Rockchip Linux USB Developer Guide

ID: RK-KF-YF-097

Release Version: V2.2.0

Release Date: 2024-10-09

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface
Overview

The purpose of this manual is to show you the hardware circuits of USB, how to configure the USB in Kernel,

and help you to develop and debug the driver of USB PHY's and Controllers quickly.

Product version

Chipset name Kernel version

All Rockchip chips except MCU Linux-4.4 and above

Intended Audience
This document (this guide) is mainly intended for:

Technical support engineers
Software development engineers

Hardware development engineers

Revision history

Date Version Author Revision description
2017- william.wu, o .
v1.0 The initial version
12-22 frank.wang
2018- . Support RK3308. RK3326. PX30
vl.1 william.wu
06-08 Correct formats and errors
2019- - . . .
03-11 v1l.2 william.wu Fix style issues by markdownlint
2019- - . .
Tiis v1.2.1 william.wu Modify document name, support Linux-4.19
2020- .
v1.2.2 william.wu Add DISCLAIMER, Trademark Statement, etc.

02-19

Date

2020-
05-13

2020-
12-16

2022-
01-14

2022-
04-16

2024-
04-23

2024-
08-06

2024-
10-09

Version

v1.3.0

v1.4.0

v1.5.0

v1.6.0

v2.0.0

v2.1.0

v2.2.0

Author

jianing.ren

william.wu

william.wu

william.wu

william.wu

william.wu

william.wu

Revision description

1. Correct the content of most chapters to improve
readability;

2. Add new chapters "5.1 Linux USB Driver
Framework";

3. Add new chapters "7 USB Common Debug Methods
And Commands";

4. Add analysis of common problems.

1. Fix hyperlinks error
2. Add support for RV1109/RV1126/RK3566/RK3568;
3. Add force mode method for RV1109/RV1126;

Add support for RK3588

Add support for RV1103/RV1106

Add support for RK3528/RK3562/RK3576

Add support for RK3506/RV1103B

1. Adding methods to disable USB low-power
mechanisms

2. Adding methods to set USB Quirks configurations

Contents

Rockchip Linux USB Developer Guide

1. Overview

1.1
1.2
1.3
1.4
1.5
1.6

RK USB Controllers Solution
USB 2.0 Host

USB 2.0 OTG

USB 3.0 OTG

USB 2.0 PHY

Type-C USB 3.0 PHY

2. Hardware Circuits and Signals

2.1

2.2

USB 2.0 Host Hardware Circuits

2.1.1 USB 2.0 Host Common Hardware Circuit
2.1.2 USB 2.0 HSIC Hardware Circuit

USB OTG Hardware Circuits

2.2.1 USB 2.0 OTG Hardware Circuit

2.2.2 USB 3.0 OTG Hardware Circuit

3. Kernel USB CONFIG

3.1
32
33
3.4
3.5

USB PHY CONFIG

USB Host CONFIG

USB OTG CONFIG

USB Gadget CONFIG

USB Device Class Driver CONFIG
3.5.1 Mass Storage Class CONFIG
3.5.2 USB Serial Converter CONFIG
3.5.3 USB HID CONFIG

3.5.4 USB Net CONFIG

3.5.5 USB Camera CONFIG

3.5.6 USB Audio CONFIG

3.5.7 USB HUB CONFIG

4. USB DTS Configuration

4.1

4.2

43

USB 2.0/3.0 PHY DTS

4.1.1 USB 2.0 PHY DTS

4.1.2 USB 3.0 PHY DTS

USB 2.0 Controller DTS

4.2.1 USB 2.0 Host Controller DTS
4.2.2 USB 2.0 OTG Controller DTS
USB 3.0 Controller DTS

4.3.1 USB 3.0 Host Controller DTS
4.3.2 USB 3.0 OTG Controller DTS

5. USB Driver Development

5.1
52

53

Linux USB Driver Framework

USB PHY Dirivers

5.2.1 USB 2.0 PHY Driver

5.2.2 USB 3.0 PHY Drivers

USB Controller Drivers

5.3.1 USB 2.0 OTG Driver
5.3.1.1 USB 2.0 OTG Driver Framework
5.3.1.2 USB 2.0 OTG Driver Overview
5.3.1.3 USB 2.0 OTG Debug Interface

5.3.2 USB 2.0 Host Driver
5.3.2.1 USB 2.0 Host Controller framework
5.3.2.2 USB 2.0 Host Driver Overview
5.3.2.3 USB 2.0 Host Debug Interface

5.3.3 USB 3.0 OTG Driver
5.3.3.1 USB 3.0 OTG Controller Framework
5.3.3.2 USB 3.0 OTG Driver Overview

5.3.3.3 USB 3.0 OTG Debug Interface
6. Android USB Gadget Configuration
6.1 USB Gadget Configfs Framework
6.2 USB Gadget Configuration File
6.3 USB VID And PID Configuration
6.4 USB Gadget Debug Interface
7. USB Common Debug Methods And Commands
7.1 USB Common Debug Methods
7.2 USB Common Commands
7.3 Methods to Disable USB Low Power Mechanism
7.3.1 Disable the auto-suspend feature of USB Host and peripherals
7.3.2 Disable DWC3 Host mode USB2 LPM Feature
7.3.3 Disable DWC3 Device mode USB2 LPM Feature
7.3.4 Disable DWC3 Suspend USB2/USB3 PHY Feature
7.3.5 Disable USB 2.0 PHY Charging Detection and Dynamic Suspend Feature
7.4 Method for Adding USB Peripheral Quirks
7.4.1 Adding USB Quirks in the Linux Kernel
7.4.2 View USB quirks
8. Analysis of Common USB Questions
8.1 Device Enumeration Log
8.1.1 USB 2.0 OTG Normal Boot Log
8.1.2 USB 2.0 Device Normal Connection Log
8.1.3 USB 2.0 Device Disconnect Log
8.1.4 USB 2.0 Host Enumerate LS Device Log
8.1.5 USB 2.0 Host Enumerate FS Device Log
8.1.6 USB 2.0 Host Enumerate HS Device Log
8.1.7 USB 2.0 Host-LS/FS/HS Device Disconnect Log
8.1.8 USB 3.0 Device Normal Connection Log
8.1.9 USB 3.0 Host Enumerate SS Device Log
8.2 Analysis of Common Questions
8.2.1 USB Hardware Circuit Problem
8.2.2 USB Device Problem
8.2.3 USB Host Problem
8.2.4 USB Camera Problem
8.2.5 USB Charge Detection
8.2.6 USB Transfer Rate Problem
8.2.7 USB Enumeration Rate
8.2.8 USB3.0 Recognized Problem
8.2.9 USB 3.0 Disk Copy Problem
8.2.10 USB3.0 Camera Transmission Problem
8.3 About PC USB Driver
9. USB Signal Quality Test

1. Overview

1.1 RK USB Controllers Solution

Rockchip SoC usually has several USB controllers built in, and different controllers are independent of each
other. Please get detailed information in the chip TRM. Because some USB controllers have limitations on
usage, it is important to clarify the requirements of the scheme and the limitations of the controller before

determining the design scheme of USB. The built-in USB controllers of each chip are shown in Table 1-1.

Table 1-1 USB Controllers List

o USB 2.0 HOST USB HSIC USB 2.0/3.0 OTG USB 2.0 OTG
(EHCI&OHCI) (EHCI) (DWC3/xHCI) (DWC2)
RK3399Pro 2 1 2 0
RK3399 2 1 2 0
RK3368 1 1 0 1
RK3366 1 0 1 1
RK3328 1 0 1 1
RK3288 0 1 0 2

(HOST+OTG)

af://n104
af://n105

USB 2.0 HOST USB HSIC USB 2.0/3.0 OTG USB 2.0 OTG

Chip (EHCI&OHCI) (EHCT) (DWC3/xHCI) (DWC2)
RK3228 3 0 0 1
RK312X | 0 0 1
RK3188 1 1 0 1
RK30XX 1 0 0 1
RK3308 1 0 0 1
RK3326 0 0 0 1
RK 1808 I 0 1 0
RK1108 | 0 0 1

PX30 1 0 0 1
RV1103 0 0 1 (OTG 2.0) 0
RV1103B 0 0 1 (OTG 2.0) 0
RV1106 0 0 1 (OTG 2.0) 0
RV1109 1 0 1 (OTG 2.0) 0
RV1126 1 0 1 (OTG 2.0) 0
RK3506 0 0 0 2 x OTG 2.0
RK3528 1 0 1 (OTG 3.0) 0
RK3562 1 0 1 (OTG 3.0) 0
RK3576 0 0 2 (OTG 3.0) 0
—_—) . 2 (OTG 2.0 + Host .

3.0)
RK3568 b 0 2 (OTG 3.0+ Host 3.0) 0
S) . 3(2xOTG3.0+ .
1 x Host 3.0)
RK3588S 2 0 2(1xOTG 3.0+ 0

1 x Host 3.0)

Note:

1. In the table, the number N indicates that it supports N independent USB controllers.

2. In the table, "EHCI/OHCI" indicates that the USB controller integrates the EHCI controller and OHCI
controller. "DWC3/xHCTI" indicates that the USB controller integrates the DWC3 controller and xHCI
controller.

3. RK3288 supports two independent DWC2 controllers. One DWC2 supports OTG function and the other
DWZC2 only supports Host function.

4. RV1103/RV1106/RV1109/RV1126/RK3566 DWC3 controller only supports OTG 2.0, no support OTG
3.0, the maximal transfer rate is 480 Mb/s (High speed).

5. The difference between the USB modules of RK3588 and RK3588S is that RK3588S doesn't support
Type-C1 (1 x USB 3.0 OTG controller + 1 x DP controller + 1 x USB3.0/DP combo PHY + 1 x USB 2.0
PHY).

6. RK3588 and RK3588S Host 3.0 controller (USB30_2 interface) only support USB 3.0 and not downward
compatible with USB 2.0.

7. RV1103/RV1103B/RV1106 USB PHY don't support OTG_ID and therefore not support OTG Device/Host
mode switch automatically by hardware. If you want to switch OTG mode, please refer to the chapter USB.
Common Commands to switch OTG mode by software.

8. The RK3506 supports two fully functional DWC2 OTG controllers, which can be applied to dual Device
product forms, but only OTGO supports BC1.2 charging detection and Device hot-plug disconnect
detection. In addition, the RK3506 SDK's hardware and software can support the use of GPIO to detect
VBUS and ID voltage as an alternative to the conventional USB PHY VBUSDET and OTG_ID pins.

1.2 USB 2.0 Host

Compatible Specification

e Universal Serial Bus Specification, Revision 2.0
¢ Enhanced Host Controller Interface Specification(EHCI), Revision 1.0
e Open Host Controller Interface Specification(OHCI), Revision 1.0a

Features

¢ Support high-speed(480Mbps), full-speed(12Mbps) and low-speed(1.5Mbps). The block diagram of the
USB 2.0 Host controller is shown in Figure 1-1.

USB2. 0 Host Controller

EHCI Host OHCI Host
Controller Controller
I UTMI+ UTMI+ I

Port Routing Control

A

l UTMI+

USB2. 0 PHY

Figure 1-1 USB 2.0 Host Controller Block Diagram

1.3 USB 2.0 OTG

af://n301
af://n316

Compatible Specification
¢ Universal Serial Bus Specification, Revision 2.0
Features

¢ Supports Host mode and Device mode

e Support OTG ID detection, and automatically switch between Host mode and Device mode by ID status

¢ Does not support ADP/SRP/HNP protocols

¢ Supports high speed, full speed, and low speed in Host mode, and only supports high speed and full speed
in Device mode

¢ Support 9 channels in host mode

¢ 9 Device mode endpoints in addition to control endpoint 0, 4 in, 3 out and 2 IN/OUT

¢ Built-in one 1024x35 bits FIFO

¢ Internal DMA with scatter/gather function

¢ Supports packet-based, dynamic FIFO memory allocation for endpoints for flexible, efficient use of RAM

¢ Support dynamic FIFO sizing

e Support Battery Charge in device role

¢ Support Uart Bypass Mode

USB OTG
UTMI 2.0
CONTROLLER

USB BUS USB OTG
2.0 PHY

Figure 1-2 USB 2.0 OTG Block Diagram

1.4 USB 3.0 OTG

Compatible Specification

¢ Universal Serial Bus 3.0 Specification, Revision 1.0
e Universal Serial Bus Specification, Revision 2.0

e cXtensible Host Controller Interface for Universal Serial Bus(xHCI), Revision 1.1
DWC3 Features

¢ Support Control/Bulk(including stream)/Interrupt/IsochronousTransfer

¢ Simultaneous IN and OUT transfer for USB 3.0, up to 8Gbps bandwidth

¢ Descriptor Caching and Data Pre-fetching

e USB 3.0 Device Features

e Up to 7 IN endpoints, including control endpoint 0

e Up to 6 OUT endpoints, including control endpoint 0

e Up to 13 endpoint transfer resources, each one for each endpoint

¢ Flexible endpoint configuration for multiple applications/USBset-configuration modes
e Hardware handles ERDY and burst

¢ Stream-based bulk endpoints with controller automatically initiatingdata movement

¢ Isochronous endpoints with isochronous data in data buffers

af://n349

¢ Flexible Descriptor with rich set of features to support bufferinterrupt moderation, multiple transfers,
isochronous, control, and scatteredbuffering support

e USB 3.0 Dual-Role Device(DRD) Features

¢ Static Device operation

e Static Host operation

e USB 3.0/USB 2.0 OTG A device and B device basing on ID

¢ UFP/DFP and Data Role Swap Defined in USB TypeC Specification

¢ Not support USB 3.0/USB 2.0 OTG session request protocol(SRP), hostnegotiation protocol(HNP) and
Role Swap Protocol(RSP)

USB 3.0 xHCI Host Features

¢ Support up to 64 devices

e Support | interrupter

e Support 1 USB 2.0 port and 1 Super-Speed port

e Concurrent USB 3.0/USB 2.0 traffic, up to 8.48Gbps bandwidth
¢ Support standard or open-source xXHCI and class driver

¢ Support xHCI Debug Capability

AHB Slave ¢ :ﬁ}il Master

Bus Interface/List Mangement

¢ USB3 0TG t

HS/FS/LS SS
MAC MAC
UTMI+ ¢ ¢ PIPE_IF
USB2. 0 PHY TypeC PHY

: 3

Figure 1-3 USB 3.0 OTG Block Diagram

1.5 USB 2.0 PHY

The USB 2.0 PHY supports two designs, one port and two ports. Figure 1-4 below is a block diagram that
supports two ports.

af://n412

USB2. 0 Host USB3. 0 0TG

Controller Controller
USB2. 0
PHY t UTMI _IF ¢ UTMI_IF
Host Port OTG Port

T G W

Figure 1-4 USB 2.0 PHY Block Diagram

e Host Port: connect to USB 2.0 Host controller via UTMI+
¢ OTG Port: connect to USB 3.0 OTG controller or USB 2.0 logic module of USB 2.0 OTG controller via
UTMI+

1.6 Type-C USB 3.0 PHY

¢ Support USB 3.0 (SuperSpeed only)

¢ Support DisplayPort 1.3 (RBR, HBR and HBR2 data rates only)

¢ Support DisplayPort AUX channel

¢ Support USB TypeC and DisplayPort Alt Mode

¢ Support DisplayPort Alt Mode on TypeC A, B, C, D, E and F pinassignments
¢ Support Normal and Flipped orientation

AUX
o ———— -

EIPE IE

TX0
e

TypeC PHY | JXRXL

TXRX2
e EE—

DPTX IE

TX3
———

Figure 1-5 TypeC PHY Block Diagram

af://n421

2. Hardware Circuits and Signals

2.1 USB 2.0 Host Hardware Circuits

This chapter introduces the hardware circuit design and signal of USB 2.0 HOST. According to the type of USB
2.0 PHY used, it can be divided into common USB 2.0 HOST hardware circuit and USB 2.0 HSIC hardware

circuit.

