dentp);

void fat_closedir(struct fs_dir_stream *dirs);

void fat_close(void);

struct ext_filesystem *get_fs(void);

int ext4fs_open(const char *filename, loff_t *len);

int ext4fs_read(char *buf, loff_t offset, loff_t len, loff_t *actread);

int ext4fs_mount(unsigned part_length);

void ext4fs_close(void);

void ext4fs_reinit_global(void);

int ext4fs_ls(const char *dirname);

int ext4fs_exists(const char *filename);

int ext4fs_size(const char *filename, loff_t *size);

void ext4fs_free_node(struct ext2fs_node *node, struct ext2fs_node *currroot);

int ext4fs_devread(lbaint_t sector, int byte_offset, int byte_len, char *buf);

void ext4fs_set_blk_dev(struct blk_desc *rbdd, disk_partition_t *info);

long int read_allocated_block(struct ext2_inode *inode, int fileblock);

int ext4fs_probe(struct blk_desc *fs_dev_desc,

 disk_partition_t *fs_partition);

int ext4_read_file(const char *filename, void *buf, loff_t offset, loff_t len,

 loff_t *actread);

int ext4_read_superblock(char *buffer);

int ext4fs_uuid(char *uuid_str);

// Confirm that the SD card is recognizable(if it is a USB flash drive then use

the usb command for recognition, the device number is usually: usb 0)

=> mmc dev 1

switch to partitions #0, OK

af://n1577
af://n1582

Note: The ext2/4 and fat commands are used in a similar way, so no specific instructions are given.

4.11 HW-ID DTB

The U-Boot of RK platform supports detecting the GPIO or ADC status on the hardware to dynamically load
different Kernel DTBs, which is tentatively called HW-ID DTB (Hardware id DTB) function.

mmc1 is current device

// View Information

=> fatinfo mmc 1

Interface: MMC

 Device 1: Vendor: Man 000003 Snr e81ec501 Rev: 1.9 Prod: SC16G

 Type: Removable Hard Disk

 Capacity: 15193.5 MB = 14.8 GB (31116288 x 512)

Filesystem: FAT32 "NO NAME "

// View File

=> fatls mmc 1

 System Volume Information/

 23 hello.txt

 23 linux.txt

2 file(s), 1 dir(s)

// Read the size of the hello.txt file (the result is saved to the variable

filesize by default)

=> fatsize mmc 1 hello.txt

=> echo $filesize

0x17

// Read hello.txt file to address 0x2000000

=> fatload mmc 1 0x2000000 hello.txt

reading hello.txt

23 bytes read in 2 ms (10.7 KiB/s)

// Viewing the contents of read hello.txt

=> md.l 0x2000000

02000000: 6c6c6568 65682d6f 2d6f6c6c 6c6c6568 hello-hello-hell

02000010: 65682d6f ff6f6c6c ffffffff ffffffff o-hello.........

// Create a new file: hello-copy.txt. Write the contents of addresses

0x2000000~0x2000017 to hello-copy.txt.

=> fatwrite mmc 1 0x2000000 hello-copy.txt 0x17

writing hello-copy.txt

23 bytes written

// See new file: hello-copy.txt

=> fatls mmc 1

 System Volume Information/

 23 hello.txt

 23 linux.txt

 23 hello-copy.txt

3 file(s), 1 dir(s)

af://n1585

4.11.1 Design Principle

Usually the hardware design is frequently updated with newer versions and components, such as screen, wifi
module, etc. If each hardware version has to correspond to a set of software, it will be troublesome to maintain
it. So we need the HW_ID function to realize that a set of software can be adapted to different versions of
hardware.

For different hardware versions, the software needs to provide the corresponding dtb file, as well as the
ADC/GPIO hardware unique values to characterize the current hardware version (e.g., a fixed adc value, a fixed
GPIO level).

The user packages all these dtb files corresponding to the hardware version into a same resource.img. When U-
Boot boots the kernel, it checks for hardware uniqueness and finds the dtb that matches the current hardware
version from the resource.img and passes it to the kernel.

4.11.2 Hardware Reference

Both ADC and GPIO are currently supported to determine the hardware version.

ADC reference design

The RK3326-EVB/PX30-EVB motherboard has reserved voltage divider resistors, different resistor divider has
different ADC value, so that you can determine the different hardware versions:.

The MIPI panel is equipped with an additional pull-down resistor.

af://n1587
af://n1591

Different mipi screens will be configured with different resistance values, and a unique ADC parameter value
will be determined in conjunction with the EVB motherboard.

ADC calculation method for current V1 version: the maximum value of the ADC parameter is 1024, which
corresponds to the ADC_IN0 pin being pulled up directly to the supply voltage of 1.8V, and there is a 10K pull-
down resistor on the MIPI screen, after successful connecting to the EVB board, the ADC = 1024*10K/(10K +
51K) = 167.8 .

GPIO reference design

There is currently no hardware reference design for GPIOs, which can be customized by the user.

4.11.3 DTB Naming

Users need to reflect the hardware unique value information of ADC/GPIO in the dtb file name. The naming
convention is as follows:

ADC as HW_ID DTB:

The file name ends with “.dtb”;

HW_ID format: #[controller]_ch[channel]=[adcval], called a complete unit

[controller]: The node name of the ADC controller inside dts.

[channel]: ADC channel.

[adcval]: The center value of the ADC, the actual valid range is: adcval+-30.

Each complete unit must be in lowercase letters with no internal spaces;

Multiple units are separated by #, up to 10 units are supported.;

Example:

af://n1602

GPIO as HW_ID DTB:

The file name ends with “.dtb”;

HW_ID format: #gpio[pin]=[level], called a complete unit

[pin]: GPIO pin, e.g. 0a2 for gpio0a2

[level]: GPIO Pin Levels.

Each complete unit must be in lowercase letters with no internal spaces;

Multiple units are separated by #, up to 10 units are supported.;

Example:

4.11.4 DTB Packaging

kernel repository: scripts/mkmultidtb.py. This script can be used to package multiple dtbs into the same
resource.img.

The user needs to open the script file to write the dtb file to be packed into the DTBS dictionary and fill in the
corresponding ADC/GPIO configuration information.

In the above example, executing scripts/mkmultidtb.py PX30-EVB generates resource.img with 3 copies of the
dtb:

rk-kernel.dtb: rk's default dtb, not reflected in the above dictionary. It is used by default when all dtb's are
not matched successfully. The packaging script will use the first dtb of the DTBS as the default dtb;
rk3326-evb-lp3-v10#_saradc_ch0=166.dtb: The rk3326 dtb file containing ADC information;
px30-evb-ddr3-lvds-v10#_saradc_ch0=512.dtb: The px30 dtb file containing ADC information;

If you run scripts/mkmultidtb.py manually, you will also need manually replace the generated resource.img into
boot.img. For convenience, the user can increase the calls like follows, and the compilation of the kernel
repository will automatically include the multi-DTB resource.img.

rk3326-evb-lp3-v10#saradc_ch2=111#saradc_ch1=810.dtb

rk3326-evb-lp3-v10#_saradc_ch2=569.dtb

rk3326-evb-lp3-v10#gpio0a2=0#gpio0c3=1.dtb

...

DTBS = {}

DTBS['PX30-EVB'] = OrderedDict([('rk3326-evb-lp3-v10', '#_saradc_ch0=166'),

 ('px30-evb-ddr3-lvds-v10', '#_saradc_ch0=512')])

...

af://n1633

4.11.5 Feature Enablement

Configuration options:

Driver code:

DTS configuration:

If GPIOs are used as hardware identification, the corresponding pinctrl and gpio nodes must be reserved in rkxx-
u-boot.dtsi; ADCs are enabled by default.

For example, gpio0 and gpio1 are used as identification:

4.11.6 Load Results

diff --git a/scripts/mkimg b/scripts/mkimg

index 1d895602935..5e1355b9da8 100755

--- a/scripts/mkimg

+++ b/scripts/mkimg

@@ -248,6 +248,7 @@ if ["${srctree}" != "${objtree}"]; then

 fi

 scripts/resource_tool ${DTB_PATH} ${LOGO} ${LOGO_KERNEL} >/dev/null

 echo " Image: resource.img (with ${DTB} ${LOGO} ${LOGO_KERNEL}) is ready"

+./scripts/mkmultidtb.py PX30-EVB

 if [-f "${BOOT_IMG}"]; then

 if file -L -p -b ${BOOT_IMG} | grep -q 'Device Tree Blob' ; then

CONFIG_ROCKCHIP_HWID_DTB=y

./arch/arm/mach-rockchip/resource_img.c // Specific realization:

rockchip_read_hwid_dtb()

...

&pinctrl {

 u-boot,dm-spl; // Append this attribute to allow the node to be retained in

the U-Boot DTB. Same below.

};

&gpio0 {

 u-boot,dm-spl;

};

&gpio1 {

 u-boot,dm-spl;

};

...

af://n1647
af://n1656

4.12 SD and USB Flash Drives

This chapter focuses on firmware booting and upgrading of SD and USB flash drives on the RK platform.

4.12.1 Mechanisms and Principles

After the boot card and upgrade card are created, a fixed tag is placed in the firmware header at a fixed storage
offset location to mark whether it is a boot card or an upgrade card. U-Boot recognizes this tag and proceeds
with the corresponding boot or upgrade process. where:

Boot Card: There is only one complete firmware in the card, U-Boot uses this complete firmware to
directly boot the system normally;
Upgrade card: The card contains two copies of firmware. When creating an upgrade card, the PC tool will
write two copies of firmware: one of which containing only the partition image necessary to enter
recovery mode (denoted as firmware A), and the other on containing with the complete update.img
firmware (denoted as firmware B). U-Boot uses firmware A to boot the system into recovery mode, and
then the recovery program uses firmware B to complete the upgrade work.

Special Notes:

SD card boot/upgrade is supported from the bootrom level;
USB disk boot/upgrade is only supported from the U-Boot level, which means that the user should at least
make sure that U-Boot is working properly!

4.12.2 Firmware Creation

The process of creating SD and USB disk boot cards and upgrade cards on the RK platform is identical and
requires only two steps:

Use the RKTools/linux/Linux_Pack_Firmware/rockdev/ tool in the SDK directory to generate
update.img.

Use SDDiskTool to download update.img to SD or USB disk. As shown in the picture:

Select removable disks
Select Firmware Upgrade or SD Boot .
Click Start Creating

......

mmc0(part 0) is current device

boot mode: None

DTB: rk3326-evb-lp3-v10#_saradc_ch0=166.dtb // Prints the matching DTB,

otherwise defaults to “rk-kernel.dtb”.

Using kernel dtb

......

af://n1658
af://n1660
af://n1673

4.12.3 SD Configuration

SD Boot/Upgrade: U-Boot released by SDK of each platform has enabled this function by default, users do not
need to configure it additionally.

4.12.4 USB Configuration

USB Boot/Upgrade: U-Boot released by each platform SDK is not enabled by default. Because U-Boot's native
USB scanning command is time-consuming, it's better for users enabling it themselves on demand:

Step 1: download the upgrade firmware to local storage (eMMC/Nand/...etc.), make sure the firmware is
available.

Step 2: Plug in the USB flash drive and boot into U-Boot command line mode. Execute usb start and
usb info commands to make sure the USB flash drive is recognized normally, otherwise, please adjust
the USB flash drive recognition first.

Step 3: Make a copy of the kernel DTB that alighed with step 1 and name it kern.dtb and put it in U-Boot's
. /dts/ directory of U-Boot. This kern.dtb will be automatically packed into uboot.img when compiling
U-Boot.

kern.dtb Purpose: U-Boot uses kern.dtb to ensure that the USB is initialized properly when the
kernel dtb of the local storage partition is corrupted.

Step 4: U-Boot enable boot/upgrade configuration of USB

Recompile and download uboot.img.

CONFIG_ROCKCHIP_USB_BOOT=y

af://n1688
af://n1690

If the process prompts that uboot's firmware is too large to be packaged and resulted from the
addition of kern.dtb in step 3, please cut out some unused U-Boot configurations first.

4.12.5 Functions Taking Effect

How to confirm that the SD, USB disk boot or upgrade function is in effect.

Users can erase key partitions such as kernel, resource, boot, recovery on local storage (eMMC, Nand...) to make
sure you can enter kernel after inserting SD/U disk.

4.12.6 Notes

The usb start command is called when the USB flash drive is initialized, and the whole process is
relatively time-consuming;

If the boot/upgrade card needs to support GPT partition tables, the version of the SDDiskTool tool requires
>= v1.59;

If the boot/upgrade card needs to support AB systems, the version of the SDDiskTool tool requires >=
v1.61

Because the USB disk boot/upgrade feature is a feature added in 2019.11, the relevant repository needs to
meet the following conditions

1. U-Boot repository shall be updated to the following commit points (recommended)

Or add the following patch changes individually (presumably more difficult):

1. The rkbin repository should contain this commit:

commit 369e944c844f783508b7839ae86a3418e2f63bc7

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Thu Dec 12 18:07:07 2019 +0800

 fdt/Makefile: make u-boot-dtb.bin 8-byte aligned

 The dts/kern.dtb is appended after u-boot-dtb.bin for U-disk boot.

 Make sure u-boot-dtb.bin is 8-byte aligned to avoid data-abort on

 calling: fdt_check_header(gd->fdt_blob_kern).

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

 Change-Id: Id5f2daf0c5446e7ea828cb970d3d4879e3acda86

369e944 fdt/Makefile: make u-boot-dtb.bin 8-byte aligned

b3b57ac rockchip: board: fix always entering recovery on normal boot U-disk

e0cee41 rockchip: resource: add sha1/256 verify for kernel dtb

5e817a0 tools: rockchip: resource_tool: add sha1 for file entry

fc474da lib: sha256: add sha256_csum()

0ed06f1 rockchip: support boot from U-disk

01f0422 common: bootm: skip usb_stop() if usb is boot device

5704c89 fdtdec: support pack "kern.dtb" to the end of u-boot.bin

3bdef7e gpt: return 1 directly when test the mbr sector

af://n1707
af://n1710

1. The kernel repository should contain this commit:

If the SDK owned by the user is relatively old, in addition to adding the above patches individually, it is
recommended to check with the engineer in charge of recovery to see if recovery has the relevant patches.

commit f9c0b0b72673a65865b00a8824908ca6f12ecc32

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Thu Nov 7 09:21:36 2019 +0800

 tools: resource: add sha1 for file entry

 Base on U-Boot next-dev branch:

 (5e817a0 tools: rockchip: resource_tool: add sha1 for file entry)

 Change-Id: Ife061cabacab488dbecf2a3245d58cc660091dbd

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

commit 078785057478c789bb033ba06925fa3a07e3130a

Author: Tao Huang <huangtao@rock-chips.com>

Date: Thu Nov 7 17:53:38 2019 +0800

 rk: scripts/resource_tool: add sha1 for file entry

 From u-boot 5e817a0ea427 ("tools: rockchip: resource_tool: add sha1 for

file entry").

 Merge all C files to one resource_tool.c

 Change-Id: If63ba77d1f5a3660bd6ef87769bb456fa086ae71

 Signed-off-by: Tao Huang <huangtao@rock-chips.com>

5. Chapter-5 Driver Module

5.1 AMP

5.1.1 Ideas for Implementation

The U-Boot framework does not have AMP (Asymmetric Multi-Processing) support by default, however, RK
implements a set of AMP mechanism by itself: different CPUs run different firmware.

Implementation Ideas:

(1) Firmware Packaging

All AMP firmware (excluding Linux) specifies the CPU running state, describes the firmware information
through its file, and finally packages it into a FIT-formatted amp.img to be downloaded to the amp partition.

During booting, U-Boot is responsible for loading the amp.img firmware and performing sha256 integrity
checks, and then trust specifies the running state of each CPU and dispatches it to the corresponding entry
address.

(2) Boot order

The CPU running U-Boot is called the master core, which finally operates on itself after completing state
switching and firmware jumps of other cores.

(3) Resource management

U-Boot is not responsible for the coordination of resources (including the division of memory, interrupts, etc.)
between firmwares under the AMP scheme, so developers please make sure for it.

(4) Trust support

The AMP feature requires trust support. If the user-specified CPU running state is the default state, then the
SDK's trust is already supported; if it is not the default state, then trust requires additional support (but some
platforms' SDKs already support it by default).

The above CPU default state refers to:

32-bit chip default state: arch = "arm", thumb = <0>, hyp = 0;

64-bit chip default state: arch = "arm64", thumb = <0>, hyp = 1;

(5) Linux+AMP combination

1. Considering the compatibility, the Linux-related firmware under the combination scheme is consistent with
the traditional SMP firmware, i.e. Linux-related firmware + amp.img.

2. Developers can specify the state of the CPU running Linux by adding a “linux” node to amp's its (without
it, it's the default state).

3. If the main core is running Linux or no firmware is specified, the main core will boot Linux from U-Boot
in the traditional SMP boot fashion after booting other AMP firmware.

4. If the non-main core is running Linux, boot Linux first, then other AMP firmware. Note: If you want to
boot on a core other than CPU0, you need special trust support.

5. The load address of the Linux firmware is determined by the U-Boot configuration only, e.g.
rk3568_common.h.

af://n1738
af://n1739
af://n1740

5.1.2 Framework Support

Configurations:

Framework Code:

its templates:

Packing Tools:

Code commit point at least includes:

5.1.3 Feature Enablement

1. To create amp.img you need an its file, please modify it based on drivers/cpu/amp.its :

The following its: CPU1/2/3 runs AMP, CPU0 runs Linux, and the main core is CPU3. The boot order is:
CPU0 => CPU1/2 => CPU3.

CONFIG_AMP

CONFIG_ROCKCHIP_AMP

./drivers/cpu/rockchip_amp.c

./drivers/cpu/amp.its

./tools/mkimage // wil be generated automatically after a full U-Boot

compilation

commit c51cf04095dde2df2dd047e70d2c7fb0866ea916

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Tue Oct 19 03:16:35 2021 +0000

 cpu: amp.its: update amps "arm64" => "arm"

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

 Change-Id: I99de02c5b6c62ffdd9b25565acd172801d6e983c

/dts-v1/;

/ {

 description = "FIT source file for rockchip AMP";

 #address-cells = <1>;

 // All AMP firmware (excluding Linux) should be specified under the images

node;

 images {

 amp1 {

 description = "bare-mental-core1"; // Required: Description

info

 data = /incbin/("./amp1.bin"); // Required: amp1 firmware

 type = "firmware"; // Required: No change

 compression = "none"; // Required: No change

af://n1768
af://n1779

 arch = "arm"; // Required: “arm64”: 64-bit, “arm”: 32-

bit

 cpu = <0x100>; // Required: cpu hardware id (mpidr)

 thumb = <0>; // Required: 0: arm or thumb2; 1: pure

thumb

 hyp = <0>; // Required: 0: el1/svc; 1: el2/hyp

 load = <0x01800000>;// Required: Firmware load and run

address

 udelay = <1000000>; // Optional: delay after booting the

current CPU and then start the next CPU.

 hash { // Required: No change

 algo = "sha256";

 };

 };

 amp2 {

 description = "bare-mental-core2";

 data = /incbin/("./amp2.bin");

 type = "firmware";

 compression = "none";

 arch = "arm";

 cpu = <0x200>;

 thumb = <0>;

 hyp = <0>;

 load = <0x03800000>;

 udelay = <1000000>;

 hash {

 algo = "sha256";

 };

 };

 amp3 {

 description = "bare-mental-core3";

 data = /incbin/("./amp3.bin");

 type = "firmware";

 compression = "none";

 arch = "arm";

 cpu = <0x300>;

 thumb = <0>;

 hyp = <0>;

 load = <0x05800000>;

 udelay = <1000000>;

 hash {

 algo = "sha256";

 };

 };

 };

 configurations {

 default = "conf";

 conf {

 description = "Rockchip AMP images";

 rollback-index = <0x0>;

 // Specifies the firmware to be loaded and the order in which it

should be loaded and booted, but the master core is not subject to this order.

 loadables = "amp1", "amp2", "amp3";

 signature {

Notes:

description: Description information..
type: The default is “firmware”.
compression: The default is “none”.
data: Firmware path. The path is a relative path based on amp.its.
arch: CPU 32/64 mode: ARMv7 can only be specified as “arm”; ARMv8 can be specified as “arm64” or
“arm”, which means AArch64 or AArch32 respectively.
cpu: CPU hardware ID, i.e. mpidr (Multiprocessor Affinity Register), take the lower 32 bits. For example:

thumb: CPU instruction mode. Specify 1 if pure THUMB, 0 otherwise.
hyp: CPU VM mode.
load: Firmware load and run address

 algo = "sha256,rsa2048";

 padding = "pss";

 key-name-hint = "dev";

 sign-images = "loadables";

 };

 // Linux CPU runtime state designation:

 // (1) Only the udelay attribute is optional;

 // (2) The boot address is not assignable and is determined by U-

Boot's platform configuration file, e.g.: rk3568_common.h;

 linux {

 description = "linux-os";

 arch = "arm64";

 cpu = <0x000>; // CPU0 runs linux

 thumb = <0>;

 hyp = <0>;

 udelay = <1000000>;

 };

 };

 };

};

cpus {

 #address-cells = <2>;

 #size-cells = <0>;

 cpu0: cpu@0 {

 device_type = "cpu";

 compatible = "arm,cortex-a55";

 reg = <0x0 0x0>; // mpidr

 };

 cpu1: cpu@100 {

 device_type = "cpu";

 compatible = "arm,cortex-a55";

 reg = <0x0 0x100>; // mpidr

 };

};

udelay: Delay after completion of boot (optional), in us. After booting the current CPU, do the
corresponding delay before booting the next CPU.
loadables: The AMP firmware to be loaded and the order in which it is loaded and booted. The main CPU
must be the last to be booted and is not subject to the order here.
linux node: For Linux + AMP combination programs. Please refer to the “Ideas for Implementation” in this
section.

2. Firmware packing:

A full compilation of U-Boot is required to automatically generate the mkimage tool.

3. Add amp partition to partition table

Add the “amp” partition to the parameter.txt partition table file and then download amp.img.

U-Boot is to directly load the contents of the entire amp partition into memory, so it is recommended that
the amp partition size is configured according to actual needs

4. Bring up

The U-Boot framework will automatically initiate the bring up of all AMPs at the right time. The following is
the boot information of CPU3 running AMP firmware as the main core and CPU0/1/2 running Linux firmware:

// 0xe00 is the firmware header size and is not recommended to be changed

./tools/mkimage -f ./drivers/cpu/amp.its -E -p 0xe00 amp.img

......

// the master core loading firmware amp3 firmware

Loading loadables from FIT Image at 7bdbcf80 ...

 Trying 'amp3' loadables subimage

 Description: rtthread

 Type: Firmware

 Compression: uncompressed

 Data Start: 0x7bdbdd80

 Data Size: 311296 Bytes = 304 KiB

 Architecture: ARM

 Load Address: 0x01800000

 Hash algo: sha256

 Hash value:

d08db937e4d7bd4125056239154bb30d44a2fcca9e70aa8dea448fabda4838d5

 Verifying Hash Integrity ... sha256+ OK

 Loading loadables from 0x7bdbdd80 to 0x01800000

Booting FIT Image FIT: No fit blob

FIT: No FIT image

ANDROID: reboot reason: "(none)"

optee api revision: 2.0

TEEC: Waring: Could not find security partition

Not AVB images, AVB skip

ANDROID: Hash OK

// the master core loading Linux firmware

Booting IMAGE kernel at 0x03880000 with fdt at 0x0a100000...

Fdt Ramdisk skip relocation

Booting Android Image at 0x0387f800 ...

Kernel load addr 0x03880000 size 21655 KiB

Flattened Device Tree blob at 0x0a100000

 Booting using the fdt blob at 0x0a100000

The above print information may vary depending on the user's its configuration and is subject to actual
conditions.

5.2 Charge

5.2.1 Framework Support

The U-Boot native code doesn't support charging, however, RK implemented a set of its own.

Charging involves many modules including Display, PMIC, power meter, charging animation, pwrkey, led, CPU
low-power hibernation, Timer and so on.

Power meter support:

Configurations:

 XIP Kernel Image from 0x03880000 to 0x03880000 ... OK

 'reserved-memory' ramoops@110000: addr=110000 size=f0000

 Using Device Tree in place at 000000000a100000, end 000000000a12322a

vp1 adjust cursor plane from 0 to 1

vp0, plane_mask:0x2a, primary-id:5, curser-id:1

vp1 adjust cursor plane from 1 to 0

vp1, plane_mask:0x15, primary-id:4, curser-id:0

vp2, plane_mask:0x0, primary-id:0, curser-id:-1

Adding bank(fixed): 0x03880000 - 0x80000000 (size: 0x7c780000)

// At this point, all the firmware is loaded, and it starts to boot each CPU

according to the program's prioritization rules,as follows

// The main core boots CPU0 to run Linux (CPU1/2 subsequently boots via Linux)

AMP: Brought up cpu[0] with state 0x12, entry 0x03880000 ...OK

// The main core boots itself (CPU3) to run the AMP firmware

AMP: Brought up cpu[300, self] with state 0x10, entry 0x01800000 ...OK

// Linux runs on CPU0:

[0.000000] Booting Linux on physical CPU 0x0000000000 [0x412fd050]

[0.000000] Linux version 4.19.193 (stevenliu@stevenliu) (gcc version 6.3.1

20170404 (Linaro GCC 6.3-2017.05), GNU ld (Linaro_Binutils-2017.05)

2.27.0.20161019) #5 SMP Mon Sep 13 16:22:51 CST 2021

[0.000000] Machine model: Rockchip RK3568 EVB1 DDR4 V10 Board

......

RK809/RK816/RK817/RK818/cw201x.

// Framework

CONFIG_DM_CHARGE_DISPLAY

CONFIG_CHARGE_ANIMATION

CONFIG_DM_FUEL_GAUGE

// Driver

CONFIG_POWER_FG_CW201X

CONFIG_POWER_FG_RK818

CONFIG_POWER_FG_RK817

CONFIG_POWER_FG_RK816

af://n1831
af://n1832

Charging frame:

Charging animation driver:

Power meter framework:

Power meter driver:

Logical process:

5.2.2 Packaging Pictures

Charging images are located in the . /tools/images/ directory and need to be packaged into resource.img
to be displayed by the charging frame.

The resource.img compiled by the kernel is not packed with charging images by default, and needs to be packed
separately in U-Boot.

Packaging command:

Packaging information:

./drivers/power/charge-display-uclass.c

// Responsible for managing the entire charging process, it will get the power

level, charging type, button events, initiate low-power hibernation, and more.

./drivers/power/charge_animation.c

./drivers/power/fuel_gauge/fuel_gauge_uclass.c

./drivers/power/fuel_gauge/fg_rk818.c

./drivers/power/fuel_gauge/fg_rk817.c // rk809 re-use

./drivers/power/fuel_gauge/fg_rk816.c

......

charge-display-uclass.c

 => charge_animation.c

 => fuel_gauge_uclass.c

 => fg_rkxx.c

$ ls tools/images/

battery_0.bmp battery_1.bmp battery_2.bmp battery_3.bmp battery_4.bmp

battery_bmp battery_fail.bmp

./pack_resource.sh <input resource.img> or

./scripts/pack_resource.sh <input resource.img>

af://n1849

After success, a resource.img containing the image will be generated in the U-Boot root directory, and the
contents will be confirmed by the hd command:

5.2.3 DTS Configuration

DTS Charging Node:

./pack_resource.sh /home/cjh/3399/kernel/resource.img

Pack ./tools/images/ & /home/guest/3399/kernel/resource.img to resource.img ...

Unpacking old image(/home/guest/3399/kernel/resource.img):

rk-kernel.dtb logo.bmp logo_kernel.bmp

Pack to resource.img successed!

Packed resources:

rk-kernel.dtb battery_1.bmp battery_2.bmp battery_3.bmp battery_4.bmp

battery_bmp battery_fail.bmp logo.bmp logo_kernel.bmp battery_0.bmp

resource.img is packed ready

hd resource.img | less

00000000 52 53 43 45 00 00 00 00 01 01 01 00 0a 00 00 00 |RSCE............|

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

......

*

00000400 45 4e 54 52 62 61 74 74 65 72 79 5f 31 2e 62 6d |ENTRbattery_1.bm|

// picture1

00000410 70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |p...............|

00000420 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000500 00 00 00 00 4d 00 00 00 9c 18 00 00 00 00 00 00 |....M...........|

00000510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000600 45 4e 54 52 62 61 74 74 65 72 79 5f 32 2e 62 6d |ENTRbattery_2.bm|

// picture 2

00000610 70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |p...............|

00000620 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

......

charge-animation {

 compatible = "rockchip,uboot-charge";

 status = "okay";

 rockchip,uboot-charge-on = <0>; // Whether to enable U-Boot

charging

 rockchip,android-charge-on = <1>; // Whether to enable Android

charging

 rockchip,uboot-exit-charge-level = <5>; // Minimum power allowed to

power on while U-Boot is charging.

 rockchip,uboot-exit-charge-voltage = <3650>;// Minimum voltage allowed to

power on when U-Boot is charging.

af://n1859

5.2.4 System Hibernation

Pwrkey pressing:

Press pwrkey briefly to turn on/off the screen, when the screen is off, the system will enter the low power
mode;
Press and hold pwrkey to boot into the system.

There are 2 low power modes, selected by rockchip,system-suspend = <VAL> :

VAL is 0: cpu wfi mode. At this time, no peripherals are processed, only the cpu enters the low-power
mode;
VAL is 1: system suspend mode, requires ATF/OPTEE support to be effective. Kernel-like system go deep
standby, the whole SoC goes into standby.

Minimum version number for ATF/OPTEE to support U-Boot low-power standby: Please refer to the
Platform Definition section.

5.2.5 Replacement of Pictures

1. Replace the images in the . /tools/images/ directory (using 8bit or 24bit bmp), use the command ls
| sort to make sure the images are sorted from low power to high power, and use the pack_resource.sh
script to package the images into resource.img;

2. Modify . /drivers/power/charge_animation.c in the image and charge relationship;

 rockchip,screen-on-voltage = <3400>; // Minimum voltage allowed to

light up the screen while U-Boot is charging.

 rockchip,uboot-low-power-voltage = <3350>; // Minimum voltage for forcing

U-Boot to entry into charging mode unconditionally.

 rockchip,system-suspend = <1>; // Whether to enter trust low-

power standby when the screen goes off (need to be supported by ATF)

 rockchip,auto-off-screen-interval = <20>; // Timeout for automatic screen

going off, in seconds, default 15s

 rockchip,auto-wakeup-interval = <10>; // Automatic wake-up time from

hibernation in seconds. If the value is 0 or no such attribute,

 // hibernation automatic wake-up

is disabled,

 // generally used for stress

test.

 rockchip,auto-wakeup-screen-invert = <1>; // Whether or not to light up

the screen when automatic wake-up from hibernation.

};

/*

 * IF you want to use your own charge images, please:

 *

 * 1. Update the following 'image[]' to point to your own images;

 * 2. You must set the failed image as last one and soc = -1 !!!

 */

static const struct charge_image image[] = {

 { .name = "battery_0.bmp", .soc = 5, .period = 600 },

 { .name = "battery_1.bmp", .soc = 20, .period = 600 },

af://n1862
af://n1876

5.2.6 Charging Indicator

In actual products, users have different control requirements for led, so the charging frame only supports 2 leds.
Charging indicator, Fully-Charged indicator:

Charging Indicator: The led will be flipped when there is a change in power level while charging;
Fully-Charged Indicator: The led will only light up when the battery is 100% full;

The above two Led configuration only serves as a demo, users need to modify the code according to your own
needs.

Configuration options:

These two configuration options are used to specify the label attribute of the led, please refer to the Led section.

5.3 Clock

5.3.1 Framework Support

The clock driver uses the clk-uclass framework and standard interfaces.

Configuration:

Framework code:

Platform Driver Code:

5.3.2 Relevant Interface

 { .name = "battery_2.bmp", .soc = 40, .period = 600 },

 { .name = "battery_3.bmp", .soc = 60, .period = 600 },

 { .name = "battery_4.bmp", .soc = 80, .period = 600 },

 { .name = "battery_bmp", .soc = 100, .period = 600 },

 { .name = "battery_fail.bmp", .soc = -1, .period = 1000 },

};

// @name: Name of the picture;

// @soc: Amount of electricity corresponding to the picture;

// @period: Image refresh time (unit: ms);

// Note: The last image must be a fail image and “soc=-1” cannot be changed. !!

CONFIG_LED_CHARGING_NAME

CONFIG_LED_CHARGING_FULL_NAME

CONFIG_CLK

./drivers/clk/clk-uclass.c

./drivers/clk/rockchip/...

af://n1883
af://n1894
af://n1895
af://n1903

5.3.3 Clock Initialization

There are a total of three categories of interfaces involved in clock initialization, for the sake of subsequent
introduction, here first list cru node information

Category I, default initialization of the platform base clock: rkclk_init() **:

Each platform cru driver probe will call rkclk_init() to complete the pll/cpu/bus frequency initialization,
which is defined in cru_rkxxx.h . For example, RK3399:

// Apply Clock

int clk_get_by_index(struct udevice *dev, int index, struct clk *clk);

int clk_get_by_name(struct udevice *dev, const char *name, struct clk *clk);

// Enable/Disable Clock

int clk_enable(struct clk *clk);

int clk_disable(struct clk *clk);

// Configure/acquire frequency

ulong (*get_rate)(struct clk *clk);

ulong (*set_rate)(struct clk *clk, ulong rate);

// Configure/get phase

int (*get_phase)(struct clk *clk);

int (*set_phase)(struct clk *clk, int degrees);

cru: clock-controller@ff2b0000 {

 compatible = "rockchip,px30-cru";

 assigned-clocks =

 <&pmucru PLL_GPLL>, <&pmucru PCLK_PMU_PRE>,

 <&pmucru SCLK_WIFI_PMU>, <&cru ARMCLK>,

 <&cru ACLK_BUS_PRE>, <&cru ACLK_PERI_PRE>,

 <&cru HCLK_BUS_PRE>, <&cru HCLK_PERI_PRE>,

 <&cru PCLK_BUS_PRE>, <&cru SCLK_GPU>;

 assigned-clock-rates =

 <1200000000>, <100000000>,

 <26000000>, <600000000>,

 <200000000>, <200000000>,

 <150000000>, <150000000>,

 <100000000>, <200000000>;

}

#define APLL_HZ (600 * MHz)

#define GPLL_HZ (800 * MHz)

#define CPLL_HZ (384 * MHz)

#define NPLL_HZ (600 * MHz)

#define PPLL_HZ (676 * MHz)

#define PMU_PCLK_HZ (48 * MHz)

#define ACLKM_CORE_HZ (300 * MHz)

#define ATCLK_CORE_HZ (300 * MHz)

#define PCLK_DBG_HZ (100 * MHz)

#define PERIHP_ACLK_HZ (150 * MHz)

af://n1905

Category II, secondary initialization of platform base clock : clk_set_defaults()

Each platform cru driver probe may call clk_set_defaults() to parse and configure the frequencies (i.e.,
reconfigure the frequencies) specified by assigned-clocks/assigned-clock-parents/assigned-clock-

rates within the cru node, but not the arm frequencies. The arm frequency is only reconfigured if
set_armclk_rate() is implemented, see CPU frequency boosting below.

In addition to cru, peripherals that require it can actively call clk_set_defaults() in their own probes, e.g.
vop, gmac.

Category III, clock initialization for each module: clk_set_rate()

Most peripheral modules call clk_set_rate() to configure their frequency

5.3.4 CPU Frequency Boost

For the current CPU frequency boost support in U-Boot for each platform: Please refer to the Platform
Definition section.It is divided into the following three categories according to the different implementation
mechanisms:

Category I: CPU using APLL

cpu boot frequency boost implementation process:

Step 1: Specify the arm target frequency in the assigned-clocks of the cru node.;
Step 2: cru drives the probe with a call to clk_set_defaults() to get (but not configure) the arm target
frequency from step 1;
Step 3: Implement set_armclk_rate() , set the arm target frequency obtained from step 2. Some
platforms that need it are already implemented by default, other platforms can refer to the existing
implementation to add it as needed, e.g.: arch\arm\mach-rockchip\px30\px30.c .;

#define PERIHP_HCLK_HZ (75 * MHz)

#define PERIHP_PCLK_HZ (37500 * KHz)

#define PERILP0_ACLK_HZ (300 * MHz)

#define PERILP0_HCLK_HZ (100 * MHz)

#define PERILP0_PCLK_HZ (50 * MHz)

#define PERILP1_HCLK_HZ (100 * MHz)

#define PERILP1_PCLK_HZ (50 * MHz)

......

int set_armclk_rate(void)

{

 struct px30_clk_priv *priv;

 struct clk clk;

 int ret;

 ret = rockchip_get_clk(&clk.dev);

 if (ret) {

 printf("Failed to get clk dev\n");

 return ret;

 }

 clk.id = ARMCLK;

 priv = dev_get_priv(clk.dev);

 ret = clk_set_rate(&clk, priv->armclk_hz);

 if (ret < 0) {

 printf("Failed to set armclk %lu\n", priv->armclk_hz);

af://n1916

Step 4: Refer to the cpu opp-table (frequency and voltage table), add regulator-init-microvolt =

<...> to the regulator node of the arm to specify the init voltage, ensure the target frequency and voltage
can match.

Category II: CPU using SCMI CLK

For example, for RK356X, boot-up boost requires the use of the scmi interface to set CPU clock related
parameters.

The implementation process of cpu boot boost:

Step 1: Specify the arm target frequency in rockchip,clk-init of the scmi node;
Step 2: Verify that UBOOT has the SCMI, CONFIG_CLK_SCMI macro turned on;
Step 3: Implement set_armclk_rate() , set the arm target frequency from the dts node of scmi. Some
platforms that require it have already implemented it by default, other platforms can refer to the existing
implementation to add it as needed, for example: arch\arm\mach-rockchip\rk3568\rk3568.c ;

 return ret;

 }

 priv->set_armclk_rate = true;

 return 0;

}

#ifdef CONFIG_CLK_SCMI

#include <dm.h>

/*

 * armclk: 1104M:

 * rockchip,clk-init = <1104000000>,

 * vdd_cpu : regulator-init-microvolt = <825000>;

 * armclk: 1416M(by default):

 * rockchip,clk-init = <1416000000>,

 * vdd_cpu : regulator-init-microvolt = <900000>;

 * armclk: 1608M:

 * rockchip,clk-init = <1608000000>,

 * vdd_cpu : regulator-init-microvolt = <975000>;

 */

int set_armclk_rate(void)

{

 struct clk clk;

 u32 *rates = NULL;

 int ret, size, num_rates;

 ret = rockchip_get_scmi_clk(&clk.dev);

 if (ret) {

 printf("Failed to get scmi clk dev\n");

 return ret;

 }

 size = dev_read_size(clk.dev, "rockchip,clk-init");

 if (size < 0)

 return 0;

 num_rates = size / sizeof(u32);

 rates = calloc(num_rates, sizeof(u32));

 if (!rates)

Step 4: Refer to the cpu opp-table (frequency and voltage table), and add regulator-init-microvolt

= <...> to the regulator node of arm to sepcify ini voltage, ensure the target frequency and voltage can
match.

SCMI: Please refer to section CH17-Appendix.

Category III: CPU using SCMI CLK

The difference with the Category II is that you only need to perform step 4. the cpu frequency will be
automatically increased according to the voltage..

5.3.5 Clock Tree

The U-Boot framework does not provide clock tree management, and platforms have added soc_clk_dump()
for simple printing of clock information. Example:

The meaning of the first printed line:

sync kernel : The cru driver is configured with clk_set_defaults() for each of the bus
frequencies specified within the kernel cru node (except for the ARM frequency); otherwise it is shown as
sync uboot;
enter 1200000 KHz : The arm frequency at which the previous Loader enters U-Boot;
init 1200000 KHz : U-Boot's arm initialization frequency as defined by APLL_HZ;

 return -ENOMEM;

 ret = dev_read_u32_array(clk.dev, "rockchip,clk-init",

 rates, num_rates);

 if (ret) {

 printf("Cannot get rockchip,clk-init reg\n");

 return -EINVAL;

 }

 clk.id = 0;

 ret = clk_set_rate(&clk, rates[clk.id]);

 if (ret < 0) {

 printf("Failed to set armclk\n");

 return ret;

 }

 return 0;

}

#endif

CLK: (sync kernel. arm: enter 1200000 KHz, init 1200000 KHz, kernel 800000 KHz)

 apll 800000 KHz

 dpll 392000 KHz

 cpll 1000000 KHz

 gpll 1188000 KHz

 npll 24000 KHz

 ppll 100000 KHz

 hsclk_bus 297000 KHz

 msclk_bus 198000 KHz

 lsclk_bus 99000 KHz

 msclk_peri 198000 KHz

 lsclk_peri 99000 KHz

af://n1949

kernel 800000 KHz : Implemented set_armclk_rate() and set the arm frequency specified by
assigned-clocks in the kernel cru node; otherwise displays: “kernel 0N/A”;

5.4 Crypto

The Crypto module is primarily used to implement hardware-level encryption and hashing algorithms and is
currently available in v1 and v2 IP versions

5.4.1 Framework Support

U-Boot doesn't have crypto framework support by default, RK has implemented a set by itself.

Configuration:

Framework Code:

Driver Code:

5.4.2 Relevant Interface

For interface usage, please refer to: ./cmd/crypto.c ;

CONFIG_DM_CRYPTO

// choose either one of the below two options, the defconfig of each platform

has enabled the corresponding configuration by default.

CONFIG_ROCKCHIP_CRYPTO_V1

CONFIG_ROCKCHIP_CRYPTO_V2

./drivers/crypto/crypto-uclass.c

./cmd/crypto.c

// crypto v1:

./drivers/crypto/rockchip/crypto_v1.c

// crytpo v2:

./drivers/crypto/rockchip/crypto_v2.c

./drivers/crypto/rockchip/crypto_v2_pka.c

./drivers/crypto/rockchip/crypto_v2_util.c

// Get crypto:

struct udevice *crypto_get_device(u32 capability);

// SHA interface:

int crypto_sha_init(struct udevice *dev, sha_context *ctx);

int crypto_sha_update(struct udevice *dev, u32 *input, u32 len);

int crypto_sha_final(struct udevice *dev, sha_context *ctx, u8 *output);

int crypto_sha_csum(struct udevice *dev, sha_context *ctx,

 char *input, u32 input_len, u8 *output);

// RSA interface:

int crypto_rsa_verify(struct udevice *dev, rsa_key *ctx, u8 *sign, u8 *output);

af://n1962
af://n1964
af://n1972

Difference on SHA usage between v1 and v2: v1 requires crypto_sha_init() to first assign the total length
of the data to be computed to ctx->length , while v2 does not;

5.4.3 DTS Configuration

crypto nodes must be defined in U-Boot dts, the main reason:

The kernel dts of the old SDKs for each platform do not have crypto nodes, so you need to consider
compatibility with the old SDKs.
The secure boot of U-Boot will use crypto, so it is safer and more reasonable for U-Boot to control the
crypto itself;

1. crypto v1 configuration (RK3399 as an example):

2. crypto v2 configuration (px30 for example):

The difference between crypto v1 and v2 dts configurations lies in the clk frequency specification.

5.5 Display

5.5.1 Framework Support

RK U-Boot currently supports the following display interfaces: RGB, LVDS, EDP, MIPI, HDMI, CVBS, DP,
etc. The logo images displayed by U-Boot are taken from the kernel root directory, logo.bmp and
logo_kernel.bmp, which are packaged in resource.img.

:Requirements for images.

BI_RGB 8bpp/16bpp/24bpp/32bpp and BI_RLE4/BI_RLE8 format BMP images;

crypto: crypto@ff8b0000 {

 u-boot,dm-pre-reloc;

 compatible = "rockchip,rk3399-crypto";

 reg = <0x0 0xff8b0000 0x0 0x10000>;

 clock-names = "sclk_crypto0", "sclk_crypto1";

 clocks = <&cru SCLK_CRYPTO0>, <&cru SCLK_CRYPTO1>; // No need to specify

frequency, default 100M

 status = "disabled";

};

crypto: crypto@ff0b0000 {

 u-boot,dm-pre-reloc;

 compatible = "rockchip,px30-crypto";

 reg = <0x0 0xff0b0000 0x0 0x4000>;

 clock-names = "sclk_crypto", "apkclk_crypto";

 clocks = <&cru SCLK_CRYPTO>, <&cru SCLK_CRYPTO_APK>;

 clock-frequency = <200000000>, <300000000>; // Generally need to specify the

frequency

 status = "disabled";

};

af://n1979
af://n1997
af://n1998

RK312X/PX30/RK3308/RV1126/RV1106 and other chips based on VOP LITE architecture do not support
the mirror function in design. If the displayed logo has a mirror problem in the X/Y direction, please use
photoshop or ffmpeg and other tools to process the BMP image in advance to the expected effect.

Configuration:

Framework Code:

Driver file:

CONFIG_DM_VIDEO

CONFIG_DISPLAY

CONFIG_DRM_ROCKCHIP

CONFIG_DRM_ROCKCHIP_PANEL

CONFIG_DRM_ROCKCHIP_DW_HDMI

CONFIG_DRM_ROCKCHIP_DW_HDMI_QP

CONFIG_DRM_ROCKCHIP_INNO_HDMI

CONFIG_ROCKCHIP_INNO_HDMI_PHY

CONFIG_DRM_ROCKCHIP_INNO_MIPI_PHY

CONFIG_DRM_ROCKCHIP_INNO_VIDEO_PHY

CONFIG_DRM_ROCKCHIP_INNO_VIDEO_COMBO_PHY

CONFIG_DRM_ROCKCHIP_DW_MIPI_DSI

CONFIG_DRM_ROCKCHIP_DW_MIPI_DSI2

CONFIG_DRM_ROCKCHIP_DW_DP

CONFIG_DRM_ROCKCHIP_ANALOGIX_DP

CONFIG_DRM_ROCKCHIP_LVDS

CONFIG_DRM_ROCKCHIP_RGB

CONFIG_DRM_ROCKCHIP_RK618

CONFIG_DRM_ROCKCHIP_RK628

CONFIG_DRM_ROCKCHIP_SAMSUNG_MIPI_DCPHY

CONFIG_PHY_ROCKCHIP_SAMSUNG_HDPTX_HDMI

CONFIG_ROCKCHIP_DRM_TVE

CONFIG_SII902X

drivers/video/drm/rockchip_display.c

drivers/video/drm/rockchip_display.h

drivers/video/drm/rockchip_crtc.c

drivers/video/drm/rockchip_crtc.h

drivers/video/drm/rockchip_connector.c

drivers/video/drm/rockchip_connector.h

drivers/video/drm/rockchip_bridge.c

drivers/video/drm/rockchip_bridge.h

drivers/video/drm/rockchip_panel.c

drivers/video/drm/rockchip_panel.h

drivers/video/drm/rockchip_phy.c

drivers/video/drm/rockchip_phy.h

vop:

 drivers/video/drm/rockchip_vop.c

 drivers/video/drm/rockchip_vop.h

 drivers/video/drm/rockchip_vop_reg.c

 drivers/video/drm/rockchip_vop_reg.h

 drivers/video/drm/rockchip_vop2.c

rgb:

 drivers/video/drm/rockchip_rgb.c

5.5.2 Relevant Interface

 drivers/video/drm/rockchip_rgb.h

lvds:

 drivers/video/drm/rockchip_lvds.c

 drivers/video/drm/rockchip_lvds.h

mipi:

 drivers/video/drm/drm_mipi_dsi.c

 drivers/video/drm/dw_mipi_dsi.c

 drivers/video/drm/dw_mipi_dsi2.c

edp:

 drivers/video/drm/rockchip_analogix_dp.c

 drivers/video/drm/rockchip_analogix_dp.h

 drivers/video/drm/rockchip_analogix_dp_reg.c

 drivers/video/drm/rockchip_analogix_dp_reg.h

hdmi:

 drivers/video/drm/dw_hdmi.c

 drivers/video/drm/dw_hdmi.h

 drivers/video/drm/rockchip_dw_hdmi.c

 drivers/video/drm/rockchip_dw_hdmi.h

 drivers/video/drm/dw_hdmi_qp.c

 drivers/video/drm/dw_hdmi_qp.h

 drivers/video/drm/rockchip_dw_hdmi_qp.c

 drivers/video/drm/rockchip_dw_hdmi_qp.h

cvbs:

 drivers/video/drm/rockchip_tve.c

 drivers/video/drm/rockchip_tve.h

dp:

 drivers/video/drm/dw-dp.c

bridge:

 drivers/video/drm/rk618.c

 drivers/video/drm/rk618.h

 drivers/video/drm/rk618_lvds.c

 drivers/video/drm/rk618_lvds.c

 drivers/video/drm/rk628/

 drivers/video/drm/sii902x.c

// Display U-Boot logo and kernel logo:

void rockchip_show_logo(void);

// Display bmp images, currently mainly used for charging image display:

void rockchip_show_bmp(const char *bmp);

// Passes some variables from U-Boot to the kernel via dtb.

// Including kernel logo size, address, format, bcsh/csc configuration, crtc

output scan timing and overscan configuration, etc.

void rockchip_display_fixup(void *blob);

af://n2012

5.5.3 DTS Configuration

5.5.4 Defconfig

reserved-memory {

 #address-cells = <2>;

 #size-cells = <2>;

 ranges;

 drm_logo: drm-logo@00000000 {

 compatible = "rockchip,drm-logo";

 // Reserve buffer for kernel logo storage, the exact address and size

will be modified in U-Boot

 reg = <0x0 0x0 0x0 0x0>;

 };

};

&route-edp {

 status = "okay"; // Enable U-Boot logo display function

 logo,uboot = "logo.bmp"; // Specify the image to display for

the U-Boot logo

 logo,kernel = "logo_kernel.bmp"; // Specify the image to display for

the kernel logo

 logo,mode = "center"; // center: center display, fullscreen:

fullscreen display

 logo,rotate = <90>; // Rotation angle: 90/180/270

 charge_logo,mode = "center"; // center: center display, fullscreen:

fullscreen display

 connect = <&vopb_out_edp>; // Determine the display path, vopb-

>edp->panelDetermine the display path, vopb->edp->panel

};

&edp {

 status = "okay"; // enable edp

};

&vopb {

 status = "okay"; // enable vopb

};

&panel {

 "simple-panel";

 ...

 status = "okay";

 disp_timings: display-timings {

 native-mode = <&timing0>;

 timing0: timing0 {

 ...

 };

 };

};

af://n2014
af://n2016

Currently, except for some platforms that have requirements for boot speed or small memory, U-Boot's defconfig
already supports display by default, as long as the relevant information is configured in dts.
RK3308/RV1103/RV1106 and other platforms do not support display by default due to some reasons such as
boot speed, and the following modifications need to be added to defconfig:

Or enable the corresponding .config configuration:

Note on the upstream defconfig configuration

upstream maintains a set of Rockchip U-Boot display drivers, currently supporting the RK3288 and RK3399
platforms.:

To use this driver, you can turn on CONFIG_VIDEO_ROCKCHIP and turn off CONFIG_DRM_ROCKCHIP,
which has some advantages over the display driver we currently use for the SDK:

Supported platforms and display interfaces are more comprehensive;
HDMI, DP and other display interfaces can output the specified resolution, overscan effect, display effect,
adjustment effect and so on according to the user's settings;
The U-Boot logo can be smoothly transitioned to the kernel logo until the system boots.

5.5.5 LOGO Partition

--- a/configs/evb-rk3308_defconfig

+++ b/configs/evb-rk3308_defconfig

@@ -4,7 +4,6 @@ CONFIG_SYS_MALLOC_F_LEN=0x2000

CONFIG_ROCKCHIP_RK3308=y

CONFIG_ROCKCHIP_SPL_RESERVE_IRAM=0x0

CONFIG_RKIMG_BOOTLOADER=y

-# CONFIG_USING_KERNEL_DTB is not set

CONFIG_TARGET_EVB_RK3308=y

CONFIG_DEFAULT_DEVICE_TREE="rk3308-evb"

CONFIG_DEBUG_UART=y

@@ -55,6 +54,11 @@ CONFIG_USB_GADGET_DOWNLOAD=y

CONFIG_G_DNL_MANUFACTURER="Rockchip"

CONFIG_G_DNL_VENDOR_NUM=0x2207

CONFIG_G_DNL_PRODUCT_NUM=0x330d

+CONFIG_DM_VIDEO=y

+CONFIG_DISPLAY=y

+CONFIG_DRM_ROCKCHIP=y

+CONFIG_DRM_ROCKCHIP_RGB=y

+CONFIG_LCD=y

CONFIG_USE_TINY_PRINTF=y

CONFIG_SPL_TINY_MEMSET=y

CONFIG_ERRNO_STR=y

// rk3308

make rk3308_defconfig rk3308-display.config

// rv1103/rv1106

make rv1106_defconfig rv1106-display.config

./drivers/video/rockchip/

af://n2032

Users who have a need to dynamically update the power-up LOGO (usually initiating the update at the
application layer) can do so through a separate LOGO partition.

Operational Steps:

Add a separate LOGO partition to the partition table
Users can dynamically update the images in the logo partition in a certain way according to their needs.
When updating, users can directly update the original image to the logo partition without any packaging.
When the image in the logo partition is invalid, the default image in the resource file is still used.

LOGO Partition Support:

If the code only contains the following commit, the logo partition only supports 1 image and can only replace the
default logo.bmp:

If the code contains the following commit, the logo partition supports 2 images: image 1 is used to replace
logo.bmp, and the image 2 is used to replace logo_kernel.bmp. The two images are placed next to each other,
with 512-byte alignment between the images, and the order is not replaceable

Assuming the images are logo.bmp and logo_kernel.bmp. logo.img package command:

Just download the generated logo.img to the logo partition and you will see “LOGO:” printed after booting:

 1d30bcc rockchip: resource: support parse "logo" partition picture

 commit 07f987d8d495380787203e2bc2accd44100e6051

 Author: Joseph Chen <chenjh@rock-chips.com>

 Date: Sun Dec 8 18:00:37 2019 +0800

 rockchip: resource: support parse logo_kernel.bmp from logo partition

 "logo" partition layout, not change order:

 |----------------------| 0x00

 | raw logo.bmp |

 |----------------------| N*512-byte aligned

 | raw logo_kernel.bmp |

 |----------------------|

 N: the sector count of logo.bmp

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

 Change-Id: I2deba013d3963c99664c5bfd69693835a46ba48f

cat logo.bmp > logo.img && truncate -s %512 logo.img && cat logo_kernel.bmp >>

logo.img

U-Boot 2017.09-g042c01531e-210512-dirty #cjh (May 14 2021 - 11:25:03 +0800)

Model: Rockchip RK3568 Evaluation Board

PreSerial: 2, raw, 0xfe660000

DRAM: 2 GiB

Sysmem: init

Relocation Offset: 7d34f000, fdt: 7b9f8758

Using default environment

5.5.6 Analysis of Common Problems

Q1: If you want the default mirror display in the X/Y direction, is there any way?

A1: The default mirror display in the Y direction is not supported. The default mirror display in the X direction
is not supported for the VOP LITE architecture platform, but for the VOP2 architecture platforms such as
RK3568 and RK3588, you can ensure that the X direction is mirrored from U-Boot through the following
configuration:

Q2: Can it support BMP logo images with 4K resolution?

A2: Yes, it can, but the defconfig of each platform cannot support the normal display of 4K logo images. The
following modifications need to be added (taking the rk3576 platform as an example):

dwmmc@fe2b0000: 1, dwmmc@fe2c0000: 2, sdhci@fe310000: 0

Bootdev(atags): mmc 0

MMC0: HS200, 200Mhz

PartType: EFI

boot mode: normal

FIT: No fdt blob

Android 11.0, Build 2021.4, v2

Found DTB in boot part

// The following printout indicates that the image in the logo.img partition was

recognized correctly.

LOGO: logo.bmp

LOGO: logo_kernel.bmp

DTB: rk-kernel.dtb

HASH(c): OK

......

&vp1 {

 xmirror-enable;

};

diff --git a/drivers/video/drm/rockchip_display.c

b/drivers/video/drm/rockchip_display.c

index b1773ba6942..d1606db1ba5 100644

--- a/drivers/video/drm/rockchip_display.c

+++ b/drivers/video/drm/rockchip_display.c

@@ -52,7 +52,7 @@

 #define RK_BLK_SIZE 512

 #define BMP_PROCESSED_FLAG 8399

 #define BYTES_PER_PIXEL sizeof(uint32_t)

-#define MAX_IMAGE_BYTES (8 * 1024 * 1024)

+#define MAX_IMAGE_BYTES (32 * 1024 * 1024)

 DECLARE_GLOBAL_DATA_PTR;

 static LIST_HEAD(rockchip_display_list);

diff --git a/include/configs/rk3576_common.h b/include/configs/rk3576_common.h

index 16abba314c5..b4a8ec3b898 100644

--- a/include/configs/rk3576_common.h

+++ b/include/configs/rk3576_common.h

@@ -22,7 +22,7 @@

 #endif

 #define CONFIG_SPL_LOAD_FIT_ADDRESS 0x42000000

af://n2049

And you need to change the configuration item CONFIG_DRM_MEM_RESERVED_SIZE_MBYTES to 64
MB.

Due to memory usage and default parameter partition table configuration, it is not recommended to use too
large BMP logo images, so MAX_IMAGE_BYTES is limited to 8 MB. If the size exceeds this, it is
recommended to use BI_RLE4/BI_RLE8 format BMP images.
The common 4K BI_RGB 24bpp BMP image size is about 24 MB. The default malloc heap size of each
platform is usually 32 MB, which will cause the BMP decode related functions to fail to apply for memory.
In order to ensure smooth switching from U-Boot to Kernel logo display, the two logo images are usually
of the same resolution and format, so the size of the memory area reserved for the logo display function
(determined by CONFIG_DRM_MEM_RESERVED_SIZE_MBYTES, 32 MB by default) is not enough.

5.6 Dvfs

The DVFS in this chapter is different from the kernel, which is a dynamic frequency and voltage regulation
mechanism specialized for wide temperature chips.

5.6.1 Wide Temperature Strategy

The U-Boot framework doesn't support DVFS, in order to support the wide temperature function for some chips,
RK has implemented a set of DVFS wide temperature drivers to adjust the cpu/dmc frequency-voltage according
to the chip temperature. However, unlike the kernel DVFS driver, this wide-temperature driver perform control
only when the max/low temperature thresholds are triggered.

Wide temperature strategy:

1. The wide temperature driver is used to adjust the frequency-voltage of cpu/dmc, the control strategy can be
effective for both cpu and dmc, or only one of them, determined by the dts configuration; the control
strategy is the same for both cpu and dmc

2. The wide-temperature driver parses the “trip-point-0” of the opp table, regulator, clock, and thermal zone
of the cpu/dmc node to get information about the frequency-voltage range, max/low temperature
thresholds, and the maximum voltage allowed;

3. If rockchip,low-temp = <...> or rockchip,high-temp = <...> is specified in the opp table of the cpu/dmc, the
cpu/dmc will not be able to use it. > or rockchip,high-temp = <... >, or cpu/dmc references a trip node in
the thermal zone, then the cpu/dmc wide-temperature control policy will take effect;

4. Key attributes:

rockchip,low-temp: Minimum temperature threshold, refered to as TEMP_min below;;
rockchip,high-temp and thermal zone: The maximum temperature threshold, refered to as TEMP_max
below (if both are valid, they will be compared with the current temperature, strategically);
rockchip,max-volt: The maximum permissible setting voltage is indicated by V_max below;

5. Threshold-triggered processing:

If the temperature is higher than TEMP_max, reduce both frequency and voltage to the lowest gear;

-#define CONFIG_SYS_MALLOC_LEN (32 << 20)

+#define CONFIG_SYS_MALLOC_LEN (32 << 21)

 #define CONFIG_SYS_CBSIZE 1024

 #ifdef CONFIG_SUPPORT_USBPLUG

af://n2064
af://n2066

If the temperature is below TEMP_min, the default boost is 50mv. If boosting the voltage by 50mv causes
the voltage to exceed V_max, the voltage is set to V_max while lower the frequency by 2 gears;

6. The current wide temperature strategy is applied at 2 points:

After the regulator and clk frameworks are initialized, the wide-temperature driver is initialized and the
wide-temperature policy is executed once, which is called in board_init() in the board.c file;
During the preboot phase (i.e. before loading the firmware), the wide-temperature policy will be executed
once more: if attribute such as “repeat” has been specified in the dts node (see below), and the chip
temperature is still not within the temperature threshold after executing the current wide-temperature
policy, the system will stop booting and the wide-temperature policy will be executed continuously until
the chip temperature is back within the temperature threshold before continuing to boot the system. If there
is no attribute such as “repeat”, then the system will boot up directly after the current wide-temperature
policy is executed, generally, the repeat attribute is not needed at present.

5.6.2 Framework Support

Framework Code:

Driver Code:

5.6.3 Relevant Interface

5.6.4 Enable Wide Temperature

1. Configuration Enable:

2. Specify CONFIG_PREBOOT:

./drivers/power/dvfs/dvfs-uclass.c

./include/dvfs.h

./cmd/dvfs.c

./drivers/power/dvfs/rockchip_wtemp_dvfs.c

// Execute the dvfs policy once

int dvfs_apply(struct udevice *dev);

// If the repeat attribute is specified, the dvfs policy will be executed

repeated when the temperature is not within the threshold range

int dvfs_repeat_apply(struct udevice *dev);

CONFIG_DM_DVFS=y

CONFIG_ROCKCHIP_WTEMP_DVFS=y

CONFIG_DM_THERMAL=y

CONFIG_ROCKCHIP_THERMAL=y

CONFIG_USING_KERNEL_DTB=y

af://n2101
af://n2106
af://n2108

3. kernel dts configure wide-temperature nodes:

 In general, the repeat-related attributes described above do not need to be configured.

5.6.5 Wide Temperature Results

The following will be printed when cpu temperature control is enabled:

There will be an adjustment message when the cpu temperature control triggers the high temperature threshold:

There will be an adjustment message when the cpu temperature control triggers the low temperature threshold:

#ifdef CONFIG_DM_DVFS

#define CONFIG_PREBOOT "dvfs repeat"

#else

#define CONFIG_PREBOOT

#endif

uboot-wide-temperature {

 compatible = "rockchip,uboot-wide-temperature";

 // Optional. Indicates whether to have the wide temperature driver stop

booting the system when the maximum/low temperature threshold of the cpu is

triggered during the U-Boot phase,

 // and to keep executing the wide temperature processing strategy until the

chip temperature returns to within the threshold range before continuing to boot

the system

 cpu,low-temp-repeat;

 cpu,high-temp-repeat;

 // Optional. Indicates whether to stop the wide temperature driver from

booting the system when the U-Boot stage triggers the dmc's maximum/low

temperature threshold,

 // and to keep enforcing the wide temperature processing strategy until the

chip temperature returns to within the threshold range before continuing to boot

the system.

 dmc,low-temp-repeat;

 dmc,high-temp-repeat;

 status = "okay";

};

// <NULL> indicates that no low temperature threshold is specified

DVFS: cpu: low=<NULL>'c, high=95'c, Vmax=1350000uV, tz_temp=88.0'c, h_repeat=0,

l_repeat=0

DVFS: 90.352'c

DVFS: cpu(high): 600000000->408000000 Hz, 1050000->950000 uV

DVFS: 10.352'c

DVFS: cpu(low): 600000000->600000000 Hz, 1050000->1100000 uV

af://n2122

Similarly, when dmc triggers the high and low temperature thresholds, the above message will be printed with
the prefix “dmc”:

5.7 Efuse/Otp

5.7.1 Framework Support

The efuse/otp driver uses the misc-uclass.c framework and standard interfaces. Genrally, efuse/otp is divided
into secure and non-secure, with U-Boot providing access to non-secure and U-Boot SPL providing access to
certain areas of secure otp.

non-secure configuration:

secure configuration:

framework code:

driver code:

5.7.2 Relevant Interface

DVFS: dmc:

DVFS: dmc(high):

DVFS: dmc(low):

CONFIG_MISC

// choose either one of the below two options, the defconfig of each platform

has enabled the corresponding configuration by default.

CONFIG_ROCKCHIP_EFUSE

CONFIG_ROCKCHIP_OTP

CONFIG_SPL_MISC=y

CONFIG_SPL_ROCKCHIP_SECURE_OTP=y

./drivers/misc/misc-uclass.c

// non-secure:

./drivers/misc/rockchip-efuse.c

./drivers/misc/rockchip-otp.c

// secure:

./drivers/misc/rockchip-secure-otp.S

// non-secure:

int misc_read(struct udevice *dev, int offset, void *buf, int size)

// secure:

int misc_read(struct udevice *dev, int offset, void *buf, int size)

int misc_write(struct udevice *dev, int offset, void *buf, int size)

af://n2131
af://n2132
af://n2142

5.7.3 DTS Configuration

Take rk3308 as an example:

non-secure:

secure:

5.7.4 Recall Example

take non-secure as an example:

secure example:

otp: otp@ff210000 {

 compatible = "rockchip,rk3308-otp";

 reg = <0x0 0xff210000 0x0 0x4000>;

};

secure_otp: secure_otp@0xff2a8000 {

 compatible = "rockchip,rk3308-secure-otp";

 reg = <0x0 0xff2a8000 0x0 0x4000>;

 secure_conf = <0xff2b0004>;

 mask_addr = <0xff540000>;

};

char data[10] = {0};

struct udevice *dev;

/* retrieve the device */

ret = uclass_get_device_by_driver(UCLASS_MISC,

 DM_GET_DRIVER(rockchip_otp), &dev);

if (ret) {

 printf("no misc-device found\n");

 return 0;

}

misc_read(dev, 0x10, &data, 10);

char data[10] = {0};

struct udevice *dev;

int i;

dev = misc_otp_get_device(OTP_S);

if (!dev)

 return -ENODEV;

for (i = 0; i < 10; i++)

 data[i] = i;

misc_otp_write(dev, 0x10, &data, 10);

memset(data, 0, 10);

misc_otp_read(dev, 0x10, &data, 10);

af://n2144
af://n2150

5.7.5 Open Area

Secure-OTP only opens part of the region to read and write, please refer to the document: “Rockchip OTP
Development Guide”.

5.8 Ethernet

5.8.1 Framework Support

Framework code:

Driver code:

menuconfig configuration:

Driver configuration
There are two sets of Rockchip Ethernet drivers, if in doubt about the driver selection, please refer to our
corresponding sdk config.

In addition the dwc_eth_qos driver needs to be configured with nocache memory, refer to RV1126:.

./net/*

./drivers/net/*

./drivers/net/phy/*

./drivers/net/designware.c

./drivers/net/dwc_eth_qos.c

./drivers/net/gmac_rockchip.c

// designware:

CONFIG_DM_ETH=y

CONFIG_ETH_DESIGNWARE=y

CONFIG_GMAC_ROCKCHIP=y

// dwc_eth_qos:

CONFIG_DM_ETH=y

CONFIG_DM_ETH_PHY=y

CONFIG_DWC_ETH_QOS=y

CONFIG_GMAC_ROCKCHIP=y

af://n2155
af://n2157
af://n2158

cmd configuration
Manually configure the required features .

5.8.2 Relevant Interface

Data Structure Initialization Interface

Device Registration Interface

Network data read/write and phy read/write
U-Boot's data sending and receiving needs to be called actively, no interrupt or polling method is used, the
specific implementation can refer to NetLoop().

diff --git a/include/configs/rv1126_common.h b/include/configs/rv1126_common.h

index 933917f3f0..9d70795fb8 100644

--- a/include/configs/rv1126_common.h

+++ b/include/configs/rv1126_common.h

@@ -50,6 +50,7 @@

 #define CONFIG_SYS_SDRAM_BASE 0

 #define SDRAM_MAX_SIZE 0xfd000000

+#define CONFIG_SYS_NONCACHED_MEMORY (1 << 20) /* 1 MiB */

 #ifndef CONFIG_SPL_BUILD

Command line interface ---> Network commands --->

[*] bootp, tftpboot

[] tftp put

[] tftp download and bootm

[] tftp download and flash

[] tftpsrv

[] rarpboot

-*- dhcp

-*- pxe

[] nfs

-*- mii

-*- ping

[] cdp

[] sntp

[] dns

[] linklocal

[] ethsw

void net_init(void);

int eth_register(struct eth_device *dev);

int phy_init(void);

int eth_register(struct eth_device *dev);

int phy_register(struct phy_driver *drv);

af://n2175

5.8.3 DTS Configuration

DTS nodes, like kernels, need to be concerned with the configuration of the following board-related attributes:

phy interface configuration (phy-mode)
phy rreset pin and reset time (snps,reset-gpio) (snps,reset-delays-us)
Clock output direction for mcu (clock_in_out)
Clock source selection and frequency setting (assigned-clock-parents) (assigned-clock-rates)
RGMII Delayline, RGMII interface requirement (tx_delay) (rx_delay)

5.8.4 Usage Example

Commonly used network commands:

DHCP

With this command, there is no need to set serverip, ipaddr, and gateway.
When dhcp successfully gets the ip address from the dhcp server, it will abtain the file by tftp from the
hostIPaddr address.

int eth_send(void *packet, int length);

int eth_rx(void);

int phy_read(struct phy_device *phydev, int devad, int regnum);

int phy_write(struct phy_device *phydev, int devad, int regnum, u16 val);

&gmac {

 phy-mode = "rgmii";

 clock_in_out = "input";

 snps,reset-gpio = <&gpio3 RK_PA0 GPIO_ACTIVE_LOW>;

 snps,reset-active-low;

 /* Reset time is 20ms, 100ms for rtl8211f */

 snps,reset-delays-us = <0 20000 100000>;

 assigned-clocks = <&cru CLK_GMAC_SRC>, <&cru CLK_GMAC_TX_RX>, <&cru

CLK_GMAC_ETHERNET_OUT>;

 assigned-clock-parents = <&cru CLK_GMAC_SRC_M1>, <&cru RGMII_MODE_CLK>;

 assigned-clock-rates = <125000000>, <0>, <25000000>;

 pinctrl-names = "default";

 pinctrl-0 = <&rgmiim1_pins &clk_out_ethernetm1_pins>;

 tx_delay = <0x2a>;

 rx_delay = <0x1a>;

 phy-handle = <&phy>;

 status = "okay";

};

Usage:

dhcp [loadAddress] [[hostIPaddr:]bootfilename]

af://n2188
af://n2202

100M environment:

PING

TFTP

1000M environment:

You can also set your own IP address:

=> dhcp 0x20000000 192.168.0.100:kernel.img

ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done

BOOTP broadcast 1

DHCP client bound to address 192.168.0.106 (2 ms)

Using ethernet@ffc40000 device

TFTP from server 192.168.0.100; our IP address is 192.168.0.106

Filename 'kernel.img'.

Load address: 0x20000000

Loading: ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 1.5 MiB/s

done

Bytes transferred = 19054084 (122be04 hex)

=> ping 192.168.0.1

ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done

Using ethernet@ffc40000 device

host 192.168.0.1 is alive

Usage:

tftp [loadAddress] [[hostIPaddr:]bootfilename]

=> setenv ipaddr 192.168.1.101

=> setenv serverip 192.168.1.100

=> tftp kernel.img 0x20000000

ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done

5.8.5 Network Troubleshooting

1. Networked environments trouble, commonly traced in the following directions

Is the firewall on the computer not turned off?
If it is cross-network segments, confirm whether the gateway is set or not;
Is the TFTP server configured correctly;
Whether the TFTP function is disabled on some routers.

2. Code issues, in general, are traced in 3 main aspects:

Check the pinctrl configuration is correct or not. Check if the iomux and drive strength of the relevant pins
is correct or not, you can also dump the relevant registers and compare them with the kernel to see if they
are the consistent. In most cases, we adjust the kernel's network first before adjusting U-Boot.
Check the clock configuration is correct or not. The clock configuration check is relatively more
troublesome, mainly checking the division ratio, clock source, and clock direction, most of the registers in
the CRU, there are also some chips whose registers in the GRF. You can also dump the relevant registers to
compare with the kernel to see if they are consistent.
PHY reset pin. It mainly detects whether the reset pin is configured correctly and whether the reset
waveform meets the PHY requirements.

5.9 Gpio

Using ethernet@ffc40000 device

TFTP from server 192.168.1.100; our IP address is 192.168.1.101

Filename 'kernel.img'.

Load address: 0x20000000

Loading: ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 ###

 #################

 12.2 MiB/s

done

Bytes transferred = 20275220 (1356014 hex)

af://n2222
af://n2241

5.9.1 Framework Support

GPIO driver using gpio-uclass framework and standard interfaces

Configurations:

Framework Code:

Driver Code:

5.9.2 DM Interface

DM standard interface. To access gpio, the user must pass struct gpio_desc , the recommended type.

Notes:

The return value of dm_gpio_get_value() indicates the active state, not a high or low level. Example:

gpios = <&gpio2 RK_PD0 GPIO_ACTIVE_LOW>, the return value is 1 for a low level and 0 for a high
level.
gpios = <&gpio2 RK_PD0 GPIO_ACTIVE_HIGH>, the return value is 0 for a low level and 1 for a high
level.

The same is true for the dm_gpio_set_value() parameter value1: atcive, 0: inactive.

CONFIG_DM_GPIO

CONFIG_ROCKCHIP_GPIO

./drivers/gpio/gpio-uclass.c

./drivers/gpio/rk_gpio.c

// Request/Release GPIO

int gpio_request_by_name(struct udevice *dev, const char *list_name,

 int index, struct gpio_desc *desc, int flags);

int gpio_request_by_name_nodev(ofnode node, const char *list_name, int index,

 struct gpio_desc *desc, int flags);

int gpio_request_list_by_name(struct udevice *dev, const char *list_name,

 struct gpio_desc *desc_list, int max_count, int

flags);

int gpio_request_list_by_name_nodev(ofnode node, const char *list_name,

 struct gpio_desc *desc_list, int max_count,

 int flags);

int dm_gpio_free(struct udevice *dev, struct gpio_desc *desc)

// Configure GPIO direction.@flags: GPIOD_IS_OUT (output) and GPIOD_IS_IN

(input)

int dm_gpio_set_dir_flags(struct gpio_desc *desc, ulong flags);

// Set/Get GPIO level

int dm_gpio_get_value(const struct gpio_desc *desc)

int dm_gpio_set_value(const struct gpio_desc *desc, int value)

af://n2242
af://n2250

5.9.3 Legacy Interface

Compatible interface type. This interface type is mainly compatible with the old U-Boot API, the internal
implementation of the function is still essentially going through the DM framework, but externally shield with
struct gpio_desc . The function is available, but from the point of view of DM code standardization, it is
not recommended.

 The @gpio is calculated based on the rule that each group of GPIOs has 32 pins and each bank has 8 pins.
Example:

@value : The function is consistent with the interface of type dm_gpio_ above.

5.10 Interrupt

5.10.1 Framework Support

U-Boot native code does not have an interrupt framework, RK has implemented a set of interrupts framework to
support GICv2/v3, which are enabled by default.

Scenarios currently need interrupt framework:

Pwrkey: When U-Boot is charging, the CPU will enter low-power hibernation, and you need to wake up
the CPU through Pwrkey interrupt;
Timer: Timer interrupts are used in U-Boot charging and test cases;
Debug: Enable CONFIG_ROCKCHIP_DEBUGGER debugging;

Configuration:

Framework code:

int gpio_request(unsigned gpio, const char *label)

int gpio_free(unsigned gpio)

int gpio_direction_input(unsigned gpio)

int gpio_direction_output(unsigned gpio, int value)

int gpio_get_value(unsigned gpio)

int gpio_set_value(unsigned gpio, int value)

gpio0_a7 = (0 * 32) + (0 * 8) + 7 = 7

gpio1_b6 = (1 * 32) + (1 * 8) + 6 = 46

gpio3_c2 = (3 * 32) + (2 * 8) + 2 = 114

CONFIG_IRQ

CONFIG_GICV2

CONFIG_GICV3

./drivers/irq/irq-gpio-switch.c

./drivers/irq/irq-gpio.c

./drivers/irq/irq-generic.c

./drivers/irq/irq-gic.c

./drivers/irq/virq.c

./include/irq-generic.h

af://n2261
af://n2267
af://n2268

5.10.2 Related Interface

IRQ Request

Peripherals with separate hardware interrupt numbers do not require additional conversions, e.g. pwm,
timer, etc.
The pinof the GPIO does not have a separate hardware interrupt number and requires an additional
conversion request.

There are three ways to request the interrupt number of the pin of the GPIO:

1. Input struct gpio_desc structure

Example:

// CPU local interrupt switch

void enable_interrupts(void);

int disable_interrupts(void);

// GPIO converted to Interrupt Number

int gpio_to_irq(struct gpio_desc *gpio);

int phandle_gpio_to_irq(u32 gpio_phandle, u32 pin);

int hard_gpio_to_irq(unsigned gpio);

// Registering/Releasing Interrupt Callbacks

void irq_install_handler(int irq, interrupt_handler_t *handler, void *data);

void irq_free_handler(int irq);

// Enable/disable interrupt

int irq_handler_enable(int irq);

int irq_handler_disable(int irq);

// Interrupt trigger type

int irq_set_irq_type(int irq, unsigned int type);

// This method can dynamically parse the dts configuration, which is more

flexible and commonly used.

int gpio_to_irq(struct gpio_desc *gpio);

battery {

 compatible = "battery,rk817";

 dc_det_gpio = <&gpio2 7 GPIO_ACTIVE_LOW>;

};

af://n2282

2. Input gpio ‘s phandle and pin

Example (rk817 interrupt pin is GPIO0_A7)

3. force to specify gpio

struct gpio_desc dc_det;

int ret, irq;

ret = gpio_request_by_name_nodev(dev_ofnode(dev), "dc_det_gpio", 0,

 &dc_det, GPIOD_IS_IN);

// For the sake of simplicity of the example, the return value judgment is

omitted.

if (!ret) {

 irq = gpio_to_irq(&dc_det);

 irq_install_handler(irq, ...);

 irq_set_irq_type(irq, IRQ_TYPE_EDGE_FALLING);

 irq_handler_enable(irq);

}

// This method can dynamically parse the dts configuration, which is more

flexible and commonly used.

int phandle_gpio_to_irq(u32 gpio_phandle, u32 pin);

rk817: pmic@20 {

 compatible = "rockchip,rk817";

 reg = <0x20>;

 interrupt-parent = <&gpio0>; // "&gpio0": the phandle pointing

to the gpio0 node;;

 interrupts = <7 IRQ_TYPE_LEVEL_LOW>; // "7": pin;

};

u32 interrupt[2], phandle;

int irq, ret;

phandle = dev_read_u32_default(dev->parent, "interrupt-parent", -1);

if (phandle < 0) {

 printf("failed get 'interrupt-parent', ret=%d\n", phandle);

 return phandle;

}

ret = dev_read_u32_array(dev->parent, "interrupts", interrupt, 2);

if (ret) {

 printf("failed get 'interrupt', ret=%d\n", ret);

 return ret;

}

// For the sake of simplicity of the example, the return value judgment is

omitted.

irq = phandle_gpio_to_irq(phandle, interrupt[0]);

irq_install_handler(irq, pwrkey_irq_handler, dev);

irq_set_irq_type(irq, IRQ_TYPE_EDGE_FALLING);

irq_handler_enable(irq);

Example (GPIO0_A0 request is interrupted)

5.11 I2C

5.11.1 Framework Support

The i2c driver uses the i2c-uclass framework and standard interfaces.

Configuration:

Framework code:

Driver code:

5.11.2 Relevant Interface

// This method forces the gpio to be specified directly, and the incoming gpio

must be declared by a special macro, which is not flexible enough and is not

recommended.

int hard_gpio_to_irq(unsigned gpio);

int gpio0_a0, irq;

// For the sake of simplicity of the example, the return value judgment is

omitted.

gpio0_a0 = RK_IRQ_GPIO(RK_GPIO0, RK_PA0);

irq = hard_gpio_to_irq(gpio0_a0);

irq_install_handler(irq, ...);

irq_handler_enable(irq);

CONFIG_DM_I2C

CONFIG_SYS_I2C_ROCKCHIP

./drivers/i2c/i2c-uclass.c

./drivers/i2c/rk_i2c.c

./drivers/i2c/i2c-gpio.c // gpio emulates i2c communication, which is not

used at the moment

// i2c read/write

int dm_i2c_read(struct udevice *dev, uint offset, uint8_t *buffer, int len)

int dm_i2c_write(struct udevice *dev, uint offset, const uint8_t *buffer, int

len)

// encapsulation of the above interface

int dm_i2c_reg_read(struct udevice *dev, uint offset)

int dm_i2c_reg_write(struct udevice *dev, uint offset, unsigned int val);

af://n2311
af://n2312
af://n2320

5.12 IO-Domain

5.12.1 Framework Support

The U-Boot framework does not have io-domain support by default, but RK implements a set by itself.

Configuration:

Framework code:

Driver conde:

5.12.2 Relevant Interface

Users don't need to actively call io_domain_init(), just enable the above configuration and the U-Boot
framework will automatically initialize the

5.13 Key

5.13.1 Framework Support

The U-Boot framework does not support keystrokes by default, RK implements a set of keystrokes by itself.

Realization rules:

All keys are specified through the kernel and U-Boot's DTS. U-Boot does not use hard code to define any
keys;;
U-Boot prioritizes the search for the keys in the kernel dts, and then looks for keys in the U-Boot dts if it
can't find them..
Only the downloading keys are defined in the U-Boot dts..
If the user wants to update the b downloading key definitions, it is needed to update both the kernel and U-
Boot dts.

Configuration:

CONFIG_IO_DOMAIN

CONFIG_ROCKCHIP_IO_DOMAIN

./drivers/power/io-domain/io-domain-uclass.c

./drivers/power/io-domain/rockchip-io-domain.c

void io_domain_init(void)

af://n2322
af://n2323
af://n2331
af://n2334
af://n2335

Framework code:

Driver code:

pwrkey is recognized only in interrupt mode, the rest of the gpio keys are recognized in polling mode.

5.13.2 Relevant Interface

Interface:

code definition:

Returned value:

KEY_PRESS_LONG_DOWN Default duration 2000ms, currently only used for U-Boot charging pwrkey long
press event.

Example:

CONFIG_DM_KEY

CONFIG_RK8XX_PWRKEY

CONFIG_ADC_KEY

CONFIG_GPIO_KEY

CONFIG_RK_KEY

./include/dt-bindings/input/linux-event-codes.h

./drivers/input/key-uclass.c

./include/key.h

./drivers/input/rk8xx_pwrkey.c // Support PMIC

pwrkey(RK805/RK809/RK816/RK817)

./drivers/input/rk_key.c // Support compatible = "rockchip,key"

./drivers/input/gpio_key.c // Support compatible = "gpio-keys"

./drivers/input/adc_key.c // Support compatible = "adc-keys"

int key_read(int code)

/include/dt-bindings/input/linux-event-codes.h

enum key_state {

 KEY_PRESS_NONE, // Non-complete short press (no key release) or non-

complete long press (not pressed long enough);;

 KEY_PRESS_DOWN, // One complete short press (press => release);

 KEY_PRESS_LONG_DOWN, // One full long press (can be unreleased);

 KEY_NOT_EXIST, // key does not exist

};

#define KEY_LONG_DOWN_MS 2000

af://n2354

5.14 Led

5.14.1 Framework Support

The Led driver uses the led-uclass.c framework and standard interfaces.

Configuration:

Framework code:

Driver code:

5.14.2 Relevant Interface

5.14.3 DTS Node

U-Boot's led_gpio.c is relatively simple, parsing only 3 attributes under the led node:

gpios: led control pins and active states;
label: led label;
default-state: default states, set when the probe is driven;

int ret;

ret = key_read(KEY_VOLUMEUP);

...

CONFIG_LED_GPIO

drivers/led/led-uclass // Default Compilation

drivers/led/led_gpio.c // Support compatible = "gpio-leds"

// obtain led device

int led_get_by_label(const char *label, struct udevice **devp);

// set/obtain led status

int led_set_state(struct udevice *dev, enum led_state_t state);

enum led_state_t led_get_state(struct udevice *dev);

// Please ignore this, no underlying driver implementation done currently

int led_set_period(struct udevice *dev, int period_ms);

leds {

 compatible = "gpio-leds";

 status = "okay";

 blue-led {

 gpios = <&gpio2 RK_PA1 GPIO_ACTIVE_LOW>;

 label = "battery_full";

af://n2365
af://n2366
af://n2374
af://n2376

5.15 Mtd

MTD (Memory Technology Device) i.e. Memory Technology Device, supports parallel port nand, spi nand, spi
nor

5.15.1 Framework Support

5.15.2 Relevant Interface

Common interfaces are listed below:

5.15.3 Usage Example

spi nor loading firmware example

Take flash offset 0x400000 byte, 0x800 bytes data to memory address 0x4000000 as an example:

 default-state = "off";

 };

 green-led {

 gpios = <&gpio2 RK_PA0 GPIO_ACTIVE_LOW>;

 label = "greenled";

 default-state = "off";

 };

};

CONFIG_MTD=y

CONFIG_CMD_MTD=y

struct mtd_info *get_mtd_device_nm(const char *name);

int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,

u_char *buf);

int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const

u_char *buf);

int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);

int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);

int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);

#include <mtd.h>

#define MTD_SPINOR_NAME "nor0"

static int mtd_demo(void)

{

 char *mtd_name = MTD_SPINOR_NAME;

 struct mtd_info *mtd;

af://n2386
af://n2388
af://n2390
af://n2393

Nand Example

Recommendations:

Refer to drivers/mtd/nand/nand_util.c, use the read/write/erase interface with bad block identification.
For a complete write with a small amount of data (usually less than 2KB per power-up), consider using the
MTD_BLK related interface, as frequent calls to this interface will affect the flash lifetime.

5.16 Mtd_blk

RK has designed MTD block layer based on MTD interface, which supports parallel port nand, spi nand, spi nor,
and registers the corresponding MTD block device to support the corresponding block interface.

Features:

The unit is sector, i.e. 512B
No matter how much data is written in a single write request, the flash block corresponding to the data will
be erased, so calling this interface for piecemeal and frequent writes will affect the lifetime of the flash.

5.16.1 Framework Support

U-Boot Configuration:

 size_t retlen, off, size;

 u_char *des_buf;

 int ret;

 mtd = get_mtd_device_nm(mtd_name);

 if (IS_ERR_OR_NULL(mtd)) {

 printf("MTD device %s not found, ret %ld\n",

 mtd_name, PTR_ERR(mtd));

 return CMD_RET_FAILURE;

 }

 des_buf = (u_char *)0x4000000;

 off = 0x4000000;

 size = 0x800;

 ret = mtd_read(mtd, off, size, &retlen, des_buf);

 if (ret || size != retlen) {

 pr_err("mtd read fail, ret=%d retlen=%ld size=%ld\n", ret, retlen,

size);

 }

 return ret;

}

af://n2404
af://n2412

SPL configuration:

Framework Code:

The drivers are individual controller drivers that hook up interfaces such as read/write to the MTD layer.

5.16.2 Relevant Interface

5.17 Optee Client

U-Boot belongs to Non-Secure World in ARM TrustZone and requires OPTEE Client to access secure resources.

5.17.1 Framework Support

The U-Boot framework does not support the OPTEE Client feature by default, However, RK implements a set
by itself.

Configuration:

// MTD driver

CONFIG_MTD=y

CONFIG_CMD_MTDPARTS=y

CONFIG_MTD_DEVICE=y

// MTD block device driver

CONFIG_CMD_MTD_BLK=y

CONFIG_MTD_BLK=y

// Other nand device drivers config

......

CONFIG_MTD=y

CONFIG_CMD_MTDPARTS=y

CONFIG_MTD_DEVICE=y

CONFIG_SPL_MTD_SUPPORT=y

// Other nand device drivers config

......

drivers/mtd/mtd-uclass.c

drivers/mtd/mtdcore.c

drivers/mtd/mtd_uboot.c

drivers/mtd/mtd_blk.c

unsigned long blk_dread(struct blk_desc *block_dev, lbaint_t start,

 lbaint_t blkcnt, void *buffer)

unsigned long blk_dwrite(struct blk_desc *block_dev, lbaint_t start,

 lbaint_t blkcnt, const void *buffer)

af://n2420
af://n2422
af://n2424

Frameworks and drivers:

5.17.2 Firmware Description

The trust.img used must have TA enabled or it will not be able to interact with the OPTEE Client.

5.17.3 Interface Description

The Optee client driver is in the lib/optee_client directory, for the Optee Client Api, please refe
to《TEE_Client_API_Specification-V1.0_c.pdf》.
The download address is: https://globalplatform.org/specs-library/tee-client-api-specification/

Based on Optee's built-in TA functionality, RK encapsulates an interface to use the built-in TA functionality in
the Optee client. The source code of the interface can be found
in lib\optee_clientApi\OpteeClientInterface.c , when using it, please include the header file
include\optee_include\OpteeClientInterface.h`.

Please see the following explainations for APIs .

5.17.3.1 Suitability

The following interfaces are available on each platform: Please refer to the Platform Definition section.

// Enabled all the time

CONFIG_OPTEE_CLIENT

// Used on older platforms, such as RK312x, RK322x, RK3288, RK3228H, RK3368,

RK3399

CONFIG_OPTEE_V1

// Used on new platforms, such as RK3326, RK3308

CONFIG_OPTEE_V2

// This configuration must be enabled when RPMB for eMMC is not available, i.e.,

enable security partitioning!

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION

lib/optee_clientApi/

trusty_base_write_security_data()

trusty_base_read_security_data()

trusty_read_vbootkey_hash()

trusty_write_vbootkey_hash()

trusty_read_vbootkey_enable_flag()

trusty_read_attribute_hash()

trusty_write_attribute_hash()

trusty_write_oem_otp_key()

trusty_oem_otp_key_is_written()

trusty_set_oem_hr_otp_read_lock()

trusty_oem_otp_key_cipher()

trusty_read_oem_ns_otp()

trusty_write_oem_ns_otp()

trusty_write_ta_encryption_key()

af://n2430
af://n2432
https://globalplatform.org/specs-library/tee-client-api-specification/
af://n2436

5.17.3.2 Return Value

If not otherwise noted, the return values for the following APIs are shown in the Return Codes section of the
above document TEE_Client_API_Specification-V1.0_c.pdf .