2.1.1 USB 2.0 Host Common Hardware Circuit

USB 2.0 works at 480MHz clock, it is suggested that the width of USB 2.0 DP/DM lines should be 7-8 MIL and
90 Q impedance differential. It is better to layout on the surface layer and cover the ground, and no interference

source on the edge and no other signal line on the right upper and lower layers.
Example (USB 2.0 HOST hardware circuit design of RK3399 SoC).

e The SoC pins of the USB 2.0 Host controller are shown in Figure 2-1

i
USB2 host0 gmm—110510_DP e i 0STO_DP
HOSTO DM 0STO_DM
TYPECO_DP [Hacas ; TYPECO_DP
TYPECO_DM 2135 —TYPECO 1D Tt
TYPECT_ID [~arag 8
TYPECO_U2VBUSDET ((TYPECO_U2VBUSDET
AC31 1 2
E iR @=— USBO_RBIAS R I
USE PHY(RO402
19,
USB2 hostl *—-— HOST1_DP ﬁg’? ; OST1_DP
HOST1 DM 0ST1_DM
TYPEC1_DP [Atisg TYPEC1_DP
TYPEC1 DM

TYPEC1_ID
TYPEC1_U2VBUSDET

E [<@ USB1_RBIAS

USE PHY1

Ye4H|32 IPHY AUSB_AVDD_Ovg 24 —oUSB_AVDD_0VS
1P F g | usB_avDD_tve [F924—ousB_AvDD_1ve
“USB_AVDD_3v4 [22——QUSB_AVDD_3v3

Figure 2-1 USB 2.0 HOST pin in SoC

e The control circuit and interface circuit of USB 2.0 Host VBUS are shown in Figure 2-2 and Figure 2-3

af://n438
af://n439
af://n441

VCE5VO_SYS s VCESVO_HOSTO veesvo_HosTo
SOT 23 5 o ©
2N vour |- FOSTI OV 2 :ﬁ:‘zo
2 ©1900 HOSTO.OP 3 =
GND It - » aE
VCE5VO_HOST_EN 4 3 | L s - L '
EN __ ocB - Ixsn * crea [creon_ o ”
1ov ED1900 munr
R1902 ESD5451N Cooes u1901|F |
10K = ESD0402 xsn X5R _ |ESD5302F SB20A4_USBE_Al
RO402 ~ 18V 10v " S0T 23@ USB- HUB PORTBR="
. 5% L “usB1g00
Figure 2-2 USB 2.0 Host VBUS control circuit and interface circuit
6 IGH INT L
GPIO4_DO/PCIE_CLKREQNB_u | Ay
GPIO4 D1/DP HOTPLUG d [EHT >1'-'"CC5'~'G HOST_EN

Figure 2-3 USB 2.0 Host VBUS GPIO controller pin

2.1.2 USB 2.0 HSIC Hardware Circuit

HSIC (High Speed Inter Chip) uses 240 MHz DDR signal, so the transmission rate is 480 Mbps, the same as
USB 2.0, and the typical line impedance is 50 Q. It is suggested that the maximum length of the line should not

exceed 10 cm on the PCB.

As shown in Figure 2-4, USIC_STROBE is 240MHz DDR signal line, USIC DATA is data line. The power

supply voltage is only 0.9V and 1.2V, and standard voltage of signal transmission is 1.2V, which has lower

power consumption than USB 2.0 PHY.

Example (USB 2.0 HSIC hardware circuit design of RK3399 SoC)

USIC_STROBE
USIC_DATA

USIC_AVDD_0vS LDVDDDUQ_USIC
USIC_AVDD_1v2 ﬂ—mmfﬂ usic

Figure 2-4 USB 2.0 HSIC pin in SoC
2.2 USB OTG Hardware Circuits

2.2.1 USB 2.0 OTG Hardware Circuit

USB 2.0 OTG related hardware signals:

e OTG_DP/OTG_DM: USB differential signal D+/D-, need to place 2.2Q series resistance on each signal
line.

USB_DET: Input signal, used for OTG Peripheral mode to determine whether to connect to Host or USB
charger. Default is low level OV. If connect to Host or USB charger, the high level is 3.0~3.2 V.

USB_ID: Input signal, used to determine whether to switch to Host mode or Peripheral mode. Default is
high level 1.8V (pull-up inside chip), and OTG works as Peripheral mode. The USB_ID will be pull-down
to the ground if connect with OTG-Host cable, and the USB driver will swith OTG to Host mode if the

USB _ID level changes from high to low voltage.

af://n456
af://n462
af://n463

e USB_RBIAS: Base resistance of USB 2.0 PHY. Because the resistance of the resistor will affect the
amplitude of the USB signal, so please strictly follow the resistance design of the SDK reference schematic
diagram.

e VCC5V0 _OTG: When OTG work as Peripheral mode, it's the input origin signal of USB_DET. When
OTG work as Host mode, it's supply VBUS 5V for USB Devices.

e USB AVDD 1V0/USB_AVDD 1V8/USB_AVDD 3V3: Power supply for USB 2.0 PHY.

USB 2.0 OTG PHY power supply: USB_AVDD_1V0, USB_AVDD_1V8, USB_AVDD 3V3

The complete USB 2.0 OTG reference circuit is shown in Figures 2-5 ~ 2-8 (Reference to PX30 EVB).

U1000E
AA1D P
USB_OTG DM TG_DM
USB_OTG_DP g ; §§%T|§T DP
USB VBUS
UJSE ID Y11 & USE 1D
USB_HOST_DM :Eg é ;%SB HOST_DM
USE_HOST DP SB_HOST_DFP
UsB_RBIAS [AM EE;‘E? > : I
U1z USB_AVDD 1VOR1401 1R 1 2 ROBO3 1%
USB_AVDD_ V0 13 USE_AYDD_TVER1402 0.1R 1 e 2_ROB0Z 1% Ve e
USBAVDD 3V3 W13 USB_AYDD_3V3R1403 01R_1 A2 ROBO3 1% OVETCAVO_PMU
C1400 | ©1401 | ©1402
FX30 =| 100nF™| 100nF| 100nF
——X5R H5R 5R
18v | 18y | 18V
co402 | co402 | codn2
Figure 2-5 USB 2.0 OTG pin in SoC
- - T T VCCSV0_OTG
| "IN T
— 1 R2500
s 5V [OTE DI
> DM 73— 57G DP1
— s EI’E 4 USB D
5
° I G e -
! ED2500 12501 |l coso1
ESD5451 | N/ N/ [EspsaozF | ——10uF
ESD0402 | @ SOT_23 [ol X5R
6.3V
o I C0603
| =
= = | = Cj<1lpF | =3
OTG DM 1 2 OTG DM1
T Rmoa MORRoGZ 5%]
4 3 FB2500 |
WAAARS A0R-100MD M
2 = 1 LOB03D
OTG DP 1 2 OTG DP1
¢ R2505 V2 YRR0402 5% ©

Figure 2-6 USB 2.0 OTG Micro-Interface

VCCEVD_OTG

T R2500 2 % 1 _R0O402 5% - USB DET

—

é rRzs02 T | 2500

_ 18K =—=100nF
C2501 1% | X5R
——10uF | RO402 16V
| X8R 0402
6.3V
CO603
Figure 2-7 USB 2.0 OTG_DET circuit
vee ayo VCCSVO_SYS VCC5VO_OTG
Lo o]
_ U2500
SYG280AAC
R2501 TT9107/CW 3031
T ¢+—N vour |-
| RO402 GND -2 ||r
4 3
Q2500 EN OCB
WNM2016-3TR _ SOT 23 5 -
SOT_23 — R2503
|H— ——C2502 47K
USE ID 1 ' ol 1UF 5%
' o402 o RO402
o X5R
16V

Figure 2-8 USB 2.0 OTG_DRYV circuit

2.2.2 USB 3.0 OTG Hardware Circuit

The maximum transmission rate of USB 3.0 OTG is 5Gbps, which is downward compatible with USB 2.0 OTG
function. The physical interface is Type-C or Type-A. The USB 3.0 OTG supports 4-wire differential signal lines
up to 3 meters and 11-inch PCB. In order to avoid interference and reduce electromagnetic interference, the

5Gbps signal is transmitted by differential signal on long cable.

Figure 2-9 ~ 2-14 is the Type-C USB 3.0 related circuit design of RK3399 platform.

Al A2 A A4 AS A6 A7 AR A9 a0 a11 a2
GND | TX1+ | TX1- | Weus | CC1 D+ D- SBUL1 | Veus | RX2- | RX2+ | GND

GND RX1+ | RX1- Vaus | SBU2 D~
Bl2 B11 B10 B9 B8 B7

g

ce2 Vaus TX2- | TX2+ GND
BS B4 B3 B2 B1

g

af://n488

HYBRID TH and BMT
COMNECTOR

Figure 2-9 Type-C interface definition

RED-MOUNT

TYPEC1_TXP
TYPEC1_TX1M

TYPEC1_RX1P
TYPEC1_RX1M

TYPEC_TX2P
TYPEC1_TX2M

TYPEC1_RX2P
TYPEC1_RX2M

TYPEC1_RCLKFP
TYPEC1_RCLEM

TYPEC1_CCA
TYFEC1_CC2

TYPEC1_AUXP
TYPEC1_ALLM

TYPEC1_AUXP_PD_PU
TYPEC1_AUXM_PU_PD

TYPEC1_UZVBUSDET
TYPEC1_REXT

3

AKZE

3

ARIT

ALZT

TYPEC1_TX1P
TYPEC1_TX1N

(CTYPECA_RX1P
JOTYPEC1 RXIN

TYPEC1_TX2P
TYPEC1_TXZN

(CTYPEG1_RX2P
JPTYPEC1 RX2N

AFE20 TYPEC1 RCLEP TP1403
AD20 TYPELT_RCLEM 8113141]5

AH21 AP TYPEC1 CC1 ~TP1410
AF21 AP TYPECI CC2 81?1411
AK29
TYPEC1_SBU1
ALZ8 ; TYPEC1 SBU2
% TYPEC1_SBU1_DC
TYPEC1_SBUZ_DC
19 TYPECT USVEUSIES 415w
- R1406 1 402 1%
AG21 R14081 7 RD407 1% |||.

TYPEC1_REXT_CC

TYPEC1_AVDD_0VS_1 bwsﬁ_ﬁmﬂ_m
TYPEC1_AVDD_0V9_2

| AA21 SUSE_AVDD_1vE
| AB21 ~USB_AVDD_3V3

TYPECA_AVDD_1VE

TYPEC1_AVDD_3V3

Figure 2-10 USB 3.0 OTG pin in SoC

USE TYPEC 115H0

VBUS_TYPEC_C10-

Jzaa
@

VBUS_ &
TYPEC1_S8U CZ0001 2 _100nF CO201 XSR 10V TYPECT ALUXF X

TYPEC1_S8UZ 3 I 2_100nF CO201 X4RJOV TYPEG1_CC1 ;i cet
R2001 1 2 RO201 5% - - TYPEC1_Cez e
1 1

TYPEC1_SBU1_DC

&

B

TYPEC1 S8U2 DC ;f‘nus ;ehz‘mu ;: saU1
RO201% RO201 SRz
of 5% of 5% TYPEE1_DM§2 AT ot
- =L TYPECT_DP L e
i - 56 OM2
DP2
TYPEGT_ T 2_1D0nF COZ01 XSR 1OV TYPECTTXIN A3 | o0
TYPEC_TX1 F CO20 e o) 1
HOLE_1 [~
TYPELC, 51T RX1_N HOLE_2 [
TYPRET_RXIP RXTP
C20041 || 2 100NF GO201 XS5R 10V TYPECITXZM B3
TYHECT_THZN i—cui %2 _N
o 1_TX2P3 C20051 | 2 D0nF CO201 XSR 0V TYPECTDGP B2 | 35062 N) o
Al GND_E1
TYPEC | AT1 | SSRXZ_N GND_EZ g
TYPEC1_RX2ZF SSRXZ_P GND_E3 £t
A GNDE4 5
A1z GNO1 GND_ES 52
B GND2 GND_ES [£7
53| GND3 GND_E7 g5
GND4 GND_ES

VBUS_TYPEC_C1o— 20041 1008 . 2 RO402 5% ; SHTYPECT_UZVBUSDET

Figure 2-11 USB 3.0 OTG Type-C interface

FUSBI0ZMPX
MLP14_ZR50XZRS0XDRE0

PEC1 CC1 1:1: et 10 VBUS > OVBUS_TYPEC_C1

cci_Mi
- 12
YPEC1 CCZ. . 1 oo VCOMM_12 jouaussu_TYFEm
L 18 CC2_14 VCOMNN_13 L=

c2102 _| €2103
220pF 220pF

—

voo FA—ovecava_ce

——c0402 ——C0402,, 3
~ COG COG o, 8 Hg;
S50V 50V
] 5 P
15| GMD SCL = T < 2C_SCL_PMIC
aPAD SDA & 2C_SDA_PMIC
— INT# PEC1_CC_INT_L

Figure 2-12 USB 3.0 Type-C CC detection circuit (FUSB302)

uz1oé
FPF2485UCX
WLCSPS_1R21X1R21X0R63

WCC5VD_SYS VBUSSV_TYPEC1 1 VBUS_TYPEC_C1
(o]
R21041 01R% 2 RO603 Al A3 R21051 5% 2 R0402
I Bl VIN1 VouT1 B3 I
| c2im iczms VINZ voumz _| czo8
22uF 22F VCC5V0_TYPEC1_ENC3 4.TuF
——Co80s C0805 C1__ TYPEC_OCFLAG L ——C0805
o xR xsm OCflag o X5R
10V 107 5 8 35V
2z 4
= = Qo - R
H 2
Iset-s?;‘n.m, Ilimited=2A
—_ — —_ —_ | mMEeQ
GPIO1 A4/ISPO PRELIGHT TRIG/ISP1 PRELIGHT TRIG d o35 SPVCC5VO_TYPEC1_EN

Figure 2-13 USB 3.0 VBUS Control Circuit-1 (Control by GPIO)

CHARGE_GMDE

CHAREG_SWE_1
CHARGE_SWg_2

ﬁ.._—————— [Fom-5wsomA
AZE825-0 -~ VBUS_TYPEC
= P00z 1 K o USBIOTG 0 8A 1|, o
c2387 H 1 22uF 10V X58 \LH T *j usB/oTG_0.84_20 [|7
C0805 - — 10 —
C2388 |1 10wk 10w xsmcosoa[| 0w
| VCCSVI_SYS
2380 1_100F 10V X5R CO603 8
2391 22UF 10V X5R COEDS BOOST 1
BOOST 2 .
VCC_SYS L2314 5 BOOS
o — BOOST sws >V/2R
c2s06 2 || 1 22 @ Seseioud an] | BOOST
4
. i‘l:%go}éﬁﬂ IND_404020) | BOOST_GNDS

Figure 2-14 USB 3.0 VBUS Control-2 (Control by RK818)

PowPath_VSYS1
PowPath_V3Y52

BAT_1
BAT 2

]

BAT_TS1
EXT_TS2

SNSP

3. Kernel USB CONFIG

The configuration and saving of the USB module is the same as the other kernel modules.

Import the default configuration:

make ARCH=armé64 rockchip defconfig
Select kernel configuration:

make ARCH=armé64 menuconfig
Save the configuration:

make ARCH=arm64 savedefconfig

Use the defconfig instead of the rockchip defconfig

3.1 USB PHY CONFIG

Device Drivers --->

PHY Subsystem --->
<*> Rockchip INNO USB2PHY Driver
<*> Rockchip TYPEC PHY Driver

<*> Rockchip INNO USB 3.0 PHY Driver

"Rockchip INNO USB2PHY Driver" is used for USB 2.0 PHY with Innosilicon IP block;
“Rockchip TYPEC PHY Driver” is used for USB 3.0 PHY IP block, e.g. RK3399;

"Rockchip INNO USB 3.0 PHY Driver" is used for USB 3.0 PHY with Innosilicon IP block, e.g. RK3328;

3.2 USB Host CONFIG

The configuration of the USB Host module is located at

Device Drivers --->
[*] USB support --->
—-*- Support for Host-side USB

<*> xHCI HCD (USB 3.0) support

af://n507
af://n516
af://n521

—*- Generic xHCI driver for a platform device

<*> EHCI HCD (USB 2.0) support
[1] Root Hub Transaction Translators
[*] Improved Transaction Translator scheduling

<*> Generic EHCI driver for a platform device

<*> OHCI HCD (USB 1.1) support
< > OHCI support for PCI-bus USB controllers

<*> Generic OHCI driver for a platform device

Select the "USB support" first to add core support for USB.

Select the "Supportfor Host-side USB" to add core support for USB HOST.
Select the OHCI configurations to support USB 1.1 HOST.

Select the EHCI configurations to support USB 2.0 HOST.

Select the xHCI configurations to support USB 3.0 HOST.

Note: In order to cut the Kernel core, the tk3308 linux defconfig used for RK3308 doesn't support USB HOST.
But actually, RK3308 SoC integrates one USB 2.0 Host controller (EHCI&OHCI). Select the OHCI/EHCI
configurations and the related device class drivers if you want to use USB 2.0 HOST interface on RK3308
Board.

3.3 USB OTG CONFIG

Select the “DesignWare USB2 DRD Core Support” and the mode for USB 2.0 OTG controller driver.

Select the “DesignWare USB3 DRD Core Support* and the mode for USB 3.0 OTG Controller driver.

Device Drivers --->
-*- Support for Host-side USB
[*] USB support --->

<*> DesignWare USB2 DRD Core Support
DWC2 Mode Selection (Dual Role mode)

<*> DesignWare USB3 DRD Core Support
DWC3 Mode Selection (Dual Role mode)

3.4 USB Gadget CONFIG

Rockchip platforms support the USB Gadget ACM. RNDIS. MSC. MTP. PTP. Accessory. ADB.
MIDI. Audio function by default. Developers can enable more USB Gadget functions according to actual
product requirements, but at the same time, init files in Android system need to be modified.

(init.rk30board.usb.rc and init.usb.configfs.rc).

DeviceDrivers --->

af://n530
af://n534

[*]USB support --->
[*] USB Gadget Support -—--->

USBGadget Drivers (USB functions configurable through configfs) -

Generic serial bulk in/out
Abstract Control Model (CDC ACM)
Object Exchange Model (CDC OBEX)
Network Control Model (CDC NCM)
Ethernet Control Model (CDC ECM)
Ethernet Control Model (CDC ECM) subset
RNDIS
Ethernet Emulation Model (EEM)
Mass storage
Loopback and sourcesink function (for testing)
Function filesystem (FunctionFS)
MTP gadget

PTP gadget
Accessory gadget

Audio Source gadget
Uevent notification of Gadget state
Audio Class 1.0
Audio Class 2.0
MIDI function
HID function
USB Webcam function

Printer function

3.5 USB Device Class Driver CONFIG

3.5.1 Mass Storage Class CONFIG

The U disk belongs to SCSI device, so the SCSI options need to be configured before enable the USB Mass

Storage configuration.

Device Drivers --->
SCSI device support --->
<*> SCSI device support
[] SCSI: use blk-mg I/O path by default
[*] legacy /proc/scsi/ support
%* SCSI support type (disk, tape, CD-ROM) *
<*> SCSI disk support
< > SCSI tape support
< > SCSI OnStream SC-x0 tape support
< > SCSI CDROM support
<*> SCSI generic support
<*> SCSI media changer support
[*] Verbose SCSI error reporting (kernel size +=75K)
[*] SCSI logging facility
[*] Asynchronous SCSI scanning
SCSI Transports -—--->

[*] SCSI low-level drivers --->

af://n537
af://n538

[] PCMCIA SCSI adapter support ----
[] SCSI Device Handlers ----

After add SCSI Device Support, you can enable the "USB Mass Storage support" in "USB Support".

Device Driver --->
[*] USB support --->
<*> USB Mass Storage support

3.5.2 USB Serial Converter CONFIG

¢ Support USB 3G Modem

Device Driver —--->
[*] USB support --->
<*> USB Serial Converter support --->

LW USB driver for GSM and CDMA modems

Device Driver --->
[*] Network device support --->

<K> PPP (point-to-point protocol) support

SO P> PPP BSD-Compress compression

LwS PPP Deflate compression

[%] PPP filtering

LW PPP MPPE compression (encryption)
[*] PPP multilink support

LW PPP over Ethernet

LW PPP over L2TP

LW> PPP on L2TP Access Concentrator
<k > PPP on PPTP Network Server

<*> PPP support for async serial ports
<F> PPP support for sync tty ports

e Support PL2303

Select the following configuration for PL203, and disable the "USB driver for GSM and CDMA modems"
configuration at the same time. Otherwise, PL2303 may be misidentified as USB 3G modem.

Device Driver —--->
[*] USB support --->
<*> USB Serial Converter support --->

<*> USB Prolific 2303 Single Port Serial Driver

¢ Support USB GPS (e.g. u-blox 6 - GPS Receiver)

af://n543

Device Drivers

———>

[*] USB support --->

[*] USB

Modem (CDC ACM) support

3.5.3 USB HID CONFIG

Select the following HID configuration to support generic USB Mouse and Keyboard.

Device Drivers

-——>

[*] HID support

[*] USB
[1 PID

HID transport layer

device support

[*] /dev/hiddev raw HID device support

3.5.4 USB Net CONFIG

¢ USB Bluetooth CONFIG

[*] Networking support --->

<*> Bluetooth subsystem support --->

Bluetooth device drivers --->

<*>
[*]
[*]

HCI USB driver
Broadcom protocol support (NEW)
Realtek protocol support (NEW)

e USB WIFI CONFIG

Need to add WIFI Vendor special driver.

e USB Ethernet CONFIG

Device Driver —--->
[*] Network device support --->
<*> USB Network Adapters --->
<*> USB CATC NetMate-based Ethernet device support

<F>
<F>
<*F>
LW
< >
<F>

<F>

USB KLSI KL5USBl10l-based ethernet device support
USB Pegasus/Pegasus-II based ethernet device support
USB RTL8150 based ethernet device support
Realtek RTL8152/RTL8153 Based USB Ethernet Adapters
Microchip LAN78XX Based USB Ethernet Adapters
Multi-purpose USB Networking Framework

ASIX AX88xxx Based USB 2.0 Ethernet Adapters

af://n558
af://n561

<k> ASIX AX88179/178A USB 3.0/2.0 to Gigabit Ethernet
-*- CDC Ethernet support (smart devices such as cable modems)
<*> CDC EEM support

—-*— CDC NCM support

< > Huawei NCM embedded AT channel support

<*> CDC MBIM support

<*> Davicom DM96xx based USB 10/100 ethernet devices

< > CoreChip-sz SR9700 based USB 1.1 10/100 ethernet devices
< > CoreChip-sz SR9800 based USB 2.0 10/100 ethernet devices
<*> SMSC LAN75XX based USB 2.0 gigabit ethernet devices

<*> SMSC LAN95XX based USB 2.0 10/100 ethernet devices

<*> GeneSys GL620USB-A based cables

<*> NetChip 1080 based cables (Laplink, ...)

<*> Prolific PL-2301/2302/25A1/27A1 based cables

<*> MosChip MCS7830 based Ethernet adapters

<*> Host for RNDIS and ActiveSync devices

<*> Simple USB Network Links (CDC Ethernet subset)

[%] ALi M5632 based 'USB 2.0 Data Link' cables

[%] AnchorChips 2720 based cables (Xircom PGUNET, ...)
[*] eTEK based host-to-host cables (Advance, Belkin, ...)
[%] Embedded ARM Linux links (iPaqg, ...)

L] Epson 2888 based firmware (DEVELOPMENT)

[%] KT Technology KC2190 based cables (InstaNet)

<*> Sharp Zaurus (stock ROMs) and compatible

<*> Conexant CX82310 USB ethernet port

<*> Samsung Kalmia based LTE USB modem

<*> QMI WWAN driver for Qualcomm MSM based 3G and LTE modems
<*> Option USB High Speed Mobile Devices

<*> Intellon PLC based usb adapter

<*> Apple iPhone USB Ethernet driver

<*> USB-to-WWAN Driver for Sierra Wireless modems

< > LG VL6000 modem dongle

< > QingHeng CH9200 USB ethernet support

3.5.5 USB Camera CONFIG
Device Driver —--->
<*> Multimedia support --->
[*] Media USB Adapters --->

**% Webcam devices **x*
<*> USB Video Class (UVC)

[*] UVC input events device support

3.5.6 USB Audio CONFIG

af://n574
af://n576

Device Driver --->

<*> Sound card support --->
<*> Advanced Linux Sound Architecture --->
[*] USB sound devices —-——>

[*] USB Audio /MIDI driver

3.5.7 USB HUB CONFIG

Disable the configuration “Disable external HUBs” to support the external USB HUB.

Device Drivers --->
[*] USB support --->
—-*- Support for Host-side USB

[1] Disable external hubs

There are many other USB devices that may be used, such as GPS, Printer, etc. It may need Vendor customized
driver or standard Class driver. If you need to support these USB devices, you can search methods via internet to

support them. Rockchip platforms have no special requirements, you can directly refer to those methods.

af://n578

4. USB DTS Configuration

4.1 USB 2.0/3.0 PHY DTS

USB PHY is divided into USB 2.0 PHY and USB 3.0 PHY. These two PHYs are independent of each other, and

their characteristics are quite different, so you need to configure DTS separately.

Note: The USB PHY DTS configuration of the RK3399 SoC is more flexible and complicated, please refer to
the document:

Rockchip RK3399 Developer Guide USB DTS CN

4.1.1 USB 2.0 PHY DTS

Rockchip series SoCs mainly use two USB 2.0 PHY IPs: Innosilicon IP and Synopsis IP. The hardware design of
these two IPs is different, so the corresponding PHY DTS configuration is also different. Most of the Rockchip
series USB 2.0 PHY's use Innosilicon IP.

1. USB 2.0 PHY DTS Configuration Document
Innosilicon USB 2.0 PHY DTS configuration document (for SoCs other than RK3188/RK3288)
Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.txt
Synopsis USB 2.0 PHY DTS Configuration document (for RK3188/RK3288 SoC)
Documentation/devicetree/bindings/phy/rockchip-usb-phy.txt

2. USB 2.0 PHY DTS Example
Example (RK3399 USB 2.0 PHYO0 DTS)

e USB 2.0 PHY parent node: RK3399 USB 2.0 PHY registers are in GRF, so use GRF node as the parent of
USB 2.0 PHY, and use the base address of GRF.

e USB 2.0 PHY node: RK3399 USB 2.0 PHY is a combphy, it comprises with a Host port and a OTG port.
And both of these two port use the same reference input clock and the same 480MHz out clock. And also
use the same address offset of GRF for USB PHY configuration.

e USB 2.0 PHY sub-nodes: A sub-node is required for each port the phy provides. The sub-node name is
used to identify Host or OTG port, "otg-port" is the name of otg port, "host-port" is the name of host port.

These two port has different interrupts.

grf: syscon@ff770000 {
compatible = "rockchip, rk3399-grf", "syscon", "simple-mfd";
reg = <0x0 0xff770000 0x0 0x10000>;
#address-cells = <1>;

#size-cells = <1>;

u2phy0: usb2-phy@ed50 {
compatible = "rockchip,rk3399-usb2phy";
reg = <0xe450 0x10>;
clocks = <&cru SCLK USB2PHYO REF>;

af://n583
af://n584
af://n588

clock-names = "phyclk";
#clock-cells = <0>;
clock-output-names = "clk_usbphy0_480m";

status = "disabled";

u2phy0 host: host-port {
#phy-cells = <0>;
interrupts = <GIC SPI 27 IRQ TYPE LEVEL HIGH 0>;
interrupt-names = "linestate";
status = "disabled";

}i

u2phy0 otg: otg-port {

#phy-cells = <0>;

interrupts = <GIC_SPI 103 IRQ TYPE LEVEL HIGH 0>,
<GIC_SPI 104 IRQ TYPE LEVEL HIGH 0>,
<GIC SPI 106 IRQ TYPE LEVEL HIGH 0>;

interrupt-names = "otg-bvalid", "otg-id",

"linestate";
status = "disabled";

}i

For Host port and OTG port host mode, we may need to config regulator for USB VBUS 5V in board DTS, it's

an optional property.
Example (RK3399 USB 2.0 Host VBUS regulator property in DTS)

The control method of RK3399 USB 2.0 Host VBUS is: if GPIO is pulled high, the VBUS 5V output is enabled,;
when GPIO is pulled low, the VBUS 5V output is closed. In DTS, regulator is used to configure GPIO. Among
them, the attribute "regulator-always-on" indicates that after the system is started, the GPIO is pulled up to
enable the VBUS 5V output until the system is shut down.

vce5v0 host: veeS5vO-host-regulator {
compatible = "regulator-fixed";
enable-active-high;
gpio = <&gpiod4 25 GPIO ACTIVE HIGH>;
pinctrl-names = "default";
pinctrl-0 = <ghost vbus drv>;
regulator-name = "vcc5v0 host";
regulator-always-on;

}i

usb2 {
host vbus drv: host-vbus-drv ({
rockchip,pins =

<4 25 RK_FUNC GPIO &pcfg pull none>;

Set the “phy-supply” property to the regulator “vcc5v0_host™ that provides power to VBUS 5V. In this way, the
core code of the PHY framework will automatically parse the attribute and control the GPIO corresponding to
the USB VBUS.

uZ2phy0 host: host-port {
phy-supply = <&vccb5v0 host>;

status = "okay";

4.1.2 USB 3.0 PHY DTS

Rockchip series SoCs mainly use three types of USB 3.0 PHY IP: Type-C PHY IP, Innosilicon USB 3.0 PHY IP
and Innosilicon USB 3.0 CombPhy IP. These three IPs have different hardware designs, so their corresponding
PHY DTS configurations are also different.