5.17.3.3 trusty_base_write_security_data

Functions

U-Boot writes data to secure storage.

If it is an EMC/UFS device, the data is stored in the RPMB partition, while other devices such as NAND are
stored in the security partition.
If CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION is defined, it will be fixedly stored in the
security partition.

Parameter

[in] filename - File name
[in] filename_size - Length of file name
[in] data - The data to be written
[in] data_size - Length of data

5.17.3.4 trusty_base_read_security_data

Functions

U-Boot reads data from secure storage.

If it is an EMMC/UFS device, data is read from the RPMB partition, while other devices such as NAND are read
from the security partition.

If CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION is defined, it is fixed to read from the security
partition.

Parameter

trusty_ta_encryption_key_is_written()

trusty_write_oem_encrypt_data()

trusty_oem_encrypt_data_is_written()

trusty_check_security_level_flag()

trusty_write_oem_huk()

uint32_t trusty_base_write_security_data(char *filename,

 uint32_t filename_size,

 uint8_t *data,

 uint32_t data_size)

uint32_t trusty_base_read_security_data(char *filename,

 uint32_t filename_size,

 uint8_t *data,

 uint32_t data_size)

af://n2439
af://n2441
af://n2456

[in] filename - File name
[in] filename_size - Length of file name
[in] data - The data to be read
[in] data_size - Length of data

5.17.3.5 trusty_read_vbootkey_hash

Functions

Retrieves the hash of the secure boot public key from OTP or eFuse.
Related explainations on Secure boot, please refe
to Rockchip_Developer_Guide_Secure_Boot_Application_Note_EN .

Parameter

[out] buf - The hash buffer to be read
[in] length - Hash length, the specific length of the supported hash algorithms to secure boot documents,
the length unit is in word (32bits).

5.17.3.6 trusty_write_vbootkey_hash

Function

Write the hash value of the secure boot public key in OTP or eFuse, enable the secure boot flag, turn on
secure boot.
Secure boot related describtion, please refer
to Rockchip_Developer_Guide_Secure_Boot_Application_Note_EN file.

Parameter

[in] buf - The hash buffer to be written
[in] length - hash length, the length of the supported hash algorithms is based on the secure boot
documentation, the length unit is in word (32bits).

5.17.3.7 trusty_read_vbootkey_enable_flag

Function

 read the flag indicating secure boot is on or not.
Secure boot related explaination please
see Rockchip_Developer_Guide_Secure_Boot_Application_Note_EN file.

Parameters

[in] flag - 1 Byte, 1 means secure boot is on, 0 means off.

uint32_t trusty_read_vbootkey_hash(uint32_t *buf, uint32_t length);

uint32_t trusty_write_vbootkey_hash(uint32_t *buf, uint32_t length);

uint32_t trusty_read_vbootkey_enable_flag(uint8_t *flag);

af://n2472
af://n2482
af://n2492

5.17.3.8 trusty_read_attribute_hash

Function

U-Boot reads the hash of atx_permanta_attributes.bin. This hash is used to verify the legality of
atx_personent_attribies.bin.

Parameters

[out] buf - Hash data
[in] length - Length of hash

5.17.3.9 trusty_write_attribute_hash

Function

U-Boot writes the hash of atx_permanta_attributes.bin.

Parameters

[in] buf - Hash data
[in] length - Length of hash

5.17.3.10 trusty_write_oem_otp_key

Function

Write the plaintext key to the specified OEM OTP area.
For a description of the relevant features of the OEM OTP, see the Rockchip_Developer_Guide_OTP_CN
document.

Parameter

[in] key_id - the key_id that will be written, default support RK_OEM_OTP_KEY0 - 3 total 4 keys, for
rv1126/rv1109, additional support for key_id is RK_OEM_OTP_KEY_FW key.
RK_OEM_OTP_KEY_FW : the key used by Boot ROM to decrypt the loader, the
trusty_oem_otp_key_cipher interface supports to use this key to do the business data encryption and
decryption or decrypt the kernel image.
[in] byte_buf - plaintext key
[in] byte_len - Plaintext key length, for RK_OEM_OTP_KEY_FW , byte_len supports 16 only, for other keys,
byte_len supports 16, 24, 32.

5.17.3.11 trusty_oem_otp_key_is_written

uint32_t trusty_read_attribute_hash(uint32_t *buf, uint32_t length)

uint32_t trusty_write_attribute_hash(uint32_t *buf, uint32_t length)

uint32_t trusty_write_oem_otp_key(enum RK_OEM_OTP_KEYID key_id,

 uint8_t *byte_buf,

 uint32_t byte_len);

af://n2500
af://n2510
af://n2520
af://n2532

Function

Determines whether the key has been written to the specified OEM OTP area.
For a description of the relevant features of the OEM OTP, see the Rockchip_Developer_Guide_OTP_CN
document.

Parameter

[in] key_id - index of the key area to be written, default support RK_OEM_OTP_KEY0 - 3 total 4 keys, for
rv1126/rv1109, additionally support key with key_id RK_OEM_OTP_KEY_FW
[out] value - Determines whether the secret key has been written, 1 means it has been written, 0 means it
has not been written.

Return value

The return value is meaningful when the value is #define TEEC_SUCCESS 0x00000000

The RK3588 platform will also determine whether the key_id is locked or not, if the corresponding key_id is
locked then it will return #define TEEC_ERROR_ACCESS_DENIED 0xFFFF0001 error.

5.17.3.12 trusty_set_oem_hr_otp_read_lock

Function

Set the read lock flag of the specified OEM OTP region, after successful setting, the region is prohibited to write
data, and the existing data in the region is not readable by the CPU software, and the key can be used through the
trusty_oem_otp_key_cipher interface.
For a description of the relevant features of the OEM OTP, see the Rockchip_Developer_Guide_OTP_CN
document.

Note: When the key_id is set to RK_OEM_OTP_KEY0 or RK_OEM_OTP_KEY1 or RK_OEM_OTP_KEY2 , it will
affect the attributes of the other OTP areas after the successful setup, e.g., some of the OTP areas become
unwritable, see Rockchip_Developer_Guide_OTP_CN documentation

Parameter

[in] key_id - key_id to be set, Support RK_OEM_OTP_KEY0 - 3

5.17.3.13 trusty_oem_otp_key_cipher

Function

Select the key for the OEM OTP region to perform a cipher single calculation.

uint32_t trusty_oem_otp_key_is_written(enum RK_OEM_OTP_KEYID key_id, uint8_t

*value);

uint32_t trusty_set_oem_hr_otp_read_lock(enum RK_OEM_OTP_KEYID key_id);

uint32_t trusty_oem_otp_key_cipher(enum RK_OEM_OTP_KEYID key_id,

 rk_cipher_config *config,

 uint32_t src_phys_addr,

 uint32_t dst_phys_addr,

 uint32_t len);

af://n2545
af://n2554

Parameter

[in] key_id - the key_id to be used, RK_OEM_OTP_KEY0 - 3 are supported by default, for rv1126/rv1109,
RK_OEM_OTP_KEY_FW is additionally supported.
[in] config - Algorithms, patterns, keys, iv, etc.

Support AES, SM4 algorithms

Support ECB/CBC/CTS/CTR/CFB/OFB modes

The key length supports 16, 24, 32 Bytes, if it is rv1109/rv1126 platform, the key length only supports 16, 32,
when the key_id is RK_OEM_OTP_KEY_FW the key length only supports 16.

[in] src_phys_addr - The buffer address of the data to be computed, which supports the same as
dst_phys_addr, i.e. supports in-place encryption and decryption
[out] dst_phys_addr - The buffer address of the result of the calculation, which supports the same as
src_phys_addr
[in] len - Byte length of the input and output data buffer, required to be aligned with the block of the
algorithm used

5.17.3.14 trusty_read_oem_ns_otp

Function

U-Boot reads Non-Protected OEM Zone data from secure OTP.

Parameter

[in] byte_off - The position offset of the OTP area to be read
[out] byte_buf - Returned OTP data
[in] byte_len - Length to be read

5.17.3.15 trusty_write_oem_ns_otp

Function

U-Boot writes data to the Non-Protected OEM Zone in secure OTP.

Parameters

[in] byte_off - Position offset of OTP area to be written
[in] byte_buf - Data to be written to OTP
[in] byte_len - Length to be written

5.17.3.16 trusty_write_ta_encryption_key

uint32_t trusty_read_oem_ns_otp(uint32_t byte_off, uint8_t *byte_buf, uint32_t

byte_len)

uint32_t trusty_write_oem_ns_otp(uint32_t byte_off, uint8_t *byte_buf, uint32_t

byte_len)

uint32_t trusty_write_ta_encryption_key(uint32_t *buf, uint32_t length)

af://n2574
af://n2586
af://n2598

Function

U-Boot writes TA encryption key.

Parameters

[in] buf - Key data
[in] length - Length of key data

5.17.3.17 trusty_ta_encryption_key_is_written

Function

U-Boot checks if the TA encryption key has been written.

Parameter

[out] value - 0 not written, 1 written

5.17.3.18 trusty_write_oem_encrypt_data

Function

U-Boot writes private data for the anti copy board.

Parameters

[in] buf - Private data
[in] length - Length of private data

5.17.3.19 trusty_oem_encrypt_data_is_written

Function

U-Boot checks whether private data has been written.

Parameter

[out] value - 0 not written, 1 written

5.17.3.20 trusty_check_security_level_flag

Function

U-Boot sets the security levels of TEE.

uint32_t trusty_ta_encryption_key_is_written(uint8_t *value)

uint32_t trusty_write_oem_encrypt_data(uint32_t *buf, uint32_t length)

uint32_t trusty_oem_encrypt_data_is_written(uint8_t *value)

uint32_t trusty_check_security_level_flag(uint8_t flag)

af://n2608
af://n2616
af://n2626
af://n2634

Parameter

[in] flag - Security levels

5.17.3.21 trusty_write_oem_huk

Function

U-Boot writes OEM HUK.

Parameters

[in] buf - Data to be written
[in] length - Length of data

5.17.4 Shared Memory

When U-Boot communicates with Optee, the data should be put in shared memory. Users can request shared
memory through TEEC_AllocateSharedMemory() , but it is recommended not to exceed 1M, if it exceeds
1M, it is recommended to split the data for multiple passes, and call TEEC_ReleaseSharedMemory() to
release the shared memory after use.

5.17.5 Test Command

Purpose: To test the secure storage feature. the U-Boot command line:

This test case will cycle through the secure storage read and write functions, testing both rpmb and security
partition secure storage when the hardware is using emmc, and only security partition secure storage when the
hardware is using nand.

5.17.6 Common Misprints

No emmc or nand device was found. Check if the U-Boot is missing configuration or if the hardware is
damaged.

No security partition found. When no RPMB is available, you need to define the security partition in
parameter.txt.

This printout appears the first time a security partition is used for secure storage or if the security partition
data has been illegally tampered with.

uint32_t trusty_write_oem_huk(uint32_t *buf, uint32_t length)

=> mmc testsecurestorage

"TEEC: Could not find device"

"TEEC: Could not find security partition"

af://n2642
af://n2652
af://n2654
af://n2658

There is not enough space in the secure storage. Please check if the stored data is too large, or if a large
amount of data was previously stored but not deleted.

5.18 PCIe

5.18.1 Development Notes

Confirm at which stage of u-boot boot the PCIe is applied and configure the dts accordingly:

1. The NVME, as a boot device, needs to be initialized as early as possible, and all subsequent firmware is in
this NVME, so the PCIe can only be configured using the dts of the u-boot

2. Devices that are not used as boot devices, such as those that support network cards, are allowed to initialize
later, and since the u-boot framework supports the use of the kernel dtb, use the configuration in the kernel
dtb in the boot.img

3. In u-boot phase, PCIe RC only registers mem 32bits range, not applicable to mem 64bits-pref space

5.18.2 Framework Support

Framework code:

Driver code:

menuconfig configuration:

Driver configuration

For the currently supported platforms of the Rockchip PCIe driver, please check the compatible attribute in the
pcie_dw_rockchip.c file, and if you are in doubt about the driver selection, please refer to our corresponding sdk
config.

"TEEC: verify [%d] fail, cleanning"

"TEEC: Not enough space available in secure storage !"

./drivers/pci/*

./drivers/phy/*

drivers/pci/pcie_dw_rockchip.c

drivers/phy/phy-rockchip-snps-pcie3.c

drivers/phy/phy-rockchip-naneng-combphy.c

CONFIG_DM_REGULATOR_GPIO=y

CONFIG_DM_REGULATOR_FIXED=y

CONFIG_PCI=y

CONFIG_DM_PCI=y

CONFIG_DM_PCI_COMPAT=y

CONFIG_PCI_PNP=y

CONFIG_PCIE_DW_ROCKCHIP=y

CONFIG_PHY_ROCKCHIP_SNPS_PCIE3=y

CONFIG_PHY_ROCKCHIP_NANENG_COMBOPHY=y

af://n2672
af://n2673
af://n2682

5.18.3 DTS Configuration

Loading Program Selection Recommendations:

flash + PCIe NVMe dual storage solution: use PCIe before loading kernel dtb
Using PCIe support in AMP scenarios: using PCIe after loading Embedded dtb
Common practice: load the kernel dtb and then use PCIe.

Use PCIe before loading kernel dtb

It is recommended to refer to the kernel DTB node configuration to set up the uboot dtsi related nodes and add
the u-boot,dm-pre-reloc attribute:

phy power supply, can be left off if already enabled by default
vcc 3v3 power supply
phy nodes
controller node

Take the RK3588 PCIe3x4 as an example:

CONFIG_PHY=y

CONFIG_CMD_PCI=y

//Add NVMe support

CONFIG_NVME=y

CONFIG_CMD_NVME=y

// Add PCIe to USB support

CONFIG_USB_XHCI_PCI=y

//Add Embedded DTB support, the image size will be bigger after adding Embedded

DTB support.

CONFIG_EMBED_KERNEL_DTB_ALWAYS=y

CONFIG_SPL_FIT_IMAGE_KB=2560

diff --git a/arch/arm/dts/rk3588-u-boot.dtsi b/arch/arm/dts/rk3588-u-boot.dtsi

index 3fe8054aac..a8e2defbad 100644

--- a/arch/arm/dts/rk3588-u-boot.dtsi

+++ b/arch/arm/dts/rk3588-u-boot.dtsi

@@ -22,6 +22,28 @@

 compatible = "rockchip,rk3588-secure-otp";

 reg = <0x0 0xfe3a0000 0x0 0x4000>;

 };

+

+ vcc12v_dcin: vcc12v-dcin {

+ u-boot,dm-pre-reloc;

+ compatible = "regulator-fixed";

+ regulator-name = "vcc12v_dcin";

+ regulator-always-on;

+ regulator-boot-on;

+ regulator-min-microvolt = <12000000>;

+ regulator-max-microvolt = <12000000>;

+ };

+

+ vcc3v3_pcie30: vcc3v3-pcie30 {

+ u-boot,dm-pre-reloc;

+ compatible = "regulator-fixed";

+ regulator-name = "vcc3v3_pcie30";

+ regulator-min-microvolt = <3300000>;

af://n2693

Take RK3566 as an example:

+ regulator-max-microvolt = <3300000>;

+ enable-active-high;

+ gpio = <&gpio3 RK_PC3 GPIO_ACTIVE_HIGH>;

+ startup-delay-us = <5000>;

+ vin-supply = <&vcc12v_dcin>;

+ };

 };

 &firmware {

@@ -117,6 +139,19 @@

 status = "okay";

 };

+&pcie30phy {

+ u-boot,dm-pre-reloc;

+ rockchip,pcie30-phymode = <PHY_MODE_PCIE_AGGREGATION>;

+ status = "okay";

+};

+

+&pcie3x4 {

+ u-boot,dm-pre-reloc;

+ reset-gpios = <&gpio4 RK_PB6 GPIO_ACTIVE_HIGH>;

+ vpcie3v3-supply = <&vcc3v3_pcie30>;

+ status = "okay";

+};

+

 &uart2 {

 u-boot,dm-spl;

 status = "okay";

From b58a47956bbd03de0fcef572fa06cdeea974e2a9 Mon Sep 17 00:00:00 2001

From: Jon Lin <jon.lin@rock-chips.com>

Date: Thu, 9 Mar 2023 15:29:37 +0800

Subject: [PATCH] TEST: uboot: rk3566_evb2_v11: nvme

Change-Id: I87b3786a433691f3c385460fa8636291bce8ed9a

Signed-off-by: Jon Lin <jon.lin@rock-chips.com>

 arch/arm/dts/rk3568-u-boot.dtsi | 43 +++++++++++++++++++++++++++++++++

 configs/rk3568_defconfig | 13 ++++++++++

 2 files changed, 56 insertions(+)

diff --git a/arch/arm/dts/rk3568-u-boot.dtsi b/arch/arm/dts/rk3568-u-boot.dtsi

index a0678e35db..1ab8ea4436 100644

--- a/arch/arm/dts/rk3568-u-boot.dtsi

+++ b/arch/arm/dts/rk3568-u-boot.dtsi

@@ -26,6 +26,27 @@

 cru_rst_addr = <0xfdd20470>;

 u-boot,dm-spl;

 };

+

+ dc_12v: dc-12v {

+ compatible = "regulator-fixed";

+ regulator-name = "dc_12v";

+ regulator-always-on;

Using PCIe after loading Embedded dtb

The u-boot project supports the Embedded dtb scheme, which avoids the impact from kernel dtb changes,
including product schemes without kernel support. Usually, the Embedded dtb source is the kernel standard dtb
file, and the main steps are as follows:

Compile kernel firmware, generate target dtb file
U-Boot Enabling Embedded dtb Configuration

+ regulator-boot-on;

+ regulator-min-microvolt = <12000000>;

+ regulator-max-microvolt = <12000000>;

+ };

+

+ vcc3v3_pcie: gpio-regulator {

+ u-boot,dm-pre-reloc;

+ compatible = "regulator-fixed";

+ regulator-name = "vcc3v3_pcie";

+ regulator-min-microvolt = <3300000>;

+ regulator-max-microvolt = <3300000>;

+ enable-active-high;

+ gpio = <&gpio0 RK_PC2 GPIO_ACTIVE_HIGH>;

+ startup-delay-us = <5000>;

+ vin-supply = <&dc_12v>;

+ };

 };

 &psci {

@@ -386,6 +407,28 @@

 status = "okay";

 };

+&pipegrf {

+ u-boot,dm-pre-reloc;

+ status = "okay";

+};

+

+&pipe_phy_grf2 {

+ u-boot,dm-pre-reloc;

+ status = "okay";

+};

+

+&combphy2_psq {

+ u-boot,dm-pre-reloc;

+ status = "okay";

+};

+

+&pcie2x1 {

+ u-boot,dm-pre-reloc;

+ reset-gpios = <&gpio1 RK_PB2 GPIO_ACTIVE_HIGH>;

+ vpcie3v3-supply = <&vcc3v3_pcie>;

+ status = "okay";

+};

+

 &pinctrl {

 u-boot,dm-pre-reloc;

 status = "okay";

Compile and generate u-boot image

Recommendation:

For some AMP scenarios, where there is no PCIe early init requirement and no kernel, and in order to
complete PCIe enumeration before AMP is loaded, the following patch can be used to enumerate PCIe
during the boot process

Using PCIe after loading the kernel dtb

You can consider reusing the kernel DTB directly by placing the relevant call in the “RK u-boot using kernel
DTB phase”, please refer to the Kernel PCIe Configuration for related explaination.

5.18.4 Usage Example

Common Command:

5.18.4.1 PCIe CMD

CONFIG_EMBED_KERNEL_DTB=y

CONFIG_EMBED_KERNEL_DTB_ALWAYS=y

CONFIG_EMBED_KERNEL_DTB_PATH=”./dts/rkTarget Chip-Target Device.dtb“ # for

example, CONFIG_EMBED_KERNEL_DTB_PATH="dts/rk3588-evb1.dtb"

diff --git a/arch/arm/mach-rockchip/board.c b/arch/arm/mach-rockchip/board.c

index 979598ff7b..87d131e118 100644

--- a/arch/arm/mach-rockchip/board.c

+++ b/arch/arm/mach-rockchip/board.c

@@ -537,6 +537,11 @@ int board_init(void)

 io_domain_init();

 #endif

 set_armclk_rate();

+

+#ifdef CONFIG_PCI

+ pci_init();

+#endif

+

 #ifdef CONFIG_DM_DVFS

 dvfs_init(true);

 #endif

Chapter-5 PCI enumeration, where CFG maps to memory address

0x00000000f0000000

=> pci enum

pcie@fe150000: PCIe Linking... LTSSM is 0x1

pcie@fe150000: PCIe Linking... LTSSM is 0x6

pcie@fe150000: PCIe Linking... LTSSM is 0x4

pcie@fe150000: PCIe Linking... LTSSM is 0x210023

pcie@fe150000: PCIe Link up, LTSSM is 0x230011

pcie@fe150000: PCIE-0: Link up (Gen3-x2, Bus0)

pcie@fe150000: invalid flags type!

pcie@fe150000: Config space: [0x00000000f0000000 - 0x00000000f0100000, size

0x100000]

af://n2735
af://n2737

Chapter-5 Scanning all devices

=> pci

BusDevFun VendorId DeviceId Device Class Sub-Class

00.00.00 0x1d87 0x3588 Bridge device 0x04

01.00.00 0x144d 0xa809 Mass storage controller 0x08

Chapter-5 Display bus 01 device details

=> pci 01 long

Scanning PCI devices on bus 1

Found PCI device 01.00.00:

 vendor ID = 0x144d

 device ID = 0xa809

 command register ID = 0x0006

 status register = 0x0010

 revision ID = 0x00

 class code = 0x01 (Mass storage controller)

 sub class code = 0x08

 programming interface = 0x02

 cache line = 0x08

 latency time = 0x00

 header type = 0x00

 BIST = 0x00

 base address 0 = 0xf0300004

 base address 1 = 0x00000000

 base address 2 = 0x00000000

 base address 3 = 0x00000000

 base address 4 = 0x00000000

 base address 5 = 0x00000000

 cardBus CIS pointer = 0x00000000

 sub system vendor ID = 0x144d

 sub system ID = 0xa801

 expansion ROM base address = 0x00000000

 interrupt line = 0xff

 interrupt pin = 0x01

 min Grant = 0x00

 max Latency = 0x00

Chapter-5 display bdf 01.00.00 device bar mapping address, sample code shows

bar0 mapping memory address 0xf0300000, size 0x4000.

=> pci bar 01.00.00

ID Base Size Width Type

--

 0 0x00000000f0300000 0x0000000000004000 64 MEM

Chapter-5 Read bdf 01.00.00 device CFG space information

=> pci d.w 01.00.00 0

00000000: 144d a809 0006 0010 0200 0108 0008 0000

00000010: 0004 f030 0000 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 0000 0000 144d a801

00000030: 0000 0000 0040 0000 0000 0000 01ff 0000

Chapter-5 AER function, used to read the AER register information of the

specified device, with the output format consistent with that of the Linux lspci

tool.

=> pci aer 01.00.0

5.18.4.2 NVMe

 AER Capability found at offset 0x40

 UESta: DLP-- SDES-- TLP-- FCP-- CmpltTO-- CmpltAbrt-- UnxCmplt-- RxOF--

MalfTLP-- ECRC-- UnsupReq-- ACSViol--

 UEMsk: DLP-- SDES-- TLP-- FCP-- CmpltTO-- CmpltAbrt-- UnxCmplt-- RxOF--

MalfTLP-- ECRC-- UnsupReq-- ACSViol--

 UESvrt: DLP+ SDES- TLP+ FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP-

ECRC- UnsupReq- ACSViol-

 CESta: RxErr-- BadTLP-- BadDLLP-- Rollover-- Timeout-- NonFatalErr--

 CEMsk: RxErr-- BadTLP-- BadDLLP-- Rollover-- Timeout-- NonFatalErr--

 AERCap: First Error Pointer: 00, GenCap- CGenEn- ChkCap- ChkEn-

Chapter-5 The retrain link function is used for link re-establishment.

=> pci x 01.00.0

 Retrain triggered for device 0001:0000

 Link Status for device 0001:0000: 0x1022

 Speed: Gen3

 Width: x2

 Link Up: Yes

Chapter-5 The FLR (Function Level Reset) function is used to reset peripheral

functions.

=> pci flr 01.00.0

 FLR completed and state restored for device 01:00.0

Chapter-5 Initiate nvme scan

=> nvme scan

Chapter-5 List nvme equipment details

=> nvme details

 Blk device 0: Optional Admin Command Support:

 Namespace Management/Attachment: no

 Firmware Commit/Image download: yes

 Format NVM: yes

 Security Send/Receive: no

 Blk device 0: Optional NVM Command Support:

 Reservation: yes

 Save/Select field in the Set/Get features: yes

 Write Zeroes: yes

 Dataset Management: yes

 Write Uncorrectable: yes

 Blk device 0: Format NVM Attributes:

 Support Cryptographic Erase: No

 Support erase a particular namespace: Yes

 Support format a particular namespace: Yes

 Blk device 0: LBA Format Support:

 Blk device 0: End-to-End DataProtect Capabilities:

 As last eight bytes: No

 As first eight bytes: No

 Support Type3: No

 Support Type2: No

 Support Type1: No

 Blk device 0: Metadata capabilities:

 As part of a separate buffer: No

af://n2739

 As part of an extended data LBA: No

Chapter-5 Seeing a 256GB NVMe, if you cannot see the capacity, you need to

unplug the device to make sure it's completely powered down and start over.

=> nvme info

 Device 0: Vendor: 0x144d Rev: EXD7201Q Prod: S444NA0M384608

 Type: Hard Disk

 Capacity: 244198.3 MB = 238.4 GB (500118192 x 512)

Chapter-5 Select the nvme device with ID 0

=> nvme device 0

Device 0: Vendor: 0x144d Rev: EXD7201Q Prod: S444NA0M384608

 Type: Hard Disk

 Capacity: 244198.3 MB = 238.4 GB (500118192 x 512)

... is now current device

Chapter-5 Set 0x40000000 memory to bit 0x55aa55aa

=> md.l 0x40000000 1

 40000000: d08ec033 3...

=> mw.l 0x40000000 0x55aa55aa

=> md.l 0x40000000 1

 40000000: 55aa55aa .U.U

Chapter-5 Take 1 block of data starting at 0x40000000 memory and write it to

the NVME LBA 0 address

=> nvme write 0x40000000 0x0 0x1

 nvme write: device 0 block # 0, count 1 ... 1 blocks written: OK

Chapter-5 Check the 0x44000000 memory to confirm the raw data

=> md.l 0x44000000 1

 44000000: ffffffff

Chapter-5 Read 1 block of data from NVMe's LBA 0 address and write to memory

0x44000000

=> nvme read 0x44000000 0x0 0x1

 nvme read: device 0 block # 0, count 1 ... 1 blocks read: OK

Chapter-5 Confirm that 0x44000000 memory data is read back from NVMe

=> md.l 0x44000000 1

 44000000: 55aa55aa

Chapter-5 Erase a block starting from address 0.

=> nvme erase 0x0 0x1

 nvme erase: device 0 block # 0, count 1 ... 1 blocks erased: OK

Chapter-5 Read 1 block of data from the LBA (Logical Block Address) 0 of the

NVMe device and write it to the memory address 0x44000000.

=> nvme read 0x44000000 0x0 0x1

 nvme read: device 0 block # 0, count 1 ... 1 blocks read: OK

Chapter-5 Confirm that the data in the memory at address 0x44000000 is read

from the NVMe device.

=> md.l 0x44000000 0x200 #The first block on the NVMe device has been cleared.

 44000000: 00000000 00000000 00000000 00000000

 44000010: 00000000 00000000 00000000 00000000

5.18.4.3 RK3588 RC dma

 44000020: 00000000 00000000 00000000 00000000

 ...

Chapter-5 Use the write zero function to clear the data of one block starting

from address 0x100.

=> nvme write_zeroes 0x100 0x1

 nvme write_zeroes: device 0 block # 0x100, count 1 ... 1 blocks

write_zeroed: OK

=> pci

BusDevFun VendorId DeviceId Device Class Sub-Class

00.00.00 0x1d87 0x3588 Bridge device 0x04

01.00.00 0x1d87 0x356a ??? 0x00

=> pci 1 long

Scanning PCI devices on bus 1

Found PCI device 01.00.00:

 vendor ID = 0x1d87

 device ID = 0x356a

 command register ID = 0x0006

 status register = 0x0010

 revision ID = 0x01

 class code = 0x12 (???)

 sub class code = 0x00

 programming interface = 0x00

 cache line = 0x08

 latency time = 0x00

 header type = 0x00

 BIST = 0x00

 base address 0 = 0xf0400000 # CPU address mapped by BAR0.

Since RK PCIe uses CPU-BUS one-to-one mapping, the bus addr is the same value.

 base address 1 = 0x00000000

 base address 2 = 0x0400000c

 base address 3 = 0x00000000

 base address 4 = 0xf0800000

 base address 5 = 0x00000000

 cardBus CIS pointer = 0x00000000

 sub system vendor ID = 0x0000

 sub system ID = 0x0000

 expansion ROM base address = 0x00000000

 interrupt line = 0xff

 interrupt pin = 0x01

 min Grant = 0x00

 max Latency = 0x00

=>

Chapter-5 BAR CPU Access, PIO Access

md.l 0xf0400000 0x40

Chapter-5 DMA read

mw.l 0x3c000000 0xffffffff

dcache flush 0x3c000000 0x100 # flush

af://n2741

Notes:

The dcache flush/clean macro switch, CONFIG_CMD_CACHE, requires the following support patches to
be added

5.18.4.4 RK3568 RC dma

mw.l 0xf538002c 0x1

mw.l 0xf5380300 0x4000008

mw.l 0xf5380304 0x0

mw.l 0xf5380308 0x100

mw.l 0xf538030c 0xf0400000

mw.l 0xf5380310 0x0

mw.l 0xf5380314 0x3c000000

mw.l 0xf5380318 0x0

mw.l 0xf5380030 0x0

dcache invalidate 0x3c000000 0x100 # invalidate

md.l 0x3c000000

Chapter-5 DMA write

mw.l 0x3c000000 0xffffffff

dcache flush 0x3c000000 0x100 # flush

mw.l 0xf538000c 0x1

mw.l 0xf5380200 0x4000008

mw.l 0xf5380204 0x0

mw.l 0xf5380208 0x100

mw.l 0xf538020c 0x3c000000

mw.l 0xf5380210 0x0

mw.l 0xf5380214 0xf0400000

mw.l 0xf5380218 0x0

mw.l 0xf5380010 0x0

md.l 0x3c000000 0x40

commit b46a81a12dd4a1514a6522e33a1d16194f242d62

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Wed Sep 28 01:36:45 2022 +0000

 cmd: cache: Add flush/invalidate dcache range support

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

 Change-Id: Id0e0cd9019072e8c557ebd2987b439057cb4ae3b

=> pci

BusDevFun VendorId DeviceId Device Class Sub-Class

00.00.00 0x1d87 0x356a Bridge device 0x04

01.00.00 0x1d87 0x356a ??? 0x00

=> pci 1 long

Scanning PCI devices on bus 1

Found PCI device 01.00.00:

 vendor ID = 0x1d87

 device ID = 0x356a

 command register ID = 0x0006

 status register = 0x0010

af://n2748

 revision ID = 0x01

 class code = 0x12 (???)

 sub class code = 0x00

 programming interface = 0x00

 cache line = 0x08

 latency time = 0x00

 header type = 0x00

 BIST = 0x00

 base address 0 = 0xf0400000 # CPU address mapped by BAR0.

Since RK PCIe uses CPU-BUS one-to-one mapping, the bus addr is the same value.

 base address 1 = 0x00000000

 base address 2 = 0x0400000c

 base address 3 = 0x00000000

 base address 4 = 0xf0800000

 base address 5 = 0x00000000

 cardBus CIS pointer = 0x00000000

 sub system vendor ID = 0x0000

 sub system ID = 0x0000

 expansion ROM base address = 0x00000000

 interrupt line = 0xff

 interrupt pin = 0x01

 min Grant = 0x00

 max Latency = 0x00

=>

Chapter-5 BAR CPU access, PIO access

md.l 0xf0400000 0x40

Chapter-5 DMA read

mw.l 0x3c000000 0xffffffff

dcache flush 0x3c000000 0x100 # flush

mw.l 0xf638002c 0x1

mw.l 0xf6380300 0x4000008

mw.l 0xf6380304 0x0

mw.l 0xf6380308 0x100

mw.l 0xf638030c 0xf0400000

mw.l 0xf6380310 0x0

mw.l 0xf6380314 0x3c000000

mw.l 0xf6380318 0x0

mw.l 0xf6380030 0x0

dcache invalidate 0x3c000000 0x100 # invalidate

md.l 0x3c000000

Chapter-5 DMA write

mw.l 0x3c000000 0xffffffff

dcache flush 0x3c000000 0x100 # flush

mw.l 0xf638000c 0x1

mw.l 0xf6380200 0x4000008

mw.l 0xf6380204 0x0

mw.l 0xf6380208 0x100

mw.l 0xf638020c 0x3c000000

mw.l 0xf6380210 0x0

mw.l 0xf6380214 0xf0400000

mw.l 0xf6380218 0x0

mw.l 0xf6380010 0x0

md.l 0x3c000000 0x40

Notes:

The dcache flush/clean macro switch, CONFIG_CMD_CACHE, requires the following support patch to be
added:

5.18.5 Analysis of Common Problems

RK3568 Linux 5.10 uboot shutdown PCIE ASPM power saving

The default controller has ASPM support turned off, to confirm that the command mode under the PCIe3x2
uboot shell please refer to:

Where BITS[1:0] PCIE_CAP_ACTIVE_STATE_LINK_PM_CONTROL:

RC DMA access to FPGA limits

BAR access for FPGAs and most peripherals behaves differently:

Some devices support memory read/write TLP packets of different lengths
Some devices only support 4Bytes memory read/write TLP packets

So only 4Bytes memory read/write TLP is supported resulting in a

CPU access to BAR space is normal
RC DMA initiates requests that exceed the 4B address transfer length will bring up different errors, such as
ca abort

Other notes:

To catch this kind of problem, the PCIe protocol analyzer should use a TLP trigger, not a memory trigger,
otherwise there is no cpl to trigger after an error.
It is suspected that PCIe access to the bus is limited after the peripheral receives a tlp request that exceeds
4B length, resulting in a ca abort, but the specific requirements need to be analyzed with the assistance of

commit b46a81a12dd4a1514a6522e33a1d16194f242d62

Author: Joseph Chen <chenjh@rock-chips.com>

Date: Wed Sep 28 01:36:45 2022 +0000

 cmd: cache: Add flush/invalidate dcache range support

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

 Change-Id: Id0e0cd9019072e8c557ebd2987b439057cb4ae3b

pci display.l 20.00.00 0x80 1

Values:

0x0 (DISABLED): Disabled

0x1 (L0S_ENTRY_EN): L0s Entry Enabled

0x2 (L1_ENTRY_En): L1 Entry Enabled

0x3 (L0S_L1_ENTRY_EN): L0s and L1 Entry Enabled

Chapter-5 RK3568 DMA read ca abort info

=> md.l 0xf63800b8 1

f63800b8: 00000100

af://n2755

the peripheral's original manufacturer

5.19 Pinctrl

5.19.1 Framework Support

The pinctrl driver uses the pinctrl-uclass framework and standard interfaces.

Configuration:

Framework code:

Driver code:

5.19.2 Relevant Interface

The pinctrl framework will automatically set the “default” state for each driver when it probes, and users
generally do not need to call the pinctrl interface.

5.20 Pmic/Regulator

5.20.1 Framework Support

The PMIC/Regulator driver uses the pmic-uclass, regulator-uclass framework and standard interfaces.

PMIC support:

Regulator support:

Configuration:

CONFIG_PINCTRL_GENERIC

CONFIG_PINCTRL_ROCKCHIP

./drivers/pinctrl/pinctrl-uclass.c

./drivers/pinctrl/pinctrl-rockchip.c

int pinctrl_select_state(struct udevice *dev, const char *statename) // set

status

int pinctrl_get_gpio_mux(struct udevice *dev, int banknum, int index) // Get

Status

rk805/rk808/rk809/rk816/rk817/rk818

rk805/rk808/rk809/rk816/rk817/rk818/syr82x/tcs452x/fan53555/pwm/gpio/fixed

af://n2781
af://n2782
af://n2790
af://n2793
af://n2794

Framework Code:

Driver file:

5.20.2 Relevant Interface

5.20.3 Init Voltage

There are currently two ways to set the initialization voltage output for a particular regulator, provided that
regulator-boot-on is configured:

Configure regulator-min-microvolt and regulator-min-microvolt to the same value;
Configure regulator-init-microvolt = <...>

CONFIG_DM_PMIC

CONFIG_PMIC_CHILDREN

CONFIG_PMIC_RK8XX // Suitable for all current RK8XX series chips

CONFIG_DM_REGULATOR

CONFIG_REGULATOR_PWM

CONFIG_REGULATOR_RK8XX // Suitable for all current RK8XX series chips

CONFIG_REGULATOR_FAN53555

./drivers/power/pmic/pmic-uclass.c

./drivers/power/regulator/regulator-uclass.c

./drivers/power/pmic/rk8xx.c

./drivers/power/regulator/rk8xx.c

./drivers/power/regulator/fixed.c

./drivers/power/regulator/gpio-regulator.c

./drivers/power/regulator/pwm_regulator.c

./drivers/power/regulator/fan53555_regulator.c

// ger regulator. @platname: name specified by“regulator-name”, e.g: vdd_arm,

vdd_logic;

int regulator_get_by_platname(const char *platname, struct udevice **devp);

// Enable/Disable

int regulator_get_enable(struct udevice *dev);

int regulator_set_enable(struct udevice *dev, bool enable);

int regulator_set_suspend_enable(struct udevice *dev, bool enable);

int regulator_get_suspend_enable(struct udevice *dev);

// Configure/Get Voltage

int regulator_get_value(struct udevice *dev);

int regulator_set_value(struct udevice *dev, int uV);

int regulator_set_suspend_value(struct udevice *dev, int uV);

int regulator_get_suspend_value(struct udevice *dev);

af://n2806
af://n2808

5.20.4 Skip Initialization

Add regulator-loader-ignore if you want to skip the initialization of a certain way regulator.

5.21 Reset

5.21.1 Framework Support

The reset driver uses the reset-uclass.c framework and standard interfaces. reset on the RK platform is
essentially a soft reset of the CRU.

Configuration:

Framework code:

Driver code:

5.21.2 Relervant Interface

vdd_arm: DCDC_REG1 {

 regulator-name = "vdd_arm";

 regulator-boot-on; // Must be configured

 regulator-min-microvolt = <712500>;

 regulator-max-microvolt = <1450000>;

 regulator-init-microvolt = <1100000>; // Set initialization voltage to

1.1v

};

vdd_arm: DCDC_REG1 {

 regulator-name = "vdd_arm";

 regulator-loader-ignore;// Only valid for regulator initialization in U-Boot

phase, not for kernel.

};

CONFIG_DM_RESET

CONFIG_RESET_ROCKCHIP

./drivers/reset/reset-uclass.c

./drivers/reset/reset-rockchip.c

af://n2816
af://n2819
af://n2820
af://n2828

Example:

5.21.3 DTS Configuration

U-Boot enables reset function by default, users only need to specify the reset object to be operated in the
peripheral node:

Take gmac2phy as an example:

// Get reset handle

int reset_get_by_index(struct udevice *dev, int index, struct reset_ctl

*reset_ctl);

int reset_get_by_name(struct udevice *dev, const char *name,

 struct reset_ctl *reset_ctl);

// release reset

int reset_free(struct reset_ctl *reset_ctl);

// requesr reset

int reset_request(struct reset_ctl *reset_ctl);

// trigger reset, release reset

int reset_assert(struct reset_ctl *reset_ctl);

int reset_deassert(struct reset_ctl *reset_ctl);

struct reset_ctl reset_ctl;

ret = reset_get_by_name(dev, "mac-phy", &reset_ctl);

if (ret) {

 debug("reset_get_by_name() failed: %d\n", ret);

 return ret;

}

ret = reset_request(&reset_ctl);

if (ret)

 return ret;

ret = reset_assert(&reset_ctl);

if (ret)

 return ret;

......

ret = reset_deassert(&reset_ctl);

if (ret)

 return ret;

......

ret = reset_free(&reset_ctl);

if (ret)

 return ret;

// format:

reset-names = <name-string-list>

resets = <cru-phandle-list>

af://n2832

5.22 Rng

5.22.1 Framework Support

RNG is used to implement the hardware random number function.

Framework code:

Driver code:

Configuration:

5.22.2 Relevant Interface

5.22.3 DTS Configuration

Because RNG is one of the features of the Crypto hardware module, RNG nodes have V1/2 just like Crypto
nodes. there are two types of compatible fields for RNG nodes:

For complete node configuration, please refer to the rv1126.dtsi, rk3568.dtsi, rk3399.dtsi files.

5.23 Spi

gmac2phy: ethernet@ff550000 {

 compatible = "rockchip,rk3328-gmac";

 // specify reset attribute

 reset-names = "stmmaceth", "mac-phy";

 resets = <&cru SRST_GMAC2PHY_A>, <&cru SRST_MACPHY>;

};

./drivers/rng/rng-uclass.c

./drivers/rng/rockchip_rng.c

CONFIG_DM_RNG=y

CONFIG_RNG_ROCKCHIP=y

// @buffer: Save random number output

// @size: Random number length, Unit: byte

int dm_rng_read(struct udevice *dev, void *buffer, size_t size)

compatible = "rockchip,cryptov1-rng";

compatible = "rockchip,cryptov2-rng";

af://n2837
af://n2838
af://n2846
af://n2848
af://n2852

5.23.1 Framework Support

Framework code:

Driver code:

menuconfig :

5.23.2 Relevant Interface

./include/spi.h

5.23.3 DTS Configuration

5.23.4 Recall Example

 We recommend that you refer to drivers/power/power_spi.c.

For simple reference you can check this demo:

./drivers/spi/spi-uclass.c

./drivers/spi/rk_spi.c

CONFIG_ROCKCHIP_SPI=y

CONFIG_CMD_SPI=y

// Initialize the corresponding SPI bus

struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned

int max_hz, unsigned int mode);

// Get/Release Bus

int spi_claim_bus(struct spi_slave *slave);

void spi_release_bus(struct spi_slave *slave);

// Common Read/Write Interfaces

int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,

 void *din, unsigned long flags);

int spi_write_then_read(struct spi_slave *slave, const u8 *opcode,

 size_t n_opcode, const u8 *txbuf, u8 *rxbuf,

 size_t n_buf);

&spi0 {

 u-boot,dm-pre-reloc;

 status = "okay";

};

static u32 spi_bus_test(int bus, int cs)

af://n2853
af://n2860
af://n2863
af://n2865

Notes:

The spi peripheral supports specifying the rate via the spi-max-frequency attribute of the dts device child
node, as well as transmitting the setup rate during spi_get_bus_and_cs/spi_setup_slave

5.23.5 Test Command

Use the cmd_spi related commands:

{

 struct spi_slave *spi_slave;

 u32 tx_data, rx_data;

 int ret;

#ifdef CONFIG_DM_SPI

 struct udevice *dev;

 char name[30], *str;

 snprintf(name, sizeof(name), "generic_%d:%d", bus, cs);

 str = strdup(name);

 if (!str)

 return -ENOMEM;

 ret = spi_get_bus_and_cs(bus, cs, 50000000, SPI_MODE_0, "spi_generic_drv",

str, &dev, &spi_slave);

 if (ret)

 return ret;

#else

 spi_slave = spi_setup_slave(bus, cs, 50000000, SPI_MODE_0);

 if (!spi_slave) {

 /*

 * Invalid bus 1 (err=-19) means that spi1 is disabled in dts

 * Invalid chip select 1:0 (err=-19) means that there is no dev under

spi1 bus in dts

 * check it in uboot dtb or kernel dtb(if is enabled)

 *

 * btw, spi_get_bus_and_cs support no sub dev operation but

spi_setup_slave can't

 */

 return -ENODEV;

 }

#endif

 if (spi_claim_bus(spi_slave))

 return -ENODEV;

 tx_data = 0x12345678;

 ret = spi_xfer(spi_slave, 32, &tx_data, &rx_data, SPI_XFER_BEGIN |

SPI_XFER_END);

 spi_release_bus(spi_slave);

 pr_err("%s succuss\n", __func__);

 return ret;

}

af://n2873

5.23.6 Analysis of Common Problems

Q1: No signal?

A1: Please make sure the corresponding iomux and clock are configured properly.

Q2: RK3399 cmd_spi exception?

A2: The cmd stage uses kernel dtb by default, please make sure whether the corresponding spi is specified in
kernel rk3399.dtsi aliases.

Q3: Why SPI failed to call spi_setup_slave?

A3: SPI bus node has to go with the device before spi_setup_slave can work properly, but u-boot has a standard
dev with driver spi_generic_drv for the bus, the device name is generic_1:0, which shall be declared in the call
of spi_setup_slave.

Q4: How to confirm the frequency of spi in uboot stage?

Q4: Turn on the debug switch

Testing power with cmd/spi.c, key debug log description:

5.24 Storage

sspi 3:0.0 24 AAA # bus3:cs0:mode0 Transmission length is 24bits

Transmission data is “AAA”

diff --git a/drivers/spi/rk_spi.c b/drivers/spi/rk_spi.c

index 836b94a24ec..8aaa51b9e84 100644

--- a/drivers/spi/rk_spi.c

+++ b/drivers/spi/rk_spi.c

@@ -24,6 +24,8 @@

 DECLARE_GLOBAL_DATA_PTR;

+#undef _DEBUG

+#define _DEBUG 1

 /* Change to 1 to output registers at the start of each transaction */

 #define DEBUG_RK_SPI 0

=> sspi 0:0.0 24 AAA

rockchip_spi_ofdata_to_platdata: base=ff500000, max-frequency=50000000,

deactivate_delay=0 rsd=0

rockchip_spi_probe: probe

rockchip_spi_probe: rate = 200000000 # Controller Operating Clock

spi speed 50000000, div 4 # io clock, io clock is output from

the controller's operating clock in 4 divisions

rockchip_spi_xfer: dout=07fd640c, din=07fd63ec, len=3, flags=3

activate cs0

deactivate cs0

000000

af://n2876
af://n2888

Acronyms
Main
supported
particle types

Host Control Driver flash Framework
Registered
Device
Type

Main
supported
file
systems

rknand
solution

MLC TLC
Nand

drivers/rkand drivers/rkand
block
device

FAT, EXT,
SquashFS

rkflash
solution

SLC Nand,
SPI Nand

drivers/rkflash drivers/rkflash
block
device

FAT, EXT,
SquashFS

rkflash
solution (SPI
Nor support)

SPI Nor drivers/rkflash drivers/rkflash
block or
mtd device

SquashFS,
JFFS2

SLC Nand
open source
solution

SLC Nand drivers/mtd/nand/raw drivers/mtd/nand/raw mtd device UBI

SPI Nand
open source
solution

SPI Nand drivers/spi/rockchip_sfc.c drivers/mtd/nand/raw mtd device UBI

SPI Nor open
source
solution

SPI Nor drivers/spi/rockchip_sfc.c drivers/mtd/spi
mtd or mtd
block
device

SquashFS,
JFFS2

: The storage driver uses the standard storage framework, and the access interface is interfaced to the BLK layer
for file system support. Currently, the supported storage devices are: eMMC, Nand flash, SPI Nand flash, SPI
Nor flash, of which the flash related framework is as follows:

Notes:

1. The main difference between rkflash and open source solutions for Nand flash support is that rkflash
integrates rk ftl (Flash Transfer Layer) in the storage driver, while open source ftl partially relies on
the file system's own flash management, for example, the UBI file system supports bad block
management, wear leveling, etc., which is suitable for Nand flash file system characteristics. For
example, the UBI file system supports bad block management, wear leveling, and other file system
features suitable for Nand flash.

5.24.1 Framework Support

rknand

rknand is a storage driver designed for high-capacity Nand flash devices, which communicates with Nand flash
devices through Nandc host. Refer to “RKNandFlashSupportList” for the selection of applicable particles, and
the following particles are applicable:

SLC, MLC, TLC Nand flash

Configuration:

Driver file:

CONFIG_RKNAND

./drivers/rknand/

af://n2945

rkflash

rkflash is a storage driver designed for devices that use small capacity storage. Nand flash support is
accomplished through communication between the Nandc host and the Nand flash device, and SPI flash support
is accomplished through communication between the SFC host and the SPI flash devices, and the specific
selection of the applicable particles can be found in the “RK SpiNor and SLC Nand SupportList”. applicable to
the following particles

128MB, 256MB and 512MB SLC Nand flash
Partial SPI Nand flash
Partial SPI Nor flash particles

Configuration:

Driver file:

Notes:

1. SFC (serial flash controller) is a specialized module designed by Rockchip for easy support of spi flash
2. Since the rknand driver is not compatible with the ftl of the rkflash driver's Nand code, hence

CONFIG_RKNAND and CONFIG_RKNANDC_NAND cannot be configured at the same time.
CONFIG_RKNAND and CONFIG_RKSFC_NAND cannot be configured at the same time.

MMC & SD

MMC is multimedia card, such as eMMC; SD is a new generation of memory device based on semiconductor
flash memory. On the rockchip platform, they share a common dw_mmc controller (except rk3399, rk3399pro).

Configuration:

Driver file:

SLC Nand & SPI Nand & SPI Nor open-source program

Due to the continuous improvement of the open source community and the feasibility of the UBI file system, RK
has also improved the flash combined with more open source code programs, and the open source program
default pre loader for the SPL startup program, so most of the configurations are completed by combining with
the SPL related configuration.

Configuration:

CONFIG_RKFLASH

CONFIG_RKNANDC_NAND /* Small-capacity parallel port Nand flash */

CONFIG_RKSFC_NOR /* SPI Nor flash */

CONFIG_RKSFC_NAND /* SPI Nand flash */

./drivers/rkflash/

CONFIG_MMC_DW=y

CONFIG_MMC_DW_ROCKCHIP=y

CONFIG_CMD_MMC=y

./drivers/mmc/

Removing the rkflash/rknand macro configuration:

Driver file:

// MTD driver support

CONFIG_MTD=y

CONFIG_CMD_MTD_BLK=y

CONFIG_SPL_MTD_SUPPORT=y

CONFIG_MTD_BLK=y

CONFIG_MTD_DEVICE=y

// spi nand driver support

CONFIG_MTD_SPI_NAND=y

CONFIG_ROCKCHIP_SFC=y

CONFIG_SPL_SPI_FLASH_SUPPORT=y

CONFIG_SPL_SPI_SUPPORT=y

// nand driver support

CONFIG_NAND=y

CONFIG_CMD_NAND=y

CONFIG_NAND_ROCKCHIP=y /* NandC v6 can be cinfirmed basing on the register TRM

NANDC->NANDC_NANDC_VER,0x00000801 */

//CONFIG_NAND_ROCKCHIP_V9=y /* NandC v9 can be confirmed basing on the register

TRM NANDC->NANDC_NANDC_VER, 0x56393030, For example: the version for RK3326/PX30

*/

CONFIG_SPL_NAND_SUPPORT=y

CONFIG_SYS_NAND_U_BOOT_LOCATIONS=y

// The nand page size needs to be defined according to the real size, if you use

NAND with capacity greater than or equal to 512MB, you generally need to

configure it as 4096.

#define CONFIG_SYS_NAND_PAGE_SIZE 2048

// spi nor driver support

CONFIG_CMD_SF=y

CONFIG_CMD_SPI=y

CONFIG_SPI_FLASH=y

CONFIG_SF_DEFAULT_MODE=0x1

CONFIG_SF_DEFAULT_SPEED=50000000

CONFIG_SPI_FLASH_GIGADEVICE=y

CONFIG_SPI_FLASH_MACRONIX=y

CONFIG_SPI_FLASH_WINBOND=y

CONFIG_SPI_FLASH_MTD=y

CONFIG_ROCKCHIP_SFC=y

CONFIG_SPL_SPI_SUPPORT=y

CONFIG_SPL_MTD_SUPPORT=y

CONFIG_SPL_SPI_FLASH_SUPPORT=y

CONFIG_RKFLASH=n

CONFIG_RKNAND=n

./drivers/mtd/nand/raw //SLC Nand Master Driver and Protocol Layer

./drivers/mtd/nand/spi //SPI Nand Protocol Layer

./drivers/spi/rockchip_sfc.c //SPI Flash Master Driver

./drivers/mtd/spi //SPI Nor Protocol Layer

devtype if_type devnum storage type Remarks

mmc IF_TYPE_MMC 0 eMMC -

mmc IF_TYPE_MMC 1 SD card -

mtd IF_TYPE_MTD 0 Nand mtd open-source program

mtd IF_TYPE_MTD 1 SPI Nand mtd open-source program

mtd IF_TYPE_MTD 2 SPI Nor mtd open-source program

rknand IF_TYPE_RKNAND 0 Nand rkflash program

spinand IF_TYPE_SPINAND 0 SPI Nand rkflash program

spinor IF_TYPE_SPINOR 1 SPI Nor rkflash program

nvme IF_TYPE_NVME 0 SSD -

scsi IF_TYPE_SCSI 0 SATA -

5.24.2 Relevant Interface

The storage driver's access interfaces are all pegged to the BLK layer, so whatever storage is accessed is
accessed through the following interfaces

5.24.3 Boot Storage Type Differentiation

U-Boot's current boot storage type is differentiated in two ways:

Via the string corresponding to environment variables. devtype and devnum .
via the if_type and devnum member variables within the current struct blk_desc structure (handle).

5.24.4 DTS Configuration

eMMC configuration:

// Getting a Storage Handle

struct blk_desc *rockchip_get_bootdev(void)

// Access interface

unsigned long blk_dread(struct blk_desc *block_dev, lbaint_t start,

 lbaint_t blkcnt, void *buffer)

unsigned long blk_dwrite(struct blk_desc *block_dev, lbaint_t start,

 lbaint_t blkcnt, const void *buffer)

unsigned long blk_derase(struct blk_desc *block_dev, lbaint_t start,

 lbaint_t blkcnt)

af://n2993
af://n2996
af://n3070

Nandc configuration:

// rkxxxx.dtsi configuration

emmc: dwmmc@ff390000 {

 compatible = "rockchip,px30-dw-mshc", "rockchip,rk3288-dw-mshc";

 reg = <0x0 0xff390000 0x0 0x4000>; // Controller register base address

and length

 max-frequency = <150000000>; // eMMCThe eMMC normal mode clock is

50MHz, when configured as eMMC

 // HS200 mode, this max-frequency

is in effect

 clocks = <&cru HCLK_EMMC>, <&cru SCLK_EMMC>,

 <&cru SCLK_EMMC_DRV>, <&cru SCLK_EMMC_SAMPLE>; // Controller Clock

Number Corresponding to the controler

 clock-names = "biu", "ciu", "ciu-drv", "ciu-sample"; // Controller Clock

Name

 fifo-depth = <0x100>; // fifo depth, default

configuration

 interrupts = <GIC_SPI 53 IRQ_TYPE_LEVEL_HIGH>; // Interrupt

Configuration

 status = "disabled";

};

// rkxxxx-u-boot.dtsi

&emmc {

 u-boot,dm-pre-reloc;

 status = "okay";

}

// rkxxxx.dts

&emmc {

 bus-width = <8>; // Device Bus Bit Width

 cap-mmc-highspeed; // Identifies this card slot as

supporting highspeed mmc

 mmc-hs200-1_8v; // Support for HS200

 supports-emmc; // Identifies this slot as eMMC capable,

must be added or peripheral cannot be initialized

 disable-wp; // For no physical WP pins, you need to

configure

 non-removable; // This item indicates that the slot is a

non-removable device. This item is mandatory

 num-slots = <1>; // Marked as Slot No.

 status = "okay";

};

&nandc0 {

 u-boot,dm-pre-reloc;

 status = "okay";

 #address-cells = <1>;

 #size-cells = <0>;

 nand@0 {

 u-boot,dm-pre-reloc;

 reg = <0>;

 nand-ecc-mode = "hw_syndrome";

 nand-ecc-strength = <16>;

SFC configuration:

Notes:

1. Considering the software compatibility, only one line SPI flash transfer with spi-tx-bus-width = <1>
is supported under u-boot.

5.24.5 Dual Storage Expansion

Refer to the Rockchip_Developer_Guide_Dual_Storage_CN.pdf document for details

5.24.6 Analysis of Common Problems

Q1: How to adjust and confirm the clock frequency of the open source solution FSPI/SFC controller output?

A1: Set the value of the spi-max-frequency attribute for the device subnodes under the sfc node in rkxxxx-u-
boot.dtsi and turn off invalid subdevices, then turn on debug messages within the driver:

 nand-ecc-step-size = <1024>;

 };

}

&sfc {

 u-boot,dm-pre-reloc;

 status = "okay";

 spi_nand: flash@0 {

 u-boot,dm-spl;

 compatible = "spi-nand";

 reg = <0>;

 spi-tx-bus-width = <1>;

 spi-rx-bus-width = <4>;

 spi-max-frequency = <96000000>;

 };

 spi_nor: flash@1 {

 u-boot,dm-spl;

 compatible = "jedec,spi-nor";

 reg = <0>;

 spi-tx-bus-width = <1>;

 spi-rx-bus-width = <4>;

 spi-max-frequency = <96000000>;

 };

};

af://n3082
af://n3084

5.25 Thermal

5.25.1 Framework Support

Thermal module is used to get the temperature of the chip collected by tsadc, the default is CPU temperature.

Framework code:

Driver code:

Configuration:

5.25.2 Relevant Interface

5.25.3 DTS Configuration

The kernel's dts are generally fully configured and enabled by default.

5.26 Uart

diff --git a/drivers/spi/rockchip_sfc.c b/drivers/spi/rockchip_sfc.c

index 939b48e377c..62a425a29f4 100644

--- a/drivers/spi/rockchip_sfc.c

+++ b/drivers/spi/rockchip_sfc.c

@@ -790,7 +790,7 @@ static int rockchip_sfc_set_speed(struct udevice *bus, uint

speed)

 sfc->cur_speed = speed;

 sfc->cur_real_speed = clk_get_rate(&sfc->clk);

- dev_dbg(sfc->dev, "set_freq=%dHz real_freq=%dHz\n",

+ dev_err(sfc->dev, "set_freq=%dHz real_freq=%dHz\n",

 sfc->cur_speed, sfc->cur_real_speed);

 #else

 dev_dbg(sfc->dev, "sfc failed, CLK not support\n");

./drivers/thermal/thermal-uclass.c

./drivers/thermal/rockchip_thermal.c

CONFIG_DM_THERMAL=y

CONFIG_ROCKCHIP_THERMAL=y

// @temp: Save the acquired temperature

int thermal_get_temp(struct udevice *dev, int *temp)

af://n3088
af://n3089
af://n3097
af://n3099
af://n3101

serial uses the serial-uclass.c framework and standard interfaces, and is currently used mainly by the UART
debug.

Configuration:

Framework code:

Driver code:

5.26.1 Individual Replacement

The process for individual replacement of UART debug in U-Boot phase is as follows (take uart2 as an
example):

CONFIG_ROCKCHIP_PRELOADER_SERIAL disabled;
Configure uart iomux in board_debug_uart_init() (note: some platforms have m0, m1... modes to
configure).
Configure the uart clock in board_debug_uart_init() to ensure that the clock source is 24Mhz;
defconfig updates CONFIG_BAUDRATE ;
defconfig updates CONFIG_DEBUG_UART_BASE ;
Add 2 required attributes to the U-Boot uart node and enable them.

Specify the stdout-path in the U-Boot chosen node:

5.26.2 Global Replacement

// Enable configuration

CONFIG_DEBUG_UART

CONFIG_SYS_NS16550

// Parameter configuration

CONFIG_DEBUG_UART_BASE

CONFIG_DEBUG_UART_CLOCK

CONFIG_BAUDRATE

./drivers/serial/serial-uclass.c

./drivers/serial/ns16550.c

&uart2 {

 u-boot,dm-pre-reloc;

 clock-frequency = <24000000>;

 status = "okay";

};

chosen {

 stdout-path = &uart2;

};

af://n3109
af://n3129

Pre-loader serial is a mechanism to realize the sharing of UART debug configuration among the previous
firmware, including: ddr, miniloader, bl31, op-tee, U-Boot. Its principle: the UART debug is configured by the
earliest ddr bin and is passed down through the ATAGS parameter passing mechanism, and all levels of
firmware get the UART debug configuration and use it (excluding the kernel).

Users can realize the global replacement of UART debug by modifying the serial port configuration in the ddr
bin, processes are as follows:

DDR bin configuration

The rkbin repository provides tools for the user to configure different parameters, including serial port
replacement:

U-Boot configuration

1 enable configuration:

2 rkxx-u-boot.dtsi adds the attribute “u-boot,dm-pre-reloc” to the uart nodes to be used.;

3 aliases establish serial aliases, since U-Boot finds the target node and initializes it through aliases.

For example: . /arch/arm/dts/rk1808-u-boot.dtsi creates aliases for all uarts for convenience;

tools/ddrbin_tool

tools/ddrbin_param.txt

tools/ddrbin_tool_user_guide.txt

CONFIG_ROCKCHIP_PRELOADER_SERIAL // Already enabled by default

aliases {

 mmc0 = &emmc;

 mmc1 = &sdmmc;

// Alias must be created

 serial0 = &uart0;

 serial1 = &uart1;

 serial2 = &uart2;

 serial3 = &uart3;

 serial4 = &uart4;

 serial5 = &uart5;

 serial6 = &uart6;

 serial7 = &uart7;

};

.....

// Must add u-boot,dm-pre-reloc attribute

&uart0 {

 u-boot,dm-pre-reloc;

};

&uart1 {

 u-boot,dm-pre-reloc;

};

&uart2 {

 u-boot,dm-pre-reloc;

 clock-frequency = <24000000>;

 status = "okay";

5.26.3 Turn off Printing

5.26.4 Relevant Interface

5.27 USB

U-Boot USB mainly includes Devcie, Host, PHY and USB peripheral driver, which will be detailed in this
section with their framework configuration, board-level configuration and the use of related commands

5.27.1 Framework Support

Device

Device is based on Gadget framework (without DM_USB), generally configured as rockusb or fastboot mode
for firmware upgrade, firmware verification, etc. The rockusb protocol is based on the UMS protocol, and its
state machine is embedded in the UMS framework in the form of HOOK, which can be referenced in the
implementation of the rockusb driver.

Currently, there are two kinds of USB Device controllers, DWC2 and DWC3, usually a chip will only integrate
one of the OTG controllers, so you only need to enable one kind of controller related configurations in the
CONFIG, for which controller you need to configure please refer to the chip's TRM or Rockchip USB
development guide.

Configuration:

};

&uart3 {

 u-boot,dm-pre-reloc;

};

&uart4 {

 u-boot,dm-pre-reloc;

};

CONFIG_DISABLE_CONSOLE=y

// UART debug interface

void putc(const char c);

void puts(const char *s);

int printf(const char *fmt, ...);

void flushc(void);

// General UART interface for communication with peripherals

int serial_dev_getc(struct udevice *dev);

int serial_dev_tstc(struct udevice *dev);

void serial_dev_putc(struct udevice *dev, char ch);

void serial_dev_puts(struct udevice *dev, const char *str);

void serial_dev_setbrg(struct udevice *dev, int baudrate);

void serial_dev_clear(struct udevice *dev);

af://n3142
af://n3144
af://n3146
af://n3148

Framework code:

Driver code:

Host

Host controllers include OHCI, EHCI and xHCI, of which xHCI can support USB3 devices, but not all chips
have integrated xHCI controllers, the specific integration situation needs to be referred to the chip TRM or
Rockchip USB development guide. Host development is mainly about the adaptation of the controller to the
DTS.

Configuration:

CONFIG_USB=y

// gadget configuration

CONFIG_USB_GADGET=y

CONFIG_USB_GADGET_MANUFACTURER="Rockchip"

CONFIG_USB_GADGET_VENDOR_NUM=0x2207

CONFIG_USB_GADGET_PRODUCT_NUM=0x330a // Configured based on chip ID

CONFIG_USB_GADGET_VBUS_DRAW=2

CONFIG_USB_GADGET_DUALSPEED=y

// rockusb configuration

#define CONFIG_USB_FUNCTION_MASS_STORAGE // placed in

include/configs/rkxxx_common.h

CONFIG_USB_GADGET_DOWNLOAD=y

CONFIG_CMD_ROCKUSB=y

// DWC3 Controller Configuration

CONFIG_USB_DWC3=y

CONFIG_USB_DWC3_GADGET=y

// DWC2 Controller Configuration

CONFIG_USB_GADGET_DWC2_OTG=y

// gadget framework

drivers/usb/gadget/g_dnl.c

drivers/usb/gadget/g_dnl.c

drivers/usb/gadget/config.c

drivers/usb/gadget/epautoconf.c

drivers/usb/gadget/usbstring.c

drivers/usb/gadget/f_mass_storage.c

// rockusb

cmd/rockusb.c

drivers/usb/gadget/f_rockusb.c

// controller

drivers/usb/gadget/dwc2_udc_otg* // dwc2 OTG controller

drivers/usb/dwc3 // dwc3 OTG controller

CONFIG_USB=y

CONFIG_DM_USB=y

// xHCI

Framwork code:

PHY

U-Boot USB PHY mainly consists of USB2 and USB3 PHY drivers, using DM_USB configuration and is
compatible with the Linux kernel DTB. For specific PHY IP integration, you need to refer to the Chip TRM or
Rockchip USB PHY Development Guide.

Configuration:

CONFIG_USB_HOST=y

CONFIG_USB_XHCI_HCD=y

CONFIG_USB_XHCI_DWC3=y

CONFIG_USB_DWC3_GENERIC=y

// EHCI

CONFIG_USB_EHCI_HCD=y

CONFIG_USB_EHCI_GENERIC=y

// OHCI

#define CONFIG_USB_OHCI_NEW // in the include/configs/rkxxx_common.h

#define CONFIG_SYS_USB_OHCI_MAX_ROOT_PORTS 1

CONFIG_USB_OHCI_HCD=y

CONFIG_USB_OHCI_GENERIC=y

// Framwork code

cmd/usb.c

drivers/usb/host/usb-uclass.c

// EHCI

drivers/usb/host/ehci-generic.c

drivers/usb/host/ehci-hcd.c

// OHCI

drivers/usb/host/ohci-generic.c

drivers/usb/host/ohci-hcd.c

// xHCI

drivers/usb/host/xhci.c

drivers/usb/host/xhci-dwc3.c

drivers/usb/host/xhci-mem.c

drivers/usb/host/xhci-ring.c

CONFIG_PHY=y

// INNO USB2

CONFIG_PHY_ROCKCHIP_INNO_USB2=y

// INNO USB3

CONFIG_PHY_ROCKCHIP_INNO_USB3=y

// NANENG USB2

CONFIG_PHY_ROCKCHIP_NANENG_USB2=y

// NANENG COMBOPHY

CONFIG_PHY_ROCKCHIP_NANENG_COMBOPHY=y

// RK3399 USBDP PHY

CONFIG_PHY_ROCKCHIP_TYPEC=y

Framework code:

Driver code:

** Other Peripherals**

U-Boot USB peripheral support is primarily about USB HUBs, USB keyboards and UMS devices.

Configuration:

Framework code:

5.27.2 Board Configuration

Device

Since the USB Device does not use the DM_USB method, you need to configure the Properties of the
corresponding controller in the Board file, such as the address of the USB controller, the size of the TX FIFO,
and so on.

drivers/phy/phy-uclass.c

// INNO USB2

drivers/phy/phy-rockchip-inno-usb2.c

// INNO USB3

drivers/phy/phy-rockchip-inno-usb3.c

// NANENG USB2

drivers/phy/phy-rockchip-naneng-usb2.c

// NANENG COMBOPHY

drivers/phy/phy-rockchip-naneng-combphy.c

// RK3399 USBDP PHY

drivers/phy/phy-rockchip-typec.c

// USB Keyboard

CONFIG_USB_KEYBOARD=y

CONFIG_USB_KEYBOARD_FN_KEYS=y // Support F1-F12, INS, HOME and other shortcuts.

// USB storage device

CONFIG_USB_STORAGE=y

// Framework code

common/usb.c

drivers/usb/host/usb-uclass.c

// USB keyboard

drivers/input/usb_kbd.c

drivers/input/keyboard-uclass.c

// USB storage device

common/usb/usb_storage.c

// DWC3 Controller Configuration

// board/rockchip/evb_rk3399/evb_rk3399.c

af://n3178

USB keyboard

If you use USB keyboard as U-Boot standard input device, you need to add usbkbd to the stdin environment
variable, the reference code is as follows.

5.27.3 DTS Configuration

As mentioned earlier, USB Device does not use the DM_USB method, so it does not need the configuration of
the relevant DT node; USB Host and USB PHY drivers are compatible with the Linux kernel DTB, so you can
directly use the Linux kernel DTB, and if you want to configure the use of U-Boot DTB you can refer to the
implementation of the relevant node in the Linux kernel.

5.27.4 Related Commands

rockusb

#ifdef CONFIG_USB_DWC3

static struct dwc3_device dwc3_device_data = {

 .maximum_speed = USB_SPEED_HIGH,

 .base = 0xfe800000, // Modified according to different chip USB OTG

controller base address

 .dr_mode = USB_DR_MODE_PERIPHERAL,

 .index = 0,

 .dis_u2_susphy_quirk = 1,

 .usb2_phyif_utmi_width = 16,

};

int usb_gadget_handle_interrupts(void)

{

 dwc3_uboot_handle_interrupt(0);

 return 0;

}

int board_usb_init(int index, enum usb_init_type init)

{

 return dwc3_uboot_init(&dwc3_device_data);

}

#endif

// The DWC2 controller configuration is implemented in the rockchip generic

board.c file and generally does not need to be modified

// arch/arm/mach-rockchip/board.c

// Environment variable configuration is located in each board header file

// include/configs/evb_rk3568.h

#define ROCKCHIP_DEVICE_SETTINGS \

 "stdin=serial,usbkbd\0" \

af://n3185
af://n3187

There are three ways to enter the U-Boot loader upgrade mode as follows:

Accessed by reset + revovery keystrokes
Enter the U-Boot command line and execute the above command to turn on rockusb and enter upgrade
mode ;
After entering the system, execute “reboot loader” on the command line to soft reboot into upgrade mode.

usb

U-Boot USB does not support hot plugging and unplugging of devices, so it is necessary to execute USB
commands to enumerate and disconnect devices.

Parse the controller node and scan the devices conneted to all ports with the “usb start” or “usb reset”
command.
Disconnect all devices and deconstruct the controller device with the “usb stop” command.
View controller information and information about currently connected devices with the “usb info” and
“usb tree” commands.
The “usb storage” and its following commands are used for UMS function, please refer to the command
description for details.

fastboot

Refer to section CH04-System Module, chapter Fastboot for fastboot configuration and use.

5.28 Vendor Storage

Vendor Storage is used to store small data such as SN, MAC, etc. that does not require encryption. Data is stored
in a reserved partition of NVM (eMMC, NAND, etc.) with multiple backups, so that when updating data, the
data is kept with a high reliability and won't be lost.

Refer to the document “appnote rk vendor storage” for details.

rockusb - Use the rockusb Protocol

Usage:

rockusb <USB_controller> <devtype> <dev[:part]> e.g. rockusb 0 mmc 0

usb - USB sub-system

Usage:

usb start - start (scan) USB controller

usb reset - reset (rescan) USB controller

usb stop [f] - stop USB [f]=force stop

usb tree - show USB device tree

usb info [dev] - show available USB devices

usb test [dev] [port] [mode] - set USB 2.0 test mode

 (specify port 0 to indicate the device's upstream port)

 Available modes: J, K, S[E0_NAK], P[acket], F[orce_Enable]

usb storage - show details of USB storage devices

usb dev [dev] - show or set current USB storage device

usb part [dev] - print partition table of one or all USB storage devices

usb read addr blk# cnt - read `cnt' blocks starting at block `blk#'

 to memory address `addr'

usb write addr blk# cnt - write `cnt' blocks starting at block `blk#'

 from memory address `addr'

af://n3212

5.28.1 Principle Overview

The vendor block is divided into 4 partitions, vendor0, vendor1, vendor2, and vendor3, and each vendorX (X=0,
1, 2, 3) has a monotonically incrementing version field in its hdr to indicate the point of time when the vendorX
was updated. Each read operation reads only the newest vendorX (i.e., the largest version), while a write
operation updates the version and moves all existing and new information to the vendorX+1 partition. For
example, if you read from vendor2, modify it and then write it back, you will write to vendor3. This is just a
simple security measure.

5.28.2 Framework Support

The U-Boot framework does not support Vendor Storage functionality, Rockchip has implemented its own set of
Vendor Storage drivers.

configure:

driver file:

5.28.3 Relevant Interface

For the definition and use of ids, see appnote rk vendor storage.

5.28.4 Functionality Self-test

The Vendor Storage function can be self-tested by using the “rktest vendor” command from the U-Boot serial
command line.

5.29 Watchdog

5.29.1 Framework Support

The watchdog driver uses the wdt-uclass.c framework and standard interfaces..

Configure:

CONFIG_ROCKCHIP_VENDOR_PARTITION

./arch/arm/mach-rockchip/vendor.c

./arch/arm/include/asm/arch-rockchip/vendor.h

int vendor_storage_read(u16 id, void *pbuf, u16 size)

int vendor_storage_write(u16 id, void *pbuf, u16 size)

CONFIG_WDT

CONFIG_ROCKCHIP_WATCHDOG

af://n3215
af://n3217
af://n3223
af://n3226
af://n3228
af://n3229

Framework Code:

Driver code

5.29.2 Relevant Interface

Currently, U-Boot does not enable or use the wdt function in the default process, users can enable it according to
their own product requirements.

./drivers/watchdog/wdt-uclass.c

./drivers/watchdog/rockchip_wdt.c

// Set the timeout for feeding the dog and start wdt (@flags is 0 by default)

int wdt_start(struct udevice *dev, u64 timeout_ms, ulong flags);

// Close wdt

int wdt_stop(struct udevice *dev);

// feed the dog

int wdt_reset(struct udevice *dev);

// Ignore this please, no underlying driver implementation done at this time

int wdt_expire_now(struct udevice *dev, ulong flags)

af://n3237

6. Chapter-6 Advanced Principle

6.1 Kernel-DTB

6.1.1 Design Background

The native architecture of U-Boot requires that one board must correspond to one U-Boot dts, and the dtb
generated by U-Boot dts is packaged into U-Boot's own image. This results in N boards requiring N copies of
the U-Boot image on each SoC platform.

It is not difficult to find out that the main difference between different boards of a SoC platform is the
peripherals, and the core part of the SoC is the same. RK platform has added the kernel DTB mechanism in
order to realize that a SoC platform only needs one U-Boot image. The essence is to cut to the kernel DTB at an
earlier stage and initialize the peripherals with its configuration information.

So the RK platform can achieve compatibility with board differences such as display, pmic/regulator, pinctrl, clk,
etc. by supporting kernel DTB.

kernel DTB enablement relies on OF_LIVE (live device tree, short: live-dt)

6.1.2 Live Device Tree

Background and rationale:

After the introduction of the kernel DTB, there are two copies of the DTB in the U-Boot stage, where modules
such as Storage, Serial, Crypto are related to the U-Boot DTB and the rest of the modules are related to the
kernel DTB. Then in U-Boot stage, it may need to cross access to these two types of modules at different
moments, and at the same time, modules may need to access their own DTB node information.

So, these two types of modules belong to different DTBs, and gd->fdt_blob can only point to one of them
and it is not easy to switch between them, what should we do? Since the kernel dts will eventually be passed to
the kernel, you can't just overlay some nodes from the U-Boot dts to the kernel dts to make a single copy.

Live dt can solve this problem. the principle of live dt is: during the initialization phase, U-Boot scans the entire
DTB directly, converts all DTB nodes into struct device_node node list, and binds them to specific device-driver.
In the future, when the device-driver wants to access the DTB nodes, it can directly access its own device_node,
and does not need to access the original DTB again.

So, it is equivalent to that both U-Boot and kernel DTBs are bound to their respective device-driver groups, and
there is no need to directly access to the DTB files.

config USING_KERNEL_DTB

 bool "Using dtb from Kernel/resource for U-Boot"

 depends on RKIMG_BOOTLOADER && OF_LIVE

 default y

 help

 This enable support to read dtb from resource and use it for U-Boot,

 the uart and emmc will still using U-Boot dtb, but other devices like

 regulator/pmic, display, usb will use dts node from kernel.

af://n3243
af://n3244
af://n3245
af://n3251

This resolves the conflict caused by accessing two sets of DTBs.

More references:

fdt and live dt conversion:

The ofnode type (include/dm/ofnode.h) is an encapsulation format supported by both types of dt. device_node is
used to access dt nodes when using live dt, and offset is used to access dt nodes when using fdt. When you need
to support both types of drivers, please use the ofnode type.

ofnode structure:

Functions starting with “dev_”, “ofnode_” are functions that support both dt access methods;
Functions starting with “of_” are interfaces that only support live dt;
Functions starting with “fdtdec_”, “fdt_” are interfaces that only support fit;

6.1.3 Mechanisms to Achieve

The kernel dtb switch is implemented in . /arch/arm/mach-rockchip/board.c in
init_kernel_dtb() . At this point, U-Boot's dts have been scanned and the mmc/nand/nor storage drivers are
working properly.

At this point, read the kernel dtb from the firmware, then build live dt table and bind all device-drivers, and
finally update the gd->fdt_blob pointer to point to the kernel dtb.

6.1.4 U-Boot

After U-Boot is compiled it will generate two dtbs in the . /dts/ directory:

dt.dtb: Compiled from the dts specified by CONFIG_DEFAULT_DEVICE_TREE in defconfig;
dt-spl.dtb: get from dt.dtb by extracting all the nodes with u-boot,dm-pre-reloc properties, and
then remove the properties specified by CONFIG_OF_SPL_REMOVE_PROPS in defconfig. Generally,
only the nodes that must be relied on by drivers for serial ports, DDR, storage, etc. are included:
DMC, UART, MMC, NAND, GRF, CRU, and so on.

System uses dt.dtb when CONFIG_USING_KERNEL_DTB is not enabled; system uses dt-spl.dtb when
CONFIG_USING_KERNEL_DTB is enabled.

Both dt.dtb or dt-spl.dtb are named u-boot.dtb at the end of U-Boot compilation and then appended to the
end of u-boot.bin. Users can check the content of u-boot.dtb by fdtdump command.

./doc/driver-model/livetree.txt

 /*

 * @np: Pointer to device node, used for live tree

 * @of_offset: Pointer into flat device tree, used for flat tree. Note that

this

 * is not a really a pointer to a node: it is an offset value. See above.

 */

 typedef union ofnode_union {

 const struct device_node *np; /* will be used for future live tree */

 long of_offset;

 } ofnode;

af://n3271
af://n3274

6.2 Kernel Pass Parameter

This chapter describes how U-Boot passes parameters to the kernel.

6.2.1 Cmdline

U-Boot reads /chosen/bootargs from the kernel DTB, modifies/appends it with the new content and then
rewrites it back to the /chosen/bootargs node for the purpose of passing the cmdline.

6.2.2 Memory Capacity

U-Boot modifies the /memory node in the kernel DTB, and fill in the available memory capacity information.
The boot information is printed:

6.2.3 Other Ways

All other methods of passing parameters are essentially modifying the kernel DTB, as follows:

......

Chapter-6 Booting Android Image at 0x0027f800 ...

Kernel load addr 0x00280000 size 23387 KiB

RAM disk load addr 0x0a200000 size 782 KiB

Chapter-6 Flattened Device Tree blob at 08300000

 Booting using the fdt blob at 0x8300000

 XIP Kernel Image ... OK

 'reserved-memory' ramoops@110000: addr=110000 size=f0000

 Using Device Tree in place at 0000000008300000, end 0000000008314648

// Memory space available to the kernel

Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)

Adding bank: 0x0a200000 - 0x80000000 (size: 0x75e00000)

Total: 473.217 ms

Starting kernel ...

af://n3287
af://n3289
af://n3291
af://n3294

Nodes/attributes Operation Effects

/serial-number Create serial number

/memory Modify Kernel Visible Memory

/display-subsystem/route/route-edp/ Append
Show related parameters (edp for
example)

/chosen/linux,initrd-start Create ramdisk starting address

/chosen/linux,initrd-end Create ramdisk ending address

/bootargs Modify cmdline visible to kernel

mac-address or local-mac-address within the
GMAC node

Modify mac address

arch/arm/mach-rockchip/board.c:
board_fdt_fixup()

Modify board fdt fixup

6.3 AB System

6.3.1 AB Data Format

The data structure for A/B is located 2KB offset from the misc partition.

/* Magic for the A/B struct when serialized. */

#define AVB_AB_MAGIC "\0AB0"

#define AVB_AB_MAGIC_LEN 4

/* Versioning for the on-disk A/B metadata - keep in sync with avbtool. */

#define AVB_AB_MAJOR_VERSION 1

#define AVB_AB_MINOR_VERSION 0

/* Size of AvbABData struct. */

#define AVB_AB_DATA_SIZE 32

/* Maximum values for slot data */

#define AVB_AB_MAX_PRIORITY 15

#define AVB_AB_MAX_TRIES_REMAINING 7

typedef struct AvbABSlotData {

 /* Slot priority. Valid values range from 0 to AVB_AB_MAX_PRIORITY,

 * both inclusive with 1 being the lowest and AVB_AB_MAX_PRIORITY

 * being the highest. The special value 0 is used to indicate the

 * slot is unbootable.

 */

 uint8_t priority;

 /* Number of times left attempting to boot this slot ranging from 0

 * to AVB_AB_MAX_TRIES_REMAINING.

 */

 uint8_t tries_remaining;

af://n3333
af://n3334

For small capacity storage that does not have a misc partition but does have a vendor partition, consider storing
to the vendor.

Add lastboot to mark the last bootable firmware. It is mainly used in low power situation or factory production
test when the retry count is used up and the boot_ctrl service has not yet been called by the system. The
reference is as follows:

 /* Non-zero if this slot has booted successfully, 0 otherwise. */

 uint8_t successful_boot;

 /* Reserved for future use. */

 uint8_t reserved[1];

} AVB_ATTR_PACKED AvbABSlotData;

/* Struct used for recording A/B metadata.

 *

 * When serialized, data is stored in network byte-order.

 */

typedef struct AvbABData {

 /* Magic number used for identification - see AVB_AB_MAGIC. */

 uint8_t magic[AVB_AB_MAGIC_LEN];

 /* Version of on-disk struct - see AVB_AB_{MAJOR,MINOR}_VERSION. */

 uint8_t version_major;

 uint8_t version_minor;

 /* Padding to ensure |slots| field start eight bytes in. */

 uint8_t reserved1[2];

 /* Per-slot metadata. */

 AvbABSlotData slots[2];

 /* Reserved for future use. */

 uint8_t reserved2[12];

 /* CRC32 of all 28 bytes preceding this field. */

 uint32_t crc32;

} AVB_ATTR_PACKED AvbABData;

typedef struct AvbABData {

 /* Magic number used for identification - see AVB_AB_MAGIC. */

 uint8_t magic[AVB_AB_MAGIC_LEN];

 /* Version of on-disk struct - see AVB_AB_{MAJOR,MINOR}_VERSION. */

 uint8_t version_major;

 uint8_t version_minor;

 /* Padding to ensure |slots| field start eight bytes in. */

 uint8_t reserved1[2];

 /* Per-slot metadata. */

 AvbABSlotData slots[2];

 /* mark last boot slot */

 uint8_t last_boot;

 /* Reserved for future use. */

 uint8_t reserved2[11];

Parameter Meaning

priority Flag slot priority, 0 is not bootable, 15 is the top priority

tries_remaining Number of attempts to start, set to 7

successful_boot
This parameter is configured after the system boots up successfully, 1: the slot boots
up successfully, 0: the slot does not boot up successfully

is_update
Marks the upgrade status of the slot, 1: the slot is being upgraded, 0: the slot has not
been upgraded or has been upgraded successfully.

Also add the is_update flag bit to AvbABSlotData to flag the status of the system upgrade, changes as follows:

The table illustrates the meaning of each parameter:

AvbABData:

AvbABSlotData:

 /* CRC32 of all 28 bytes preceding this field. */

 uint32_t crc32;

} AVB_ATTR_PACKED AvbABData;

typedef struct AvbABSlotData {

 /* Slot priority. Valid values range from 0 to AVB_AB_MAX_PRIORITY,

 * both inclusive with 1 being the lowest and AVB_AB_MAX_PRIORITY

 * being the highest. The special value 0 is used to indicate the

 * slot is unbootable.

 */

 uint8_t priority;

 /* Number of times left attempting to boot this slot ranging from 0

 * to AVB_AB_MAX_TRIES_REMAINING.

 */

 uint8_t tries_remaining;

 /* Non-zero if this slot has booted successfully, 0 otherwise. */

 uint8_t successful_boot;

 /* Mark update state, mark 1 if the slot is in update state, 0 otherwise. */

 uint8_t is_update : 1;

 /* Reserved for future use. */

 uint8_t reserved : 7;

} AVB_ATTR_PACKED AvbABSlotData;

Parameter Meaning

magic Structure header information:\0AB0

version_major Major Version Information

version_minor Minor version information

slots slot boot information, see AvbABData

last_boot Last successful boot slot, 0: slot A last boot succeeded, 1: slot B last boot succeeded

crc32 data validation

6.3.2 AB Activation Mode

Currently, system bootctrl is designed with two control modes, and the bootloader supports both modes.

6.3.2.1 Successful-boot

After entering the system normally, boot_ctrl is based on androidboot.slot_suffix to set the current slot variable:

Upgrade the system with the boot_ctrl setting:

System upgradation complete, boot_ctrl set:

successful_boot = 1;

priority = 15;

tries_remaining = 0;

is_update = 0;

last_boot = 0 or 1; :refer to androidboot.slot_suffix

Upgraded slot settings:

successful_boot = 0;

priority = 14;

tries_remaining = 7;

is_update = 1;

lastboot = 0 or 1; :refer to androidboot.slot_suffix

Current Slot Settings:

successful_boot = 1;

priority = 15;

tries_remaining = 0;

is_update = 0;

last_boot = 0 or 1; :refer to androidboot.slot_suffix

af://n3383
af://n3385

6.3.2.2 Reset-retry

After entering the system normally, boot_ctrl is based on androidboot.slot_suffix to set the current slot variable:

Upgrade the system with the boot_ctrl setting:

Upgrade system complete, boot_ctrl set:

Upgraded slot settings:

successful_boot = 0;

priority = 15;

tries_remaining = 7;

is_update = 0;

lastboot = 0 or 1; :refer to androidboot.slot_suffix

Current Slot Settings:

successful_boot = 1;

priority = 14;

tries_remaining = 0;

is_update = 0;

last_boot = 0 or 1; :refer to androidboot.slot_suffix

successful_boot = 0;

priority = 15;

tries_remaining = 7;

is_update = 0;

last_boot = 0 or 1; :refer to androidboot.slot_suffix

Upgraded slot settings:

successful_boot = 0;

priority = 14;

tries_remaining = 7;

is_update = 1;

lastboot = 0 or 1; :refer to androidboot.slot_suffix

Current Slot Settings:

successful_boot = 0;

priority = 15;

tries_remaining = 7;

is_update = 0;

last_boot = 0 or 1; :refer to androidboot.slot_suffix

af://n3392

6.3.2.3 Mode Comparison

successful_boot mode

Advantage: As long as the system is booted normally, it will not revert back to an older firmware
version unless system bootctrl is configured
Disadvantage: After the device has been working for a long time, if it stores some particles
abnormally, it will cause the system to reboot all the time

reset retry mode

Advantage: always keep the retry mechanism, can cope with storage exception problems
Disadvantage: May falls back to an older firmware version

6.3.3 Boot Process

Upgraded slot settings:

successful_boot = 0;

priority = 15;

tries_remaining = 7;

is_update = 0;

lastboot = 0 or 1; :refer to androidboot.slot_suffix

Current Slot Settings:

successful_boot = 0;

priority = 14;

tries_remaining = 7;

is_update = 0;

last_boot = 0 or 1; :refer to androidboot.slot_suffix

af://n3399
af://n3415

AB successful_boot mode data flow:

AB reset retry mode data flow:

6.3.4 Upgrade and Exceptions

System Upgrade: Refer to the Rockchip Linux Upgrade Program Development Guide.
Recovery upgrades: The AB system does not consider supporting recovery upgrades.

6.3.5 Validation Methods

6.3.5.1 Successful-boot

1. Write only slot A, the system boots from slot A. Setup to boot from slot B, system boots from slot A. Test
completed, clear the misc partition.

2. Write slot A and slot B, boot the system, the current system is slot A. Set the system to boot from slot B,
reboot the system, the current system is slot B. Test completed, clear the misc partition.

3. Write slot A and slot B and quickly resetting the system 14 times, the retry counter runs out and the system
can still boot from the system specified by last_boot, i.e., it can boot from slot A normally. Test completed,
clear the misc partition

4. Write slot A and slot B, boot the system, current system is slot A. Set the system to boot from slot B,
reboot the system, current system is slot B. Set the system to boot from slot A, reboot the system, current
system is slot A. Test completed, clear the misc partition.

6.3.5.2 Reset-retry

1. Write only slot A, the system boots from slot A. Setup to boot from slot B, system boots from slot A. Test
completed, clear misc partition

2. Write slot A and slot B, boot the system, the current system is slot A. Set the system to boot from slot B,
reboot the system, the current system is slot B. Test completed, clear the misc partition.