1. USB 3.0 PHY DTS Configuration Document
Type-C PHY DTS configuration document(for RK3399/RK3399Pro SoC)
Documentation/devicetree/bindings/phy/phy-rockchip-typec.txt
Innosilicon USB 3.0 PHY DTS configuration document(for RK3228H/RK3228 Soc)
Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb3.txt
Innosilicon USB 3.0 Combphy configuration document(for RK1808 SoC, USB 3.0 & PCle Combphy)

Documentation/devicetree/bindings/phy/phy-rockchip-inno-combophy.txt

2. USB 3.0 PHY DTS Example
Example (RK3399 Type-CO USB 3.0 PHY)

Type-C PHY is a combination of USB 3.0 SuperSpeed PHY and DisplayPort Transmit PHY. So the tcphy0 has
two sub-nodes "tcphy0_dp" and "tcphy0_usb3".

main DTS attribute description:

¢ rockchip,grf : phandle to the syscon managing the "general register files" .
¢ rockchip,typec-conn-dir : the register of type-c connector direction.

¢ rockchip,usb3tousb2-en : the register of type-c force usb3 to usb2 enable.
¢ rockchip,external-psm : the register of type-c phy external psm clock.

¢ rockchip,pipe-status : the register of type-c phy pipe status.

¢ rockchip,uphy-dp-sel : the register of type-c phy selection for DP.

tcphyO: phy@f£f7c0000 {

compatible = "rockchip, rk3399-typec-phy";
reg = <0x0 Oxff7c0000 0x0 0x40000>;
rockchip,grf = <&grf>;
#phy-cells = <1>;
clocks = <&cru SCLK UPHYO TCPDCORE>,

<gcru SCLK_UPHY0 TCPDPHY REF>;
clock-names = "tcpdcore", "tcpdphy-ref";
assigned-clocks = <&cru SCLK UPHYO TCPDCORE>;
assigned-clock-rates = <50000000>;
power-domains = <&power RK3399 PD TCPDO>;
resets = <&cru SRST UPHYO0>,

<g&cru SRST_UPHYO PIPE L00>,

<&cru SRST P UPHYO TCPHY>;
reset-names = "uphy", "uphy-pipe", "uphy-tcphy";
rockchip, typec-conn-dir = <0xe580 0 16>;

af://n615

rockchip,usb3tousb2-en = <0xe580 3 19>;
rockchip,usb3-host-disable = <0x2434 0 16>;
rockchip,usb3-host-port = <0x2434 12 28>;
rockchip,external-psm = <0xe588 14 30>;
rockchip, pipe-status = <0xe5c0 0 0>;
rockchip,uphy-dp-sel = <0x6268 19 19>;

status = "disabled";

tcphyO dp: dp-port {
#phy-cells = <0>;
i

tcphyO usb3: usb3-port {
#phy-cells = <0>;
i

Note:
There are 2 type-c phys for RK3399, and they are almost identical.

This document only describes the configuration of RK3399 USB 3.0 Type-C PHY in DTSI. In fact, there are some
related configurations in DTS such as the extcon attribute and the hardware attributes of CC chip (FUSB302).

For details, please refer to the document:

{Rockchip RK3399 Developer Guide USB_CN)

4.2 USB 2.0 Controller DTS

There are two different architectures controllers:

e EHCI (Enhanced Host Controller Interfac, only support USB 2.0) and OHCI (Open Host Controller
Interface, support USB 1.1 & 1.0)
e DWC2 (DesignWare Cores USB 2.0 Hi-Speed On-The-Go (OTG), support USB 2.0 & 1.1 & & 1.0)

The following describes the two different architectures of the USB 2.0 controller DTS.

4.2.1 USB 2.0 Host Controller DTS

1. USB 2.0 Host Controller DTS configuration document
Documentation/devicetree/bindings/usb/usb-ehci.txt
Documentation/devicetree/bindings/usb/usb-ohci.txt

2. USB 2.0 Host Controller DTS example

Example (DTS of RK3399 USB 2.0 Host0 EHCI & OHCI Controller)

The compatible of the EHCI controller is fixed as “generic-ehci”, and the compatible of the OHCI controller is
fixed as “generic-ohci”. In addition, EHCI and OHCI multiplex the same clocks and phys.

Attribute "power-domains" needs to be configured only when the SoC's USB 2.0 Host controller supports the

power-domains function.

af://n650
af://n658

usb host0 ehci: usb@fe380000 ({
compatible = "generic-ehci";
reg = <0x0 0xfe380000 0x0 0x20000>;
interrupts = <GIC_SPI 26 IRQ TYPE LEVEL HIGH 0>;
clocks = <&cru HCLK HOSTO0>, <&cru HCLK HOSTO ARB>,
<g&cru SCLK USBPHYO 480M SRC>;
clock-names = "hclk hostO", "hclk hostO_arb", "usbphyO 480m";
phys = <&u2phy0 host>;
phy-names = "usb";
power-domains = <&power RK3399 PD PERIHP>;
status = "disabled";

}i

usb_host0 ohci: usb@fe3a0000 {
compatible = "generic-ohci";
reg = <0x0 0xfe3a0000 0x0 0x20000>;
interrupts = <GIC SPI 28 IRQ TYPE LEVEL HIGH 0>;
clocks = <&cru HCLK HOSTO>, <&cru HCLK HOSTO ARB>,
<&cru SCLK USBPHYO 480M SRC>;
clock-names = "hclk hostO", "hclk hostO arb", "usbphyO 480m";
phys = <&u2phy0 host>;
phy-names = "usb";
power-domains = <&power RK3399 PD PERIHP>;
status = "disabled";

4.2.2 USB 2.0 OTG Controller DTS

1. USB 2.0 OTG Controller DTS configuration document

The USB 2.0 OTG uses a DWC2 controller. In the Linux-4.4 kernel, the DWC2 controller driver has two
versions (dwc2 driver and dwc_otg 310 driver). Among them, the dwc_otg 310 driver is an older version of the
driver only used for RK3288/RK3368 SoC. In the Linux-4.19 kernel, DWC2 controller use the dwc2 driver

version for all SoCs and is no longer compatible with the old dwc_otg 310 driver.
DTS configuration file for dwc2 driver (for Linux-4.4 and newer kernels)
Documentation/devicetree/bindings/usb/dwc2.txt
Documentation/devicetree/bindings/usb/generic. txt
DTS configuration document for dwc_otg_310 driver (only for Linux-4.4, RK3288/RK3368 SoC)
Documentation/devicetree/bindings/usb/rockchip-usb.txt

2. USB 2.0 OTG Controller example
Example (DTS of RK3328 USB 2.0 OTG)
Main attribute as follows:

e dr_mode: shall be one of "host", "peripheral" and "otg" (Refer to usb/generic.txt).
e g-rx-fifo-size: size of rx fifo size in gadget mode.

e g-np-tx-fifo-size: size of non-periodic tx fifo size in gadget mode.

o g-tx-fifo-size: size of tx fifo per endpoint (except ep0) in gadget mode.

¢ g-use-dma: enable dma usage in gadget driver.

¢ phys: phy provider specifier.

af://n670

¢ phy-names: shall be "usb2-phy".

Among them, "g-np-tx-fifo-size", "g-rx-fifo-size" and "g-tx-fifo-size" are used for fifo configuration in device
mode, which can be configured accroding to the actual USB device application of the product. The requirements

are described as follows:

1. "g-np-tx-fifo-size" configure the endpoint 0 fifo of the device. It is recommended to fix it to 16 (unit:
4Bytes);

2. "g-rx-fifo-size" configure the receiving fifo of the device OUT Endpoint. All OUT Endpoints share one

receiving fifo. It is recommended to fix it to 275 (unit: 4Bytes);

3. "g-tx-fifo-size" configure the sending fifo of the device IN Endpoint, each IN Endpoint has a dedicated
sending fifo. The corresponding tx-fifo can be configured according to the number of IN Endpoints

actually used. When configuring tx-fifo, there are two principles:
1) tx-fifo cannot be smaller than EP max-packet;

2) The larger the tx-fifo, the better the transmission performance, so if the tx-fifo is large enough, it is

recommended to configure it to be 2 times or larger than the EP max-packet;

usb20 otg: usb@Rf£f580000 ({
compatible = "rockchip, rk3328-usb", "rockchip,rk3066-usb",
"snps,dwc2";
reg = <0x0 O0xff580000 0x0 0x40000>;
interrupts = <GIC_SPI 23 IRQ TYPE LEVEL HIGH>;
clocks = <&cru HCLK OTG>, <&cru HCLK OTG PMU>;

"

clock-names = "otg", "otg pmu";

dr mode = "otg";

g-np-tx-fifo-size = <16>;

g-rx-fifo-size = <275>;

g-tx-fifo-size = <256 128 128 64 64 32>;
g-use-dma;

phys = <&u2phy otg>;

phy-names = "usb2-phy";

status = "disabled";

4.3 USB 3.0 Controller DTS

4.3.1 USB 3.0 Host Controller DTS

USB 3.0 Host controller is xHCI, integrated in DWC3 OTG IP, so it is not necessary to configure DTS
separately for xHCI. We only need to configure DWC3 DTS, and set the "dr_mode" attribute of DWC3 to "otg"

or "host".

4.3.2 USB 3.0 OTG Controller DTS

1. USB 3.0 OTG Controller DTS Configuration Document

af://n711
af://n712
af://n714

The USB 3.0 OTG uses a DWC3 controller. Linux-4.4 and Linux-4.19 or later kernel versions have different
USB 3.0 OTG DTS configurations because Linux-4.19 USB DWC3 controller driver has been upgraded
significantly compared to Linux-4.4 (for specific differences, please refer to USB 3.0 OTG Driver)

Linux-4.4 USB 3.0 OTG controller DTS configuration document

* Documentation/devicetree/bindings/usb/dwc3.txt (DWC3 Controller common attribute
configuration description)

¢ Documentation/devicetree/bindings/usb/generic.txt (USB Controller common attribute
configuration description)

* Documentation/devicetree/bindings/usb/rockchip,dwc3.txt (for RK3399/RK1808 SoC)

* Documentation/devicetree/bindings/usb/rockchip-inno,dwc3.txt (for RK3328/RK3228H
SoC)

Linux-4.19 and newer kernel USB 3.0 OTG Controller DTS configuration document

* Documentation/devicetree/bindings/usb/dwc3.txt (DWC3 Controller common attribute
configuration description)

* Documentation/devicetree/bindings/usb/generic.txt (USB Controller common attribute
configuration description)

* Documentation/devicetree/bindings/usb/rockchip-inno,dwc3.txt (for RK3328/RK3228H
SoC)

Differences in DTS configuration between Linux-4.4 and 4.19 USB 3.0 controllers

¢ DWC3's power-domains, restets and extcon attribute have different reference locations. In Linux-4.4
kernel, these three attributes are placed on the parent node (usbdrd3) of the DWC3 controller, while in
Linux-4.19 kernel, these three attributes are moved to the child nodes (usbdrd dwc3) of the DWC3
controller;

¢ When configuring Type-C to Type-A USB 2.0/3.0 OTG DTS, it is necessary to add the configuration of
the extcon attribute in the USB controller sub-node (usbdrd_dwc3) to support software switching OTG

mode in Linux-4.19 kernel, but not in Linux-4.4 kernel.
2. USB 3.0 OTG Controller DTS Example
Example (RK3399 USB 3.0 OTG DTS in Linux-4.4 kernel)

The USB 3.0 OTG DTS includes a parent node "usbdrd3 0" and a child node "usbdrd dwc3 0". For all SoCs
except for RK3328/RK3228H supporting DWC3 controller, compatible attribute in the parent node must add
"rockchip, rk3399-dwc3". The child nodes of all SoCs are configured as "snps, dwc3". The role of the parent
node is to configure chip-level related attributes, such as clocks, power-domains, and reset. The role of the child
node is to configure the controller-related attributes in which the quirk attribute is applicable to the DWC3

controllers of all SoCs.

usbdrd3 0: usb0 {
compatible = "rockchip,rk3399-dwc3";
clocks = <&cru SCLK USB30TGO REF>, <&cru SCLK USB30TGO SUSPEND>,
<&cru ACLK USB30TG0>, <&cru ACLK USB3 GRF>;
clock-names = "ref clk", "suspend clk",
"bus clk", "grf clk";
power-domains = <&power RK3399 PD USB3>;
resets = <&cru SRST A USB3 OTGO>;
reset-names = "usb3-otg";
#address-cells = <2>;
#size-cells = <2>;
ranges;

status = "disabled";

usbdrd dwc3 0: dwc3@fe800000 {
compatible = "snps,dwc3";
reg = <0x0 0xfe800000 0x0 0x100000>;

interrupts = <GIC SPI 105 IRQ TYPE LEVEL HIGH 0>;

dr mode = "otg";

phys = <&u2phy0 otg>, <&tcphy0 usb3>;
phy-names = "usb2-phy", "usb3-phy";
phy type = "utmi wide";

snps,dis enblslpm quirk;
snps,dis-u2-freeclk-exists-quirk;
snps,dis u2 susphy quirk;
snps,dis-del-phy-power-chg-quirk;
snps, tx-ipgap-linecheck-dis—-quirk;
snps, xhci-slow-suspend-quirk;

snps,xhci-trb-ent-quirk;

snps,usb3-warm-reset-on-resume-quirk;

status = "disabled";

5. USB Driver Development

5.1 Linux USB Driver Framework

The Linux USB protocol stack is a layered architecture, as shown in Figure 5-1 below. The left is the USB
device driver, the right is the USB host driver, and the bottom layer is the driver for the different USB controllers

and PHY's of the Rockchip SoCs.

drivers/usb/gadget/function

\H__ﬂ//’__H\

drivers/ush/gadget/composite.c
drivers/usb/gadget/configfs.c
drivers/ush/gadget/udc/,

&\h_r/,/’“‘“x

drivers/usb/dwc2/.
drivers/usb/dwc3/.
drivers/usb/dwc_otg_310/.{legacy)

»> driversfusb/host/xhci*.c

drivers/usb/core/devio.c
sound/usby.
drivers/media/usb/uvc/.

\u__,;>’-ﬁ“

drivers/ush/storage

\\‘_J’,/"“‘\

drivers/usb/core

drivers/usb/host/ehci*.c
drivers/usb/host/ohci*.c

Figure 5-1 Linux USB driver framework

driversfush/dwc2/...

drivars/phy/rockchip/phy-rockchip-inno-usbZ.c

tears/ohy/frockchinfol i B3,

river P ¢
drh Kehiofohyerockchin.

af://n749
af://n750

5.2 USB PHY Drivers

This chapter mainly introduces the driver code of PHY briefly. If you want to know more about the hardware

framework, register description, signal adjustment of PHY, please refer to the document

Rockchip Developer Guide Linux USB_PHY CN

5.2.1 USB 2.0 PHY Driver

Rockchip SoCs mainly use two USB 2.0 PHY IPs: Innosilicon IP and Synopsis IP. The hardware design of these

two IPs is different, so a separate USB PHY driver is required. At the same time, SoCs with the same USB 2.0

PHY IP use the same driver, instead of each SoC having a dedicated driver.