3. Writing slot A and slot B and quickly resetting the system 14 times, the retry counter runs out and the
system can still boot from the system specified by last_boot, i.e., it can boot from slot A normally. Test
completed, clear the misc partition

4. Write slot A and slot B, where the boot.img of slot B is corrupted, boot the system, the current system is
slot A. Set the system to boot from slot B, reboot the system, the system will reboot 7 times, then boot the
system from slot A normally. Test completed, clear the misc partition

5. Write slot A and slot B, boot the system, current system is slot A. Set the system to boot from slot B,
reboot the system, current system is slot B. Set the system to boot from slot A, reboot the system, current
system is slot A. Test completed, clear the misc partition.

af://n3421
af://n3427
af://n3428
af://n3438

6.3.6 References

Rockchip-Secure-Boot2.0.md

Rockchip-Secure-Boot-Application-Note.md

Android Verified Boot 2.0

6.4 AVB Secure Boot

6.4.1 References

Rockchip-Secure-Boot-Application-Note.md

Android Verified Boot 2.0

Rockchip_Developer_Guide_Linux4.4_SecureBoot_CN.pdf

6.4.2 Terminology

AVB : Android Verified Boot

OTP & efuse : One Time Programmable

Product RootKey (PRK): AVB's root key is verified by the signature loader, uboot & trust's root key.

ProductIntermediate Key (PIK): Intermediate key, intermediary role

ProductSigning Key (PSK): The key used to sign the firmware

ProductUnlock Key (PUK): For unlocking devices

Separation of various keys and clear responsibilities can reduce the risk of key leakage..

6.4.3 Brief Introduction

This chapter describes the Rockchip security verification bootstrap process. The so-called security verification
bootstrap process is divided into security verification and integrity verification. Security verification is the
verification of the cryptographic public key, the process is to read the public key hash from the secure storage
(OTP & efuse), compare it with the calculated public key hash to see if it is the same, and then the public key is
used to decrypt the firmware hash. Integrity verification is to verify the integrity of the firmware, the process is
to load the firmware from the storage, and then calculate the firmware's hash and decrypted hash to see if it is the
same.

6.4.4 Encryption Example

The security verification initiation process of the device is similar to the data encryption verification process in
communication, and the example can accelerate the understanding of the avb verification process. If Alice now
transmits a digital message to Bob, in order to ensure the confidentiality, authenticity, integrity and non-
repudiation of the message transmission, it is necessary to digitally encrypt and sign the transmitted message,
and the transmission process is:

af://n3450
af://n3454
af://n3455
af://n3459
af://n3467
af://n3469

1.Alice prepares the digital information (plaintext) to be transmitted;

2.Alice performs a hash operation on a digital message to obtain a message digest;

3.Alice encrypts the message digest with her own private key to get Alice's digital signature and attaches it to the
digital message;

4.Alice randomly generates an encryption key and uses this cipher to encrypt the message to be sent to form a
ciphertext;

5.Alice uses Bob's public key to encrypt the randomly generated encryption key, and transmits the encrypted
DES key along with the ciphertext to Bob;

6.Bob receives the ciphertext and encrypted DES key from Alice, and first decrypts the encrypted DES key with
his own private key to get the encryption key randomly generated by Alice;

7.Bob then decrypts the received ciphertext with a random key to get the digital information in plaintext, and
then discards the random key;

8.Bob decrypts Alice's digital signature with Alice's public key to get the message digest;

9.Bob uses the same hashing algorithm to hash the received plaintext again to get a new message digest

10.Bob compares the summary of the received message with the summary of the newly generated message, and
if it agrees, the received message has not been modified.

The DES algorithm mentioned above can be replaced with other algorithms, such as AES encryption algorithm,
and the public-private key algorithm can be replaced with RSA algorithm, the process is as follows:

6.4.5 AVB

AVB is short for Android Verified Boot, a set of firmware verification process designed by Google, mainly used
to verify the boot system and other firmware. rockchip Secure Boot achieve a complete set of Secure Boot
verification program with reference to AVB and the verification method used in communication.

6.4.5.1 AVB Characteristics

safety check
integrity check
anti-rollback protection
persistent partition support
chained partitions support, can be consistent with boot, system signing private key, or oem can save private
key by itself, but must be signed by PRK.

6.4.5.2 Key+signature+certificate

af://n3483
af://n3485
af://n3497

permanent_attributes.bin gernerate:

Among them, product_id.bin needs to be defined by yourself, which occupies 16 bytes and can be used as the
product ID definition.

boot.img signature example:

Note: The partition size should be at least 64K larger than the original firmware, the size should be 4K
aligned, and not larger than the partition size defined in parameter.txt.

sytem.img signature example:

Generate vbmeta which includes metadata.bin, command example is as follows:

The resulting vbmeta.img is eventually written to the corresponding partition, e.g. the vbmeta partition.

Generate PrivateKey.pem and PublicKey.pem with SecureBootTool.

#!/bin/sh

touch temp.bin

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_prk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_psk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_pik.pem

python avbtool make_atx_certificate --output=pik_certificate.bin --

subject=temp.bin --subject_key=testkey_pik.pem --

subject_is_intermediate_authority --subject_key_version 42 --

authority_key=testkey_prk.pem

python avbtool make_atx_certificate --output=psk_certificate.bin --

subject=product_id.bin --subject_key=testkey_psk.pem --subject_key_version 42 --

authority_key=testkey_pik.pem

python avbtool make_atx_metadata --output=metadata.bin --

intermediate_key_certificate=pik_certificate.bin --

product_key_certificate=psk_certificate.bin

python avbtool make_atx_permanent_attributes --output=permanent_attributes.bin -

-product_id=product_id.bin --root_authority_key=testkey_prk.pem

avbtool add_hash_footer --image boot.img --partition_size 33554432 --

partition_name boot --key testkey_psk.pem --algorithm SHA256_RSA4096

avbtool add_hashtree_footer --partition_size 536870912 --partition_name system -

-image system.img --algorithm SHA256_RSA4096 --key testkey_psk.pem

python avbtool make_vbmeta_image --public_key_metadata metadata.bin --

include_descriptors_from_image boot.img --include_descriptors_from_image

system.img --generate_dm_verity_cmdline_from_hashtree system.img --algorithm

SHA256_RSA4096 --key testkey_psk.pem --output vbmeta.img

Sign permanent_attributes.bin:

permanent_attributes.bin is the secure authentication data for the whole system, it needs to write its hash to efuse
or OTP, or its data is securely authenticated by the previous level (pre-load). Since there is insufficient efuse
made by rockchip platform, the authentication of permanent_attributes.bin is authenticated by the public key of
the preload plus the certificate of permanent_attributes.bin. For platforms with OTP with enough secure data
space, the hash of permanent_attributes.bin will be written directly to the OTP.

efuse and OTP support by platform:Please refer to the Driver Module section.

efuse platform pub_key download:

OTP platform pub_key download:

The entire signature process:

openssl dgst -sha256 -out permanent_attributes_cer.bin -sign PrivateKey.pem

permanent_attributes.bin

fastboot stage permanent_attributes.bin

fastboot oem fuse at-perm-attr

fastboot stage permanent_attributes_cer.bin

fastboot oem fuse at-rsa-perm-attr

fastboot stage permanent_attributes.bin

fastboot oem fuse at-perm-attr

6.4.5.3 AVB Lock

How to enter fastboot? please see the fastboot command support section.

6.4.5.4 AVB Unlock

Currently Rockchip uses strict security checksums, which need to be added to the corresponding defconfig.

Otherwise you can just enter fastboot oem at-unlock-vboot to unlock the device, and boot vbmeta.img
verification, and the device will be booted successfully even boot.img fails.

First, a PUK needs to be generated:

fastboot oem at-lock-vboot

CONFIG_RK_AVB_LIBAVB_ENABLE_ATH_UNLOCK=y

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_puk.pem

af://n3522
af://n3525

unlock_credential.bin is the certificate that needs to be downloaded to the device to be unlocked, and its
generation process is as follows:

Get unlock_credential.bin from the device, use the avb-challenge-verify.py script to get unlock_credential.bin,
execute the following command to get unlock_credential.bin:

Eventually you can download the certificate to the device and unlock the device with the fastboot command as
follows:

Final OTP device unlocking process:

python avbtool make_atx_certificate --output=puk_certificate.bin --

subject=product_id.bin --subject_key=testkey_puk.pem --

usage=com.google.android.things.vboot.unlock --subject_key_version 42 --

authority_key=testkey_pik.pem

python avbtool make_atx_unlock_credential --output=unlock_credential.bin --

intermediate_key_certificate=pik_certificate.bin --

unlock_key_certificate=puk_certificate.bin --challenge=unlock_challenge.bin --

unlock_key=testkey_puk.pem

fastboot stage unlock_credential.bin

fastboot oem at-unlock-vboot

Final efuse device unlocking process:

The final operating procedure is as follows:

1. The device enters fastboot mode, and on the computer side, enter

Get the data with version, Product Id and 16 bytes random number, take out the random number as
unlock_challenge.bin.

1. Use avbtool to generate unlock_credential.bin, refer to make_unlock.sh.
2. Input the following from PC

Note: At this point, the device is always in fastboot mode for the first time, and cannot be powered off, shut
down, or rebooted during this period. Because after step 1, the device stores the generated random number, if
you power off or reboot, the random number will be lost, and the subsequent verification of challenge signature
will fail because of the random number mismatch.

If enable:

fastboot oem at-get-vboot-unlock-challenge

fastboot get_staged raw_unlock_challenge.bin

fastboot stage unlock_credential.bin

fastboot oem at-unlock-vboot

It will use the CPUID as the challenge number, and the CPUID is matched with the machine, so the data will not
be lost because of the shutdown, and the generated unlock_credential.bin can be reused. It saves the steps of
generating unlock_challenge.bin and making unlock_credential.bin repeatedly. The steps to unlock again are
changed to:

1. The device enters the unlocked state and begins to unlock.

make_unlock.sh refer to

avb-challenge-verify.py source code

CONFIG_MISC=y

CONFIG_ROCKCHIP_EFUSE=y

CONFIG_ROCKCHIP_OTP=y

fastboot oem at-get-vboot-unlock-challenge

fastboot stage unlock_credential.bin

fastboot oem at-unlock-vboot

#!/bin/sh

python avb-challenge-verify.py raw_unlock_challenge.bin product_id.bin

python avbtool make_unlock_credential --output=unlock_credential.bin --

intermediate_key_certificate=pik_certificate.bin --

unlock_key_certificate=puk_certificate.bin --challenge=unlock_challenge.bin --

unlock_key=testkey_puk.pem

#/user/bin/env python

"This is a test module for getting unlock_challenge.bin"

import sys

import os

from hashlib import sha256

def challenge_verify():

 if (len(sys.argv) != 3) :

 print "Usage: rkpublickey.py [challenge_file] [product_id_file]"

 return

 if ((sys.argv[1] == "-h") or (sys.argv[1] == "--h")):

 print "Usage: rkpublickey.py [challenge_file] [product_id_file]"

 return

 try:

 challenge_file = open(sys.argv[1], 'rb')

 product_id_file = open(sys.argv[2], 'rb')

 challenge_random_file = open('unlock_challenge.bin', 'wb')

 challenge_data = challenge_file.read(52)

 product_id_data = product_id_file.read(16)

 product_id_hash = sha256(product_id_data).digest()

 print("The challege version is %d" %ord(challenge_data[0]))

 if (product_id_hash != challenge_data[4:36]) :

 print("Product id verify error!")

 return

 challenge_random_file.write(challenge_data[36:52])

 print("Success!")

 finally:

 if challenge_file:

4.5.5 Enable U-boot

Enabling avb requires trust support, which needs to be configured by U-Boot in the defconfig file:

CONFIG_OPTEE_V1: suitable for platforms with 312x,322x,3288,3228H,3368,3399.
CONFIG_OPTEE_V2: suitable for platforms with 3326,3308.
CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION: This macro is turned on when rpmb for emmc is
not available; it is not turned on by default.

The enablement of avb needs to be configured in the defconfig file:

6.4.5.5 Kernel Configuration

The checksums for system, vendor, oem, etc. are loaded by the kernel's dm-verify module, so you need to enable
this module.

To enable AVB, you need to configure the parameter avb on the kernel dts as follows:

 challenge_file.close()

 if product_id_file:

 product_id_file.close()

 if challenge_random_file:

 challenge_random_file.close()

if __name__ == '__main__':

 challenge_verify()

CONFIG_OPTEE_CLIENT=y

CONFIG_OPTEE_V1=y

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y // Security data is stored in the

security partition

CONFIG_AVB_LIBAVB=y

CONFIG_AVB_LIBAVB_AB=y

CONFIG_AVB_LIBAVB_ATX=y

CONFIG_AVB_LIBAVB_USER=y

CONFIG_RK_AVB_LIBAVB_USER=y

// The above options are mandatory, the following options support AVB and A/B

features, the two features can be used separately.

CONFIG_ANDROID_AB=y //This supports A/B

CONFIG_ANDROID_AVB=y //This supports A/B

// The following macros are for efuse-only platforms

CONFIG_ROCKCHIP_PRELOADER_PUB_KEY=y

// The following macros need to be turned on for strict unlock checksums

CONFIG_RK_AVB_LIBAVB_ENABLE_ATH_UNLOCK=y

// Enable security check

CONFIG_AVB_VBMETA_PUBLIC_KEY_VALIDATE=y

// If you need the cpuid as a challenge number, enable the following macro

CONFIG_MISC=y

CONFIG_ROCKCHIP_EFUSE=y

CONFIG_ROCKCHIP_OTP=y

&firmware_android {

 compatible = "android,firmware";

 boot_devices = "fe330000.sdhci";

af://n3571

To enable the A/B system, you need to configure the slotselect parameter as follows:

6.4.5.6 Android SDK

The following describes some of the configuration instructions on the Android SDK.

AVB Enable

Enable BOARD_AVB_ENABLE

A/B system

There are three main categories of these variables:

Variables that must be defined by the A/B system

AB_OTA_UPDATER := true

AB_OTA_PARTITIONS := boot system vendor

 vbmeta {

 compatible = "android,vbmeta";

 parts = "vbmeta,boot,system,vendor,dtbo";

 };

 fstab {

 compatible = "android,fstab";

 vendor {

 compatible = "android,vendor";

 dev = "/dev/block/by-name/vendor";

 type = "ext4";

 mnt_flags = "ro,barrier=1,inode_readahead_blks=8";

 fsmgr_flags = "wait,avb";

 };

 };

};

firmware {

 android {

 compatible = "android,firmware";

 fstab {

 compatible = "android,fstab";

 system {

 compatible = "android,system";

 dev = "/dev/block/by-name/system";

 type = "ext4";

 mnt_flags = "ro,barrier=1,inode_readahead_blks=8";

 fsmgr_flags = "wait,verify,slotselect";

 };

 vendor {

 compatible = "android,vendor";

 dev = "/dev/block/by-name/vendor";

 type = "ext4";

 mnt_flags = "ro,barrier=1,inode_readahead_blks=8";

 fsmgr_flags = "wait,verify,slotselect";

 };

 };

 };

};

af://n3577

BOARD_BUILD_SYSTEM_ROOT_IMAGE := true

TARGET_NO_RECOVERY := true

BOARD_USES_RECOVERY_AS_BOOT := true

PRODUCT_PACKAGES += update_engine update_verifier

Variables that is optionally defined for A/B system

PRODUCT_PACKAGES_DEBUG += update_engine_client

Variables that cannot be defined in the A/B system

BOARD_RECOVERYIMAGE_PARTITION_SIZE

BOARD_CACHEIMAGE_PARTITION_SIZE

BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE

6.4.5.7 Cmdline New Content

Notes on a few parameters:

1. Why pass the PARTUUID of the vbmeta? To ensure the legitimacy of the subsequent use of the vbmeta
hash-tree, the kernel needs to verify the vbmeta again, with digest as androidboot.vbmeta.digest.

2. skip_initramfs: boot ramdisk is packed to boot.img or not, in A/B system, ramdisk is not packed to
boot.img, cmdline need to pass this parameter.

3. root=/dev/dm-0 enables dm-verify, specifies system.
4. androidboot.vbmeta.device_state: the state of android verify.
5. androidboot.verifiedbootstate: verification results.

green: If in LOCKED state and an the key used for verification was not set by the end user.

yellow: If in LOCKED state and an the key used for verification was set by the end user.

orange: If in the UNLOCKED state.

Special remarks on the dm=“1 vroot none ro......” parameter is generated:

Kernel command line: androidboot.verifiedbootstate=green

androidboot.slot_suffix=_a dm="1 vroot none ro 1,0 1031864 verity 1

PARTUUID=b2110000-0000-455a-8000-44780000706f PARTUUID=b2110000-0000-455a-8000-

44780000706f 4096 4096 128983 128983 sha1

90d1d406caac04b7e3fbf48b9a4dcd6992cc628e

4172683f0d6b6085c09f6ce165cf152fe3523c89 10 restart_on_corruption

ignore_zero_blocks use_fec_from_device PARTUUID=b2110000-0000-455a-8000-

44780000706f fec_roots 2 fec_blocks 130000 fec_start 130000" root=/dev/dm-0

androidboot.vbmeta.device=PARTUUID=f24f0000-0000-4e1b-8000-791700006a98

androidboot.vbmeta.avb_version=1.1 androidboot.vbmeta.device_state=unlocked

androidboot.vbmeta.hash_alg=sha512 androidboot.vbmeta.size=6528

androidboot.vbmeta.digest=41991c02c82ea1191545c645e2ac9cc7ca08b3da0a2e3115aff479

d2df61feaccdd35b6360cfa936f6f4381e4557ef18e381f4b236000e6ecc9ada401eda4cae

androidboot.vbmeta.invalidate_on_error=yes androidboot.veritymode=enforcing

avbtool make_vbmeta_image --include_descriptors_from_image boot.img --

include_descriptors_from_image system.img --

generate_dm_verity_cmdline_from_hashtree system.img --

include_descriptors_from_image vendor.img --algorithm SHA512_RSA4096 --key

testkey_psk.pem --public_key_metadata metadata.bin --output vbmeta.img

af://n3613

When avbtool generates vbmeta, add --generate_dm_verity_cmdline_from_hashtree to the system firmware.
dm=“1 vroot none ro......” will be saved to vbmeta. This part is Android-specific, if the partition only checksums
to boot.img, you don't need to add this parameter.

Enabling BOARD_AVB_ENABLE in the Android SDK will add this information to the vbmeta.

6.4.6 Partition Reference

Newly added vbmeta partition and security partition, vbmeta partition stores firmware verification information,
security partition stores encrypted security data.

A/B System Partition Definition Reference:

6.4.7 Fastboot Command

FIRMWARE_VER:8.0

MACHINE_MODEL:RK3326

MACHINE_ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK_MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT

CMDLINE:mtdparts=rk29xxnand:0x00002000@0x00004000(uboot),0x00002000@0x00006000(t

rust),0x00002000@0x00008000(misc),0x00008000@0x0000a000(resource),0x00010000@0x0

0012000(kernel),0x00002000@0x00022000(dtb),0x00002000@0x00024000(dtbo),0x0000080

0@0x00026000(vbmeta),0x00010000@0x00026800(boot),0x00020000@0x00036800(recovery)

,0x00038000@0x00056800(backup),0x00002000@0x0008e800(security),0x000c0000@0x0009

0800(cache),0x00514000@0x00150800(system),0x00008000@0x00664800(metadata),0x000c

0000@0x0066c800(vendor),0x00040000@0x0072c800(oem),0x00000400@0x0076c800(frp),-

@0x0076cc00(userdata:grow)

uuid:system=af01642c-9b84-11e8-9b2a-234eb5e198a0

FIRMWARE_VER:8.1

MACHINE_MODEL:RK3326

MACHINE_ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK_MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT

CMDLINE:

mtdparts=rk29xxnand:0x00002000@0x00004000(uboot_a),0x00002000@0x00006000(uboot_b

),0x00002000@0x00008000(trust_a),0x00002000@0x0000a000(trust_b),0x00001000@0x000

0c000(misc),0x00001000@0x0000d000(vbmeta_a),0x00001000@0x0000e000(vbmeta_b),0x00

020000@0x0000e000(boot_a),0x00020000@0x0002e000(boot_b),0x00100000@0x0004e000(sy

stem_a),0x00300000@0x0032e000(system_b),0x00100000@0x0062e000(vendor_a),0x001000

00@0x0072e000(vendor_b),0x00002000@0x0082e000(oem_a),0x00002000@0x00830000(oem_b

),0x0010000@0x00832000(factory),0x00008000@0x842000(factory_bootloader),0x000800

00@0x008ca000(oem),-@0x0094a000(userdata)

af://n3634
af://n3639

Under U-Boot, you can enter fastboot by entering the command:

6.4.7.1 Quick Overview of Commands

6.4.7.2 Command Usage

1. fastboot flash < partition > [< filename >]

Function: Write Partition .

Example: fastboot flash boot boot.img

1. fastboot erase < partition >

Function: Erase the partition.

Example: fastboot erase boot

1. fastboot getvar < variable > | all

Function: Get device information

Example: fastboot getvar all (get all information about the device)

Parameters that can be brought with variable:

fastboot usb 0

fastboot flash < partition > [< filename >]

fastboot erase < partition >

fastboot getvar < variable > | all

fastboot set_active < slot >

fastboot reboot

fastboot reboot-bootloader

fastboot flashing unlock

fastboot flashing lock

fastboot stage [< filename >]

fastboot get_staged [< filename >]

fastboot oem fuse at-perm-attr-data

fastboot oem fuse at-perm-attr

fastboot oem fuse at-rsa-perm-attr

fastboot oem at-get-ca-request

fastboot oem at-set-ca-response

fastboot oem at-lock-vboot

fastboot oem at-unlock-vboot

fastboot oem at-disable-unlock-vboot

fastboot oem fuse at-bootloader-vboot-key

fastboot oem format

fastboot oem at-get-vboot-unlock-challenge

fastboot oem at-reset-rollback-index

version /* fastboot version */

version-bootloader /* U-Boot version */

version-baseband

product /* Product Information */

serialno /* Serial number*/

af://n3642
af://n3644

fastboot getvar all example:

secure /* Whether to enable security checking */

max-download-size /* maximum number of bytes supported by

fastboot in a single transfer */

logical-block-size /* Number of logical blocks */

erase-block-size /* Number of erased blocks*/

partition-type : < partition > /* Partition type */

partition-size : < partition > /* Partition size*/

unlocked /* Device lock status */

off-mode-charge

battery-voltage

variant

battery-soc-ok

slot-count /* Number of slots*/

has-slot: < partition > /* Check if the partition name is in the

slot*/

current-slot /* Currently booted slots */

slot-suffixes /* The current slot of the device, print

its name. */

slot-successful: < _a | _b > /* Check if the partition is properly

verified and booted*/

slot-unbootable: < _a | _b > /* Check if the partition is set to

unbootable */

slot-retry-count: < _a | _b > /* Checkthe number of retry-counts for

partition */

at-attest-dh

at-attest-uuid

at-vboot-state

PS E:\U-Boot-AVB\adb> .\fastboot.exe getvar all

(bootloader) version:0.4

(bootloader) version-bootloader:U-Boot 2017.09-gc277677

(bootloader) version-baseband:N/A

(bootloader) product:rk3229

(bootloader) serialno:7b2239270042f8b8

(bootloader) secure:yes

(bootloader) max-download-size:0x04000000

(bootloader) logical-block-size:0x512

(bootloader) erase-block-size:0x80000

(bootloader) partition-type:bootloader_a:U-Boot

(bootloader) partition-type:bootloader_b:U-Boot

(bootloader) partition-type:tos_a:U-Boot

(bootloader) partition-type:tos_b:U-Boot

(bootloader) partition-type:boot_a:U-Boot

(bootloader) partition-type:boot_b:U-Boot

(bootloader) partition-type:system_a:ext4

(bootloader) partition-type:system_b:ext4

(bootloader) partition-type:vbmeta_a:U-Boot

(bootloader) partition-type:vbmeta_b:U-Boot

(bootloader) partition-type:misc:U-Boot

(bootloader) partition-type:vendor_a:ext4

(bootloader) partition-type:vendor_b:ext4

(bootloader) partition-type:oem_bootloader_a:U-Boot

(bootloader) partition-type:oem_bootloader_b:U-Boot

(bootloader) partition-type:factory:U-Boot

(bootloader) partition-type:factory_bootloader:U-Boot

(bootloader) partition-type:oem_a:ext4

(bootloader) partition-type:oem_b:ext4

(bootloader) partition-type:userdata:ext4

(bootloader) partition-size:bootloader_a:0x400000

(bootloader) partition-size:bootloader_b:0x400000

(bootloader) partition-size:tos_a:0x400000

(bootloader) partition-size:tos_b:0x400000

(bootloader) partition-size:boot_a:0x2000000

(bootloader) partition-size:boot_b:0x2000000

(bootloader) partition-size:system_a:0x20000000

(bootloader) partition-size:system_b:0x20000000

(bootloader) partition-size:vbmeta_a:0x10000

(bootloader) partition-size:vbmeta_b:0x10000

(bootloader) partition-size:misc:0x100000

(bootloader) partition-size:vendor_a:0x4000000

(bootloader) partition-size:vendor_b:0x4000000

(bootloader) partition-size:oem_bootloader_a:0x400000

(bootloader) partition-size:oem_bootloader_b:0x400000

(bootloader) partition-size:factory:0x2000000

(bootloader) partition-size:factory_bootloader:0x1000000

(bootloader) partition-size:oem_a:0x10000000

(bootloader) partition-size:oem_b:0x10000000

(bootloader) partition-size:userdata:0x7ad80000

(bootloader) unlocked:no

(bootloader) off-mode-charge:0

(bootloader) battery-voltage:0mv

(bootloader) variant:rk3229_evb

(bootloader) battery-soc-ok:no

(bootloader) slot-count:2

(bootloader) has-slot:bootloader:yes

(bootloader) has-slot:tos:yes

(bootloader) has-slot:boot:yes

(bootloader) has-slot:system:yes

(bootloader) has-slot:vbmeta:yes

(bootloader) has-slot:misc:no

(bootloader) has-slot:vendor:yes

(bootloader) has-slot:oem_bootloader:yes

(bootloader) has-slot:factory:no

(bootloader) has-slot:factory_bootloader:no

(bootloader) has-slot:oem:yes

(bootloader) has-slot:userdata:no

(bootloader) current-slot:a

(bootloader) slot-suffixes:a,b

(bootloader) slot-successful:a:yes

(bootloader) slot-successful:b:no

(bootloader) slot-unbootable:a:no

(bootloader) slot-unbootable:b:yes

(bootloader) slot-retry-count:a:0

(bootloader) slot-retry-count:b:0

(bootloader) at-attest-dh:1:P256

(bootloader) at-attest-uuid:

all: Done!

finished. total time: 0.636s

1. fastboot set_active < slot >

Function: Set the slot for reboot.

Example: fastboot set_active _a

1. fastboot reboot

Function: Reboot the device for normal startup

Example: fastboot reboot

1. fastboot reboot-bootloader

Function: Reboot the device to enter fastboot mode.

Example: fastboot reboot-bootloader

1. fastboot flashing unlock

Function: Unlock the device and allow firmware downloading

Example: fastboot flashing unlock

1. fastboot flashing lock

Function: Lock the device, prohibit dowloading

Example: fastboot flashing lock

1. fastboot stage [< filename >]

Function: Download data to device-side memory, the memory start address is
CONFIG_FASTBOOT_BUF_ADDR.

Example: fastboot stage permanent_attributes.bin

1. fastboot get_staged [< filename >]

Function: Getting data from the device side

Example: fastboot get_staged raw_unlock_challenge.bin

1. fastboot oem fuse at-perm-attr

Function: write permanent_attributes.bin and hash

Example: fastboot stage permanent_attributes.bin

fastboot oem fuse at-perm-attr

1. fastboot oem fuse at-perm-attr-data

Function: Burn only permanent_attributes.bin to the secure storage area (RPMB)

Example: fastboot stage permanent_attributes.bin

fastboot oem fuse at-perm-attr-data

1. fastboot oem at-get-ca-request
2. fastboot oem at-set-ca-response
3. fastboot oem at-lock-vboot

Function: Lock device

Example: fastboot oem at-lock-vboot

1. fastboot oem at-unlock-vboot

Function: Unlock the device, now support authenticated unlock

Example: fastboot oem at-get-vboot-unlock-challenge
fastboot get_staged raw_unlock_challenge.bin

./make_unlock.sh（refer to make_unlock.sh ）
fastboot stage unlock_credential.bin
fastboot oem at-unlock-vboot

1. fastboot oem fuse at-bootloader-vboot-key

Function: download bootloader key hash

Example: fastboot stage bootloader-pub-key.bin

fastboot oem fuse at-bootloader-vboot-key

1. fastboot oem format

 Function: reformat partitions, partition information depends on $partitions

Example: fastboot oem format

1. fastboot oem at-get-vboot-unlock-challenge

Function: authenticated unlock, need to get unlock challenge data

Example: please refer to 16. fastboot oem at-unlock-vboot

1. fastboot oem at-reset-rollback-index

 Function: Reset the rollback data of the device

Example: fastboot oem at-reset-rollback-index

1. fastboot oem at-disable-unlock-vboot

Function: Disables the fastboot oem at-unlock-vboot command.

Example: fastboot oem at-disable-unlock-vboot

6.4.8 Firmware Downloading

The following is the windows firmware downloading tool

af://n3752

A/B System downloading

6.4.9 Pre-loader Verified

af://n3757

Please refer to《Rockchip-Secure-Boot-Application-Note.md》

6.4.10 U-boot Verified

OTP Device Verification Process:

af://n3760

Efuse Device Verification Process:

6.4.11 System Verification Boot

he system boots to the kernel, which first parses the cmdline parameters passed by U-Boot to verify whether the
system boots with dm-verify, then loads and enables the system fs_mgr service. fs_mgr verifies that the
firmware is loaded based on the fsmgr_flags parameter. The firmware hash & hash tree is stored in vbmeta.img
with the following parameters

avb: loads and verifies partition in avb mode

slotselect: The slotselect is for A/B, and will be loaded with the parameter “androidboot.slot_suffix=_a” in the
cmdline.

6.4.12 Linux AVB

The following describes the AVB operation and verification process based on linux environment.

6.4.12.1 Operating Workflow

1. Generate complete firmware

af://n3765
af://n3770
af://n3772

2. Generate PrivateKey.pem and PublicKey.pem using SecureBootConsole with rk_sign_tool with the
following commands

3. load key

4. Signature loader

5. Signature uboot.img & trust.img

6. avb signature firmware preparations: Prepare empty temp.bin, 16-byte product_id.bin, boot.img to be
signed, and run the following code

generate vbmeta.img, permanent_attributes_cer.bin, permanent_attributes.bin.

This step signs boot.img......

7.Firmware downloading

rk_sign_tool cc --chip 3399

rk_sign_tool kk --out .

rk_sign_tool lk --key privateKey.pem --pubkey publicKey.pem

rk_sign_tool sl --loader loader.bin

rk_sign_tool si --img uboot.img

rk_sign_tool si --img trust.img

#!/bin/bash

touch temp.bin

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_prk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_psk.pem

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out

testkey_pik.pem

python avbtool make_atx_certificate --output=pik_certificate.bin --

subject=temp.bin --subject_key=testkey_pik.pem --

subject_is_intermediate_authority --subject_key_version 42 --

authority_key=testkey_prk.pem

python avbtool make_atx_certificate --output=psk_certificate.bin --

subject=product_id.bin --subject_key=testkey_psk.pem --subject_key_version 42 --

authority_key=testkey_pik.pem

python avbtool make_atx_metadata --output=metadata.bin --

intermediate_key_certificate=pik_certificate.bin --

product_key_certificate=psk_certificate.bin

python avbtool make_atx_permanent_attributes --output=permanent_attributes.bin -

-product_id=product_id.bin --root_authority_key=testkey_prk.pem

python avbtool add_hash_footer --image boot.img --partition_size 33554432 --

partition_name boot --key testkey_psk.pem --algorithm SHA256_RSA4096

python avbtool make_vbmeta_image --public_key_metadata metadata.bin --

include_descriptors_from_image boot.img --algorithm SHA256_RSA4096 --key

testkey_psk.pem --output vbmeta.img

openssl dgst -sha256 -out permanent_attributes_cer.bin -sign PrivateKey.pem

permanent_attributes.bin

For rkdeveloptool, please refer tohttps://github.com/rockchip-linux/rkdeveloptool>

1. Download permanent_attributes_cer.bin, permanent_attributes.bin

OTP platform available:

efuse platform available:

1. efuse downloading (efuse tool is only available in windows version at the moment), select a specific
loader, select the corresponding device, and click start download.

1. OTP platform loader public key download

Please refer to Rockchip-Secure-Boot-Application-Note.md

rkdeveloptool db loader.bin

rkdeveloptool ul loader.bin

rkdeveloptool gpt parameter.txt

rkdeveloptool wlx uboot uboot.img

rkdeveloptool wlx trust trust.img

rkdeveloptool wlx boot boot.img

rkdeveloptool wlx system system.img

fastboot stage permanent_attributes.bin

fastboot oem fuse at-perm-attr

fastboot stage permanent_attributes.bin

fastboot oem fuse at-perm-attr

fastboot stage permanent_attributes_cer.bin

fastboot oem fuse at-rsa-perm-attr

https://github.com/rockchip-linux/rkdeveloptool

SD Card
Category

Function

Regular SD
card

Common storage devices

SD Upgrade
Card

The device boots from the SD card to recovery, which is responsible for updating the
firmware in the sd to the device memory.

SD Boot
Card

Device boots directly from SD card

SD Repair
Card

Copy the firmware from the SD card to the device memory, starting with the pre-loader.

6.4.12.2 Verification Process

[TODO]

6.5 SD Boot and Upgrade

6.5.1 Brief Introduction

Rockchip now categorizes SD cards into regular SD cards, SD upgrade cards, SD boot cards, and SD repair
cards. You can download the update.img to the SD card through the Rockchip by creating upgrade-disk tool to
create different card types

6.5.2 SD Card Category

6.5.2.1 Regular SD Card

A regular SD card is used exactly the same as a PC, and can be used as normal storage space in U-Boot and
Kernel systems without any tools to do anything with the SD card.

6.5.2.2 SD Upgrade Card

SD upgrade card is made by RK's tool to realize firmware upgrade from SD card to local storage (e.g. eMMC,
nand flash). SD card upgrade is a firmware upgrade method which can be detached from PC or network.
Specifically, the SD card boot code is written to the reserved area of the SD card, and then the firmware is
copied to the visible partition of the SD card, when the master control boots from the SD card, the SD card boot
code and upgrade code will download the firmware to the local master storage. At the same time, the SD
upgrade card supports PCBA testing and copying of demo files. These functions of the SD upgrade card can
make the firmware upgrade independent of the PC and improve the production efficiency.
If you only need to update the firmware and demo files on the SD card, you can follow the steps below to
complete the process:

1. Copy the firmware to the root directory of the SD card and rename it sdupdate.img
2. Copy the demo file to the demo directory in the root directory of the SD card.

af://n3815
af://n3817
af://n3818
af://n3836
af://n3837
af://n3839

Offset Data segment

disk sector 0 MBR

disk sector 64-4M IDBLOCK(Start flag set to 0)

4M-8M Parameter

12M-16M uboot

16M-20M trust

…… misc

…… resource

…… kernel

…… recovery

Room left Fat32 stores update.img

Offset Data segment

disk sector 0 MBR

disk sector 1-34 GPT partition

disk sector 64-4M IDBLOCK(Start flag set to 0)

4M-8M Parameter

…… uboot

…… trust

…… misc

…… resource

…… kernel

…… recovery

Room left Fat32 stores update.img

SD bootable upgrade card format (not GPT)

SD bootable upgrade card format (GPT)

6.5.2.3 SD Boot Card

The SD boot card is made by RK's tool to realize booting directly from the SD card, which greatly facilitates the
user to update and boot new firmware without having to re- download the firmware into the device storage. The
specific realization is to downlaod the firmware into the SD card and use the SD card as the main storage. When
the master control starts from the SD card, the firmware and temporary files are stored on the SD card, and it can
work normally with or without the local master storage. Currently, it is mainly used for device system booting

af://n3919

Offset Data segment

disk sector 0 MBR

disk sector 64-4M IDBLOCK(Start flag set to 0)

4M-8M Parameter

8M-12M uboot

12M-16M trust

…… misc

…… resource

…… boot

…… kernel

…… recovery

…… system

…… user

from SD card, or for PCBA testing. Note: PCBA test is only a function under recovery, it can be used for SD
upgrad card and SD boot card.

SD boot card format (not GPT)

SD Boot Card Format (GPT)

Offset Data segment

disk sector 0 MBR

disk sector 1-34 GPT partition

disk sector 64-4M IDBLOCK(Start flag set to 1)

…… uboot

…… Boot

…… trust

…… resource

…… kernel

…… recovery

…… system

…… vendor

…… oem

…… user

the last 33 disk sector Backup GPT

6.5.2.4 SD Repair Card

The SD Repair Card is similar to the function of SD upgrade card, but the firmware upgrade is done by the
miniloader. First the tool writes the boot code to the reserved area of the SD card, then it copies the firmware to
the visible partitions of the SD card, and when the master is booted from the SD card, the SD card upgrade code
upgrades the firmware to the local master storage. It is mainly used when the firmware of the device is damaged
and the SD card can repair the device.
SD repair card format (not GPT)

af://n4009

Offset Data segment

disk sector 0 MBR

disk sector 64-4M IDBLOCK(Start flag set to 2)

4M-8M Parameter

8M-12M uboot

12M-16M trust

…… misc

…… resource

…… boot

…… kernel

…… recovery

…… system

…… user

Offset Data segment

disk sector 0 MBR

disk sector 1-34 GPT Partition

disk sector 64-4M IDBLOCK(Start flag set to 2)

…… uboot

…… Boot

…… trust

…… resource

…… kernel

…… recovery

…… system

…… vendor

…… oem

…… user

Last 33 sectors Backup GPT

SD Repaid Card Format(GPT)

6.5.3 Firmware Logo

af://n4098

Card logo Card Category

0 SD upgrade card or PCBA test card

1 SD Boot Card

2 SD Repair Card

SD cards are used as a variety of different functions and will make some markings inside the sd card.

At sector 64 of the SD card, if the start flag (magic number) is 0xFCDC8C3B, then it is a special card that will
read the firmware from the SD card and boot the device. If not, it will be treated as a normal SD card. At sector
(64 + 616bytes), the various card logos are stored. There are currently three types:

6.5.4 Boot Process

The boot process of SD card can be divided into pre-loader boot process and uboot boot process. Both processes
need to load and detect the SD card and the Startup Flag in the IDB Block of the SD card, and will perform
different functions according to these flags. The process is as follows:

6.5.4.1 Pre-loader Boot

af://n4114
af://n4117

maskrom first finds a copy of the available miniloader firmware (you can determine the boot storage media
supported by Maskrom from the TRM and prioritize them, maskrom scans the available storage for firmware),
then jumps to the miniloader. miniloader re-finds the storage device, and if it detects an SD card, it detects if the
SD card contains IDB format firmware. If SD card is detected, check if SD card contains IDB format firmware.
If yes, then determine the card flag. If the SD card is available and the flag bit is '0' or '1', then read the U-Boot
firmware from the SD card and load and boot the U-Boot, if the flag is '2', then enter the process of repairing the
card and update the firmware under the loader. The normal boot process is to scan for other storage and load and
boot the next level loader.

6.5.4.2 U-Boot Boot

af://n4120

Start

Uboot

Find a storage device

SD card or not?

64 sector
 start flag
 is/isn't
 0xFCDC8C3B?

64 sector +
 616bytes flag
 is 0?

Set current device
as SD card

cmdline add
 sdfwupdate flag

MISC partition
 flag enters
 recovery

load recovery,
enter recovery mode

re-detect
 all storage
 device

only SD card？

no storage device
 detected

cmdline add
 storagemedia=sd
 and read hardware from sd card

enable kernel

yes

no

yes

no

yes

no

yes

no

 enter recovery mode

End

SD upgrade card: U-Boot re-search the storage device, if SD card is detected, check if SD card contains IDB
format firmware. If yes, then determine if the card bias flag is 0, and add 'sdfwupdate' to the cmdline passed to
the kernel. Finally, read the misc partition of the SD card, read the boot mode of the card, if it is recovery mode,
load and start recovery.
SD boot card: U-Boot re-search the storage device, if it detects SD card, it will check whether SD card contains
IDB format firmware, if yes, then determine whether the card flag is 1. Finally, read the misc partition of the SD
card and read the boot mode of the card, if it is recovery, load the boot recovery, if it is normal mode, load the
boot kernel.

6.5.4.3 Recovery and PCBA

For details, please refer to Rockchip Recovery User Operation Guide V1.03.pdf

6.5.5 Notes

U-Boot needs to configure CONFIG_RKPARM_PARTITION when making non-GPT format firmware.
When making SD upgrade card, update.img must contain MiniloaderAll.bin, parameter.txt, uboot.img,
trust.img, misc.img, resource.img, recovery.img, or else the update.img will fail to write MBR.

af://n4123
af://n4125

7. Chapter-7 Configuration Trimming

TODO

af://n4132

8. Chapter-8 Debugging Tools

This section focuses on some of the common debugging tools used in the U-Boot stage, including the use of
commands, scripts, configuration options, boot printing, and so on.

8.1 DEBUG

Function: Enables global debug() printing.

This can be enabled by adding a macro definition to rkxxx_common.h for each platform:

8.2 Initcall

Function: Prints the boot process.

U-Boot's boot is essentially a series of initcall calls, changing debug() to printf() within the
initcall_run_list() function. Example:

8.3 IO Command

Function: Reads and writes memory.

#define DEBUG

U-Boot 2017.09-01725-g03b8d3b-dirty (Jul 06 2018 - 10:08:27 +0800)

initcall: 0000000000214388

initcall: 0000000000214724

Model: Rockchip RK3399 Evaluation Board

initcall: 0000000000214300

DRAM: initcall: 0000000000203f68

initcall: 0000000000214410 // Combine with disassembly to find the function

corresponding to the address

initcall: 00000000002140dc

....

3.8 GiB

initcall: 00000000002143b8

....

Relocation Offset is: f5c03000

initcall: 00000000f5e176bc

initcall: 00000000002146a4 (relocated to 00000000f5e176a4)

initcall: 0000000000214668 (relocated to 00000000f5e17668)

...

af://n4136
af://n4138
af://n4142
af://n4146

Read operation. Example: Displays 0x10 consecutive data starting at address 0x76000000.

Write operation. Example: Assign 0x1234 to address 0x76000000;

8.4 IOMEM Command

Function: Read memory. More flexible than the md command, obtains base address information by
automatically parsing DTS nodes.

Example: RK3228 reads the data from 0x00 to 0x20 in GRF:

8.5 I2C Command

// read

md - memory display

Usage: md [.b, .w, .l, .q] address [# of objects]

// write

mw - memory write (fill)

Usage: mw [.b, .w, .l, .q] address value [count]

=> md.l 0x76000000 0x10

76000000: fffffffe ffffffff ffffffff ffffffff

76000010: ffffffdf ffffffff feffffff ffffffff

76000020: ffffffff ffffffff ffffffff ffffffff

76000030: ffffffff ffffffff ffffffff ffffffff

=> mw.l 0x76000000 0xffff1234 // Higher 16 bits have mask

=> md.l 0x76000000 0x10 // readback

76000000: ffff1234 ffffffff ffffffff ffffffff

76000010: ffffffdf ffffffff feffffff ffffffff

76000020: ffffffff ffffffff ffffffff ffffffff

76000030: ffffffff ffffffff ffffffff ffffffff

=> iomem

iomem - Show iomem data by device compatible

Usage:

// @<compatible>: Keyword matching for the compatible part of the node

iomem <compatible> <start offset> <end offset>

eg: iomem -grf 0x0 0x200

// The keyword “-grf” is used here to distinguish it from “rockchip, rk3288-

pmugrf”.

=> iomem -grf 0x0 0x20

rockchip,rk3228-grf:

11000000: 00000000 00000000 00004000 00002000

11000010: 00000000 00005028 0000a5a5 0000aaaa

11000020: 00009955

af://n4153
af://n4158

Function: read/write i2c device .

Read operation. Example:

Write operation. Example:

8.6 GPIO Command

Function: read/write pin input/output

Check pin status: e.g. RV1126

=> i2c

i2c - I2C sub-system

Usage:

i2c dev [dev] - show or set current I2C bus

i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device

i2c mw chip address[.0, .1, .2] value [count] ‐ write to I2C device (fill)

......

=> i2c dev 0 // Switch to i2c0 (just specify once)

Setting bus to 0

=> i2c md 0x1b 0x2e 0x20 // The i2c device address is 1b (7-bit

address) and reads 0x20 consecutive register values starting at 0x2e

002e: 11 0f 00 00 11 0f 00 00 01 00 00 00 09 00 00 0c

003e: 00 0a 0a 0c 0c 0c 00 07 07 0a 00 0c 0c 00 00 00

=> i2c dev 0 // Switch to i2c0 (just specify once)

Setting bus to 0

=> i2c mw 0x1b 0x2e 0x10 // The i2c device address is 1b (7-bit

address), and the 0x2e register is assigned the value 0x10

=> i2c md 0x1b 0x2e 0x20 // readback

002e: 10 0f 00 00 11 0f 00 00 01 00 00 00 09 00 00 0c

003e: 00 0a 0a 0c 0c 0c 00 07 07 0a 00 0c 0c 00 00 00

=> gpio

gpio - query and control gpio pins

Usage:

gpio <input|set|clear|toggle> <pin>

 - input/set/clear/toggle the specified pin

gpio status [-a] [<bank> | <pin>] - show [all/claimed] GPIOs

=> gpio status -a

Bank A:

A0: input: 0 []

A1: output: 1 []

A2: input: 1 []

...

A29: unused: 1 []

af://n4165

pin input:

pin output INACTIVE:

pin output ACTIVE:

Pin state switching: e.g. A7: input: 0 to A7: output: 1

8.7 FDT Command

Function: Prints the contents of the DTB.

 The following two commands together can dump the device-tree completely:

8.8 MMC Command

A30: unknown

A31: unused: 0 []

...

D6: input: 0 []

D7: output: 1 [x] vcc18-lcd-n.gpio

...

D31: input: 0 []

Bank E:

E0: input: 0 []

E1: input: 0 []

=> gpio input A7

=> gpio clear A7

=> gpio set A7

=> gpio toggle A7

=> fdt

fdt - flattened device tree utility commands

Usage:

fdt addr [-c] <addr> [<length>] - Set the [control] fdt location to <addr>

fdt print <path> [<prop>] - Recursive print starting at <path>

fdt list <path> [<prop>] - Print one level starting at <path>

......

NOTE: Dereference aliases by omitting the leading '/', e.g. fdt print ethernet0.

=> fdt addr $fdt_addr_r // Specify fdt address

=> fdt print // Print out the entire contents of the fdt

af://n4178
af://n4183

Function: MMC device read/write, switching.

MMC Device View:

MMC device switching:

MMC device reads and writes:

If the MMC device reads or writes abnormally, you can quickly locate it by following these simple steps:

Change debug() to printf() in drivers/mmc/dw_mmc.c and recompile and download. View the print
information of the MMC device:

If the last print is Sending CMD0, please check the hardware power supply, pin connection; check whether
the software IOMUX is cut away by other IP;
If the last print is Sending CMD8, in the Security Software section, configure the MMC device to allow
access to secure storage;
If all the initialization commands have passed and the last printout is Sending CMD18, please check the
MMC hardware power supply, or check whether the capacitance of the power supply close to the MMC
side is sufficient (can replace to a larger capacitor), check the software (can reduce the clock frequency), or
try to switch the speed mode of the MMC device.

=> mmc info

Device: dwmmc@ff0f0000 // device node

Manufacturer ID: 15

OEM: 100

Name: 8GME4

Timing Interface: High Speed // Speed Mode

Tran Speed: 52000000 // current speed

Rd Block Len: 512

MMC version 5.1

High Capacity: Yes

Capacity: 7.3 GiB // storage capacity

Bus Width: 8-bit // Bus width

Erase Group Size: 512 KiB

HC WP Group Size: 8 MiB

User Capacity: 7.3 GiB WRREL

Boot Capacity: 4 MiB ENH

RPMB Capacity: 512 KiB ENH

=> mmc dev 0 // Switch to eMMC

=> mmc dev 1 // Switch to sd card

mmc read addr blk# cnt

mmc write addr blk# cnt

mmc erase blk# cnt

Example:

=> mmc read 0x70000000 0 1 // Read the first block of the MMC device, data

size - 1 sector, into memory 0x70000000

=> mmc write 0x70000000 0 1 // Write 1 sector of data from memory 0x70000000

to the first block of memory

=> mmc erase 0 1 // Erase 1 sector of data from the first block of

memory.

8.9 TimeStamp

Function: Adds a timestamp (relative time) to the U-Boot print message.

Example:

The timestamp only prints out the time of the current system timer, not do the timing from 0. So the timestamp
prints only the relative time, not the absolute time.

8.10 DM Tree

Function: View the binding and probe status between all device-drivers.

Print Meaning:

List all the device-drivers that have completed the bind.

CONFIG_BOOTSTAGE_PRINTF_TIMESTAMP

[0.259266] U-Boot 2017.09-01739-g856f373-dirty (Jul 10 2018 - 20:26:05

+0800)

[0.260596] Model: Rockchip RK3399 Evaluation Board

[0.261332] DRAM: 3.8 GiB

Relocation Offset is: f5bfd000

Using default environment

[0.354038] dwmmc@fe320000: 1, sdhci@fe330000: 0

[0.521125] Card did not respond to voltage select!

[0.521188] mmc_init: -95, time 9

[0.671451] switch to partitions #0, OK

[0.671500] mmc0(part 0) is current device

[0.675507] boot mode: None

[0.683738] DTB: rk-kernel.dtb

[0.706940] Using kernel dtb

......

=> dm tree

 Class Probed Driver Name

--

 root [+] root_driver root_driver

 syscon [] rk322x_syscon |-- syscon@11000000

 serial [+] ns16550_serial |-- serial@11030000 *

 clk [+] clk_rk322x |-- clock-controller@110e0000

 sysreset [] rockchip_sysreset | |-- sysreset

 reset [] rockchip_reset | `-- reset

 mmc [+] rockchip_rk3288_dw_mshc |-- dwmmc@30020000 *

 blk [+] mmc_blk | `-- dwmmc@30020000.blk *

 ram [] rockchip_rk322x_dmc |-- dmc@11200000

 serial [+] ns16550_serial |-- serial@11020000

 i2c [+] i2c_rockchip |-- i2c@11050000

af://n4200
af://n4206

List the affiliations between all uclass-device-driver
[+] means the current driver has completed probe
* Indicates that the current device-driver comes from the U-Boot DTB, otherwise it comes from the kernel
DTB.

8.11 DM Uclass

Function: View all devices under a certain class uclass.

8.12 Stacktrace.sh

Analyze the site of abort, dump_stack() using the call stack back mechanism. Please refer to the RK Architecture
section.

8.13 System Crash

Function: Print the current CPU scene and call stack, suitable for use when the system is stuck. The serial port
will dump similar information as abort every 5s.

Get the call stack information and then use the stacktrace script to convert it. Please refer to the RK Architecture
section.

8.14 CRC Check

Function: Checks the integrity of the firmware in RK format.

The image header of the RK format contains the CRC32 of the entire image, which can be used to verify the
integrity of the firmware by opening the following macro

=> dm uclass

uclass 0: root

- * root_driver @ 7be54c88, seq 0, (req -1)

uclass 11: adc

- * saradc@ff100000 @ 7be56220, seq 0, (req -1)

......

uclass 40: backlight

- * backlight @ 7be81178, seq 0, (req -1)

uclass 77: key

- rockchip-key @ 7be811f0

......

CONFIG_ROCKCHIP_DEBUGGER

CONFIG_ROCKCHIP_CRC

af://n4219
af://n4222
af://n4224
af://n4228

Example:

8.15 HASH Check

Function: Check the integrity of the firmware in Android format.

When this configuration is enabled, the integrity of the firmware is verified when loading firmware in Android
format.

For some historical reasons, if the above configuration does not verify the firmware correctly, please try turning
on the following configuration at the same time:

8.16 Modify DDR Capacity

The DDR initialization code during boot passes the DDR capacity to U-Boot, which will remove some safe
memory before passing it to the kernel. The user can modify the DDR capacity to be passed to the kernel during
the U-Boot stage.

Example of Passing:

=Booting Rockchip format image=

kernel image CRC32 verify... okay. // kernel verifies success (or prints

“fail!” if it fails)

boot image CRC32 verify... okay. // boot verifies success (prints “fail!”

if it fails)

kernel @ 0x02080000 (0x01249808)

ramdisk @ 0x0a200000 (0x001e6650)

Chapter-8 Flattened Device Tree blob at 01f00000

 Booting using the fdt blob at 0x1f00000

 'reserved-memory' secure-memory@20000000: addr=20000000 size=10000000

 Loading Ramdisk to 08019000, end 081ff650 ... OK

 Loading Device Tree to 0000000008003000, end 0000000008018c97 ... OK

Adding bank: start=0x00200000, size=0x08200000

Adding bank: start=0x0a200000, size=0xede00000

Starting kernel ...

ANDROID_BOOT_IMAGE_HASH

HASH_ROCKCHIP_LEGACY

......

// The block of available memory passed to the kernel (with the safe memory

block removed).

Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)

Adding bank: 0x0a200000 - 0x40000000 (size: 0x35e00000)

Total: 895.411 ms

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

af://n4234
af://n4240

Code Location:

Modify the location:

8.17 Jump Information

Function: Confirm the firmware version and process. In some cases, the boot information can also help users to
locate some crash problems

1. Trust getting stuck after running

Possibility of trust getting stuck after running: There is a problem with the firmware packaging or downloading,
causing the trust to jump to the wrong U-Boot boot address. In this case, you can check the U-Boot boot address
printed on the trust.

64-bit platform U-Boot boot address is typically offset 0x200000 (DRAM starts at 0x0)

./arch/arm/mach-rockchip/param.c

struct memblock *param_parse_ddr_mem(int *out_count)

{

 // Here is the capacity information that ddr passes to U-Boot.

 // Because of the possibility of discontinuous addresses, they are passed in

blocks, specifying the starting address and size of each memory block

separately.

 // PS: It's usually contiguous memory and won't need to be chunked.

 for (i = 0, n = 0; i < count; i++, n++) {

 // For example, for a 2GB capacity (contiguous addresses): count = 1,

base = 0, size = 0x80000000.

 // when debugging, users can modify here as needed.

 base = t->u.ddr_mem.bank[i];

 size = t->u.ddr_mem.bank[i + count];

 /* 0~4GB */

 if (base < SZ_4GB) {

 mem[n].base = base;

 mem[n].size = ddr_mem_get_usable_size(base, size);

 if (base + size > SZ_4GB) {

 n++;

 mem[n].base_u64 = SZ_4GB;

 mem[n].size_u64 = base + size - SZ_4GB;

 }

 } else {

 /* 4GB+ */

 mem[n].base_u64 = base;

 mem[n].size_u64 = size;

 }

 assert(n < count + MEM_RESV_COUNT);

 }

}

af://n4248

The 32-bit platform U-Boot boot address is typically offset 0x0 (DRAM starts at 0x60000000):

2. U-Boot version backtracking:

The U-Boot boot information can be used to trace back the build version. The following commit point
corresponds to commit: b34f08b.

The fact that “dirty” appears in the boot message means that there are local changes that were not committed to
the repository during compilation, and the compilation point is not clean.

8.18 Boot Information

 Users can know the current U-Boot process and the status of each peripheral through the U-Boot boot
information, which is convenient to quickly locate the abnormality.

Currently U-Boot supports three types of firmware boot: Android format > RK format > DISTRO format. the
SDK released by RK is mainly for the first two firmware formats, and DISTRO is generally used by open source
users.

Note: If the user's code is not new enough, some prints may not be visible, this does not affect the user's overall
understanding of the U-Boot boot message.

17.1 Android firmware

NOTICE: BL31: v1.3(debug):d98d16e

NOTICE: BL31: Built : 15:03:07, May 10 2018

NOTICE: BL31: Rockchip release version: v1.1

INFO: GICv3 with legacy support detected. ARM GICV3 driver initialized in EL3

INFO: Using opteed sec cpu_context!

INFO: boot cpu mask: 0

INFO: plat_rockchip_pmu_init(1151): pd status 3e

INFO: BL31: Initializing runtime services

INFO: BL31: Initializing BL32

INFO: BL31: Preparing for EL3 exit to normal world

INFO: Entry point address = 0x200000 // U-Boot address

INFO: SPSR = 0x3c9

INF [0x0] TEE-CORE:init_primary_helper:378: Release version: 1.9

INF [0x0] TEE-CORE:init_primary_helper:379: Next entry point address: 0x60000000

 // U-Boot address

INF [0x0] TEE-CORE:init_teecore:83: teecore inits done

U-Boot 2017.09-01730-gb34f08b (Jul 06 2018 - 17:47:52 +0800)

U-Boot 2017.09-01730-gb34f08b-dirty (Jul 06 2018 - 17:35:04 +0800)

// The first line of U-Boot prints, containing information such as commit

version, compiling time, etc.

// Note: This is only “relatively early” first regular line printout from U-

Boot, not the earliest printout that U-Boot can make.

// Open the debug message, you can see earlier debug prints

U-Boot 2017.09-03033-g81b79f7-dirty (Jul 04 2019 - 15:04:00 +0800)

af://n4265

// The content of the “model” field of the U-Boot dts, which tells us which U-

Boot dts we are using.

Model: Rockchip RK3399 Evaluation Board

// The preloader-serial function is enabled, i.e., it follows the serial port

configuration of the previous loader, and the print port currently used is

UART2.

PreSerial: 2

// The total memory capacity of the board is 2GB

DRAM: 2 GiB

// The current version supports the sysmem memory card management mechanism

Sysmem: init

// U-Boot will self-move its own code from the current ddr forward position to a

backward position (see the U-Boot development documentation for details on the

boot process)

// The starting address of the self-moved code is 0x7dbe2000, which may be

useful for disassembly and debugging.

Relocation Offset is: 7dbe2000

// ENV is saved in ddr by default. If you choose to save it in eMMC, Nand, etc.,

it will not be printed.

Using default environment

// The current storage medium is mmc0, i.e. eMMC (or mmc1 if it is a sd card)

dwmmc@fe320000: 1, sdhci@fe330000: 0

// The storage media type is informed to U-Boot via atags, passed as a

parameters by the previous miniloader

Bootdev(atags): mmc 0

// Current eMMC operates in HS400 mode with a clock frequency of 150M

MMC0: HS400, 150Mhz

// Currently using GPT partition table (if RK parameter partition table used,

print: RKPARM)

PartType: EFI

// It's currently in recovery mode

// The “reboot xxx” command executed in the kernel is ultimately represented by

this printout

boot mode: recovery

// The Kernel DTB comes from recovery.img, which is loaded normally

Load FDT from recovery part

DTB: rk-kernel.dtb

HASH: OK(c)

// ==> Note: Since then, U-Boot has swithed to the kernel dtb and all subsequent

peripheral drivers use information from the kernel dtb!

// DTBO executed successfully

ANDROID: fdt overlay OK

// I2C speed, this is one of the influencing factors of U-Boot boot speed,

especially for PMICs with very many DCDCs and LDOs, if the I2C speed is slow,

// Then it will hinder the booting speed to some extent. If users care about

boot speed, they can pay attention to this information

I2c speed: 400000Hz

// Current PMIC is RK818

// The on value corresponds to the ON_SOURCE register and indicates the reason

for this current PMIC power-up

// The off value corresponds to the OFF_SOURCE register and indicates the reason

for the previous shutdown or power loss

// on and off information, which is valuable in the event of an abnormal reboot

or shutdown of the system

PMIC: RK818 (on=0x20 off=0x40)

// The current voltage value of each regulator, is generally DCDC and

corresponding to the RK platform arm, logic, center and other voltages.

// vdd_center 900000 uV- This is valuable information in the event of problems

such as abnormal system startups, erratic booting, etc.

vdd_cpu_l 900000 uV

vdd_log 900000 uV

// The content of the “model” field of the Kernel dts, which tells us which

Kernel dts we are using.

Model: Rockchip RK3399 Excavator Board edp avb (Android)

enter Recovery mode!

// Display driver related information

Rockchip UBOOT DRM driver version: v1.0.1

Using display timing dts

Detailed mode clock 200000 kHz, flags[a]

 H: 1536 1548 1564 1612

 V: 2048 2056 2060 2068

bus_format: 100e

// clk-tree information, please refer to the CLK section of the U-Boot

development documentation for details.

CLK: (uboot. arml: enter 816000 KHz, init 816000 KHz, kernel 0N/A)

CLK: (uboot. armb: enter 24000 KHz, init 24000 KHz, kernel 0N/A)

 aplll 816000 KHz

 apllb 24000 KHz

 dpll 800000 KHz

 cpll 200000 KHz

 gpll 800000 KHz

 npll 600000 KHz

 vpll 24000 KHz

 aclk_perihp 133333 KHz

 hclk_perihp 66666 KHz

 pclk_perihp 33333 KHz

 aclk_perilp0 266666 KHz

 hclk_perilp0 88888 KHz

 pclk_perilp0 44444 KHz

 hclk_perilp1 100000 KHz

 pclk_perilp1 50000 KHz

// GMAC driver enable

Net: eth0: ethernet@fe300000

// Boot and long press ctrl+c to enter U-Boot command line mode after the

following printout

Hit key to stop autoboot('CTRL+C'): 0

// Once again, we know that we are currently in recovery mode.

ANDROID: reboot reason: "recovery"

// vboot=0 means secureboot is not enabled; it's currently AVB firmware, so it

will go through AVB's regular checking flow

Vboot=0, AVB images, AVB verify

// kWhether the device is unlocked

read_is_device_unlocked() ops returned that device is UNLOCKED

// Native U-Boot by default loads the entire boot.img/recovery.img, and then

ramdisk, fdt, kernel

// A single move (called relocation) to an address predetermined by the user,

which is time-consuming, especially if the ramdisk is very large.

// The RK platform was modified to move ramdisk, fdt, and kernel directly from

storage to the intended memory address all at once.

// A printout such as the following indicates that this one-time move is

enabled, saving you time

Fdt Ramdisk skip relocation

8.18.1 RK Firmware

// Load the firmware in Android format, load kernel to 0x00280000, fdt to

0x8300000

// If it is an LZ4 compressed kernel, it may print here:

// Booting LZ4 kernel at 0x00680000(Uncompress to 0x00280000) with fdt at

0x8300000...

Booting IMAGE kernel at 0x00280000 with fdt at 0x8300000...

// Ignore, no need to concern.

Booting Android Image at 0x0027f800 ...

// \kernel and ramdisk load address and size

Kernel load addr 0x00280000 size 19081 KiB

RAM disk load addr 0x0a200000 size 9627 KiB

// fdt load address

Flattened Device Tree blob at 08300000

 Booting using the fdt blob at 0x8300000

// Ignore, no need to concern

 XIP Kernel Image ... OK

// This simply prints the reserved-memory specified by the kernel dts, which can

be used as a piece of information to analyze if the kernel has problems booting.

 'reserved-memory' secure-memory@20000000: addr=20000000 size=10000000

// Start and end address of fdt

 Using Device Tree in place at 0000000008300000, end 000000000831c6f7

// Passed to the kernel to inform the kernel of the range of memory space

available to the kernel (ATF, optee, etc. space has been removed)

Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)

Adding bank: 0x0a200000 - 0x80000000 (size: 0x75e00000)

// U-Boot phase boot time consuming

Total: 367.128 ms

// Printed by U-Boot, after this print, U-Boot will complete some ARM

architecture related (e.g., clearing cache, turning off interrupts,

// cpu state switching, etc.) and U-Boot's dm device logout and other clearing

work, the probability of problems is extremely low.

// Once the above work's done, it jump to the kernel, so it can also be

understood as that this printout means you've reached the kernel stage.

Starting kernel ...

// Printed information from the kernel phase

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

[0.000000] Initializing cgroup subsys cpuacct

[0.000000] Initializing cgroup subsys schedtune

[0.000000] Linux version 4.4.167 (hgc@ubuntu) (gcc version 6.3.1 20170404

(Linaro

GCC 6.3-2017.05)) #83 SMP PREEMPT Thu Mar 21 09:31:08 CST 2019

[0.000000] Boot CPU: AArch64 Processor [410fd034]

[0.000000] earlycon: Early serial console at MMIO32 0xff1a0000 (options '')

[0.000000] bootconsole [uart0] enabled

[0.000000] Reserved memory: failed to reserve memory for node 'stb-

devinfo@00000000': base 0x0000000000000000, size 0 MiB

[0.000000] cma: Reserved 16 MiB at 0x000000007f000000

......

af://n4271

8.18.2 Distro Firmware

U-Boot 2017.09-03352-gb1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board

PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

Using default environment

......

Hit key to stop autoboot('CTRL+C'): 0

ANDROID: reboot reason: "recovery"

// Since it's RK format firmware, it can't be AVB format

Not AVB images, AVB skip

// Because it is RK format firmware, so here will prompt that load android

format firmware fails

// Because the current startup priority is: android format > RK format > distro

format

** Invalid Android Image header **

Android image load failed

Android boot failed, error -1.

// Currently in recovery mode

boot mode: recovery

// Boot RK-formatted firmware, load ramdis, kernel, fdt

=Booting Rockchip format image=

fdt @ 0x08300000 (0x00012dd0)

kernel @ 0x00280000 (0x0119e008)

ramdisk @ 0x0a200000 (0x00754540)

// The following is basically similar to the boot information for android-

formatted firmware

Fdt Ramdisk skip relocation

Flattened Device Tree blob at 08300000

 Booting using the fdt blob at 0x8300000

 Using Device Tree in place at 0000000008300000, end 0000000008315dcf

Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)

Adding bank: 0x0a200000 - 0x80000000 (size: 0x75e00000)

Total: 508.11 ms

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

......

U-Boot 2017.09-03352-gb1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board

PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

af://n4273

8.18.3 No Valid Firmware

Using default environment

......

// find mmc0, i.e. eMMCswitch to partitions #0, OK

mmc0(part 0) is current device

// Find the firmware for the 6th partition on the eMMC storage (in the GPT

partition table, 6 corresponds to the boot.img partition, which is indicated by

the “-bootable” attribute in the GPT)

Scanning mmc 0:6...

// Found the configuration file extlinux.conf

Found /extlinux/extlinux.conf

Retrieving file: /extlinux/extlinux.conf

// Loading kernel

205 bytes read in 82 ms (2 KiB/s)

1: rockchip-kernel-4.4

Retrieving file: /Image

13484040 bytes read in 1833 ms (7 MiB/s)

// Specified cmdline information when packaging

append: earlycon=uart8250,mmio32,0xff1a0000 console=ttyS2,1500000n8 rw

root=/dev/mmcblk0p7 rootwait rootfstype=ext4 init=/sbin/init

// Loading fdtLoad fdt

Retrieving file: /rk3399.dtb

61714 bytes read in 54 ms (1.1 MiB/s)

// ==> If there is no ramdisk at the time of packing, no ramdisk information

will be printed; otherwise it will be printed here as well.

Flattened Device Tree blob at 01f00000

 Booting using the fdt blob at 0x1f00000

 Loading Device Tree to 000000007df14000, end 000000007df26111 ... OK

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

......

U-Boot 2017.09-03352-gb1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board

PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

Using default environment

......

af://n4275

// Find mmc0, the eMMCFind mmc0, the eMMC

Can't find boot message for firmware

switch to partitions Can't find boot message for firmware#0, OK

mmc0(part 0) is current device

// Find the firmware for the 6th partition on the eMMC storage (in the GPT

partition table, 6 corresponds to the boot.img partition, which is indicated by

the “-bootable” attribute in the GPT)

Scanning mmc 0:6...

// Found the configuration file extlinux.conf

Found /extlinux/extlinux.conf

Retrieving file: /extlinux/extlinux.conf

// Loading kernel Load kernel

205 bytes read in 82 ms (2 KiB/s)

1: rockchip-kernel-4.4

Retrieving file: /Image

13484040 bytes read in 1833 ms (7 MiB/s)

// Specified cmdline information when packaging

append: earlycon=uart8250,mmio32,0xff1a0000 console=ttyS2,1500000n8 rw

root=/dev/mmcblk0p7 rootwait rootfstype=ext4 init=/sbin/init

// Loading fdt Load fdt

Retrieving file: /rk3399.dtb

61714 bytes read in 54 ms (1.1 MiB/s)

// ==> If there is no ramdisk at the time of packing, no ramdisk information

will be printed; otherwise it will be printed here as well.

Flattened Device Tree blob at 01f00000

 Booting using the fdt blob at 0x1f00000

 Loading Device Tree to 000000007df14000, end 000000007df26111 ... OK

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

......

U-Boot 2017.09-03352-gb1265b5 (Jul 12 2019 - 09:57:24 +0800)

Model: Rockchip RK3399 Evaluation Board

PreSerial: 2

DRAM: 2 GiB

Sysmem: init

Relocation Offset is: 7dbe2000

Using default environment

......

Net: eth0: ethernet@fe300000

Hit key to stop autoboot('CTRL+C'): 0 ANDROID: reboot reason: "recovery"

// Not Android format firmware

Not AVB images, AVB skip

** Invalid Android Image header **

Android image load failed

Android boot failed, error -1.

boot mode: recovery

// Not RK format firmware

=Booting Rockchip format image=

kernel: invalid image tag(0x45435352)

boot_rockchip_image kernel part read error

// Not DISTRO format firmware. All of the latter prints come in the distro load

command because the distro command will try to get from mmc, nand, net,

// usb and all our predefined devices (see the macro definition in rockchip-

common.h: BOOT_TARGET_DEVICES).

// Looking for distro firmware, i.e. scanning one by one to search

switch to partitions #0, OK

mmc0(part 0) is current device

Failed to mount ext2 filesystem...

** Unrecognized filesystem type **

starting USB...

USB0: Register 2000140 NbrPorts 2

Starting the controller

USB XHCI 1.10

USB1: Register 2000140 NbrPorts 2

Starting the controller

USB XHCI 1.10

USB2: USB EHCI 1.00

USB3: USB OHCI 1.0

USB4: USB EHCI 1.00

USB5: USB OHCI 1.0

scanning bus 0 for devices... 1 USB Device(s) found

scanning bus 1 for devices... 1 USB Device(s) found

scanning bus 2 for devices... 1 USB Device(s) found

scanning bus 3 for devices... 1 USB Device(s) found

scanning bus 4 for devices... 1 USB Device(s) found

scanning bus 5 for devices... 1 USB Device(s) found

 scanning usb for storage devices... 0 Storage Device(s) found

Device 0: unknown device

ethernet@fe300000 Waiting for PHY auto negotiation to complete......... TIMEOUT

!

Could not initialize PHY ethernet@fe300000

missing environment variable: pxeuuid

missing environment variable: bootfile

Retrieving file: pxelinux.cfg/01-7a-1d-33-50-3d-a1

ethernet@fe300000 Waiting for PHY auto negotiation to complete..

......

// Eventually the distro command scanned all possible storage media and couldn't

find the firmware, so it stopped in U-Boot command line mode

=>

9. Chapter-9 Test Case

af://n4278

10. Chapter-10 SPL

10.1 Firmware Boot

SPL replaces the miniloader in loading and booting trust.img and uboot.img. SPL currently supports booting two
types of firmwares

FIT firmware: enabled by default
RKFW firmware: disabled by default, needs to be configured and enabled separately by the user;

10.1.1 FIT Firmware

FIT (flattened image tree) format is a relatively new firmware format supported by SPL, which supports multiple
images to be packaged and verified, FIT uses DTS syntax to describe the packaged image, the description file is
u-boot.its, and the final FIT firmware generated is u-boot.itb.

Advantages of FIT: reuse dts syntax and compilation rules, more flexible, firmware parsing can directly use
libfdt library

u-boot.its file:

/images : Statically defines all accessible resource configurations (last available, optional), similar to the
role of dtsi;
/configurations : Each config node describes a set of bootable configurations, similar to a board-level
dts
Use default = Specifies the currently selected default configuration;

Templates:

/dts-v1/;

/ {

 description = "Configuration to load ATF before U-Boot";

 #address-cells = <1>;

 images {

 uboot@1 {

 description = "U-Boot (64-bit)";

 data = /incbin/("u-boot-nodtb.bin");

 type = "standalone";

 os = "U-Boot";

 arch = "arm64";

 compression = "none";

 load = <0x00200000>;

 };

 atf@1 {

 description = "ARM Trusted Firmware";

 data = /incbin/("bl31_0x00010000.bin");

 type = "firmware";

 arch = "arm64";

af://n4282
af://n4283
af://n4290

u-boot.itb file:

The above is the process of generating the itb file. the FIT firmware can be understood as a special kind of DTB
file, except that its content is image. the user can view the itb file with the fdtdump command:

 os = "arm-trusted-firmware";

 compression = "none";

 load = <0x00010000>;

 entry = <0x00010000>;

 };

 atf@2 {

 description = "ARM Trusted Firmware";

 data = /incbin/("bl31_0xff091000.bin");

 type = "firmware";

 arch = "arm64";

 os = "arm-trusted-firmware";

 compression = "none";

 load = <0xff091000>;

 };

 optee@1 {

 description = "OP-TEE";

 data = /incbin/("bl32.bin");

 type = "firmware";

 arch = "arm64";

 os = "op-tee";

 compression = "none";

 load = <0x08400000>;

 };

 fdt@1 {

 description = "rk3328-evb.dtb";

 data = /incbin/("arch/arm/dts/rk3328-evb.dtb");

 type = "flat_dt";

 compression = "none";

 };

 };

 configurations {

 default = "config@1";

 config@1 {

 description = "rk3328-evb.dtb";

 firmware = "atf@1";

 loadables = "uboot@1", "atf@2", "optee@1" ;

 fdt = "fdt@1";

 };

 };

};

 mkimage + dtc

[u-boot.its] + [images] ==> [u-boot.itb]

cjh@ubuntu:~/uboot-nextdev/u-boot$ fdtdump u-boot.itb | less

/dts-v1/;

// magic: 0xd00dfeed

// totalsize: 0x497 (1175)

// off_dt_struct: 0x38

// off_dt_strings: 0x414

// off_mem_rsvmap: 0x28

// version: 17

// last_comp_version: 16

// boot_cpuid_phys: 0x0

// size_dt_strings: 0x83

// size_dt_struct: 0x3dc

/ {

 timestamp = <0x5d099c85>;

 description = "Configuration to load ATF before U-Boot";

 #address-cells = <0x00000001>;

 images {

 uboot@1 {

 data-size = <0x0009f8a8>;

 data-offset = <0x00000000>;

 description = "U-Boot (64-bit)";

 type = "standalone";

 os = "U-Boot";

 arch = "arm64";

 compression = "none";

 load = <0x00600000>;

 };

 atf@1 {

 data-size = <0x0000c048>; // This field is automatically added by

the compilation process to describe the atf@1 firmware size

 data-offset = <0x0009f8a8>; // This field is automatically added by

the compilation process to describe the atf@1 firmware offset

 description = "ARM Trusted Firmware";

 type = "firmware";

 arch = "arm64";

 os = "arm-trusted-firmware";

 compression = "none";

 load = <0x00010000>;

 entry = <0x00010000>;

 };

 atf@2 {

 data-size = <0x00002000>;

 data-offset = <0x000ab8f0>;

 description = "ARM Trusted Firmware";

 type = "firmware";

 arch = "arm64";

 os = "arm-trusted-firmware";

 compression = "none";

 load = <0xfff82000>;

 };

 fdt@1 {

 data-size = <0x00005793>;

 data-offset = <0x000ad8f0>;

 description = "rk3308-evb.dtb";

 type = "flat_dt";

 };

 };

For more information on FIT, please refer to:

10.1.2 RKFW Firmware

In order to replace the miniloader more directly without modifying the partitioning and packaging format of the
later firmware, RK platform adds the RKFW format (i.e., independently partitioned firmware: trust.img and
uboot.img) to the boot.

Configuration:

Code:

10.1.3 Storage Priority

The boot priority of the storage device is specified in U-Boot dts via u-boot,spl-boot-order .

10.2 Compilation and Packaging

10.2.1 Code Compilation

};

./doc/uImage.FIT/

CONFIG_SPL_LOAD_RKFW // Enable switch

CONFIG_RKFW_TRUST_SECTOR // trust.img partition address, shall be

consistent with the definition of the partition table

CONFIG_RKFW_U_BOOT_SECTOR // uboot.img partition address, shall be

consistent with the definition of the partition table

./include/spl_rkfw.h

./common/spl/spl_rkfw.c

/ {

 aliases {

 mmc0 = &emmc;

 mmc1 = &sdmmc;

 };

 chosen {

 u-boot,spl-boot-order = &sdmmc, &nandc, &emmc;

 stdout-path = &uart2;

 };

};

af://n4309
af://n4315
af://n4318
af://n4319

U-Boot compiles the same U-Boot code according to different compilation paths to obtain SPL firmware, and
automatically generates the CONFIG_SPL_BUILD macro when compiling the SPL. U-Boot will continue to
compile the SPL after compiling u-boot.bin, and create a separate output directory . /spl/ .

At the end of the compilation you will get

10.2.2 Firmware Packaging

10.3 System Module

10.3.1 GPT

SPL uses the GPT partition table.

Configurations:

Drivers:

 // compile u-boot

 DTC arch/arm/dts/rk3399-puma-ddr1866.dtb

 DTC arch/arm/dts/rv1108-evb.dtb

make[2]: `arch/arm/dts/rk3328-evb.dtb' is up to date.

 SHIPPED dts/dt.dtb

 FDTGREP dts/dt-spl.dtb

 CAT u-boot-dtb.bin

 MKIMAGE u-boot.img

 COPY u-boot.dtb

 MKIMAGE u-boot-dtb.img

 COPY u-boot.bin

 // Compile spl, with separate spl/ directory

 LD spl/arch/arm/cpu/built-in.o

 CC spl/board/rockchip/evb_rk3328/evb-rk3328.o

 LD spl/dts/built-in.o

 CC spl/common/init/board_init.o

 COPY tpl/u-boot-tpl.dtb

 CC spl/cmd/nvedit.o

 CC spl/env/common.o

 CC spl/env/env.o

 LD spl/drivers/block/built-in.o

./spl/u-boot-spl.bin

CONFIG_SPL_LIBDISK_SUPPORT=y

CONFIG_SPL_EFI_PARTITION=y

CONFIG_PARTITION_TYPE_GUID=y

af://n4324
af://n4325
af://n4326

Interfaces:

10.3.2 A/B System

SPL supports A/B system boot,

Configuration:

Driver:

Interface:

10.3.3 Boot Priority

SPL uses the boot order defined by u-boot,spl-boot-order , located at rkxxxx-u-boot.dtsi:

Maskrom's boot priority:

Pre-loader(SPL) boot priority:

Maximizing the priority of the sd card makes it easier for the system to boot from the sd card.

10.3.4 ATAGS

./disk/part.c

./disk/part_efi.c

int part_get_info(struct blk_desc *dev_desc, int part, disk_partition_t *info);

int part_get_info_by_name(struct blk_desc *dev_desc,

 const char *name, disk_partition_t *info);

CONFIG_SPL_AB=y

./common/spl/spl_ab.c

int spl_get_current_slot(struct blk_desc *dev_desc, char *partition, char

*slot);

int spl_get_partitions_sector(struct blk_desc *dev_desc, char *partition,u32

*sectors);

chosen {

stdout-path = &uart2;

u-boot,spl-boot-order = &sdmmc, &sfc, &nandc, &emmc;

};

 spi nor > spi nand > emmc > sd

sd > spi nor > spi nand > emmc

af://n4334
af://n4342
af://n4354

SPL and U-Boot implement the passing of parameters through the ATAGS mechanism. The information passed
is: the storage device started, the print serial port, and so on.

Configuration:

Driver:

Interface:

10.3.5 Kernel Boot

Usually kernel is loaded and booted by U-Boot, SPL can also support to load kernel, currently support to load
android head version 2 boot.img, support RK format firmware.

Boot sequence

10.3.6 Pinctrl

Configuration:

Driver:

DTS configuration:

Take sdmmc for example

CONFIG_ROCKCHIP_PRELOADER_ATAGS=y

./arch/arm/include/asm/arch-rockchip/rk_atags.h

./arch/arm/mach-rockchip/rk_atags.c

int atags_set_tag(u32 magic, void *tagdata);

struct tag *atags_get_tag(u32 magic);

Maskrom -> ddr -> SPL -> Trust -> Kernel

CONFIG_SPL_PINCTRL_GENERIC=y

CONFIG_SPL_PINCTRL=y

./drivers/pinctrl/pinctrl-uclass.c

./drivers/pinctrl/pinctrl-generic.c

./drivers/pinctrl/pinctrl-rockchip.c

&pinctrl {

 u-boot,dm-spl;

};

&pcfg_pull_none_4ma {

 u-boot,dm-spl;

};

af://n4362
af://n4366

Notes:

To enable pinctrl for SPL, modify the CONFIG_OF_SPL_REMOVE_PROPS definition in defconfig to remove the
pinctrl-0 pinctrl-names field.

10.3.7 Secure Boot

[TODO]

10.4 Driver Module

10.4.1 MMC

Configuration:

Driver:

Interface:

&pcfg_pull_up_4ma {

 u-boot,dm-spl;

};

&sdmmc {

 u-boot,dm-spl;

};

&sdmmc_pin {

 u-boot,dm-spl;

};

&sdmmc_clk {

 u-boot,dm-spl;

};

&sdmmc_cmd {

 u-boot,dm-spl;

};

&sdmmc_bus4 {

 u-boot,dm-spl;

};

&sdmmc_pwren {

 u-boot,dm-spl;

};

CONFIG_SPL_MMC_SUPPORT=y // Enabled by default

./common/spl/spl_mmc.c

af://n4376
af://n4378
af://n4379

10.4.2 MTD Block

SPL unifies the nand, spi nand, and spi nor interfaces to the block layer.

Configuration:

Driver:

int spl_mmc_load_image(struct spl_image_info *spl_image,

 struct spl_boot_device *bootdev);

// MTD driver support

CONFIG_MTD=y

CONFIG_CMD_MTD_BLK=y

CONFIG_SPL_MTD_SUPPORT=y

CONFIG_MTD_BLK=y

CONFIG_MTD_DEVICE=y

// spi nand driver support

CONFIG_MTD_SPI_NAND=y

CONFIG_ROCKCHIP_SFC=y

CONFIG_SPL_SPI_FLASH_SUPPORT=y

CONFIG_SPL_SPI_SUPPORT=y

// nand driver support

CONFIG_NAND=y

CONFIG_CMD_NAND=y

CONFIG_NAND_ROCKCHIP=y /* NandC v6 can be confirmed based on TRM NANDC-

>NANDC_NANDC_VER register, 0x00000801 */

//CONFIG_NAND_ROCKCHIP_V9=y /* NandC v9 can be confirmed based on TRM NANDC-

>NANDC_NANDC_VER register, 0x56393030, Take RK3326/PX30 as an example */

CONFIG_SPL_NAND_SUPPORT=y

CONFIG_SYS_NAND_U_BOOT_LOCATIONS=y

CONFIG_SYS_NAND_U_BOOT_OFFS=0x8000

CONFIG_SYS_NAND_U_BOOT_OFFS_REDUND=0x10000

// The nand page size needs to be defined according to the real size, if you use

NAND with a capacity greater than or equal to 512MB, you generally need to

configure it as 4096.

#define CONFIG_SYS_NAND_PAGE_SIZE 2048

// spi nor driver support

CONFIG_CMD_SF=y

CONFIG_CMD_SPI=y

CONFIG_SPI_FLASH=y

CONFIG_SF_DEFAULT_MODE=0x1

CONFIG_SF_DEFAULT_SPEED=50000000

CONFIG_SPI_FLASH_GIGADEVICE=y

CONFIG_SPI_FLASH_MACRONIX=y

CONFIG_SPI_FLASH_WINBOND=y

CONFIG_SPI_FLASH_MTD=y

CONFIG_ROCKCHIP_SFC=y

CONFIG_SPL_SPI_SUPPORT=y

CONFIG_SPL_MTD_SUPPORT=y

CONFIG_SPL_SPI_FLASH_SUPPORT=y

af://n4386

Interface:

10.4.3 OTP

Used to store non-modifiable data, used in secure boot.

 Configuration:

Driver:

Interface:

10.4.4 Crypto

Secure-boot will use crypto to complete the hash, ras calculation.

Configuration:

Driver:

Interfaces:

./common/spl/spl_mtd_blk.c

int spl_mtd_load_image(struct spl_image_info *spl_image,

 struct spl_boot_device *bootdev);

CONFIG_SPL_MISC=y

CONFIG_SPL_ROCKCHIP_SECURE_OTP=y

./drivers/misc/misc-uclass.c

./drivers/misc/rockchip-secure-otp.S

int misc_read(struct udevice *dev, int offset, void *buf, int size);

int misc_write(struct udevice *dev, int offset, void *buf, int size);

CONFIG_SPL_DM_CRYPTO=y

// The defconfig of each platform has enabled the corresponding configuration by

default.

CONFIG_SPL_ROCKCHIP_CRYPTO_V1=y

or

CONFIG_SPL_ROCKCHIP_CRYPTO_V2=y

./drivers/crypto/crypto-uclass.c

./drivers/crypto/rockchip/crypto_v1.c

./drivers/crypto/rockchip/crypto_v2.c

./drivers/crypto/rockchip/crypto_v2_pka.c

./drivers/crypto/rockchip/crypto_v2_util.c

af://n4394
af://n4402

10.4.5 Uart

The SPL serial port is specified via the chosen node of rkxxxx-u-boot.dtsi . Take the rk3308 as an example:

u32 crypto_algo_nbits(u32 algo);

struct udevice *crypto_get_device(u32 capability);

int crypto_sha_init(struct udevice *dev, sha_context *ctx);

int crypto_sha_update(struct udevice *dev, u32 *input, u32 len);

int crypto_sha_final(struct udevice *dev, sha_context *ctx, u8 *output);

int crypto_sha_csum(struct udevice *dev, sha_context *ctx,

 char *input, u32 input_len, u8 *output);

int crypto_rsa_verify(struct udevice *dev, rsa_key *ctx, u8 *sign, u8 *output);

chosen {

 stdout-path = &uart2;

};

&uart2 {

 u-boot,dm-pre-reloc;

 clock-frequency = <24000000>;

 status = "okay";

};

af://n4410

DDR TYPE Configuration value

DDR2 2

DDR3 3

DDR4 0

LPDDR2 5

LPDDR3 6

LPDDR4 7

11. Chapter-11 TPL

TPL is a loader at an earlier stage than U-Boot, TPL runs in SRAM and its role is to replace the ddr bin which is
responsible for completing the initialization of DRAM.TPL is the open source version of the code and ddr bin is
the closed source version of the code.

11.1 Compiling and Packaging

11.1.1 Configuration

UART configuration

CONFIG_DEBUG_UART_BASE: UART base address

CONFIG_ROCKCHIP_UART_MUX_SEL_M: UART IOMUX GROUP.

Example:

RV1126 configures UART2 M2 for printing DEBUG LOG.

Method 1）By modifying the rv1126_defconfig file

Method 2）By making menuconfig

DRAM TYPE configuration

Configure the DRAM TYPE supported by the TPL via CONFIG_ROCKCHIP_TPL_INIT_DRAM_TYPE.

Example:

Configure RV1126 TPL DRAM TYPE to support DDR3.

CONFIG_DEBUG_UART_BASE=0xff570000

CONFIG_ROCKCHIP_UART_MUX_SEL_M=2

Device Drivers ---> Serial drivers ---> (0xff570000) Base address of UART

ARM architecture ---> (2) UART mux select

af://n4415
af://n4417
af://n4418

Method 1）By modifying the rv1126_defconfig file

Method 2）By making menuconfig; It is important to note that if make.sh is followed with chip model number
when compiling, there will be a make xxxdefconfig action when you make, which will overwrite the changes in
menuconfig. To prevent the changes in menuconfig from being overwritten, make.sh can be compiled without
parameters.

Example:

make rv1126_defconfig or . /make.sh rv1126 -> make menuconfig to modify the relevant configuration -> .
/make.sh.

Quick boot configuration

If you need to compile and generate a tpl.bin that supports quick boot, you can do so by opening
CONFIG_SPL_KERNEL_BOOT.

Currently only the RV1126/RV1109 platforms are supported.

Wide-temperature support

If you need to compile and generate a tpl.bin that supports wide temperature, you can do so by opening
CONFIG_ROCKCHIP_DRAM_EXTENDED_TEMP_SUPPORT.

Currently only the RV1126/RV1109 platforms are supported.

Other parameter modifications

The ddr initialization source code is located in the drivers/ram/rockchip directory, other ddr related parameters
such as frequency, drive strength, ODT strength, etc. need to be modified in the source code. For
RV1126/RV1109, the ddr related parameters are centralized in “sdram_inc/rv1126/sdram-rv1126-
loader_params.inc” in this directory, and the corresponding parameters can be modified directly in this file.
Other platform parameters need to be modified in the corresponding sdram_xxx.c.

11.1.2 Compiling

U-Boot compiles the same U-Boot code according to different compilation paths to obtain the TPL firmware,
and automatically generates the CONFIG_TPL_BUILD macro when compiling the TPL. U-Boot will continue to
compile the TPL after compiling the u-boot.bin, and creates a separate output directory . /tpl/ .

CONFIG_ROCKCHIP_TPL_INIT_DRAM_TYPE=3

Device Drivers ---> (3) TPL select DRAM type

 // Compile u-boot

 DTC arch/arm/dts/rv1108-evb.dtb

 DTC arch/arm/dts/rk3399-puma-ddr1866.dtb

 DTC arch/arm/dts/rv1126-evb.dtb

 FDTGREP dts/dt.dtb

 FDTGREP dts/dt-spl.dtb

 FDTGREP dts/dt-tpl.dtb

 CAT u-boot-dtb.bin

 MKIMAGE u-boot.img

 COPY u-boot.dtb

 MKIMAGE u-boot-dtb.img

af://n4478

At the end of the compilation you'll get:

Example:
Compile RV1126 uboot.

11.1.3 Packaging

1. The u-boot-tpl.bin generated from compiling needs to replace the first 4 bytes with the tag of the
corresponding platform to be a legal ddr bin, such as tag “110B” for RV1126/RV1109 platform. If you only
need the ddr bin, you need to manually complete the tag replacement action, the action can refer to
scripts/spl.sh script.

Example: Replace the tage of RV1126 u-boot-tpl.bin

2. If you need to generate a complete Loader file that can be downloaded into the board, you can use the
following commands to automatically replace the u-boot-tpl.bin tag and package it with spl.bin to form a
complete Loader file.