1. USB 2.0 PHT driver code

Innosilicon USB 2.0 PHY Driver code

drivers/phy/phy-rockchip-inno-usb2.c

e Synopsis USB 2.0 PHY Driver code (only used for RK3188/RK3288):

drivers/phy/rockchip/phy-rockchip-usb.c

For the time being, most of SoCs except RK3188/RK3288 use Innosilicon IP, so this chapter mainly introduces

Innosilicon IP.

2. Innosilicon USB 2.0 PHY IP feature

3.

Fully compliant with USB specification Rev 2.0

Support 480Mbps/12Mbps/1.5Mbps serial data transmission

Support all test modes defined in USB2.0 Specification

Support one port of one PHY, or two ports of one PHY (Comprises with one OTG port and one Host port)
OTG Port support dual-role device

fully support Battery Charge 1.2 Specification

USB 2.0 PHY driver's important structure

In the USB 2.0 PHY driver, there is an important structure rockchip usb2phy_cfg, which is mainly used to
operate the USB PHY related registers. When adding a new SoC support for Innosilicon USB 2.0 PHY, the main

job is to add the corresponding rkxxxx_phy cfgs structure.

struct rockchip usb2phy cfg ({

}i

unsigned int reg;

unsigned int num_ports;

int (*phy tuning) (struct rockchip usb2phy *);

struct usb2phy reg clkout ctl;

const struct rockchip usb2phy port cfg port cfgs[USB2PHY NUM PORTS];
const struct rockchip chg det reg chg det;

The members of the rockchip usb2phy cfg structure are described as follows:

¢ reg: the offset address of the USB PHY in the GRF module. This address should be the same as the

corresponding reg attrbute of the DTS USB 2.0 PHY. The purpose is to match the configuration of the DTS
PHY and the PHY in the driver.

e num_ports: defines the number of ports supported by the USB PHY. For example, if OTG port and Host

port are supported, num_ports is 2.

af://n754
af://n757

e phy tuning: used for USB PHY signal adjustment, such as increasing pre-emphasis and increasing signal
amplitude.

e clkout ctl: controls the USB PHY's 480MHz output clock.

e port_cfgs: register configuration of USB PHY port.

e chg det: register configuration related to charge detection.
4. USB 2.0 PHY state machine
The USB 2.0 PHY driver has three works that are used to handle different state machines:

e rockchip chg detect work: charge detection function for OTG port device mode;

e rockchip usb2phy otg sm work: detect the connection status of the OTG port and control the PHY to
enter/exit suspend,;

e rockchip usb2phy sm_work: detect the connection status of the host port and control the PHY to

enter/exit suspend,;

In the driver, dev_dbg log has been added in key places, which makes it easy to view the state machine rotation

during device connection and disconnection.
5. USB 2.0 PHY Driver Development Example
Example (RK3399 USB 3.0 PHY driver)

RK3399 supports two independent USB 2.0 PHYs. Each PHY comprises with one OTG port and one Host port.
OTG port is used for USB3.0 OTG controller with Type-C USB 3.0 PHY to comprise as fully feature Type-C.
Host port is used for USB2.0 host controller. The detailed k3399 phy cfgs structure code is as follows:

The registers in port_cfgs is mainly used for PHY suspend mode control, VBUS level status detection, OTG ID
level status detection, DP/DM line level status detection, etc. For the specific function description of each

member, please refer to the notes of the structure members in the driver.

static const struct rockchip usb2phy cfg rk3399 phy cfgs[] = {
{

.reg = 0xe450,

.num_ports = 2,

.phy tuning = rk3399 usb2phy tuning,

.clkout ctl = { Oxed450, 4, 4, 1, 0 },

.port cfgs = {

[USB2PHY PORT OTG] = {
.phy sus = { 0Oxe454, 8, 0, 0x052, 0x1dl },
.bvalid det en = { Oxe3cO, 3, 3, 0, 1 },
.bvalid det st = { Oxe3e0, 3, 3, 0, 1 },
.bvalid det clr = { 0Oxe3d0, 3, 3, 0, 1 },
.bypass_dm en = { Oxed450, 2, 2, 0, 1 1},
.bypass_sel = { Oxe450, 3, 3, 0, 1 1},
.idfall det en = { Oxe3cO, 5, 5, 0, 1 },
.idfall det st = { Oxe3e0, 5, 5, 0, 1 },
.idfall det clr = { 0Oxe3d0, 5, 5, 0, 1 },
.idrise det en = { Oxe3cO, 4, 4, 0, 1},
.idrise det st = { Oxe3e0, 4, 4, 0, 1 },
.idrise det clr = { Oxe3d0, 4, 4, 0, 1 },
.1s det _en = { 0xe3cO, 2, 2, 0, 1 1},
.1s _det st = { Oxe3e0, 2, 2, 0, 1 1},
.1s det clr = { 0xe3d0, 2, 2, 0, 1 1},
.utmi_avalid = { Oxe2ac, 7, 7, 0, 1 1},
.utmi bvalid = { Oxe2ac, 12, 12, 0, 1 },
.utmi iddig = { Oxe2ac, 8, 8, 0, 1 1},
{

.utmi_1s = Oxe2ac, 14, 13, 0, 1 },

.vbus det en = { 0x449c, 15, 15, 1, 0 },

}r
[USB2PHY PORT HOST] = {

.phy sus = { Oxe458, 1, 0, 0x2, Ox1 },
.1s det en = { Oxe3c0O, 6, 6, 0, 1 1},
.1s det st = { 0Oxe3e0, 6, 6, 0, 1 1},
.1s det clr = { 0xe3d0, o6, o6, 0, 1 },
.utmi_1s = { Oxe2ac, 22, 21, 0, 1 },

{

.utmi hstdet = Oxe2ac, 23, 23, 0, 1}

.chg det = {

.opmode = Oxed454, 3, 0, 5, 1 1},

.cp_det = Oxe2ac, 2, 2, 0, 1 1},

.dcp_det = Oxe2ac, 1, 1, 0, 1 1},

.dp_det = Oxez2ac, 0, 0, 0, 1 1},

.idm sink en = Oxed450, 8, 8, 0, 1 1},

.idp sink en = Oxed450, 7, 7, 0, 1 1},
9, 0

0xe450, 9, , 11,

0xe450, 10, 10, 0, 1 },
0xe450, 12, 12, 0, 1 },
0xe450, 11, 11, 0, 1 },

.idp src en =
.rdm pdwn_en =
.vdm src_en =

.vdp_src_en =

.reg = 0xe460,
.num_ports = 2g
.phy tuning = rk3399 usb2phy tuning,
.clkout ctl = { Oxedo60, 4, 4, 1, 0 1},
.port cfgs = {
[USB2PHY PORT OTG] = {
.phy sus = { Oxe464, 8, 0, 0x052, Ox1dl },
.bvalid det en = { Oxe3cO, 8, 8, 0, 1 },
.bvalid det st = { Oxe3e0, 8, 8, 0, 1 },
.bvalid det clr = { Oxe3d0O, 8, 8, 0, 1 },
.idfall det en = { Oxe3cO, 10, 10, 0, 1 },
.idfall det st = { Oxe3e0, 10, 10, O, 1 },
.idfall det clr = { Oxe3d0, 10, 10, O, 1 },
.idrise det en = { Oxe3cO, 9, 9, 0, 1 },
.idrise det st = { Oxe3e0, 9, 9, 0, 1 },
.idrise det clr = { 0Oxe3d0, 9, 9, 0, 1 },
.1s det en = { 0xe3cO, 7, 7, 0, 1 1},
.1s _det st = { 0Oxe3e0, 7, 7, 0, 1 1},
.1s det clr = { Oxe3d0, 7, 7, 0, 1 1},
.utmi avalid = { Oxe2ac, 10, 10, 0, 1 },
.utmi bvalid = { Oxe2ac, 16, 16, 0, 1 1},
.utmi iddig = { Oxe2ac, 11, 11, 0, 1 },
.utmi 1s = { Oxe2ac, 18, 17, 0, 1 1},
.vbus det en = { Ox451c, 15, 15, 1, 0 },
by
[USB2PHY PORT HOST] = {
.phy sus = { Oxed468, 1, 0, 0x2, 0x1 1},
.1s det en = { 0Oxe3cO, 11, 11, 0, 1 1},
.1s _det st = { Oxe3e0, 11, 11, 0, 1 1},
.1s det clr = { Oxe3d0, 11, 11, 0, 1 1},
.utmi_ 1s = { Oxe2ac, 26, 25, 0, 1 },
.utmi hstdet = { Oxe2ac, 27, 27, 0, 1}

.chg det = {

.opmode = { Oxed64, 3, 0, 5, 1 },
.cp_det = { Oxe2ac, 5, 5, 0, 1 1},
.dcp_det = { Oxe2ac, 4, 4, 0, 1 1},
.dp_det = { Oxe2ac, 3, 3, 0, 1 1},
.idm sink en = { Oxed460, 8, 8, 0, 1 },
.idp sink en = { Oxed4o60, 7, 7, 0, 1 1},
.idp src en = { Oxed60, 9, 9, 0, 1 1},
.rdm pdwn_en = { Oxe400, 10, 10, 0, 1 1},
.vdm_src_en = { Oxed460, 12, 12, 0, 1 1},
.vdp_src_en = { Oxe460, 11, 11, 0, 1 1},

by
by

{ /* sentinel */ }

6. USB 2.0 PHY Debug Interface

/sys/devices/platform/ [u2phy dev name] # ls
driver extcon of node phy subsystem

driver override modalias otg mode power uevent

The "otg_mode" node is used to switch the OTG Device/Host mode by software, and it is not affected by the
OTG ID level status.

For example:

e Force host mode

echo host > /sys/devices/platform/[u2phy dev name]/otg mode
¢ Force device mode

echo peripheral > /sys/devices/platform/[u2phy dev name]/otg mode
¢ Force otg mode

echo otg > /sys/devices/platform/[u2phy dev name]/otg mode
At the same time, the node is still compatible with the old order of Linux-3.10 and earlier, namely:

e Force host mode

echo 1 > /sys/devices/platform/[u2phy dev name]/otg mode
e Force device mode

echo 2 > /sys/devices/platform/[u2phy dev name]/otg mode
¢ Force otg mode

echo 0 > /sys/devices/platform/[u2phy dev name]/otg mode
Note:

1. [U2phy dev name] in the USB 2.0 PHY full path needs to be modified to the specific PHY node name

corresponding to the SoC.
2. RV1126/RV1109 USB OTG needs additional operations for force mode.
RV1126/RV1109 USB OTG force Host mode

echo disconnect > /sys/class/udc/£f£d00000.dwc3/soft connect (disconnect usb device)
echo host > /sys/devices/platform/££4c0000.usb2-phy/otg mode

RV1126/RV1109 USB OTG force Device mode

echo peripheral > /sys/devices/platform/£f£f4c0000.usb2-phy/otg mode

echo connect > /sys/class/udc/££d400000.dwc3/soft connect (connectusb device)
RV1126/RV1109 USB OTG force OTG mode

echo otg > /sys/devices/platform/£f£f4c0000.usb2-phy/otg mode

echo connect > /sys/class/udc/££d400000.dwc3/soft connect (connectusb device)

5.2.2 USB 3.0 PHY Drivers

Rockchip SoCs mainly use three types of USB 3.0 PHY IP: Type-C PHY IP, Innosilicon USB 3.0 PHY IP and
Innosilicon USB 3.0 CombPhy IP. These three IPs have different hardware designs, so they need separate USB
PHY drivers.

Note that all three USB 3.0 PHY IPs only support SuperSpeed, so they must be used together with USB 2.0 PHY
to fully support the USB 3.0 protocol(supporting HighSpeed/FullSpeed/LowSpeed).

The three different USB 3.0 PHY IP drivers are briefly described below.
1. Type-C PHY Driver
e Type-C USB 3.0 PHY driver code
drivers/phy/rockchip/phy-rockchip-typec.c
e Type-C USB 3.0 PHY driver example
Example (RK3399 Type-C PHY)

Type-C PHY is a combination of USB 3.0 SuperSpeed PHY and DisplayPort Transmit PHY. Please refer to
Type-C USB 3.0 PHY to learn about Type-C PHY's features.

In the probe function of Type-C PHY driver, rockchip dp phy ops of "dp-port" and rockchip usb3 phy ops of
"usb3-port" are created respectively, that is, the operation functions of USB 3.0 PHY and DP PHY such as

power_on and power off are independent and do not affect each other.
The Type-C PHY driver can support the following 4 working modes:

e USB 3.0 only: only works in USB 3.0 mode, such as a Type-C to Type-A USB 3.0 adapter cable;

e DP only: only works in DP mode, such as connecting a DP cable;

e USB 3.0 + DP 2 lanes: support USB 3.0 and DP 2 lanes work at the same time, such as connecting Type-C
dongle;

e USB 2.0 + DP 4 lanes: support USB 2.0 and DP 4 lanes work at the same time, such as connecting Type-C
VR headset;

In order to support the above four working modes, the Type-C PHY needs to be combined with a CC chip
(FUSB302 chip is recommended) to detect the type of the inserted Type-C cable. The CC chip sends a message

to the Type-C PHY using the extcon notification mechanism.
Important USB 3.0 phy_ops:

¢ rockchip usb3 phy power on: used for USB 3.0 Controller to power on Type-C USB 3.0 PHY.
¢ rockchip usb3 phy power off: used for USB 3.0 Controller to power off Type-C USB 3.0 PHY.

Other important functions for USB 3.0:

af://n866

e tcphy cfg usb3 to usb2 only: used to force USB 3.0 works on USB 2.0 only.
e tcphy cfg usb3 pll: config PHY PLL for USB 3.0.

2. Innosilicon USB 3.0 PHY Driver
¢ Innosilicon USB 3.0 PHY driver code
drivers/phy/rockchip/phy-rockchip-inno-usb3.c
¢ Innosilicon USB 3.0 PHY driver example
Example (RK3328 USB 3.0 PHY).