 COPY u-boot.bin

 ALIGN u-boot.bin

 // Compile tpl, with a separate tpl/directory

 CC tpl/common/init/board_init.o

 CC tpl/disk/part.o

 LD tpl/common/init/built-in.o

 LD tpl/u-boot-tpl

 OBJCOPY tpl/u-boot-tpl-nodtb.bin

 COPY tpl/u-boot-tpl.bin

./tpl/u-boot-tpl.bin

./make.sh rv1126

dd bs=4 skip=1 if=tpl/u-boot-tpl.bin of=tpl/u-boot-tpl-tag.bin && sed -i

'1s/^/110B&/' tpl/u-boot-tpl-tag.bin

./make.sh tpl

af://n4485

12. Chapter-12 FIT

12.1 Preface

This section describes the FIT format and details of secure/non-secure boot schemes based on the FIT format.
For the sake of presentation, this section is mainly focused on boot.img, but the same applies to recovery.img.

12.2 Brief Introduction

12.2.1 Basic Introduction

FIT (flattened image tree) is a new firmware type of boot scheme supported by U-Boot, which supports any
number of image packages and checksums. FIT uses its (image source file) to describe the image information,
and then generates itb (flattened image tree blob) image by mkimage tool. The its file uses DTS syntax rules,
which is very flexible and can be used directly with the libfdt library and related tools.

FIT is the default and preferred firmware format supported by U-Boot, and both SPL and U-Boot phases support
booting to FIT-formatted firmware. For more information, please refer to:

Because the official FIT function can not meet the actual product demand, so the RK platform has adapted and
optimized the FIT. Therefore, the mkimage tool compiled by RK U-Boot must be used in the FIT program but
not the mkimage that comes with the PC.

12.2.2 Example Introduction

The following is an introduction to u-boot.its and u-boot.itb as examples.

/images : Statically defines all resources, equivalent to a dtsi file;
/configurations : Each config node describes a set of bootable configurations, equivalent to a board-
level dts file.
default = : Specifies the config that is enabled by default;

./doc/uImage.FIT/

/dts-v1/;

/ {

 description = "Simple image with OP-TEE support";

 #address-cells = <1>;

 images {

 uboot {

 description = "U-Boot";

 data = /incbin/("./u-boot-nodtb.bin");

 type = "standalone";

 os = "U-Boot";

af://n4497
af://n4498
af://n4500
af://n4501
af://n4506

An itb file can be generated using the mkimage tool and the its file:

The fdtdump command allows you to view the contents of the itb file:

 arch = "arm";

 compression = "none";

 load = <0x00400000>;

 hash {

 algo = "sha256";

 };

 };

 optee {

 description = "OP-TEE";

 data = /incbin/("./tee.bin");

 type = "firmware";

 arch = "arm";

 os = "op-tee";

 compression = "none";

 load = <0x8400000>;

 entry = <0x8400000>;

 hash {

 algo = "sha256";

 };

 };

 fdt {

 description = "U-Boot dtb";

 data = /incbin/("./u-boot.dtb");

 type = "flat_dt";

 compression = "none";

 hash {

 algo = "sha256";

 };

 };

 };

 // configurations Any number of different conf nodes can be defined under

the node, but in the actual product scenario we only need one conf.

 configurations {

 default = "conf";

 conf {

 description = "Rockchip armv7 with OP-TEE";

 rollback-index = <0x0>;

 firmware = "optee";

 loadables = "uboot";

 fdt = "fdt";

 signature {

 algo = "sha256,rsa2048";

 padding = "pss";

 key-name-hint = "dev";

 sign-images = "fdt", "firmware", "loadables";

 };

 };

 };

};

 mkimage + dtc

[u-boot.its] + [images] =========> [u-boot.itb]

cjh@ubuntu:~/uboot-nextdev/u-boot$ fdtdump fit/u-boot.itb | less

/dts-v1/;

// magic: 0xd00dfeed

// totalsize: 0x600 (1536)

// off_dt_struct: 0x48

// off_dt_strings: 0x48c

// off_mem_rsvmap: 0x28

// version: 17

// last_comp_version: 16

// boot_cpuid_phys: 0x0

// size_dt_strings: 0xc3

// size_dt_struct: 0x444

/memreserve/ 7f34d3411000 600;

/ {

 version = <0x00000001>; // Add firmware version number

 totalsize = <0x000bb600>; // Add new field to describe the size

of the entire itb file

 timestamp = <0x5ecb3553>; // Add timestamp for current firmware

generation moment

 description = "Simple image with OP-TEE support";

 #address-cells = <0x00000001>;

 images {

 uboot {

 data-size = <0x0007ed54>; // Add new field to describe firmware

size

 data-position = <0x00000a00>; // Add new field to describe firmware

offsets

 description = "U-Boot";

 type = "standalone";

 os = "U-Boot";

 arch = "arm";

 compression = "none";

 load = <0x00400000>;

 hash {

 // Added sha256 checksum for firmware

 value = <0xeda8cd52 0x8f058118 0x00000003 0x35360000 0x6f707465

0x0000009f 0x00000091 0x00000000>;

 algo = "sha256";

 };

 };

 optee {

 data-size = <0x0003a058>;

 data-position = <0x0007f800>;

 description = "OP-TEE";

 type = "firmware";

 arch = "arm";

 os = "op-tee";

 compression = "none";

 load = <0x08400000>;

 entry = <0x08400000>;

 hash {

 value = <0xa569b7fc 0x2450ed39 0x00000003 0x35360000 0x66647400

0x00001686 0x000b9a00 0x552d426f>;

 algo = "sha256";

 };

12.2.3 ITB Structure

The itb is essentially a collection of fdt_blob + images files, with the following two packaging methods, and the
RK platform solution adopts Structure 2.

12.3 Platform Configuration

 };

 fdt {

 data-size = <0x00001686>;

 data-position = <0x000b9a00>;

 description = "U-Boot dtb";

 type = "flat_dt";

 compression = "none";

 hash {

 value = <0x0f718794 0x78ece7b2 0x00000003 0x35360000 0x00000001

0x6e730000 0x636f6e66 0x00000000>;

 algo = "sha256";

 };

 };

 };

 configurations {

 default = "conf";

 conf {

 description = "Rockchip armv7 with OP-TEE";

 rollback-index = <0x00000001>; // Firmware anti-rollback version

number, defaults to 0 if not specified manually.

 firmware = "optee";

 loadables = "uboot";

 fdt = "fdt";

 signature {

 algo = "sha256,rsa2048";

 padding = "pss";

 key-name-hint = "dev";

 sign-images = "fdt", "firmware", "loadables";

 };

 };

 };

};

 fdt blob

|-----------------------------------|

| |------| |------| |------| |

| | img0 | | img1 | | img2 | | Structure 1: image within fdt_blob, i.e.

itb =

| |------| |------| |------| | fdt_blob(including img)

|-----------------------------------|

|--------------|------|------|------|

| | | | |

| fdt blob | img0 | img1 | img2 |Structure 2: image is outside the fdt_blob,

i.e. itb =

| | | | | fdt_blob + img

|--------------|------|------|------|

af://n4520
af://n4523

12.3.1 Chip Support

It has been released as an official Feature on the SDK's platform: Please refer to Home Page section for the
support status of each chip feature.

12.3.2 Code Configuration

Code coding:

Configurations:

Since crypto may be different for different platforms, the configuration parameters for the RSA function are also
different. Please refer to the general defconfig of the current platform for details.

// Framework Code:

./common/image.c

./common/image-fit.c

./common/spl/spl_fit.c

// Platform Code:

./arch/arm/mack-rockchip/fit.c

./cmd/bootfit.c

// Tool Code:

./tools/mkimage.c

./tools/fit_image.c

// U-Boot phase supports FIT

CONFIG_ROCKCHIP_FIT_IMAGE=y

// U-Boot phase: secure boot, anti-rollback, hardware crypto

CONFIG_FIT_SIGNATURE=y

CONFIG_FIT_ROLLBACK_PROTECT=y

CONFIG_DM_CRYPTO=y

CONFIG_FIT_HW_CRYPTO=y

// SPL phase: secure boot, anti-rollback, hardware crypto

CONFIG_SPL_FIT_SIGNATURE=y

CONFIG_SPL_FIT_ROLLBACK_PROTECT=y

CONFIG_SPL_DM_CRYPTO=y

CONFIG_SPL_FIT_HW_CRYPTO=y

// How many copies of uboot.itb does the uboot.img image contain, and how big is

a single copy of uboot.itb?

CONFIG_SPL_FIT_IMAGE_KB=2048

CONFIG_SPL_FIT_IMAGE_MULTIPLE=2

//The default output of uboot project after compilation is uboot.img in fit

format; otherwise it is the traditional RK formats uboot.img and trust.img.

CONFIG_ROCKCHIP_FIT_IMAGE_PACK=y

af://n4524
af://n4526

Generic defconfig: [chip]_defconfig, e.g. rv1126_defconifg, rk3568_defconifg.

If the FIT solution is a feature officially released as an SDK, then most of the base configuration is already
enabled, and the options that users need to configure themselves are:

CONFIG_FIT_SIGNATURE not enabled: uboot can support booting three formats of firmware at the same
time: android, uimage, and fit (the released SDK will choose which ones to enable based on platform
requirements).
CONFIG_FIT_SIGNATURE enabled: uboot only supports booting fit firmware.

12.3.3 Mirror File

The final output on the FIT scheme is two FIT-formatted firmwares for downloading, uboot.img (without
trust.img) and boot.img, and an SPL file for packaging into a loader.

uboot.img file

uboot.itb = trust + u-boot.bin + mcu.bin(option)

uboot.img = uboot.itb * N（N is normally 2 copies）

The trust and mcu files come from the rkbin project, and the build script automatically indexes and
retrives them from the rkbin project.

boot.img file

boot.itb = kernel + fdt + resource + ramdisk(optional)

boot.img = boot.itb * M（M is normally 1 copies）

MCU configuration

Some platforms may come with MCU firmware, which can be enabled or disabled based on the TRUST ini
configuration corresponding to different products. Example:

CONFIG_RSA_N_SIZE

CONFIG_RSA_E_SIZE

CONFIG_RSA_C_SIZE

// U-Boot Secure Boot and Anti-Rollback Mechanisms

CONFIG_FIT_SIGNATURE=y

CONFIG_FIT_ROLLBACK_PROTECT=y

// SPL Secure Boot and Anti-Rollback Mechanism

CONFIG_SPL_FIT_SIGNATURE=y

CONFIG_SPL_FIT_ROLLBACK_PROTECT=y

// File: RKTRUST/RV1126TOS_TB.ini, for quick boot products, MCU enabled

[TOS]

TOSTA=bin/rv11/rv1126_tee_ta_tb_v1.04.bin

ADDR=0x00040000

// MCU configuration format: firmware path, boot address, status (okay or

disabled).

// If disabled, mcu will not be packed into uboot.img.

[MCU]

MCU=bin/rv11/rv1126_mcu_v1.02.bin,0x108000,okay

af://n4542

Platform Compression Format Firmware

RV1126 gzip, none u-boot.bin, trust, mcu(optional)

Firmware Compression

Currently some platforms can support the compression of sub-firmware inside uboot.img, the support is as
follows:

Users can enable this by adding attributes to the corresponding TRUST ini in the rkbin project. Example:

SPL file

SPL file refers to the spl/u-boot-spl.bin generated after the compilation, which is responsible for
booting the uboot.img in FIT format.Users need to use it to replace the non-open-source miniloader on the
RK platform, and eventually package as loader.

./fit directory

When U-Boot is done with compilation, it generates the . /fit folder in the directory, which contains a
number of intermediate files, as described in subsequent sections.

boot.img and uboot.img are compiled and generated under the sdk project and uboot project respectively.
However, boot.img with secure boot support must be repackaged and signed under the U-Boot project, as
described in the following sections.

12.3.4 ITS File

The its file for uboot is . /fit/u-boot.its, dynamically created by the script specified by
CONFIG_SPL_FIT_GENERATOR in defconfig, and visible after the firmware is compiled successfully.
The its file for boot is located under the SDK project:

12.3.5 Related Tools

// RKTRUST/RV1126TOS_SPI_NOR_TINY.ini, for small capacity SPI Nor products.

[TOS]

TOS=bin/rv11/rv1126_tee_v1.02.bin

ADDR=0x08400000

[MCU]

MCU=bin/rv11/rv1126_mcu_v1.00.bin,0x208000,disabled

// Compression format: gzip or none, defaults to uncompressed if the

following configuration fields are not present.

[COMPRESSION]

COMPRESSION=gzip

device/rockchip/[platform]/xxx.its // [platform] is the platform directory:

af://n4580
af://n4587

The use of the scripting tools will be covered in subsequent chapters, here let's focus on the parameters of
make.sh first.

Optional (users to decide whether to pass it on on a case-by-case basis)

--spl-new : Passing this parameter means to use the currently compiled spl file to pack the loader;
otherwise, use the spl file in the rkbin project.
--version-uboot [n] : Specifies the firmware version number of uboot.img. n must be a decimal
positive integer.
--version-boot [n] : Specifies the firmware version number of boot.img. n must be a decimal positive
integer;
--version-recovery [n] : Specifiesthe firmware version number of recovery.img. n must be a decimal
positive integer;

Required (when safe boot is enabled):

--rollback-index-uboot [n] : Specifies the uboot.img firmware anti-rollback version number, n must
be a positive decimal integer
--rollback-index-boot [n] : Specifies the boot.img firmware anti-rollback version number. n must be
a positive decimal integer;
--rollback-index-recovery [n] : Specifies the recovery.img firmware anti-rollback version number.
n must be a positive decimal integer;
--no-check : Used when packaging secure firmware to skip the self-check of the secure firmware
packaging script.

Notes:

1. Firmware Anti-Rollback Version Number: It is only allowed to be activated for use if Secure Boot is
enabled, and the version number is saved in the OTP or other secure storage. Main function: To
prevent the firmware version from being rolled back for vulnerability attacks.

2. Firmware version number: optional, defaults to 0 if not specified. Main function: just as a firmware
version identifier to facilitate the user's version management of the firmware.

12.4 Non-secure Boot

12.4.1 uboot.img

Compile command:

// Kernel packaging tools, which‘s automatically generated after compilation,

exist under both U-Boot and rkbin repositories(the one under U-Boot is generated

in real-time compilation).

./tools/mkimage

// Firmware Packaging Script

./make.sh

// Firmware re-signing script

scripts/fit-resign.sh

// Firmware Unpacking Script

scripts/fit-unpack.sh

// Firmware Replacement Script

./scripts/fit-repack.sh

af://n4617
af://n4618

Compilation results:

Packaging backup: Specify multiple backups of uboot.img via defconfig configuration:

SPL detects and boots U-Boot and trust according to this configuration, mainly to cope with the problem of
unbootable firmware corruption caused by abnormal power loss during OTA upgrade.

12.4.2 boot.img

If the FIT solution is officially released as a feature of the SDK, a boot.img in FIT format will be generated after
the SDK is compiled.

If you want to generate boot.img for secure boot, you have to put the boot.img generated by SDK under U-Boot
project to repackage and re-sign the boot.img, because the signing tools, configurations, parameters, etc. of the
secure firmware package are all originated from U-Boot project.

./make.sh rv1126 --spl-new --uboot-version 10 // You may not specify --spl-new

and --uboot-version

 CC spl/common/spl/spl.o

 CC spl/lib/display_options.o

 LD spl/common/spl/built-in.o

 LD spl/lib/built-in.o

 LD spl/u-boot-spl

 OBJCOPY spl/u-boot-spl-nodtb.bin

 CAT spl/u-boot-spl-dtb.bin

 COPY spl/u-boot-spl.bin

 CFGCHK u-boot.cfg

out:rv1126_spl_loader_v1.00.100.bin

fix opt:rv1126_spl_loader_v1.00.100.bin

merge success(rv1126_spl_loader_v1.00.100.bin)

/home4/cjh/uboot-nextdev

// generate rv1126_spl_loader_v1.00.100.bin（Replaced the traditional miniloader

of the RK platform with spl

// loader ini file source

pack loader(SPL) okay! Input: /home4/cjh/rkbin/RKBOOT/RV1126MINIALL.ini

// Hints from the --spl-new parameter; users can choose not to add this

parameter.

pack loader with new: spl/u-boot-spl.bin

// Generate uboot.img (with trust and uboot) with version 10

Image(no-signed, version=10): uboot.img (FIT with uboot, trust...) is ready

// trust ini file source

pack uboot.img okay! Input: /home4/cjh/rkbin/RKTRUST/RV1126TOS.ini

Platform RV1126 is build OK, with exist .config

CONFIG_SPL_FIT_IMAGE_KB=2048 // the size of one itb

CONFIG_SPL_FIT_IMAGE_MULTIPLE=2 // Number of copies packaged

af://n4626

12.5 Secure Boot

The FIT program supports secure boot, related FEATURES are as follows:

sha256 + rsa2048 + pkcs-v2.1(pss) padding
Firmware Anti-Rollback
Firmware re-signing (remote signing)
Crypto hardware acceleration

12.5.1 Principle

12.5.1.1 Checking Process

Maskrom checks loader（including SPL, ddr, usbplug）
SPL checks uboot.img（including trust, U-Boot...）
U-Boot checks boot.img（including kernel, fdt, ramdisk...）

Currently only the sha256+rsa2048+pkcs-v2.1(pss) padding security checksum mode is supported by default.

12.5.1.2 Key Storage

The RSA key is packaged by mkimage in u-boot.dtb and u-boot-spl.dtb, which are then packaged into u-boot.bin
and u-boot-spl.bin.

The format of the RSA key in u-boot.dtb is as follows (ditto for u-boot-spl.dtb):

cjh@ubuntu:~/uboot-nextdev$ fdtdump u-boot.dtb | less

/dts-v1/;

....

/ {

 #address-cells = <0x00000001>;

 #size-cells = <0x00000001>;

 compatible = "rockchip,rv1126-evb", "rockchip,rv1126";

 model = "Rockchip RV1126 Evaluation Board";

 // Signature nodes are automatically inserted and generated by the mkimage

tool. The nodes hold information such as RSA-SHA algorithm type, RSA core factor

parameters, and so on.

 signature {

 key-dev {

 required = "conf";

 algo = "sha256,rsa2048";

af://n4629
af://n4640
af://n4641
af://n4650

SPL supports downloading key hash, the key-dev of u-boot-spl.dtb will have extra burn-key-hash =

<0x00000001>; .

12.5.1.3 Key Usage

Secure boot from Maskrom to kernel is unified using an RSA public key to complete the security check:

Maskrom checks loader.

The RSA public key needs to be written into the loader's header using the PC tool rk_sign_tool .
During secure booting, Maskrom first obtains the RSA public key from the loader firmware header and
verifies its legitimacy; it then uses the key to verify the loader's firmware signature.

rk_sign_tool is available from the rkbin repository. U-Boot will automatically sign the loader.

SPL checks U-Boot and trust.

 rsa,np = <0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x1327f633 0x00000003 0x00000003 0x00000003

0xc7aead6a 0xb4c79f40 0xa82bdf76 0xfb2f8387 0xa1e06dce 0xd451a706 0xc7f865e3

0x3e2d7ca8 0x6a71762e 0x125f1828 0x36ab1a41 0xb7e9e852 0x7bd0011a 0x7279e0b8

0xf37e189c 0x8cf00963 0x00000100 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000377 0x00000004

0x00000004 0x00000004 0x00000002 0x00000003 0x69616c40 0x00000003 0x6d634066

0x00000010 0x66633630 0x73797363>;

 rsa,c = <0x00000000>;

 rsa,r-squared = <0x00000000>;

 rsa,modulus = <0xc25ae693 0xc359f2a4 0xa866c89d 0xb7b1994f

0xf9f9f690 0x518d54a7 0xda0b83e8 0x06606e12 0x6ad1cbf9 0x92438edd 0x81e039c0

0x5d7322cc 0x124cdc80 0xa0c3288a 0x9265c3ae 0x6ac47a4b 0x00000003 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000008 0x00000003 0x00000003 0x00000003 0x00000002 0x73657300

0x2f736572 0x00000000 0x2f64776d 0x00000003 0x6d634066 0x00000001 0x30303000

0x726f636b 0x67726600 0x00000008 0x00000003 0x00000004 0x00000001 0x30303000

0x726f636b 0x706d7567 0x00000003 0x00001000 0x00000003 0x00000002 0x6e616765

0x30000000 0x726f636b 0x706d7500 0x00000008>;

 rsa,exponent-BN = <0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000003 0x00010001

0xe95771c5 0x00000800 0x64657600 0x616c6961 0x0000002c 0x30303030 0x00000034

0x30303000 0x2f64776d 0x00000002 0x65303030 0x0000001b 0x3132362d 0x00000003

0x00020000 0x00000003 0x00000002 0x65303230 0x0000001b 0x3132362d 0x6e000000

0xfe020000 0x00000042 0x0000006d 0x722d6d61 0x65303030 0x0000001b 0x3132362d

0x00000003 0x00001000 0x00000002 0x6e74726f 0x30000000 0x726f636b 0x706d7563

0x0000003e 0x00000004 0x00000004 0x00000004 0x00000000 0x00000050 0x636c6f63

0x40666634 0x00000014 0x2c727631 0x00000008>;

 rsa,exponent = <0x00000000 0x00000368>;

 rsa,n0-inverse = <0xe95771c5>;

 rsa,num-bits = <0x00000800>;

 key-name-hint = "dev";

 };

 };

af://n4655

SPL saves the RSA public key in u-boot-spl.dtb, and then u-boot-spl.dtb is packed into u-boot-spl.bin file
(and finally packed into loader); SPL takes the RSA public key out of its own dtb file to perform a security
check on the uboot.img during secure boot.

U-Boot checks boot.

U-Boot saves the RSA public key in u-boot.dtb, and then u-boot.dtb will be packed into u-boot.bin file
(and finally packed into uboot.img); U-Boot takes the RSA public key from its own dtb file to verify the
boot.img during the secure boot.

Therefore, the RSA Key of the current level has already been verified by the previous loader as part of its own
firmware, thus guaranteeing the security of the Key.

12.5.1.4 Signature Storage

The RSA signature result is saved in the itb file; and the signed content, specified by hashed-nodes , includes
the attributes of the entire conf node, the nodes of the packaged firmware, and so on.

The following is the signature information for u-boot.itb, ditto for boot.itb:

cjh@ubuntu:~/uboot-nextdev$ fdtdump uboot.img | less

/dts-v1/;

......

 configurations {

 default = "conf";

 conf {

 description = "Rockchip armv7 with OP-TEE";

 // Current firmware version number

 rollback-index = <0x0000001c>;

 firmware = "optee";

 loadables = "uboot";

 fdt = "fdt";

 // Signed content and signature result, automatically inserted by

mkimage

 signature {

 hashed-strings = <0x00000000 0x000000da>;

 // Specify the content to be signed

 hashed-nodes = "/", "/configurations", "/configurations/conf",

"/images/fdt", "/images/fdt/hash", "/images/optee", "/images/optee/hash",

"/images/uboot", "/images/uboot/hash";

 // Time of signing, signer, version

 timestamp = <0x5e9427b4>;

 signer-version = "2017.09-g8bb63db-200413-dirty #cjh";

 signer-name = "mkimage";

 // signature results！！(using sha256+rsa2048)

 value = <0x78397d5d 0xb9219a0b 0xa7cb91a7 0xe1f32867 0x62719d9b

0x8901200c 0xfcbac03a 0x1295ccc8 0x1cff9608 0xdf5f69d2 0x21391225 0x7af10ca7

0x5527864f 0xb13f527e 0xddf9ee62 0xea50199d 0x00000003 0x35362c72 0x00000004

0x00000017 0x77617265 0x00000002 0x00000009 0x23616464 0x6d616765 0x73006172

0x6f6e006c 0x72790064 0x61636b2d 0x7265006c 0x006b6579 0x69676e2d 0x706f7369

0x7a650074 0x75650073 0x69676e65 0x73686564 0x642d7374 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000>;

af://n4670

12.5.1.5 Anti-rollback

Secure boot supports specifying the current firmware version number for boot.img and uboot.img
respectively, if the current firmware version number is less than the minimum version number on the
machine, boot will not be allowed.
Minimum version number update: After completing the security verification and confirming that the
system can be booted normally, it is updated to the OTP or secure storage.

12.5.2 Preliminary Preparation

12.5.2.1 Key

Execute the following three commands under U-Boot project to generate the RSA key pair for signing.
Normally, you only need to generate the key pair once, and then you will use this key pair to sign and verify the
firmware, so please take good care of it .

If the error is reported there is no .rnd file in the user directory:

Can't load /home4/cjh//.rnd into RNG
140522933268928:error:2406F079:random number generator:RAND_load_file:Cannot open
file:../crypto/rand/randfile.c:88:Filename=/home4/cjh//.rnd

Please create it manually first: touch ~/.rnd

ls keys/ view results:

Note: The aforesaid names “keys”, “dev.key”, “dev.crt”, “dev.pubkey” cannot be changed. Because these
names are statically defined in the its file, if you change them, the package will fail.

12.5.2.2 Configuration

 algo = "sha256,rsa2048";

 key-name-hint = "dev";

 sign-images = "fdt", "firmware", "loadables";

 };

 };

 };

// 1. Directory for keys: keys

mkdir -p keys

// 2. Use “rk_sign_tool” to generate privateKey.pem and publicKey.pem for

RSA2048 (please refer to the manual of rk_sign_tool), and rename them as:

keys/dev.key and keys/dev.pubkey respectively.

// 3. Generate a self-signed certificate using -x509 and a private key:

keys/dev.crt (essentially equivalent to a public key)

openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

dev.crt dev.key dev.pubkey

af://n4674
af://n4680
af://n4681
af://n4692

Enable the following configuration for U-Boot 's defconfig:

It is recommended to check the configuration by make menuconfig and then update the original defconfig
file by make savedefconfig. This can avoid imposing a defconfig configuration and resulting in incorrect
dependencies, which may lead to compilation failures.

12.5.2.3 Firmware

Make a copy of the boot.img generated under the SDK project to the U-Boot root directory.

12.5.3 Compiling and Packaging

（1）Basic commands (no anti-rollback):

Compilation results:

（2）Extended command 1:

If anti-rollback is turned on, the rollback parameter must be appended to the aforesaid in (1) . Example:

// Required

CONFIG_FIT_SIGNATURE=y

CONFIG_SPL_FIT_SIGNATURE=y

// Optional

CONFIG_FIT_ROLLBACK_PROTECT=y // boot.img anti-rollback

CONFIG_SPL_FIT_ROLLBACK_PROTECT=y // uboot.img anti-rollback

./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img

......

// After compilation, generate signed uboot.img and boot.img.

start to sign rv1126_spl_loader_v1.00.100.bin

......

sign loader ok.

......

Image(signed, version=0): uboot.img (FIT with uboot, trust...) is ready

Image(signed, version=0): recovery.img (FIT with kernel, fdt, resource...) is

ready

Image(signed, version=0): boot.img (FIT with kernel, fdt, resource...) is ready

Image(signed): rv1126_spl_loader_v1.05.106.bin (with spl, ddr, usbplug) is

ready

pack uboot.img okay! Input: /home4/cjh/rkbin/RKTRUST/RV1126TOS.ini

Platform RV1126 is build OK, with new .config(make rv1126-secure_defconfig)

// Specify the minimum version numbers of uboot.img and boot.img as 10 and 12,

respectively.

./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img --

rollback-index-uboot 10 --rollback-index-boot 12 --rollback-index-recovery 12

af://n4697
af://n4699

Compilation results:

（3）Extended command 2

If you want to download the public key hash to OTP/eFUSE, you must append the parameter --burn-key-hash
to the (1) or (2) above. Example:

Compilation results:

When powering up and booting, SPL will print: RSA: Write key hash successfully.

（4）Precautionary notes:

......

// After compilation, the signed uboot.img and boot.img are generated and

contain the anti-rollback version number.

start to sign rv1126_spl_loader_v1.00.100.bin

......

sign loader ok.

......

Image(signed, version=0, rollback-index=10): uboot.img (FIT with uboot, trust)

is ready

Image(signed, version=0, rollback-index=12): recovery.img (FIT with kernel,

fdt, resource...) is ready

Image(signed, version=0, rollback-index=12): boot.img (FIT with kernel, fdt,

resource...) is ready

Image(signed): rv1126_spl_loader_v1.00.100.bin (with spl, ddr, usbplug) is

ready

// Specify the minimum version numbers of uboot.img and boot.img as 10 and 12,

respectively.

// it is require to download the public key hash into OTP/eFUSE at SPL stage

./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img --

rollback-index-uboot 10 --rollback-index-boot 12 --rollback-index-recovery 12 --

burn-key-hash

......

// enable burn-key-hash

spl/u-boot-spl.dtb: burn-key-hash=1

// After compilation, the signed uboot.img and boot.img are generated and

contain the anti-rollback version number.

start to sign rv1126_spl_loader_v1.00.100.bin

......

sign loader ok.

......

Image(signed, version=0, rollback-index=10): uboot.img (FIT with uboot, trust)

is ready

Image(signed, version=0, rollback-index=12): recovery.img (FIT with kernel,

fdt, resource...) is ready

Image(signed, version=0, rollback-index=12): boot.img (FIT with kernel, fdt,

resource...) is ready

Image(signed): rv1126_spl_loader_v1.00.100.bin (with spl, ddr, usbplug) is

ready

--boot_img : Optional, specifies the boot.img to be signed.

--recovery_img : Optional, specifies the recovery.img to be signed.

--rollback-index-uboot , --rollback-index-boot , --rollback-index-recovery : Optional,
specifies the anti-rollback version number.

--spl-new : If the compiling command doesn't have this parameter, the loader will be packaged with the
spl file in rkbin by default; otherwise, the loader will be packaged with the spl file of the current
compilation.

Because the u-boot-spl.dtb needs to be packed into the RSA public key (from the user), the SDK released
by RK will not submit the spl file in the rkbin repository to support secure boot. Therefore, the user has to
specify this parameter when compiling. However, users can also submit their own spl version to the rkbin
project, and after that they can compile the firmware without specifying this parameter, and use this stable
version of the spl file every time.

The compilation generates three firmwares: loader, uboot.img, and boot.img, any of which are allowed to
be updated individually as long as the RSA key has not been changed.

12.5.4 Checking Principles

（1） Maskrom checks SPL

OTP without downloading key: Maskrom performs a non-secure boot process.

OTP with downloading key: Maskrom checks the key in the Loader, it must be the same as the one in the OTP to
start the security check, if not, it won't let it start.

（2）SPL checks U-Boot

CONFIG_SPL_FIT_SIGNATURE=y: SPL will surely perform a security check on uboot.img, and only if the
check succeeds the boot can be performed; And if uboot.img does not have a signature or the check fails, the
boot won't be performed.

CONFIG_SPL_FIT_SIGNATURE=n: SPL itself does not contain secure boot related code and must not check
uboot.img (no matter it is signed or not).

（3）U-Boot checks boot/recovery

CONFIG_FIT_SIGNATURE=y: U-Boot will definitely perform security checks on boot.img/recovery.img, and
boot only when the checks are successful; boot.img/recovery.img is not signed or fails to be checked, and does
not boot.

CONFIG_FIT_SIGNATURE=n: U-Boot itself contains no secure boot related code and must not check
boot.img/recovery.img (no matter it is signed or not).

Note: Whether or not the current level will check the later level has nothing to do with whether or not the
current level of firmware is signed. It only depends on whether it contains code for secure boot, i.e.
whether the above configuration is set to y or not.

12.5.5 Booting Information

The following is the information for Secure Boot:

BW=32 Col=10 Bk=8 CS0 Row=15 CS=1 Die BW=16 Size=1024MB

out

af://n4729
af://n4741

U-Boot SPL board init

U-Boot SPL 2017.09-gacb99c5-200408-dirty #cjh (Apr 09 2020 - 20:51:21)

unrecognized JEDEC id bytes: 00, 00, 00

Trying to boot from MMC1

// SPL completes signature checking

sha256,rsa2048:dev+

// Anti-rollback detection: the current uboot.img firmware version number is 10,

the minimum version number of this machine is 9.

rollback index: 10 >= 9, OK

// SPL completes hash checkings for each sub-mirror

Checking optee ... sha256+ OK

Checking uboot ... sha256+ OK

Checking fdt ... sha256+ OK

Jumping to U-Boot via OP-TEE

I/TC:

E/TC:0 0 plat_rockchip_pmu_init:2003 0

E/TC:0 0 plat_rockchip_pmu_init:2006 cpu off

E/TC:0 0 plat_rockchip_pmusram_prepare:1945 pmu sram prepare 0x14b10000

0x8400880 0x1c

E/TC:0 0 plat_rockchip_pmu_init:2020 pmu sram prepare

E/TC:0 0 plat_rockchip_pmu_init:2056 remap

I/TC: OP-TEE version: 3.6.0-233-g35ecf936 #1 Tue Mar 31 08:46:13 UTC 2020 arm

I/TC: Next entry point address: 0x00400000

I/TC: Initialized

U-Boot 2017.09-gacb99c5-200408-dirty #cjh (Apr 09 2020 - 20:51:21 +0800)

Model: Rockchip RV1126 Evaluation Board

PreSerial: 2

DRAM: 1023.5 MiB

Sysmem: init

Relocation Offset: 00000000, fdt: 3df404e0

Using default environment

dwmmc@ffc50000: 0

Bootdev(atags): mmc 0

MMC0: HS200, 200Mhz

PartType: EFI

boot mode: normal

conf: sha256,rsa2048:dev+

resource: sha256+

DTB: rk-kernel.dtb

FIT: signed, conf required

HASH(c): OK

I2c0 speed: 400000Hz

PMIC: RK8090 (on=0x10, off=0x00)

vdd_logic 800000 uV

vdd_arm 800000 uV

vdd_npu init 800000 uV

vdd_vepu init 800000 uV

......

Hit key to stop autoboot('CTRL+C'): 0

Booting FIT Image at 0x3d8122c0 with size 0x0052b200

Fdt Ramdisk skip relocation

Loading kernel from FIT Image at 3d8122c0 ...

 Using 'conf' configuration

 // uboot completes signature checking

 Verifying Hash Integrity ... sha256,rsa2048:dev+ OK

 // Anti-rollback detection: the current boot.img firmware version number is

22, the minimum version number of this machine is 21

 Verifying Rollback-index ... 22 >= 21, OK

 Trying 'kernel' kernel subimage

 Description: Kernel for arm

 Type: Kernel Image

 Compression: uncompressed

 Data Start: 0x3d8234c0

 Data Size: 5349248 Bytes = 5.1 MiB

 Architecture: ARM

 OS: Linux

 Load Address: 0x02008000

 Entry Point: 0x02008000

 Hash algo: sha256

 Hash value:

64b4a0333f7862967be052a67ee3858884fcefebf4565db5c3828a941a15f34a

 Verifying Hash Integrity ... sha256+ OK // Complete the kernel's hash

verifications

Loading ramdisk from FIT Image at 3d8122c0 ...

 Using 'conf' configuration

 Trying 'ramdisk' ramdisk subimage

 Description: Ramdisk for arm

 Type: RAMDisk Image

 Compression: uncompressed

 Data Start: 0x3dd3d4c0

 Data Size: 0 Bytes = 0 Bytes

 Architecture: ARM

 OS: Linux

 Load Address: 0x0a200000

 Entry Point: unavailable

 Hash algo: sha256

 Hash value:

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

 Verifying Hash Integrity ... sha256+ OK // Complete the verification for

Hash of the ramdisk

 Loading ramdisk from 0x3dd3d4c0 to 0x0a200000

Loading fdt from FIT Image at 3d8122c0 ...

 Using 'conf' configuration

 Trying 'fdt' fdt subimage

 Description: Device tree blob for arm

 Type: Flat Device Tree

 Compression: uncompressed

 Data Start: 0x3d812ec0

 Data Size: 66974 Bytes = 65.4 KiB

 Architecture: ARM

 Load Address: 0x08300000

 Hash algo: sha256

 Hash value:

8fb1f170766270ed4f37cce4b082a51614cb346c223f96ddfe3526fafc5729d7

 Verifying Hash Integrity ... sha256+ OK // Complete the verification for hash

of fdt

 Loading fdt from 0x3d812ec0 to 0x08300000

 Booting using the fdt blob at 0x8300000

12.6 Remote Signature

From the above sections, it can be seen that the creation of secure firmware requires the user to complete it on
the local PC, i.e. the user must be in possession of: the RSA key pair and the firmware. However, in practical
scenarios, the user may need to upload the firmware to a remote server, which will sign it with the RSA private
key, and then return the signed firmware to the local user. In this case, RK's FIT scheme needs to be realized by
“re-signing”.

12.6.1 Implementation Idea

Since it can only get the server's public key, users first uses the temporary private key + server public key
to pack and sign the firmware once on the local PC, which will generate the secure firmware with the
temporary signature and the signed data;

The purpose of the public key is to package the public key into a dtb file to be used during the
secure boot process; the purpose of the private key is for the temporary signature.

The user sends the signed data to the server (no need to send the whole firmware, which saves time), the
server uses the private key to sign the signed data, and then returns the signature to the user;

The user replaces the temporary signature in the secure firmware with this signature to obtain the final
secure firmware for downloading.

12.6.2 Signed Data

The signed data mentioned in the above section contains: fdt blob configuration + submirror hash set.

fdt blob node configuration

`hashed-nodes specifies a series of nodes whose contents are incorporated into the signed data.

 Loading Kernel Image from 0x3d8234c0 to 0x02008000 ... OK

 Using Device Tree in place at 08300000, end 0831359d

Adding bank: 0x00000000 - 0x08400000 (size: 0x08400000)

Adding bank: 0x0848a000 - 0x40000000 (size: 0x37b76000)

Total: 236.327 ms

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0xf00

[0.000000] Linux version 4.19.111 (cjh@ubuntu) (gcc version 6.3.1 20170404

(Linaro GCC 6.3-2017.05)) #28 SMP PREEMPT Wed Mar 25 16:03:27 CST 2020

[0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d

cjh@ubuntu:~/uboot-nextdev$ fdtdump uboot.img | less

/dts-v1/;

......

configurations {

 default = "conf";

 conf {

 description = "Rockchip armv7 with OP-TEE";

 rollback-index = <0x0000001c>;

af://n4744
af://n4746
af://n4756

The set of submirror hashes.

mkimage automatically generates hash values for each submirror and appends them to the hash nodes. All
sub-mirror hash values specified by sign-images are incorporated into the signed data (essentially, the
hash nodes are specified via hashed-nodes). Example:

12.6.3 Detailed Steps

The RSA key pairs used to sign the firmware are: dev.key, dev.pubkey, and dev.crt. dev.key is held by the remote
server as the private key, and the user has only dev.pubkey and dev.crt.

Step 1:

 firmware = "optee";

 loadables = "uboot";

 fdt = "fdt";

 signature {

 hashed-strings = <0x00000000 0x000000da>;

 // The contents of these nodes are incorporated into the

signed data

 hashed-nodes = "/", "/configurations/conf", "/images/fdt",

"/images/fdt/hash", "/images/optee", "/images/optee/hash", "/images/uboot",

"/images/uboot/hash";

cjh@ubuntu:~/uboot-nextdev/u-boot$ fdtdump fit/u-boot.itb | less

/dts-v1/;

......

/ {

 totalsize = <0x000bb600>;

 timestamp = <0x5ecb3553>;

 description = "Simple image with OP-TEE support";

 #address-cells = <0x00000001>;

 images {

 uboot {

 data-size = <0x0007ed54>;

 data-position = <0x00000a00>;

 description = "U-Boot";

 type = "standalone";

 os = "U-Boot";

 arch = "arm";

 compression = "none";

 load = <0x00400000>;

 hash {

 // The hash of the uboot image, automatically calculated and

generated by the mkimage tool

 value = <0xeda8cd52 0x8f058118 0x00000003 0x35360000

0x6f707465 0x0000009f 0x00000091 0x00000000>;

 algo = "sha256";

 };

 };

af://n4767

In local U-Boot project environment: user put dev.crt into keys directory, then use RK's “rk_sign_tool” tool to
generate a random temporary private key, name it dev.key and put it into keys directory. Refer to the above
section (but add --no-check to the compilation parameter) to generate the signed firmware uboot.img and
boot.img (which won't actually be used in the end, what users need are the intermediate files).

Note: The compiling command should specify the parameter --no-check , otherwise the self-checking of the
packing script will fail due to the mismatch between dev.key and dev.crt. For example:

In addition to generating the signed firmware uboot.img and boot.img, users can also get intermediate files in the
fit/ directory

Step 2:

The user sends uboot.data2sign to the remote server. Assuming that the remote server holds the private key
dev.key, use the following command to sign and output the signing result: uboot.sig

The server returns the signature result file uboot.sig to the user, who uses uboot.sig to replace the temporary
signature in uboot.itb:

Ditto for the boot.itb file. From this the user gets the final valid signed firmware uboot.img and boot.img.

Notes:

The itb file specified by -f in fit-resign.sh is not an img file. The script will generate the img file after re-
signing the itb.
The itb file used to execute fit-resign.sh must have been compiled in step 1, i.e., the itb file and the
data2sign file are in one-to-one correspondence because the data2sign information contains the timestamp
at which the itb file was generated, i.e., /timestamp = <... > . So even if there are no current code
changes, recompiling to get a new uboot.itb and replacing uboot.sig into the new uboot.itb will still cause a
secure boot failure!
Since there is no private key, the loader needs to be sent separately to the server side for signing.

12.6.4 Other Solutions

./make.sh rv1126 --spl-new --boot_img boot.img --rollback-index-uboot 10 --

rollback-index-boot 12 --no-check

// Signed content (data2sign means: data to sign)

fit/uboot.data2sign

fit/boot.data2sign

// Signed itb files (using a temporary private key), our img files are obtained

from multiple backups of them

fit/uboot.itb

fit/boot.itb

openssl dgst -sha256 -sign dev.key -sigopt rsa_padding_mode:pss -out uboot.sig

uboot.data2sign

./scripts/fit-resign.sh -f fit/uboot.itb -s uboot.sig // A new uboot.img will be

generated and used for downloading.

af://n4789

Besides the “re-signing” method, is it possible to upload the whole firmware (boot.img, uboot.img) or discrete
images (u-boot.bin, fdt, ramdisk, kernel ...) directly to the server for signing?

Considering the design principles and implementation of FIT, other solutions are difficult to implement.
Explainations are as follows :

Solution 1: Upload non-secure boot.img, uboot.img to server for repackaging + signing

Problematic point: You also need to upload the configuration information, u-boot-spl.bin file, etc. under the
local U-Boot compilation environment.

Solution 2: Upload secure boot.img, uboot.img to server for repackaging + signing

Problematic point: The RSA public key has been packed when compiling the firmware locally, and the
server will pack the RSA public key twice.

Solution 3: Upload all discrete images (kernel, dtb, ramdisk, resource...) for packaging + signing

Problematic point: It is cumbersome with so many files to upload, and has the same problem as solution
one.

The common problematic point of the above solutions: the server side must use RK's mkimage tool,
which is likely to be updated by RK.

In conclusion, the current “re-signing” is the easiest, dependency-free, least error-prone solution: all the user
need is uploading the signed data, and then the server uses the openssl command to sign it.

12.7 Firmware Unpacking

The user can unpack the firmware with the help of a script, such as boot.img:

If img contains multiple backups, the script only unpackages the first itb; sha256+ means the firmware is
not corrupted, otherwise it shows sha256-.

12.8 Firmware Replacement

Users can batch replace sub-firmware with the help of scripts. For example: replace self-own bl31.elf into
other‘s uboot_legacy.img:

1. Compile your own uboot.img with your own bl31.elf

2. Unpack uboot_legacy.img to the out/ directory with fit-unpack.sh

cjh@ubuntu:~/uboot-nextdev$./scripts/fit-unpack.sh -f boot.img -o out

Unpack to directory out:

 fdt : 82813 bytes... sha256+

 kernel : 5844640 bytes... sha256+

 ramdisk : 0 bytes... sha256+

 resource : 120832 bytes... sha256+

af://n4805
af://n4810

3. Delete all atf-xxx files from the out/ directory.

4. Use fit-repack.sh to replace all the sub-mirrors in out/ into your own uboot.img. At this point, the new
uboot.img contains your own bl31 and the other sub-mirrors in uboot_legacy.img, which achieves the
desired replacement effect.

Principle Explanation:

The sub-mirror replacement strategy is not “replace my sub-mirror into his uboot.img”, but “replace his sub-
mirror into my uboot.img”.

Reason: the atf-xxx in uboot.img comes from bl31.elf, the number of atf-xxx contained in the old and new
bl31.elf may be different, and if it is different, it can't be replaced equally. Although the number of sub-mirrors
other than atf-xxx such as u-boot, bl32, mcu, etc. are fixed, this reverse substitution strategy is used in order to
support the replacement of bl31.elf.

The above describes the replacement of bl31.elf, and the same strategy is applicable for the replacement of other
submirrors.

12.9 Safety Checking Step-by-Step

1. Enter the u-boot directory, open configs/rxxxxx_defconfig of the corresponding platform and select the
following configuration:

cjh@ubuntu:~/uboot-nextdev$./scripts/fit-unpack.sh -f uboot_legacy.img -o

out/

uboot_legacy.img: Device Tree Blob version 17, size=2560, boot CPU=0, string

block size=197, DT structure block size=2204

Unpack to directory out:

 uboot : 576352 bytes... sha256+

 atf-1 : 69089 bytes... sha256+

 atf-2 : 36864 bytes... sha256+

 atf-3 : 24576 bytes... sha256+

 optee : 228134 bytes... sha256+

 fdt : 8867 bytes... sha256+

cjh@ubuntu:~/uboot-nextdev$./scripts/fit-repack.sh -f uboot.img -d out/

uboot.img: Device Tree Blob version 17, size=2560, boot CPU=0, string block

size=197, DT structure block size=2204

Unpack to directory out/repack/:

 uboot : 576352 bytes... sha256+

 atf-1 : 69089 bytes... sha256+

 atf-2 : 36864 bytes... sha256+

 atf-3 : 24576 bytes... sha256+

 optee : 228134 bytes... sha256+

 fdt : 8867 bytes... sha256+

Image(repack): uboot.img is ready

af://n4827

2. Perform the following to generate keys:

Note: This step can be performed just once, and then save these keys properly.

3. Compile and sign, take rv1126 as an example (if compiling and signing other chip firmware, such as
rk3566, just change rv1126 to rk3566 in the following command):

 If the compilation appears:

Execute:

4. Public key hash downloading:

// Required

CONFIG_FIT_SIGNATURE=y

CONFIG_SPL_FIT_SIGNATURE=y

// Optional

CONFIG_FIT_ROLLBACK_PROTECT=y // boot.img anti-rollback

CONFIG_SPL_FIT_ROLLBACK_PROTECT=y // uboot.img anti-rollback

mkdir -p keys

../rkbin/tools/rk_sign_tool kk --bits 2048 --out .

cp privateKey.pem keys/dev.key && cp publicKey.pem keys/dev.pubkey

openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

// Linux: Copy boot.img and recovery.img to the u-boot file, execute the

following script to sign loader,uboot,boot,recovery, set the anti-version

rollback number of uboot,boot,recovery, and note that the anti-rollback version

number is configured according to the need.

./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img --

rollback-index-uboot 1 --rollback-index-boot 2

// Android: signature loader, uboot, set uboot anti-version rollback number, and

note that the anti-rollback version number is configured according to the need.

./make.sh rv1126 --spl-new --rollback-index-uboot 1

Can't load XXXXXX//.rnd into RNG

touch ~/.rnd

// Linux: Copy boot.img and recovery.img to the u-boot file, execute the

following script to sign loader,uboot,boot,recovery, set the anti-rollback

version number of uboot,boot,recovery, note that the anti-rollback version

number is configured according to the need to enable the downloading of the key

hash

./make.sh rv1126 --spl-new --boot_img boot.img --recovery_img recovery.img --

rollback-index-uboot 1 --rollback-index-boot 2 --burn-key-hash

// Android: Sign loader,uboot, set the anti-rollback version number of uboot,

note that the anti-rollback version number is configured according to the need

to enable the downloading of the key hash

./make.sh rv1126 --spl-new --rollback-index-uboot 1 --burn-key-hash

Note: This step would configure --burn-key-hash after the entire product development has been verified,
otherwise security is turned on. And only signed firmware can be updated during product development.

5. Other firmware signatures for Android :

Please refer to《Rockchip_Developer_Guide_Secure_Boot_for_UBoot_Next_Dev_CN.md》

13. Chapter-13 Fast Boot

13.1 Chip Support

rv1126

13.2 Storage Support

eMMC
spi nor

13.3 bootrom Support

Currently the spi nor driver of bootrom supports 4-wire DMA mode to load the lower level firmware, this
support has been configured directly in the usbplug when burning firmware, customers do not need to configure
again.

eMMC has not been optimized for this.

13.4 U-Boot SPL Support

Quick boot in FIT format is supported under U-Boot SPL, as well as keystroke entry into loader mode and low
battery detection.

Configurations:

U-Boot SPL supports preload function, after enabling the preload function, the firmware can be loaded while
executing other programs. Currently it is mainly used to preload ramdisk.

For example, preloading a gzip-compressed ramdisk, the compression command:

The its file is configured as follows:

CONFIG_SPL_KERNEL_BOOT=y // Enable quick boot function

CONFIG_SPL_BLK_READ_PREPARE=y // Enable preloading function

CONFIG_SPL_MISC_DECOMPRESS=y // Enable decompression function

CONFIG_SPL_ROCKCHIP_HW_DECOMPRESS=y

cat ramdisk | gzip -n -f -9 > ramdisk.gz

ramdisk {

 data = /incbin/("./images-tb/ramdisk.gz");

 compression = "gzip"; // compression format

 type = "ramdisk";

 arch = "arm";

af://n4856
af://n4857
af://n4861
af://n4867
af://n4870

Compile firmware, e.g. compile rv1126 eMMC firmware:

13.5 MCU Configuration

Currently the main role of mcu is to assist the system to boot up and initialize the ISP and other modules in
advance. kernel will take over the control of these hardware modules after booting.

Configured within the chip file corresponding to rkbin/RKTRUST, using rv1126 as an example:

Address of mcu program:

After U-Boot is compiled, it will package the mcu firmware into uboot.img. When the system boots, SPL will
parse and load the mcu firmware from uboot.img.

13.6 Kernel Support

Configuration:

For quick booting, SPL does not modify the parameters of kernel dtb based on actual hardware parameters, so
some parameters need to be configured by the user, specifically

memory
Size of ramdisk before and after decompression

 os = "linux";

 preload = <1>; // preloaded symbol

 comp = <0x5800000>; // loading address

 load = <0x2800000>; // decompression address

 decomp-async; // asynchronous decompression

 hash {

 algo = "sha256";

 uboot-ignore = <1>; // No hash checks.

 };

};

./make.sh rv1126-emmc-tb && ./make.sh --spl

[MCU]

MCU=bin/rv11/rv1126_mcu_v1.02.bin,0x108000,okay // Configure the corresponding

firmware location, boot address and enable flag

https://10.10.10.29/admin/repos/rtos/rt-thread/rt-thread-amp

https://10.10.10.29/admin/repos/rk/mcu/hal

CONFIG_ROCKCHIP_THUNDER_BOOT=y // Enable quick boot function

CONFIG_ROCKCHIP_THUNDER_BOOT_MMC=y // Enable the support for emmc

 quick boot optimization

CONFIG_ROCKCHIP_THUNDER_BOOT_SFC=y // Enable the support for spi

 nor quick boot optimization

CONFIG_VIDEO_ROCKCHIP_THUNDER_BOOT_ISP=y // Enable the support for ISP

 nor quick boot optimization

af://n4881
af://n4888

For details please refer: kernel/arch/arm/boot/dts/rv1126-thunder-boot.dtsi

Configuration for emmc:

memory: memory {

 device_type = "memory";

 reg = <0x00000000 0x20000000>; //Need to be pre-defined based on real DDR

capacity, SPL does not correct it

};

reserved-memory {

 trust@0 {

 reg = <0x00000000 0x00200000>; // trust space

 no-map;

 };

 trust@200000 {

 reg = <0x00200000 0x00008000>;

 };

 ramoops@210000 {

 compatible = "ramoops";

 reg = <0x00210000 0x000f0000>;

 record-size = <0x20000>;

 console-size = <0x20000>;

 ftrace-size = <0x00000>;

 pmsg-size = <0x50000>;

 };

 rtos@300000 {

 reg = <0x00300000 0x00100000>; // Reserved for use on the client side,

can be deleted if not in use

 no-map;

 };

 ramdisk_r: ramdisk@2800000 {

 reg = <0x02800000 (48 * 0x00100000)>; // Decompression source address,

can be changed according to the actual size

 };

 ramdisk_c: ramdisk@5800000 {

 reg = <0x05800000 (20 * 0x00100000)>; // Compression source address, can

be changed based on actual size

 };

};

/ {

 reserved-memory {

 mmc_ecsd: mmc@20f000 {

 reg = <0x0020f000 0x00001000>; // SPL upload ecsd region

to kernel

 };

 mmc_idmac: mmc@500000 {

 reg = <0x00500000 0x00100000>; //When preloading the

ramdisk, the memory area of idmac is reserved, and when the preloading is

finished, the memory in this area is released.

Configuration for spi nor:

13.7 Fast Boot Process

 };

 };

 thunder_boot_mmc: thunder-boot-mmc {

 compatible = "rockchip,thunder-boot-mmc";

 reg = <0xffc50000 0x4000>;

 memory-region-src = <&ramdisk_c>;

 memory-region-dst = <&ramdisk_r>;

 memory-region-idmac = <&mmc_idmac>;

 };

};

/ {

 thunder_boot_spi_nor: thunder-boot-spi-nor {

 compatible = "rockchip,thunder-boot-sfc";

 reg = <0xffc90000 0x4000>;

 memory-region-src = <&ramdisk_c>;

 memory-region-dst = <&ramdisk_r>;

 };

};

af://n4903

14. Chapter-14 Platform Definition

14.1 ATF/OPTEE

1. Minimum version of ATF/OPTEE for U-Boot charging standby requirements

af://n4908
af://n4909

Chips Type Minimum Version Number

RV1108 N/A

RK1808 N/A

RK1806 N/A

RK3036 N/A

RK3128x N/A

RK3126 rk3126_tee_ta_v1.39.bin

RK322x N/A

RK3288 rk3288_tee_ta_v1.43.bin

RK3368 rk3368h_bl31_v2.22.elf

RK3328 N/A

RK3399 rk3399_bl31_v1.32.elf

RK3399Pro rk3399_bl31_v1.32.elf

RK3399Pro-npu rk3399_bl31_v1.32.elf

RK3308
rk3308_bl31_v2.00.elf
rk3308_bl31_aarch32_v2.20.elf

PX30 px30_bl31_v1.05.elf

RK3326 rk3326_bl31_v1.05.elf

RV1126/RV1109 N/A

RK3568
rk3588_bl31_v1.26.elf
rk3588_bl31_ultra_v2.06.elf

RK3566
rk3588_bl31_v1.26.elf
rk3588_bl31_ultra_v2.06.elf

RK3588 rk3588_bl31_v1.24.elf

RV1106/RV1103 N/A

RK3528 N/A

RK3562 In-process

RK3576 rk3576_bl31_v1.04.elf

RV1106B/RV1103B N/A

RK3506 In-process

14.2 Clock

af://n4995

Chips Clocking Frequency enhancement processor

RV1108 N/A N/A

RK1808 N/A N/A

RK1806 N/A N/A

RK3036 N/A N/A

RK3128x N/A N/A

RK3126 N/A N/A

RK322x N/A N/A

RK3288 N/A N/A

RK3368 N/A N/A

RK3328 N/A N/A

RK3399 N/A N/A

RK3399Pro N/A N/A

RK3399Pro-npu N/A N/A

RK3308 N/A N/A

PX30 Ordinary clock Voltage + Frequency

RK3326 Ordinary clock Voltage + Frequency

RV1126/RV1109 N/A N/A

RK3568 SCMI clock Voltage + Frequency

RK3566 SCMI clock Voltage + Frequency

RK3588 N/A N/A

RV1106/RV1103 N/A N/A

RK3528 SCMI clock Voltage

RK3562 SCMI clock Voltage

RK3576 N/A N/A

RV1106B/RV1103B N/A N/A

RK3506 N/A N/A

1. CPU Clocking Support List

14.3 Defconfig

1. Defconfig support by platforms (subject to SDK release)

af://n5108

“[chip]_defconfig” or ‘[chip].config’ are usually full-featured versions, the rest are feature-specific.

Chips defconfig
Support kernel
dtb

RemarksChips defconfig
Support kernel
dtb

Remarks

RV1108 evb-rv1108_defconfig N generic version

RK1808 rk1808_defconfig Y generic version

RK1806 rk1806_defconfig Y generic version

RK3036 rk3036_defconfig Y generic version

RK3128x rk3128x_defconfig Y generic version

RK3126 rk3126_defconfig Y generic version

RK322x rk322x_defconfig Y generic version

RK3288 rk3288_defconfig Y generic version

RK3368 rk3368_defconfig Y generic version

RK3328 rk3328_defconfig Y generic version

RK3399 rk3399_defconfig Y generic version

RK3399Pro rk3399pro_defconfig Y generic version

RK3399Pro-npu rknpu-lion_defconfig Y generic version

RK3308
rk3308_defconfig
rk3308-
aarch32_defconfig

Y
generic version
Support aarch32 mode

PX30 px30_defconfig Y generic version

RK3326
rk3326_defconfig
rk3326-
aarch32_defconfig

Y
generic version
Support aarch32 mode

RV1126

rv1126_defconfig
rv1126-ab.config
rv1126-spi-nor-
tiny_defconfig
rv1126-ramboot.config
rv1126-usbplug.config
rv1126-dfu.config
rv1126-ipc.config

Y

generic version
generic version+supportA/B
Spi Nor small capacity
No memory device (memory
boot)
usbplug function
Support dfu
Use on ipc sdk

RV1126

rv1126-emmc-tb.config
rv1126-lp3-emmc-
tb.config
rv1126-spi-nor-tb.config

Y
eMMC+DDR3 thunderboot
eMMC+LP3 thunderboot
Spi Nor+DDR3 thunderboot

Chips defconfig
Support kernel
dtb

Remarks

RK3568

rk3568_defconfig
rk3568-dfu.config
rk3568-nand.config
rk3568-spl-spi-
nand_defconfig
rk3568-aarch32.config
rk3568-usbplug.config

generic version
Support dfu
Support MLC/TLC/ eMMC
SPI-nand dedicated SPL
Support aarch32 mode
Support usbplug mode

RK3566
rk3566.config
rk3566-eink.config

Y
generic version
E-book version

RK3588

rk3588_defconfig
rk3588-ramboot.config
rk3588-sata.config
rk3588-aarch32.config
rk3588-ipc.config

Y

generic version
No memory device (memory
boot)
Dual storage support for sata
booting
Support for aarch32 mode
Use on ipc sdk

RV1106/RV1103

rv1106_defconfig
rv1106-emmc-
tb_defconfig
rv1106-spi-nor-
tb_defconfig
rv1106-spi-nor_defconfig
rv1106-display.config
rv1106-dfu.config
rv1106-ipc.config

Y

generic version
eMMC thunderboot
Spi Nor thunderboot
Spi Nor small capacity
Support for boot logos
Support dfu
Use on ipc sdk

RK3528 rk3528_defconfig Y generic version

RK3562 rk3562_defconfig Y generic version

RK3576

rk3576_defconfig
rk3576-usbplug.config
rk3576-car.config
rk3576-ab-car.config
rk3576-eink.config

Y

generic version
Open source usbplug
In-vehicle version
Support ab system in-vehicle
version
E-book version

RV1106B

rv1106b_defconfig
rv1106b-emmc-
tb_defconfig
rv1106b-spi-nand-
tb_defconfig

Y
generic version
eMMC thunderboot
Spi Nand thunderboot

RV1103B

rv1103b_defconfig
rv1103b-optee.config
rv1103b-spi-
nor_defconfig

Y
generic version
Support OP-TEE
Spi Nor small capacity

Chips defconfig
Support kernel
dtb

Remarks

RK3506

rk3506_defconfig
rk3506_tb.config
rk3506-amp.config
rk3506b.config

Y

generic version
thunderboot version
Use on amp sdk
Use on RK3506B

14.4 DFU

1. DFU Feature Support List:

af://n5260

Chips defconfig

RV1108 N/A

RK1808 N/A

RK1806 N/A

RK3036 N/A

RK3128x N/A

RK3126 N/A

RK322x N/A

RK3288 N/A

RK3368 N/A

RK3328 N/A

RK3399 N/A

RK3399Pro N/A

RK3399Pro-npu N/A

RK3308 N/A

PX30 N/A

RK3326 N/A

RV1126/RV1109 rv1126-dfu.config

RK3568 N/A

RK3566 N/A

RK3588 rk3568-dfu.config

RV1106/RV1103 rv1106-dfu.config

RK3528 N/A

RK3562 N/A

RK3576 N/A

RV1106B/RV1103B N/A

RK3506 N/A

14.5 Optee

1. The applicability of the optee client interface across platforms

af://n5346

API RV1109/RV1126 RK3566/RK3568 RK3588 RV1106/RV1103 RK3528 RK3562 RK3576 RV1106B/RV1103B RK3506 others

trusty_read_vbootkey_hash √ √ √ N/A √ √ √ √ N/A √

trusty_write_vbootkey_hash √ √ √ N/A √ √ √ √ N/A √

trusty_read_vbootkey_enable_flag √ √ √ N/A √ √ √ √ N/A √

trusty_write_oem_otp_key √ √ √ N/A √ √ √ √ N/A N/A

trusty_oem_otp_key_is_written √ √ √ N/A √ √ √ √ N/A N/A

trusty_set_oem_hr_otp_read_lock N/A N/A √ N/A √ √ √ N/A N/A N/A

trusty_oem_otp_key_cipher √ √ √ N/A √ √ √ √ N/A N/A

15. Chapter-15 Remarks

15.1 SDK Compatibility

15.1.1 androidboot.mode Compatibility

For SDK versions earlier than Android 8.1, the following configurations must be enabled for the U-Boot to
properly boot Android:

Please refer to the submission for the reason:

15.1.2 MISC Compatibility

The purpose of misc.img is to serve as the boot interaction between U-Boot and Android, and the main content is
BCB (Bootloader Control Block).

Due to the history of the RK platform, for SDK versions greater than or equal to Android-10.0, the BCB in
misc.img must be stored in the misc partition at offset 0; for versions lower than Android-10.0, the BCB must be
stored in the misc partition at offset 16KB.

Users don't need extra processing when they get the released SDK, U-Boot will adapt itself to be compatible.
However, if users take the misc.img of different SDKs and mix them, problems may occur. The phenomenon is
generally that Android will keep entering recovery mode.

CONFIG_RKIMG_ANDROID_BOOTMODE_LEGACY

commit a7774f5911624928ed1d9cfed5453aab206c512e

Author: Zhangbin Tong <zebulun.tong@rock-chips.com>

Date: Thu Sep 6 17:35:16 2018 +0800

 common: boot_rkimg: set "androidboot.mode=" as "normal" or "charger"

 - The legacy setting rule is deprecated(Android SDK < 8.1).

 - Provide CONFIG_RKIMG_ANDROID_BOOTMODE_LEGACY to enable legacy setting.

 Change-Id: I5c8b442b02df068a0ab98ccc81a4f008ebe540c1

 Signed-off-by: Zhangbin Tong <zebulun.tong@rock-chips.com>

 Signed-off-by: Joseph Chen <chenjh@rock-chips.com>

af://n5449
af://n5450
af://n5451
af://n5456

16. Chapter-16 Tools

Paths to development tools related to this chapter (using the U-Boot root directory as a reference point):

16.1 trust_merger

Function: Pack bl30, bl31, bl32 bin files for 64-bit platforms according to ini configuration file and generate
trust.img.

ini file:

Take RK3368TRUST.ini as an example:

Packing command:

./scripts/mkbootimg

./scripts/unpack_bootimg

./scripts/repack-bootimg

./scripts/unpack_resource.sh

./scripts/stacktrace.sh

./tools/patman/patman

./tools/buildman/buildman

../rkbin/tools/resource_tool

../rkbin/tools/loaderimage

../rkbin/tools/trust_merger

../rkbin/tools/boot_merger

[VERSION]

MAJOR=0 ----major version number

MINOR=1 ----minor version number

[BL30_OPTION] ----bl30, Currently set to mcu bin

SEC=1 ----BL30 bin exists

PATH=tools/rk_tools/bin/rk33/rk3368bl30_v2.00.bin ----Specify the bin path

ADDR=0xff8c0000 ----Load and run addresses in firmware DDRs

[BL31_OPTION] ----bl31, currently set to multi-core and power

management related bin

SEC=1 ----BL31 bin exists

PATH=tools/rk_tools/bin/rk33/rk3368bl31-20150401-v0.1.bin----Specify the bin

path

ADDR=0x00008000 ----Load and run address in firmware DDR

[BL32_OPTION]

SEC=0 ----BL32 bin does not exist

[BL33_OPTION]

SEC=0 ----BL33 bin does not exist

[OUTPUT]

PATH=trust.img [OUTPUT] ----Output firmware name

af://n5462
af://n5465

templates:

unpacking command:

Templates:

/*

 * @<sha>: optional. sha related, refer to make.sh

 * @<rsa>: optional. rsa related, refer to make.sh

 * @<size>: optional, formats: --size [KB] [count].the size of the output file,

When omitted, the default is 2M for a single copy and 2 copies for a package.

 * @[ini file]: mandatory. ini file

 */

./tools/trust_merger <sha> <rsa> <size> [ini file]

./tools/trust_merger --rsa 3 --sha 2 ./ RKTRUST/RK3399TRUST.ini

out:trust.img

merge success(trust.img)

// @[input image]: Mandatory, firmware for unpacking, typically trust.img

./tools/trust_merger --unpack [input image]

./tools/trust_merger --unpack trust.img

File Size = 4194304

Header Tag:BL3X

Header version:256

Header flag:35

SrcFileNum:4

SignOffset:992

Component 0:

ComponentID:BL31

StorageAddr:0x4

ImageSize:0x1c0

LoadAddr:0x10000

Component 1:

ComponentID:BL31

StorageAddr:0x1c4

ImageSize:0x10

LoadAddr:0xff8c0000

Component 2:

ComponentID:BL31

StorageAddr:0x1d4

ImageSize:0x48

LoadAddr:0xff8c2000

Component 3:

ComponentID:BL32

StorageAddr:0x21c

ImageSize:0x2e0

LoadAddr:0x8400000

unpack success

16.2 boot_merger

Function: Pack miniloader + ddr + usb plug according to ini configuration file, generate loader firmware.

ini file:

Take the RK3288MINIALL.ini file as an example:

Packing command:

Template:

Unpacking command:

Template:

[CHIP_NAME]

NAME=RK320A ----Chip Name: “RK” plus the 4B chip type number

agreed with maskrom

[VERSION]

MAJOR=2 ----Major version number

MINOR=36 ----Minor version number

[CODE471_OPTION] ----code471, currently set to ddr bin

NUM=1

Path1=tools/rk_tools/bin/rk32/rk3288_ddr_400MHz_v1.06.bin

[CODE472_OPTION] ----code472, currently set to usbplug bin

NUM=1

Path1=tools/rk_tools/bin/rk32/rk3288_usbplug_v2.36.bin

[LOADER_OPTION]

NUM=2

LOADER1=FlashData ----flash data, currently set to ddr bin

LOADER2=FlashBoot ----flash boot, Currently set to miniloader bin

FlashData=tools/rk_tools/bin/rk32/rk3288_ddr_400MHz_v1.06.bin

FlashBoot=tools/rk_tools/bin/rk32/rk3288_miniloader_v2.36.bin

[OUTPUT] ----Output file name

PATH=rk3288_loader_v1.06.236.bin

// @[ini file]: mandatory. ini file

./tools/boot_merger [ini file]

./tools/boot_merger ./RKBOOT/RK3399MINIALL.ini

out:rk3399_loader_v1.17.115.bin

fix opt:rk3399_loader_v1.17.115.bin

merge success(rk3399_loader_v1.17.115.bin)

// @[input image]: Mandatory. Firmware for unpacking, usually a loader file

./tools/boot_merger --unpack [input image]

af://n5478

16.3 loaderimage

Functionality:

Package u-boot.bin to generate uboot.img
Package tee bin for 32-bit platforms to generate trust.img

Package u-boot:

Template

Unpacks u-boot:

Templates:

./tools/boot_merger --unpack rk3399_loader_v1.17.115.bin

unpack entry(rk3399_ddr_800MHz_v1.17)

unpack entry(rk3399_usbplug_v1.15)

unpack entry(FlashData)

unpack entry(FlashBoot)

unpack success

/*

 * @[input bin]: Required. bin source file

 * @[output image]: Required. Output File

 * @[load_addr]: Required. the load Address

 * @<size>: Optional, Format: --size [KB] [count]. Output file size, when it is

ommitted, defaulted as 1M for one copy, and four copies for a package.

 */

./tools/loaderimage --pack --uboot [input bin] [output image] [load_addr] <size>

./tools/loaderimage --pack --uboot ./u-boot.bin uboot.img 0x60000000 --size 1024

2

 load addr is 0x60000000!

pack input u-boot.bin

pack file size: 701981

crc = 0xc595eb85

uboot version: U-Boot 2017.09-02593-gb6e59d9 (Feb 18 2019 - 13:58:53)

pack uboot.img success!

/*

 * @[input image]: Required. Unpacking source files

 * @[output bin]: Required. Unpack the output file, any name will do

 */

./tools/loaderimage --unpack --uboot [input image] [output bin]

./tools/loaderimage --unpack --uboot uboot.img uboot.bin

unpack input uboot.img

unpack uboot.bin success!

af://n5491

Packaging trust:

Templates:

Unpacking trust:

Templates

16.4 resource_tool

Function: Pack any resource file to generate resource.img.

Packing command:

Templates:

/*

 * @[input bin]: Required. bin file

 * @[output image]: Required, output File

 * @[load_addr]: Required, the load Address

 * @<size>: Optional, Format: --size [KB] [count]. Output file size, when it is

ommitted, defaulted as 1M for one copy, and four copies for a package.

 */

./tools/loaderimage --pack --trustos [input bin] [output image] [load_addr]

<size>

./tools/loaderimage --pack --trustos ./bin/rk32/rk322x_tee_v2.00.bin trust.img \

 0x80000000 --size 1024 2

 load addr is 0x80000000!

pack input bin/rk32/rk322x_tee_v2.00.bin

pack file size: 333896

crc = 0x2de93b46

pack trust.img success!

/*

 * @[input image]: Required. Unpacking source files

 * @[output bin]: Required. the output file after unoacking, any name will do

 */

./tools/loaderimage --unpack --trustos [input image] [output bin]

./tools/loaderimage --unpack --trustos trust.img tee.bin

unpack input trust.img

unpack tee.bin success!

./tools/resource_tool [--pack] [--image=<resource.img>] <file list>

./scripts/resource_tool ./arch/arm/boot/dts/rk3126-evb.dtb logo.bmp

logo_kernel.bmp

Pack to resource.img successed!

af://n5514

Unpacking command:

Templates:

16.5 mkimage

Function: Generate Loader firmware in SPL mode.

For example, the following command generates the IDBLOCK format required by Rockchip's bootrom. This
command also modifies the first 4 bytes of u-boot-tpl.bin to be the ID required by the bootrom:

Detailed reference:

16.6 stacktrace.sh

Function: parse the call stack information, please refer to RK Architecture chapter.

16.7 mkbootimg

Function: Package firmware to generate boot and recovery.img, source files to come in android project.

Templates:

./tools/resource_tool --unpack --image=<resource.img> [output dir]

./tools/resource_tool --unpack --image=resource.img ./out/

Dump header:

partition version:0.0

header size:1

index tbl:

 offset:1 entry size:1 entry num:3

Dump Index table:

entry(0):

 path:rk-kernel.dtb

 offset:4 size:33728

entry(1):

 path:logo.bmp

 offset:70 size:170326

entry(2):

 path:logo_kernel.bmp

 offset:403 size:19160

Unack resource.img to ./out successed!

./tools/mkimage -n rk3328 -T rksd -d tpl/u-boot-tpl.bin idbloader.img

./doc/mkimage.1

af://n5524
af://n5530
af://n5532

16.8 unpack_bootimg

Function: used for boot and recovery.img unpacking, source files come in android project.

Templates:

16.9 repack-bootimg

Function: Replace the firmware in boot and recovery.img.

Templates:

16.10 pack_resource.sh

Function: Packs the charge images from the . /tools/images/ directory into resource.img.

Templates:

16.11 buildman

Function: Batch compile code, ideal for verifying that commits to the current platform affect other platforms.
Detailed reference:

./scripts/mkbootimg --kernel zImage --second resource.img --ramdisk ramdisk.img

--out boot.img

./scripts/unpack_bootimg --boot_img boot.img --out out/

// For example, replace only the kernel

./scripts/repack-bootimg --boot_img boot.img --kernel zImage -o boot_repack.img

//Example: Replace only resource

./scripts/repack-bootimg --boot_img boot.img --second resource.img -o

boot_repack.img

./scripts/pack_resource.sh resource.img

Pack ./tools/images/ & resource.img to resource.img ...

Unpacking old image(resource.img):

rk-kernel.dtb 1

Pack to resource.img successed!

Packed resources:

rk-kernel.dtb battery_1.bmp battery_2.bmp battery_3.bmp battery_4.bmp

battery_5.bmp battery_fail.bmp battery_0.bmp 8

resource.img is packed ready

af://n5536
af://n5540
af://n5544
af://n5548

To use buildman you need to set the toolchain path in advance and edit the '~/.buildman' file:

Typical use cases, such as compiling U-Boot code for all Rockchip platforms:

The ideal results are as follows:

The first is the number of platforms that pass completely (green), the second is the number of platforms with
warning output (yellow), and the third is the number of platforms that fail to compile with error (red). If there are
warnings or errors during the compilation process, they will be displayed in the terminal.

16.12 patman

Function: a tool written in python, by calling other tools to complete the patch checking and submission, it is a
very good and necessary tool to do patch Upstream (U-Boot, Kernel). Key functions:

Automatically format patches based on parameters;
Call checkpatch to check;
make extractions from commit information and convert them into cover-letter, patch version, version
changes, etc. required for upstream mailing list;
Automatically removes the change-id from the commit;
Automatically extracts the required recipients for each patch based on Maintainer and file submission
information;
Send out all patches according to '~/.gitconfig' or '. /.gitconfig' configuration.

Detailed reference

Use the '-h' option to see all command options:

./tools/buildman/README

[toolchain]

arm: ~/prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-

gnueabihf/

aarch64: ~/prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-

x86_64_aarch64-linux-gnu/

./tools/buildman/buildman rockchip

$./tools/buildman/buildman rockchip

boards.cfg is up to date. Nothing to do.

Building current source for 34 boards (4 threads, 1 job per thread)

 34 0 0 /34 evb-rk3326

./tools/patman/README

$ patman -h

Usage: patman [options]

Create patches from commits in a branch, check them and email them as

specified by tags you place in the commits. Use -n to do a dry run first.

af://n5558

Typical use case: commit the latest 3 patches

After running the command, checkpatch will automatically abort if there is any error or warning, you need to
modify the patch to solve the problem and run it again.

Other common options

'-t', in '-t' headers, any text before “:” are treated as TAGs, most of which are not recognized by patman and
require the '-t' option;
'-i', if there are some warnings (e.g. more than 80 characters) that we don't think need to be fixed, you can
just add the '-i' option to submit the patch;
'-s', if the patch you want to commit is not at the top of the current tree, you can skip the top N patches with
'-s';
'-n', if you don't want to commit a patch, but just want to verify that the latest patch passes checkpatch, you
can use the '-n' option;

Patchman generates the information needed for the upstream mailing list according to the keywords in the
commit message.
Typical commit:

Options:

 -h, --help show this help message and exit

 -H, --full-help Display the README file

 -c COUNT, --count=COUNT

 Automatically create patches from top n commits

 -i, --ignore-errors Send patches email even if patch errors are found

 -m, --no-maintainers Don't cc the file maintainers automatically

 -n, --dry-run Do a dry run (create but don't email patches)

 -p PROJECT, --project=PROJECT

 Project name; affects default option values and

 aliases [default: u-boot]

 -r IN_REPLY_TO, --in-reply-to=IN_REPLY_TO

 Message ID that this series is in reply to

 -s START, --start=START

 Commit to start creating patches from (0 = HEAD)

 -t, --ignore-bad-tags

 Ignore bad tags / aliases

 --test run tests

 -v, --verbose Verbose output of errors and warnings

 --cc-cmd=CC_CMD Output cc list for patch file (used by git)

 --no-check Don't check for patch compliance

 --no-tags Don't process subject tags as aliaes

 -T, --thread Create patches as a single thread

patman -t -c3

commit 72aa9e3085e64e785680c3fa50a28651a8961feb

Author: Kever Yang <kever.yang@rock-chips.com>

Date: Wed Sep 6 09:22:42 2017 +0800

 spl: add support to booting with OP-TEE

 OP-TEE is an open source trusted OS, in armv7, its loading and

 running are like this:

 loading:

 - SPL load both OP-TEE and U-Boot

When this patch is sent via the patman command, a Cover-letter is generated:

The title of the corresponding patch is as follows, containing the version information and the number of the
current patch in the series:

Patch commit messages are already processed, with change-id removed, cover-letter removed, and version-
changes converted to non-text information:

 running:

 - SPL run into OP-TEE in secure mode;

 - OP-TEE run into U-Boot in non-secure mode;

 More detail:

 <https://github.com/OP-TEE/optee_os>

 and search for 'boot arguments' for detail entry parameter in:

 core/arch/arm/kernel/generic_entry_a32.S

 Cover-letter:

 rockchip: add tpl and OPTEE support for rk3229

 Add some generic options for TPL support for arm 32bit, and then

 and TPL support for rk3229(cortex-A7), and then add OPTEE support

 in SPL.

 Tested on latest u-boot-rockchip master.

 END

 Series-version: 4

 Series-changes: 4

 - use NULL instead of '0'

 - add fdt_addr as arg2 of entry

 Series-changes: 2

 - Using new image type for op-tee

 Change-Id: I3fd2b8305ba8fa9ea687ab7f3fd1ffd2fac9ece6

 Signed-off-by: Kever Yang <kever.yang@rock-chips.com>

[PATCH v4 00/11] rockchip: add tpl and OPTEE support for rk3229

[PATCH v4,07/11] spl: add support to booting with OP-TEE

OP-TEE is an open source trusted OS, in armv7, its loading and

running are like this:

loading:

- SPL load both OP-TEE and U-Boot

running:

- SPL run into OP-TEE in secure mode;

- OP-TEE run into U-Boot in non-secure mode;

More detail:

<https://github.com/OP-TEE/optee_os>

and search for 'boot arguments' for detail entry parameter in:

core/arch/arm/kernel/generic_entry_a32.S

Please refer to the README for more information on the use of keywords such as “Series-prefix”, “Series-cc”,
etc.

Signed-off-by: Kever Yang <kever.yang@rock-chips.com>

Changes in v4:

- use NULL instead of '0'

- add fdt_addr as arg2 of entry

Changes in v3: None

Changes in v2:

- Using new image type for op-tee

 common/spl/Kconfig | 7 +++++++

 common/spl/Makefile | 1 +

 common/spl/spl.c | 9 +++++++++

 common/spl/spl_optee.S | 13 +++++++++++++

 include/spl.h | 13 +++++++++++++

 5 files changed, 43 insertions(+)

 create mode 100644 common/spl/spl_optee.S

17. Chapter-17 Appendix

17.1 Download address

17.1.1 RKBIN

RK internal engineer: Log in to gerrit and search: “rk/rkbin”

External engineer:

Download the full SDK released by RK, or
Download from the Github : https://github.com/rockchip-linux/rkbin

17.1.2 GCC

RK internal engineer: Log in to gerrit and search: “gcc-linaro-6.3.1”
External Engineers: Download the full SDK released by RK or Linaro website.

17.2 Terminology

U-Boot: Universal Boot Loader
AOSP: Android Open-Source Project
AVB: Android Verified Boot
DTB: Device Tree Binary
DTS: Device Tree Source
Fastboot: Originally a way to update firmware for Android, it is now widely used in the embedded space
GPT: GUID Partition Table
MMC: Multi Media Card, Includes: eMMC, SD card, etc.
SPL: Secondary Program Loader
TPL: Tertiary Program Loader
DTB: noun, Device tree blob
DTB: noun, Device tree blob for stacking
DTC: noun, Device tree compiler
DTO: noun, Device tree stacking operation
DTS: noun, Device tree source file
FDT: noun, Flattened device tree
SCMI: System Control and Management Interface

af://n5601
af://n5602
af://n5603
https://github.com/rockchip-linux/rkbin
af://n5614
af://n5620
https://en.wikipedia.org/wiki/Das_U-Boot
https://en.wikipedia.org/wiki/Android_(operating_system)#Open-source_community
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Android_software_development#Fastboot
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/MultiMediaCard
https://developer.arm.com/documentation/den0056/latest

	U-Boot v2017(next-dev) Developer Guide
	Chapter-1 Basic Introduction
	Feature
	Version
	DM
	Security
	Boot-order
	Driver-probe
	Shell
	Boot-command
	TPL/SPL/U-Boot Proper
	Build-output
	Environment-variables
	U-Boot DTS
	Relocation

	Chapter-2 RK Architecture
	Preface
	Platform Documentation
	Platform Configuration
	Boot Process
	Memory Layout
	Storage Layout
	Aliases
	AMP
	Atags
	Bidram/Sysmem
	Fuse/OTP
	Hotkey
	Image Decompress
	Image Kernel
	Image U-Boot
	Interrupt
	Kernel-DTB
	MMU Cache
	Make.sh
	HW-ID DTB
	Partition Table
	Relocation
	Reset
	Sd/Udisk
	Stacktrace
	TimeCost
	TimeStamp
	Vendor Storage

	Chapter-3 Compile and Download
	Preparations
	Firmware Compiling
	Firmware Downloading
	Firmware Size
	Special Packaging

	Chapter-4 System Module
	AArch32
	ANDROID AB
	Configuration Item
	Partition Table
	Notes

	ANDROID BCB
	AVB Secure Boot
	Feature
	Configuration
	Reference

	Cmdline
	Data Sources
	Data Meaning

	DFU Update Firmware
	DTBO/DTO
	Principle Introduction
	Enable DTO
	DTO Result

	ENV
	Framework Support
	Relevant Interface
	Advanced Interface
	Storage Location
	General Options
	Fw_printenv Tool
	ENVF

	Fastboot
	Configuration Options
	Trigger Method
	Command Support
	Command Details

	FileSystem
	Framework Support
	Relevant Interface
	Example of Command

	HW-ID DTB
	Design Principle
	Hardware Reference
	DTB Naming
	DTB Packaging
	Feature Enablement
	Load Results

	SD and USB Flash Drives
	Mechanisms and Principles
	Firmware Creation
	SD Configuration
	USB Configuration
	Functions Taking Effect
	Notes

	Chapter-5 Driver Module
	AMP
	Ideas for Implementation
	Framework Support
	Feature Enablement

	Charge
	Framework Support
	Packaging Pictures
	DTS Configuration
	System Hibernation
	Replacement of Pictures
	Charging Indicator

	Clock
	Framework Support
	Relevant Interface
	Clock Initialization
	CPU Frequency Boost
	Clock Tree

	Crypto
	Framework Support
	Relevant Interface
	DTS Configuration

	Display
	Framework Support
	Relevant Interface
	DTS Configuration
	Defconfig
	LOGO Partition
	Analysis of Common Problems

	Dvfs
	Wide Temperature Strategy
	Framework Support
	Relevant Interface
	Enable Wide Temperature
	Wide Temperature Results

	Efuse/Otp
	Framework Support
	Relevant Interface
	DTS Configuration
	Recall Example
	Open Area

	Ethernet
	Framework Support
	Relevant Interface
	DTS Configuration
	Usage Example
	Network Troubleshooting

	Gpio
	Framework Support
	DM Interface
	Legacy Interface

	Interrupt
	Framework Support
	Related Interface

	I2C
	Framework Support
	Relevant Interface

	IO-Domain
	Framework Support
	Relevant Interface

	Key
	Framework Support
	Relevant Interface

	Led
	Framework Support
	Relevant Interface
	DTS Node

	Mtd
	Framework Support
	Relevant Interface
	Usage Example

	Mtd_blk
	Framework Support
	Relevant Interface

	Optee Client
	Framework Support
	Firmware Description
	Interface Description
	Suitability
	Return Value
	trusty_base_write_security_data
	trusty_base_read_security_data
	trusty_read_vbootkey_hash
	trusty_write_vbootkey_hash
	trusty_read_vbootkey_enable_flag
	trusty_read_attribute_hash
	trusty_write_attribute_hash
	trusty_write_oem_otp_key
	trusty_oem_otp_key_is_written
	trusty_set_oem_hr_otp_read_lock
	trusty_oem_otp_key_cipher
	trusty_read_oem_ns_otp
	trusty_write_oem_ns_otp
	trusty_write_ta_encryption_key
	trusty_ta_encryption_key_is_written
	trusty_write_oem_encrypt_data
	trusty_oem_encrypt_data_is_written
	trusty_check_security_level_flag
	trusty_write_oem_huk

	Shared Memory
	Test Command
	Common Misprints

	PCIe
	Development Notes
	Framework Support
	DTS Configuration
	Usage Example
	PCIe CMD
	NVMe
	RK3588 RC dma
	RK3568 RC dma

	Analysis of Common Problems

	Pinctrl
	Framework Support
	Relevant Interface

	Pmic/Regulator
	Framework Support
	Relevant Interface
	Init Voltage
	Skip Initialization

	Reset
	Framework Support
	Relervant Interface
	DTS Configuration

	Rng
	Framework Support
	Relevant Interface
	DTS Configuration

	Spi
	Framework Support
	Relevant Interface
	DTS Configuration
	Recall Example
	Test Command
	Analysis of Common Problems

	Storage
	Framework Support
	Relevant Interface
	Boot Storage Type Differentiation
	DTS Configuration
	Dual Storage Expansion
	Analysis of Common Problems

	Thermal
	Framework Support
	Relevant Interface
	DTS Configuration

	Uart
	Individual Replacement
	Global Replacement
	Turn off Printing
	Relevant Interface

	USB
	Framework Support
	Board Configuration
	DTS Configuration
	Related Commands

	Vendor Storage
	Principle Overview
	Framework Support
	Relevant Interface
	Functionality Self-test

	Watchdog
	Framework Support
	Relevant Interface

	Chapter-6 Advanced Principle
	Kernel-DTB
	Design Background
	Live Device Tree
	Mechanisms to Achieve
	U-Boot

	Kernel Pass Parameter
	Cmdline
	Memory Capacity
	Other Ways

	AB System
	AB Data Format
	AB Activation Mode
	Successful-boot
	Reset-retry
	Mode Comparison

	Boot Process
	Upgrade and Exceptions
	Validation Methods
	Successful-boot
	Reset-retry

	References

	AVB Secure Boot
	References
	Terminology
	Brief Introduction
	Encryption Example
	AVB
	AVB Characteristics
	Key+signature+certificate
	AVB Lock
	AVB Unlock
	Kernel Configuration
	Android SDK
	Cmdline New Content

	Partition Reference
	Fastboot Command
	Quick Overview of Commands
	Command Usage

	Firmware Downloading
	Pre-loader Verified
	U-boot Verified
	System Verification Boot
	Linux AVB
	Operating Workflow
	Verification Process

	SD Boot and Upgrade
	Brief Introduction
	SD Card Category
	Regular SD Card
	SD Upgrade Card
	SD Boot Card
	SD Repair Card

	Firmware Logo
	Boot Process
	Pre-loader Boot
	U-Boot Boot
	Recovery and PCBA

	Notes

	Chapter-7 Configuration Trimming
	Chapter-8 Debugging Tools
	DEBUG
	Initcall
	IO Command
	IOMEM Command
	I2C Command
	GPIO Command
	FDT Command
	MMC Command
	TimeStamp
	DM Tree
	DM Uclass
	Stacktrace.sh
	System Crash
	CRC Check
	HASH Check
	Modify DDR Capacity
	Jump Information
	Boot Information
	RK Firmware
	Distro Firmware
	No Valid Firmware

	Chapter-9 Test Case
	Chapter-10 SPL
	Firmware Boot
	FIT Firmware
	RKFW Firmware
	Storage Priority

	Compilation and Packaging
	Code Compilation
	Firmware Packaging

	System Module
	GPT
	A/B System
	Boot Priority
	ATAGS
	Kernel Boot
	Pinctrl
	Secure Boot

	Driver Module
	MMC
	MTD Block
	OTP
	Crypto
	Uart

	Chapter-11 TPL
	Compiling and Packaging
	Configuration
	Compiling
	Packaging

	Chapter-12 FIT
	Preface
	Brief Introduction
	Basic Introduction
	Example Introduction
	ITB Structure

	Platform Configuration
	Chip Support
	Code Configuration
	Mirror File
	ITS File
	Related Tools

	Non-secure Boot
	uboot.img
	boot.img

	Secure Boot
	Principle
	Checking Process
	Key Storage
	Key Usage
	Signature Storage
	Anti-rollback

	Preliminary Preparation
	Key
	Configuration
	Firmware

	Compiling and Packaging
	Checking Principles
	Booting Information

	Remote Signature
	Implementation Idea
	Signed Data
	Detailed Steps
	Other Solutions

	Firmware Unpacking
	Firmware Replacement
	Safety Checking Step-by-Step

	Chapter-13 Fast Boot
	Chip Support
	Storage Support
	bootrom Support
	U-Boot SPL Support
	MCU Configuration
	Kernel Support
	Fast Boot Process

	Chapter-14 Platform Definition
	ATF/OPTEE
	Clock
	Defconfig
	DFU
	Optee

	Chapter-15 Remarks
	SDK Compatibility
	androidboot.mode Compatibility
	MISC Compatibility

	Chapter-16 Tools
	trust_merger
	boot_merger
	loaderimage
	resource_tool
	mkimage
	stacktrace.sh
	mkbootimg
	unpack_bootimg
	repack-bootimg
	pack_resource.sh
	buildman
	patman

	Chapter-17 Appendix
	Download address
	RKBIN
	GCC

	Terminology