RK3328 USB 3.0 PHY is combination of USB 3.0 PHY and USB 2.0 PHY. Some key features of the USB3.0
PHY are:

¢ Supports 5.0Gb/s serial data transmission rate

e Utilizes 8-bit, 16-bit or 32- bit parallel interface to transmit and receive USB SuperSpeed data

¢ Allows integration of high speed components into a single functional block as seen by the device designer
¢ Data and clock recovery from serial stream on the USB SuperSpeed bus

¢ Holding registers to stage transmit and receive data

¢ Supports direct disparity control for use in transmitting compliance pattern

e 8b/10b encode/decode and error indication

¢ Can not detect peripheral disconnection
The Innosilicon USB 3.0 PHY driver has two special features:

e The USB 2.0 PHY and USB 3.0 PHY operation functions are implemented at the same time (although the
two PHYSs are independent from the hardware), which is different from other USB 3.0 PHYSs. In the driver,
“U3PHY_TYPE UTMI” and “U3PHY_TYPE PIPE” are used as the indexes of USB 2.0 PHY and USB

3.0 PHY respectively. For details, please refer to the following functions in the driver code:
rockchip_u3phy port init (): Initializes the USB 2.0 port and USB 3.0 port of USB 3.0.

rockchip_u3phy power on (): Turn on the clock, and configure the USB 2.0 PHY to Normal mode, and
configure the USB 3.0 PHY to enter the PO state.

rockchip_u3phy power off (): Configure the USB 2.0 PHY to suspend mode, configure the USB 3.0 PHY

to enter P3 state, and turn off the clock to save the overall power consumption of the PHY.

e In order to solve the USB 3.0 PHY cannot detect the disconnection status of the peripheral, a special
function has been added, which is different from other USB 3.0 PHYSs. For details, please refer to the

following functions in the driver:

rockchip_u3phy on_disconnect (): When the USB HUB core driver determines that the peripheral has
been disconnected by detecting changes in the state of the linkstate, it will call the disconnect function

through the notifier registered by the PHY to complete a series of soft disconnect operations.

rockchip_u3phy on_shutdown (): This function is provided to the DWC3 controller driver call, and its role
is to reset the USB3 PHY during the soft disconnect process.

rockchip_u3phy on_init (): This function is provided to the DWC3 controller driver call. Its role is to
release the reset signal of the USB 3.0 PHY at the end of the soft disconnect process;

The Innosilicon USB 3.0 PHY supports software commands to force the PHY to work only in USB 2.0 only

mode:
¢ Command to configure USB 3.0 PHY to USB 2.0 only mode
echo u2> /sys/kernel/debug/[phy name]/u3phy mode

e Command to configure USB 3.0 PHY to support both USB 3.0 and USB 2.0 mode (default after driver

initialization)

echo u3> /sys/kernel/debug/[phy name]/u3phy mode
Note: [phy name] needs to be modified to the specific PHY node name corresponding to the SoC.
3. Innosilicom USB 3.0 CombPhy Driver
¢ Innosilicon USB 3.0 CombPhy driver code
drivers/phy/rockchip/phy-rockchip-inno-combphy.c
e Innosilicon USB 3.0 CombPhy driver example
Example (RK1808 USB 3.0 combphy)

RK1808 USB 3.0 combphy is a combination of USB 3.0 SuperSpeed PHY and PCle PHY, and the USB 3.0
PHY and PCle PHY can't works at the same time. In the driver, PHY interface function
rockchip_combphy xlate() is registered and provided to USB 3.0 controller driver and PCle driver to configure
the USB 3.0 CombPHY to work at the type required by the controller.

If you are using USB 3.0, configure the USB 3.0 controller DTS's phys attribute to

phys = <&u2phy otg>, <&combphy PHY TYPE USB3>;
phy-names = "usb2-phy", "usb3-phy";

If you are using PCle, configure the PCle controller DTS's phys attribute to

phys = <&combphy PHY TYPE PCIE>;
phy-names = "pcie-phy";

For USB 3.0 PHY, it only supports SuperSpeed, and it works with USB 2.0 PHY OTG port to comprise as fully
feature USB 3.0/2.0/1.1/1.0.

Some key features of the USB3.0 CombPhy are:

e Supports 5.0Gb/s serial data transmission rate

e Utilizes 8-bit, 16-bit or 32- bit parallel interface to transmit and receive USB SuperSpeed data

e Allows integration of high speed components into a single functional block as seen by the device designer
e Data and clock recovery from serial stream on the USB SuperSpeed bus

¢ Holding registers to stage transmit and receive data

¢ Supports direct disparity control for use in transmitting compliance pattern

¢ 8b/10b encode/decode and error indication
Important USB 3.0 PHY and PCIe PHY multiplex phy_ops:

e rockchip_combphy _init: prepare PHY reference clock, set PHY type and init PHY regitsters

e rockchip combphy exit: unprepare PHY reference clock

e rockchip_combphy power on: used for USB 3.0 controller to power on USB 3.0 PHY block

e rockchip combphy power off: used for USB 3.0 controller to power off USB 3.0 PHY block to save

power
Other important functions for USB 3.0:

e 1k1808 combphy low power control: used for lower power control for USB 3.0 PHY when system enter

deepsleep

e u3phy mode store/u3phy mode show: used to force USB 3.0 to works on USB 2.0 only via
"u3phy_mode" in sysfs.

It needs to reinit the xHCI when switch between USB 2.0 only and USB 2.0/3.0 mode dynamically. In
order to reinit the XHCI, we use the "otg_mode" node in sysfs to remove/add xHCI HCD.

#1. Default is USB 3.0 OTG mode, config to USB 2.0 only mode
echo u2 > /sys/devices/platform/[u3phy dev name]/u3phy mode
echo host > /sys/devices/platform/[u2phy dev name]/otg mode

#2. Default is USB 3.0 Host mode, config to USB 2.0 only mode
echo otg > /sys/devices/platform/[u2phy dev name]/otg mode
echo u2 > /sys/devices/platform/[u3phy dev name]/u3phy mode
echo host > /sys/devices/platform/[u2phy dev name]/otg mode

#3. Default is USB 2.0 only Host mode, config to USB 3.0 mode
echo otg > /sys/devices/platform/[u2phy dev name]/otg mode
echo u3 > /sys/devices/platform/[u3phy dev name]/u3phy mode
echo host > /sys/devices/platform/[u2phy dev name]/otg mode

Note:

¢ [u3phy dev name] and [u2phy dev name] need to be modified to the specific PHY node names
corresponding to the SoC;
e USB's default mode, which is determined by the attribute "dr_mode" in the DTS of the DWC3 controller;

5.3 USB Controller Drivers

5.3.1 USB 2.0 OTG Driver

5.3.1.1 USB 2.0 OTG Driver Framework

The USB 2.0 OTG uses a DWC2 controller. The system-level block diagram is shown in Figure 5-2 below. The
DWC2 controller has both AHB master interface and AHB slave interface. This is because that the DWC2
controller has internal DMA to move data between USB FIFO and Memory via the AHB bus.

At the same time, please note that the green box in the figure is hardware IP optional function. The DWC2
controller of the Rockchip SoC does not support external DMA function and endp_multi_proc_interrupt. The
interface protocol for communication with the USB PHY is UTMI +.

af://n1014
af://n1015
af://n1016

N

Master I/F b DMA Controller
(DW_ahb__dmao or
T SavellE ARM PrimeCell) 5
5
CPU :> b= Gasket .EI
s
=y g £
Either or none g8 E .9
o a =
58 £ |2
o ol {
o o
c b=}
(] c
Memory K) 2 -
o USB 1.1 1F Usge:igl FsS Interchip USB
"g AHB Master I/F FC F},’a"ﬁ‘ée‘b‘*s's
» or
2 sonva—™ USB)K” Fst1.1usB >
[=%
<
o (N
I >
F'en?heral : : T |«—Intermupt DWC_otg ULPI VF ULPI PHY 2.0 USB
AHB Slave | F UTMI+ UF UTMI+ PHY
— — (Rev 1.0 2.0 or HSIC USB
Vendor or HSIC)
" Control
Peripheral
2
<+——GPIO Qu
E=
o
33
[a]
Data FIFO
Single -Port RAM Options selected during
(SPRAM) configuration with
coreConsultant

Figure 5-2 DWC2 controller system-level block diagram

Figure 5-3 below illustrates the interrupt handling hierarchy of the DWC2 controller. From the figure, it can be
seen that DWC2 supports device interrupt/host interrupt/OTG interrupt. These three types of interrupts also

include sub-interrupts. All interrupts are connected to the chip's interrupt processing module through a total

interrupt signal.

GINTSTS ZiFas GPRDWN
- Rogster DWC2 OTG =REf
" Device Each Endpoint
Device pll Endpoints
Intornugh Rogistor | DWC2 Device s Waemet Regs —
3116 150 r A B 3:16 15:0 [Device Each Endpoint irterrust Mask |
OUT Endpoints | IN Endpoints ‘Immuuu:rESELJ OUT Endpoint | In Endpoint . Register]
______ e e o e e—
? | ‘
Device Endpont Intemupt - _ e
Intemut Ragistens 0% 15 : _ Gevice IFOUT 1|| Device Each il | OUT Endpoint I'F—
Soces g et Mock Repeer [P Msk Register |
e
Host Port Control and Status '
Regster |
|
e . | OTG_MULTI_PROC_WITRPT =1
Host All Channels
Ivuumwnwl | Yo e I |
e e o e o]
I DWC2 HOST Rl
Fhinst Channls Watermupt -
Host Channels 1
| Regsters 01015 In Mok Regmenon | H I
T I p—— -) I
| I [i a3
|

Figure 5-3 Interrupt level of DWC2 controller

5.3.1.2 USB 2.0 OTG Driver Overview

1. USB 2.0 OTG Controller driver code
The Rockchip platform have two sets of DWC2 controller drivers: dwc2 driver and dwe_otg 310 driver
e dwec2 driver: (used for most SoCs)
drivers/usb/dwc2/*
e dwc _otg 310 driver: (Legacy driver, only used for RK3288/RK3368)
drivers/usb/dwc otg 310/*
2. USB 2.0 OTG controller driver code structure description

Considering Linux-4.19 and newer kernel, the DWC2 controllers of all chips have used the dwc2 driver instead

of the old dwc_otg 310 driver, so this document focuses on the dwc2 driver.

USB OTG 2.0 is a Dual-Role Device controller, which supports both device and host functions
and is fully compliant with OTG Supplement to USB2.0 specification, and support high-speed
(480Mbps), full-speed (12Mbps), low-speed (1.5Mbps) transfer.

The structure of the dwc2 driver code is as follows:

~/src/android Q/kernel/drivers/usb/dwc2$ tree .

I— core.c (dwc2 core reset, configure core param and other general operations)

I— core.h

af://n1023

F—— core intr.c (dwc2 general interrupt events, including otg intr, id intr,
wakeup intr, etc.)

F—— debugfs.c (dwc2 debug interface, such as printing register information)
— debug.h

F—— gadget.c (all tasks related to dwc2 gadget mode, such as gadget
initialization, gadget interrupt event)

F—— hcd.c (dwc2 host mode related tasks and core init, phy init, device/host
mode switching)

hcd ddma.c (dwc2 descriptor DMA related tasks)

hed.h

hcd intr.c (handling of all interrupt events in dwc2 host mode)

hcd queue.c (dwc2 host mode transmission queue processing)

hw.h

Kconfig

Makefile

pci.c (initialization of pci bus interface, Rockchip dwc2 uses AHB bus)

[TTTTTTTT

platform.c (implement dwc2 probe, initialize dwc2 lowlevel hw resources

according to core params configuration of different chips)

5.3.1.3 USB 2.0 OTG Debug Interface

¢ DWC2 Driver Debug Interface
Example (RK3328 SoC):
rk3328 box:/sys/kernel/debug/f£580000.usb # 1s
ep0 ep2out epdout epbout ep8in ep%9in fifo state
eplin ep3in ep5in ep7in ep8out ep%ut regdump testmode
ep*in/out: Shows the state of the given endpoint (one is registered for each available).
fifo: Show the FIFO information for the overall fifo and all the periodic transmission FIFOs.

state: shows the overall state of the hardware and some general information about each of the endpoints

available to the system.
regdump: Gets register values of core.
testmode: Modify the current usb test mode.

e DWC_OTG_310 Driver Debug Interface

Example (RK3288 SoC):

rk3288:/sys/devices/platform/£f£580000.usb # 1s

busconnected fr interval gsnpsid modalias regoffset uevent
buspower gadget guid mode regvalue usbb
bussuspend ggpio gusbcfg mode ch tim en remote wakeup wr reg test
devspeed gnptxfsiz hcd frrem pools spramdump

disconnect us gotgctl hcddump power subsystem

driver gpvndctl hprtO0 rd reg test test sqgq

enumspeed grxfsiz hptxfsiz regdump udc

rk3328 box:/sys/devices/platform/f£580000.usb/driver # 1s
bind dwc_otg conn_en force usb mode uevent vbus status

debuglevel f££580000.usb op_state unbind versio

af://n1043

busconnected: Gets or sets the Core Control Status Register.

fr_interval: On read, shows the value of HFIR Frame Interval. On write, dynamically reload HFIR register
during runtime. The application can write a value to this register only after the Port Enable bit of the Host Port
Control and Status register (HPRT.PrtEnaPort) has been set.

gsnpsid: Gets the value of the Synopsys ID Regester.

regoffset: Sets the register offset for the next Register Access.

buspower: Gets or sets the Power State of the bus (0 - Off or 1 - On).

guid: Gets or sets the value of the User ID Register.

regvalue: Gets or sets the value of the register at the offset in the regoffset attribute.

bussuspend: Suspends the USB bus.

ggpio: Gets the value in the lower 16-bits of the General Purpose 10 Register or sets the upper 16 bits.
gusbcefg: Gets or sets the Core USB Configuration Register.

mode_ch_tim_en: This bit is used to enable or disable the host core to wait for 200 PHY clock cycles at the end

of Resume to change the opmode signal to the PHY to 00 after Suspend or LPM.

remote_wakeup: On read, shows the status of Remote Wakeup. On write, initiates a remote wakeup of the host.
When bit 0 is 1 and Remote Wakeup is enabled, the Remote Wakeup signalling bit in the Device Control

Register is set for 1 milli-second.

wr_reg_test: Displays the time required to write the GNPTXFSIZ register many times (the output shows the

number of times the register is written).

devspeed: Gets or sets the device speed setting in the DCFG register.
gnptxfsiz: Gets or sets the non-periodic Transmit Size Register.
spramdump: Dumps the contents of core registers.

disconnect_us: On read, shows the status of disconnect_device us. On write, sets disconnect_us which causes

soft disconnect for 100us. Applicable only for device mode of operation.
gotgctl: Gets or sets the Core Control Status Register.

hcddump: Dumps the current HCD state.

gpvndctl: Gets or sets the PHY Vendor Control Register.

hprt0: Gets or sets the value in the Host Port Control and Status Register.

rd_reg_test: Displays the time required to read the GNPTXFSIZ register many times (the output shows the

number of times the register is read).

test_sq: Gets or sets the usage of usb controler test_sq attribute.
enumspeed: Gets the device enumeration Speed.

grxfsiz: Gets or sets the Receive FIFO Size Register.

hptxfsiz: Gets the value of the Host Periodic Transmit FIFO.
regdump: Dumps the contents of core registers.

dwc_otg conn_en: Enable or disable connect to PC in device mode.

force_usb_mode: Force work mode of core (0 - Normal, 1 - Host, 2 - Device).

vbus_status: Gets the Voltage of VBUS.
debuglevel: Gets or sets the driver Debug Level.

op_state: Gets or sets the operational State, during transations (a_host>>a_peripherial and b_device=>b_host)

this may not match the core but allows the software to determine transitions.

version: Gets the Driver Version.

5.3.2 USB 2.0 Host Driver

5.3.2.1 USB 2.0 Host Controller framework

The USB 2.0 Host controller is composed of a USB 2.0 EHCI controller and a USB 1.1 OHCI controller. The
green box in Figure 5-4 is the hardware IP optional function. The USB 2.0 Host controller of the Rockchip SoC
is configured as an EHCI controller and an OHCI controller, and communicate with the USB PHY by UTMI +
interface. Both EHCI and OHCI use internal DMA to access system memory via the AHB bus. EHCI is
responsible for handling HighSpeed transmission transactions, and OHCI is responsible for handling FullSpeed

and LowSpeed transmission transactions.

EHCI Data EHCI Desc
RAM RAM

4 A
For CONFIG2
option only

A UTMI+
\ 4 y ,
DWC_h20ahb ULPI
or
EHCI AHB Master Interface USB 2.0 EHCI Port 0 b HSIC rmie, uLpr, -
CPU l—» | Controller »(or HSIC PHY [¢ >
EHCI AHB Slave Interface
c 4 [[}
. L]
System @ OHCI AHB Master Interface USB 1.1 OHCI
M —p|T Controller . °
emory = UTMI+,
OHCI AHB Slave Interface ULPI,
or
HSIC USB
Port n |« o [UTMI+, ULPI,)
™ "lor HSIC PHY
. OHCI AHB Master Interface USB 1.1 OHCI N
Peripheral [« | Controller LPM
< OHCI AHB Slave Interface
Options selected during
T ? configuration with
v EHCI - coreConsultant
strap/sideband strap/sideband

Figure 5-4 EHCI & OHCI controller system-level block diagram

5.3.2.2 USB 2.0 Host Driver Overview

1. USB 2.0 Host driver code
drivers/usb/host/ehci* (USB 2.0 Host Driver)
drivers/usb/host/ohci* (USB 1.1/1.0 Host Driver)

2. USB 2.0 Host driver code structure description

The ehci driver code structure is as follows:

Other ehci driver files not listed are platform ehci drivers implemented by different Vendors, such as ehci-
exynos.c. Rockchip's EHCI controller design conforms to the standard EHCI controller specifications, so the

general platform ehci driver "ehci-platform.c” is used.

af://n1092
af://n1093
af://n1097

~/src/android Q/kernel/drivers/usb/host$ tree

F—— ehci-dbg.c (ehci debugfs debugging interface, such as printing ehci register
information)

F—— ehci.h

F—— ehci-hcd.c (Initialization of ehci controller, interrupt event processing,
urb gueue management, etc.)

F—— ehci-hub.c (control and status query of ehci root hub, bus suspend/resume)
F—— ehci-mem.c (allocation and initialization of ehci mem, allocation and
initialization of gtd/gh resources)

F—— ehci-pci.c (Initialization of pci bus interface, Rockchip ehci uses AHB bus,
does not use this driver)

F—— ehci-platform.c (ehci universal platform driver, implement ehci probe,
register ehci hcd with usb bus, enable ehci controller)

F—— ehci-g.c (processing of ehci gtd/gh transmission queue)

F—— ehci-sched.c (cyclic transmission scheduling processing of ehci interrupt,
iso, split iso)

F—— ehci-sysfs.c (ehci sysfs debugging interface, display companion controller,
display uframe periodic max)

F—— ehci-timer.c (task processing related to ehci timer)

Important EHCI Structure:

static const struct hc_driver ehci hc driver = {
.description = hcd name,
.product desc = "EHCI Host Controller",
.hcd priv size = sizeof (struct ehci hcd),
/*
* generic hardware linkage
*/
.irg = ehci irq,
.flags = HCD MEMORY | HCD USB2 | HCD BH,
/*
* basic lifecycle operations
*/
.reset = ehci setup,
.start = ehci run,
.stop = ehci stop,
.shutdown = ehci shutdown,
/*
* managing i/o requests and associated device resources
*/
.urb_enqueue = ehci urb enqueue,
.urb dequeue = ehci urb dequeue,

.endpoint disable = ehci endpoint disable,
.endpoint reset = ehci endpoint reset,
.clear tt buffer complete = ehci clear tt buffer complete,
/*

* scheduling support

*/

.get frame number = ehci get frame,

/*

* root hub support

*/

.hub status data = ehci hub status data,
.hub_control = ehci_hub_control,

.bus suspend = ehci bus suspend,

.bus resume = ehci bus resume,

.relinquish port = ehci relinquish port,

.port handed over = ehci port handed over,

/*

* device support

*/

.free dev = ehci remove device,

}i

The structure of ochi driver code is as follows:

Other ohci driver files not listed are platform ohci drivers implemented by different Vendors, such as ohci-
exynos.c. The OHCI controller design of the Rockchip chip conforms to the standard OHCI controller

specifications, so the general platform ohci driver "ohci-platform.c" is used.

~/src/android_Q/kernel/drivers/usb/host$ tree

F—— ohci-dbg.c (ohci debugfs debugging interface, such as printing ohci register
information)

F—— ohci.h

F—— ohci-hcd.c (initialization of ohci controller, interrupt event processing,
urb gqueue management, etc.)

F—— ohci-hub.c (control and status query of ohci root hub, bus suspend/resume)
F—— ohci-mem.c (allocation and initialization of ohci mem, allocation and
initialization of td/ed resources)

F—— ohci-pci.c (Initialization of pci bus interface, Rockchip ohci uses AHB bus,
does not use this driver file)

F—— ohci-platform.c (ohci universal platform driver, implement ohci probe,
register ohci hcd with usb bus, enable ohci controller)

F—— ohci-g.c (handling of ohci td/ed transmission queue)

Important OHCI Structures:

static const struct hc_driver ohci_ hc_driver = {
.description = hcd name,
.product desc = "OHCI Host Controller",
.hcd priv size = sizeof (struct ohci hcd),
/*
* generic hardware linkage
*/
.irg = ohci irgq,
.flags = HCD MEMORY | HCD USBI11,
/*
* basic lifecycle operations
*/
.reset = ohci setup,
.start = ohci start,
.stop = ohci stop,
.shutdown = ohci_shutdown,
/*
* managing i1/o requests and associated device resources
*/
.urb_enqueue = ohci urb enqueue,
.urb dequeue = ohci urb dequeue,
.endpoint disable = ohci endpoint disable,
/*

* scheduling support

*/

.get frame number = ohci get frame,

/*

* root hub support

*/

.hub status data = ohci hub status data,
.hub_control = ohci_hub control,

#ifdef CONFIG PM

.bus suspend = ohci bus suspend,
.bus resume = ohci bus_ resume,
#endif

.start port reset = ohci start port reset,
}i

5.3.2.3 USB 2.0 Host Debug Interface

Example (RK3399 USB 2.0 EHCI/OHCI)
e EHCI Driver Debug Interface

(Need to enable CONFIG_ DYNAMIC DEBUG)

rk3399 box:/sys/kernel/debug/usb/ehci/fe380000.usb # 1s

async bandwidth periodic registers

rk3399:/sys/devices/platform/fe380000.usb # 1Is
companion driver override of node power uevent usb5

driver modalias pools subsystem uframe periodic max usbmon

async: Dump a snapshot of the Async Schedule.

bandwidth: Dump the HS Bandwidth Table.

periodic: Dump a snapshot of the Periodic Schedule.

registers: Dump Capability Registers, Interrupt Params and Operational Registers.
companion: Print EHCI's companion controller information

uframe_periodic_max: Displays the maximum usable microframe bandwidth for EHCI periodic transmission,

the default is 100 (unit: microseconds), and the maximum can be configured to 125 microseconds
e OHCI Driver Debug Interface

(Need to enable CONFIG_ DYNAMIC DEBUG)
rk3399 box:/sys/kernel/debug/usb/ohci/fe3a0000.usb # 1ls
async periodic registers

async: Display Control and Bulk Lists together, for simplicity

periodic: Dump a snapshot of the Periodic Schedule (and load)

registers: Dump driver info, then registers in Spec order and other registers mostly affect Frame Timings

af://n1116

5.3.3 USB 3.0 OTG Driver

5.3.3.1 USB 3.0 OTG Controller Framework

USB 3.0 OTG Controller is DWC3 Controller, as shown in Figure 5-5 below.

SoC Bus
(AHB/AXI/Native)
N
Master USB 3.0 PHY(PIPE3)/
USB 3.0 SSIC (MPHY)
System DWC _usb3
Memory Controller
Slave USB 2.0 PHY
(UTMI+/ULPI)
Application

[- —
| |
Descriptor
| TxDataFIFO Rx Data FIFO Register Cache | !
| s _ RAM RAM |
| (Single/2-Port) (Single/2-Port) (Single/2-Port) |
| |
L - - - - - - = = = = .

Figure 5-5 DWC3 controller system-level block diagram

USB 3.0 OTG Controller is Synopsys DesignWare Core USB 3.0 Controller integrated with xHCI USB 3.0 host
controller. It can act as static host, static device, USB2.0/3.0 OTG A device or B device basing on the status of
input ID from USB2.0 PHY or DFP/UFP/Data Role Swap defined in USB TypeC specification. It can perform
data transmission between host and device as host or device for Super-Speed/High-Speed/Full-Speed/Low-

Speed.
The characteristics of the USB3.0 controller are as follows:

e Support USB 3.0/2.0/1.1/1.0 protocol

e Integrated xHCI Host controller

e Only DRD mode (dule role) is supported, OTG mode is not supported

¢ Device and Host functions cannot be used at the same time

e The USB2.0 Port and USB3.0 Port of Host can be used independently at the same time

e The USB2.0 Port and USB3.0 Port of Device can not be used independently at the same time

¢ Only DMA mode is supported, Slave mode is not supported

¢ Requires System Memory (Sram/Dram)

e xHCI is a standard USB3.0 Host controller, with the PC USB 3.0 interface. And, it can support Force
USB2.0 only mode.

5.3.3.2 USB 3.0 OTG Driver Overview

1. USB 3.0 OTG driver code

e drivers/usb/dwc3/* (USB 3.0 OTG Global core and Peripheral driver)
e drivers/usb/host/xhci* (USB 3.0 Host driver)

af://n1137
af://n1138
af://n1163

2. USB 3.0 OTG driver code structure description

Linux-4.19 USB DWC3 controller driver has been greatly upgraded compared to Linux-4.4, but the code file

structure remains basically the same. The differences are mainly reflected in:

e Linux-4.19 added drd.c driver file for dynamic switching of dule rote mode;
¢ Linux-4.19 deletes the dwc3-rockchip.c file and uses the generic driver dwc3-of-simple.c instead;
e Linux-4.19 still retains dwc3-rockchip-inno.c, which is dedicated to RK3328/RK3228H chip;

Linux-4.19 DWC3 and xHCI driver code structure is as follows:

~/src/kernel-4.19/drivers/usb/dwc3$ tree

F—— core.c (implementation of dwc3 core probe, allocate various resources,
initialize controller, PM runtime management)

F—— core.h

F—— debugfs.c (implementation of dwc3 debugfs debug interface)

— debug.h

F—— drd.c (dwc3 drd/otg mode dynamic switching processing)

F—— dwc3-of-simple.c (dwc3 universal platform driver, realize the first level
dwc3 of simple probe of dwc3, and call the second level dwc3 probe of dwc3 core
through of platform populate)

F—— dwc3-pci.c (Initialization of pci bus interface, Rockchip dwc3 uses AXI bus,
does not use this driver file)

F—— dwc3-rockchip-inno.c (glue layer for RK3328/RK3228H, increase the
realization of disconnect work)

F—— ep0.c (task processing of dwc3 gadget epO)

F—— gadget.c (dwc3 gadget endpoint task processing except epO, interrupt entry
function implementation)

F—— gadget.h

— host.c (dwc3 host resource allocation, and call xhci plat probe of xHCI
through platform device add)

io.h

Kconfig

Makefile

trace.c (Dwc3 trace implementation, Linux-based trace interface)

trace.h

[TTTTT

ulpi.c (code implementation of ulpi phy interface, Rockchip dwc3 does not

(s

se ulpi)

~/src/kernel-4.19/drivers/usb/host$ tree

T

xhci.c (initialize xhci_hc driver, start xHCI controller, manage urb queue,
etc.)
xhci-dbg.c (realize debug function for printing log)

xhci-dbgcap.c (xHCI hardware module debug capability function is not

T

supported by Rockchip)

— xhci-dbgcap.h

F—— xhci-debugfs.c (xXHCI debugfs debugging interface)

— xhci-debugfs.h

F—— xhci-ext-caps.c (xXHCI extended capability function implementation, not
supported by Rockchip)

F—— xhci-ext-caps.h

— xhci.h

F—— xhci-hub.c (xXHCI root hub control and status query, bus suspend/resume)
F—— xhci-mem.c (xXHCI mem management, including allocation, initialization,
release and other operations)

F—— xhci-pci.c (Initialization of pci bus interface, Rockchip xHCI uses AXI bus,

does not use this driver file)

F—— xhci-plat.c (xHCI universal platform driver, implement xhci plat probe,
Rockchip uses this driver)

F—— xhci-plat.h

F—— xhci-ring.c (management of xHCI transfer/command/event ring)

F—— xhci-trace.c (xXHCI trace implementation, Linux-based trace interface)
L xhci-trace.h

Important Gadget Structure:

static const struct usb gadget ops dwc3 gadget ops = {

.get frame dwc3 gadget get frame,

.wakeup = dwc3 gadget wakeup,

.set selfpowered = dwc3 gadget set selfpowered,
.pullup = dwc3 gadget pullup,

.udc_start = dwc3 gadget start,

.udc_stop = dwc3 gadget stop,

Important Host Structure:

static const struct hc _driver xhci hc driver = {

.description = "xhci-hecd",

.product _desc = "xHCI Host Controller",

.hcd priv size = sizeof (struct xhci hed *),
/*

* generic hardware linkage

*/

.irg = xhci irq,

.flags = HCD MEMORY | HCD USB3 | HCD SHARED,
/*

* basic lifecycle operations

=y

.reset = NULL, /* set in xhci init driver() */
.start = xhci run,

.stop = xhci stop,

.shutdown = xhci shutdown,

/*

* managing i1/o requests and associated device resources
=Y

.urb_enqueue = xhci urb enqueue,

.urb_dequeue xhci urb dequeue,

.alloc dev = xhci alloc dev,
.free dev = xhci free dev,
.alloc_streams = xhci_alloc_streams,

.free streams xhci free streams,

.add _endpoint xhci add endpoint,
.drop_endpoint = xhci_drop_endpoint,
.endpoint reset = xhci endpoint reset,
.check bandwidth xhci check bandwidth,

.reset bandwidth

xhci reset bandwidth,
.address device = xhci address device,
.enable device = xhci enable device,

.update hub device = xhci update hub device,

.reset _device = xhci discover or reset device,

/*

* scheduling support

*/

.get frame number = xhci get frame,
/*

* root hub support

*/

.hub control = xhci hub control,

.hub status data = xhci hub status data,

.bus_ suspend = xhci bus suspend,

.bus resume = xhci bus resume,

/*

* call back when device connected and addressed
*/

.update device = xhci update device,

.set usb2 hw lpm = xhci set usb2 hardware lpm,
.enable usb3 lpm timeout = xhci enable usb3 lpm timeout,

.disable usb3 lpm timeout = xhci disable usb3 lpm timeout,

.find raw port number = xhci find raw port number,

5.3.3.3 USB 3.0 OTG Debug Interface

Example (Linux-4.19 RK3399 USB 3.0 OTGO0)

console:/sys/kernel/debug/fe800000.dwc3 # 1s
ep0in eplin ep2in ep3in ep4in epbin epb6out lsp dump regdump
eplout eplout ep2out ep3out epd4out epbout link state mode testmode

console:/sys/kernel/debug/fe800000.dwc3/ep0in # 1s

descriptor fetch queue rx info queue trb ring
event queue rx request queue tx fifo queue
rx fifo queue transfer type tx request queue

console:/sys/kernel/debug/usb/xhci/xhci-hcd.0.auto # 1s
command-ring ports reg-ext-legsup:00 reg-op
devices reg-cap reg-ext-protocol:00 reg-runtime

event-ring reg-ext-dbc:00 reg-ext-protocol:01

Common debugging nodes:

mode: dr_mode read or store

testmode: Set DWC3 to enter HighSpeed test mode for eye diagram test
link_state: Link state read or store

regdump: Dump registers of DWC3

ep*in/out: Directory of EP debug files

descriptor_fetch_queue: Dump the available DescFetchQ space of EP

af://n1189

rx_info_queue: Dump the available RXInfoQ space of EP
trb_ring: Dump the TRB pool of EP

event_queue: Dump the avaliable EventQ space of EP
rx_request_queue: Dump the avaliable RxReqQ space of EP
tx_fifo_queue: Dump the avaliable TXxFIFO space of EP
rx_fifo_queue: Dump the avaliable RxFIFO space of EP
transfer_type: Print the Transfer Type of EP
tx_request_queue: Dump the abaliable TxReqQ space of EP
command-ring: Print the status information of xHCI command ring
event-ring: Print the status information of xHCI event ring
reg-op: Print xHCI register status information

e USB 3.0 OTG tracepoint

sys/kernel/debug/tracing/events/xhci-hcd
sys/kernel/debug/tracing/events/dwc3

For more details, please refer to:
sys/kernel/debug/tracing/README
¢ USB 3.0 OTG switch command

Function: Through software method, force OTG to work in Host mode or Device mode without being affected

by USB hardware circuit.
Linux-4.4 USB 3.0 OTG switch command

Linux-4.4 old command (only used for RK3399):

#RK3399 Type-CO USB OTG switch command
#1.Force host mode

echo host > sys/kernel/debug/usb@fe800000/rk usb force mode
#2.Force peripheral mode

echo peripheral > sys/kernel/debug/usb@fe800000/rk usb force mode

Linux-4.4 new command (only used for RK3399/RK1808):

#RK3399 Type-CO0 USB OTG switch command
#1.Force host mode

echo host > sys/devices/platform/usb0/dwc3 mode
#2.Force peripheral mode

echo peripheral > sys/devices/platform/usb0/dwc3 mode

#RK1808 USB OTG switch command
#1.Force host mode

echo host > sys/devices/platform/usb/dwc3 mode
#2.Force peripheral mode

echo peripheral > sys/devices/platform/usb/dwc3 mode

Linux-4.19 USB 3.0 OTG switch command (used for all SoCs with DWC3 Controller)

#RK3399 Type-CO0 USB OTG switch command
#1.Force host mode

echo host > sys/devices/platform/f£f770000.syscon/ff770000.syscon:usb2-
phy@e450/otg mode
#2 .Force peripheral mode

echo peripheral > sys/devices/platform/f£770000.syscon/f£f770000.syscon:usb2-
phy@ed450/0tg mode

#For other SoCs, the method is similar, just search for the "otg mode" node

under the sys/devices/platform path, and then set the node.

Linux-5.10 USB 3.0 OTG switch command (used for all SoCs with DWC3 Controller)

#RK3588 Type-CO0 USB OTG switch command
#Methodl. [Legacy] use usb phy node
#1.Force host mode

echo host > /sys/devices/platform/£fd5d0000.syscon/£d5d0000.syscon:usb2-
phy@0/otg mode
#2 .Force peripheral mode

echo peripheral > /sys/devices/platform/fd5d0000.syscon/£fd5d0000.syscon:usb2-
phy@0/otg _mode

#Method2. [New] use usb controller node
#1.Force host mode
echo host > /sys/kernel/debug/usb/£fc000000.usb/mode
#2 .Force peripheral mode
echo device > /sys/kernel/debug/usb/fc000000.usb/mode
#For other SoCs, the method is similar, just search for the "otg mode" or "mode"

node under the sys path, and then set the node.

6. Android USB Gadget Configuration

6.1 USB Gadget Configfs Framework

Since Linux-3.11, USB Gadgets have been configured in the framework of Configfs, and the android.c file in the
Gadget directory has been deleted from the kernel. Device class drivers that support the Configfs framework are

moved to the directory drivers/usb/gadget/function .

For instructions on how to use Android ConfigFS Gadgets, please refer to Linux documentations:
Documentation/ABl/testing/configfs-usb-gadget-xxxx.txt
Documentation/filesystems/configfs/configfs.txt

Documentation/usb/gadget configfs.txt

Documentation/usb/gadget-testing.txt

Kernel USB Gadget Configfs Interface

TIZEN USB

https://wiki.linaro.org/L MG/Kernel/AndroidConfigFSGadgets

6.2 USB Gadget Configuration File

USB-related scripts in Android include:

init.usb.rc
init.usb.configfs.rc
init.rk30board.usb.rc

fstab.rk30board.bootmode.emmc

1. init.usb.rc: Android standard RC files, no need change.

2. fstab.rk30board.bootmode.emmc: Android fstab file, it can be used to configure the mount paths of sdcard
and usb storage. On Rockchip platform, the Vold can use wildcard to search and match USB mount paths
automatically.

for USB 2.0
/devices/platform/*.usb* auto vfat defaults voldmanaged=usb:auto
for USB 3.0

/devices/platform/usb@*/*.dwc3* auto vfat defaults voldmanaged=usb:auto

3. init.rk30board.usb.rc and init.usb.configfs.rc: used for usb functions configuration.

af://n1230
af://n1231
https://events.static.linuxfound.org/sites/events/files/slides/USB%20Gadget%20Configfs%20API_0.pdf
https://wiki.tizen.org/Category:USB
https://wiki.linaro.org/LMG/Kernel/AndroidConfigFSGadgets
af://n1241

on boot

mkdir /dev/usb-ffs 0770 shell shell

mkdir /dev/usb-ffs/adb 0770 shell shell

mount configfs none /config

mkdir /config/usb gadget/gl 0770 shell shell

write /config/usb_gadget/gl/idVendor 0x2207

write /config/usb_gadget/gl/bcdDevice 0x0310

write /config/usb gadget/gl/bcdUSB 0x0200

mkdir /config/usb_gadget/gl/strings/0x409 0770

write /config/usb_gadget/gl/strings/0x409/serialnumber ${ro.serialno}

write /config/usb_gadget/gl/strings/0x409/manufacturer
${ro.product.manufacturer}

write /config/usb gadget/gl/strings/0x409/product ${ro.product.model}

mkdir /config/usb_gadget/gl/functions/accessory.gs2

mkdir /config/usb_gadget/gl/functions/audio source.gs3

mkdir /config/usb gadget/gl/functions/ffs.adb

mkdir /config/usb_gadget/gl/functions/mtp.gs0

mkdir /config/usb_gadget/gl/functions/ptp.gsl

mkdir /config/usb gadget/gl/functions/rndis.gs4

write /config/usb gadget/gl/functions/rndis.gs4/wceis 1

mkdir /config/usb_gadget/gl/functions/midi.gs5

mkdir /config/usb gadget/gl/configs/b.1l 0770 shell shell

mkdir /config/usb gadget/gl/configs/b.1/strings/0x409 0770 shell shell

write /config/usb_gadget/gl/os desc/b_vendor code 0xl

write /config/usb_gadget/gl/os_desc/qw_sign "MSFT100"

write /config/usb_gadget/gl/configs/b.1l/MaxPower 500

symlink /config/usb gadget/gl/configs/b.1 /config/usb gadget/gl/os desc/b.1

mount functionfs adb /dev/usb-ffs/adb uid=2000,gid=2000

setprop sys.usb.configfs 1

setprop sys.usb.controller "£fe800000.dwc3"

on property:sys.usb.config=none && property:sys.usb.configfs=1
write /config/usb gadget/gl/os_desc/use 0
setprop sys.usb.ffs.ready 0

on property:init.svc.adbd=stopped
setprop sys.usb.ffs.ready 0

on property:sys.usb.config=mtp && property:sys.usb.configfs=1

write
/config/usb_gadget/gl/functions/mtp.gs0/os desc/interface.MTP/compatible id
"MTP"

write /config/usb_gadget/gl/os_desc/use 1

write /config/usb_gadget/gl/idProduct 0x0001

on property:sys.usb.config=mtp,adb && property:sys.usb.configfs=1

write
/config/usb gadget/gl/functions/mtp.gs0/os desc/interface.MIP/compatible id
"MTP"

write /config/usb _gadget/gl/os desc/use 1

write /config/usb_gadget/gl/idProduct 0x0011

The three attributes of serialnumber, manufacturer and product are dynamically configured by the Android

application layer. If the serialnumber is not configured successfully, it may cause ADB to be unusable.

"setprop sys.usb.controller" is used to enable the corresponding USB controller of Gadget. For RK3399, it has
two OTG controllers, both of them can support the function of USB Gadget. But because the current architecture
of USB Gadget Driver only supports one USB controller, it is necessary to configure the corresponding USB
controller according to the actual product requirements, such as RK3399 Android SDK, which configures the
Type-CO as the USB Gadget function by default.

setprop sys.usb.controller "£fe800000.usb"

Note:

The Kernel USB Gadget Framework only supports one USB Gadget at the same time. And RK3399 supports
two Type-C USB 3.0 OTG controllers (Type-C0 and Type-C1). If you want to use Type-C1 USB 3.0 as USB
Gadget instead of Type-CO0, simply change two configurations:

1. Use Type-C1 controller name "fe900000.usb" instead of “fe800000.usb” in init.rk30board.usb.rc.
setprop sys.usb.controller "fe900000.usb"
2. set dr_mode = "otg" in usbdrd dwc3 1 node in DTS.

&usbdrd _dwc3_1 ({
status = "okay";
dr mode = "otg"; /* Configure Type-Cl USB Controller to OTG mode */
extcon = <&fusbl>; /* Note: extcon should be configured according to
actual hardware */
bi

6.3 USB VID And PID Configuration

USB VID and PID configuration need to follow the following principles:

e VID is fixed at 0x2207 (authorized by USB-IF)

¢ PID can be defined according to product requirements, but the upper 8 bits must be 0 to avoid conflicts
with Maskrom/Loader USB PID

e VID and PID of accessory need to be configured as defined by Google

e USB-IF stipulates that VID is unique to each Vendor, and the same VID cannot be authorized for different

Vendors

VID and PID commonly used in the Andorid platform are defined as follows:

af://n1266

USB Function VID PID

MTP 0x2207 0x0001
PTP 0x2207 0x0002
RNDIS 0x2207 0x0003
MIDI 0x2207 0x0004
UuvC 0x2207 0x0005
ADB 0x2207 0x0006
MTP,ADB 0x2207 0x0011
PTP,ADB 0x2207 0x0012
RNDIS,ADB 0x2207 0x0013
MIDLADB 0x2207 0x0014
UVC,ADB 0x2207 0x0015
ACCESSORY 0x18d1 0x18d1
ACCESSORY,ADB 0x18d1 0x2d01

6.4 USB Gadget Debug Interface

e Configfs Configure Interface

The kernel provides device nodes to view key configuration information for USB Gadgets, as follows:

root@rk3399:/config/usb _gadget/gl # 1s

uDC bDeviceProtocol bMaxPacketSize0 bcdUSB functions idVendor strings
bDeviceClass bDeviceSubClass bcdDevice configs idProduct os desc
Refer to

Documentation/usb/gadget configfs.txt

In order to enable the gadget it must be bound to a UDC (USB Device Controller).

echo <udc name> > UDC

#where <udc name> is one of those found in /sys/class/udc/*

Example:

Bind Type-C0 USB Device Contoller in RK3399 to UDC

echo fe800000.dwc3 > config/usb gadget/gl/UDC

Unbind USB Device Controller

af://n1335

echo none > config/usb gadget/gl/UDC

¢ View USB Device Connection Status

rk3399:/sys/class/udc/£fe800000.dwc3 # 1s

a_alt hnp support device is _selfpowered srp

a hnp support function maximum speed state

b hnp enable is _a peripheral power subsystem
current speed is otg soft connect uevent

rk3399:/sys/class/android usb/android0 # 1s

f audio source f midi power state subsystem uevent

7. USB Common Debug Methods And Commands

7.1 USB Common Debug Methods

1. Common USB Debug Instruments And Software Tools

¢ Multimeter: for simple voltage test, such as: USB VBUS, OTG_ID and USB PHY power supply.

¢ High-bandwidth oscilloscope: used to measure the signal quality of the USB eye diagram, USB charging
detection and handshake signals, USB VBUS voltage collapse, etc.

e USB protocol analyzer: Analyze the USB communication protocol flow, and locate whether it is a host
problem or a device problem.

¢ Windows tools: BusHound software is used to grab USB bus packets; Usbview software is used to view
detailed descriptor information of USB devices.

e Linux tools: usbmon is a tool for grabbing USB bus packets; vusb-analyzer graphical tool is used to parse
the data captured by usbmon; Isusb command is used to view detailed descriptor information of USB

devices.
For more information, please refer to the documentation:
Documentation/usb/usbmon. txt

{USB Debugging and Profiling Techniques)

2. Common USB Debug Interface

e Sysfs entry in host: /sys/bus/usb/* (view USB devices and drivers supported by the system)
¢ Debugfs entry in host:
/sys/kernel/debug/usb/devices (view all USB device information on the USB bus)
/sys/kernel/debug/*.dwc3 (DWC3 controller debug interface)
/sys/kernel/debug/usb/usbmon (USBMon packet capture tool)
/sys/kernel/debug/usb/xhci (XHCI controller debug interface)
/sys/kernel/debug/usb/uvcvideo (UVC device debug interface)

¢ Debugfs for controllers: refer to USB 2.0 OTG Debug Interface, USB 2.0 Host Debug Interface, USB 3.0

OTG Debug Interface

e trace for usb gadget/dwc3/xHCI:

/sys/kernel/debug/tracing/events/gadget (trace Gadget Driver interacting with Device

Controller Driver)
/sys/kernel/debug/tracing/events/dwc3 (trace DWC3 controller transmission process)
/sys/kernel/debug/tracing/events/xhci-hcd (trace xHCI controller transmission process)
¢ Print usb host uvc log: echo 0xffff>/sys/module/uvcvideo/parameters/trace

e Print usb devio driver log: echo 1>/sys/module/usbcore/parameters/usbfs_snoop

7.2 USB Common Commands

af://n1355
af://n1356
https://elinux.org/images/1/17/USB_Debugging_and_Profiling_Techniques.pdf
af://n1398

This chapter mainly describes the specific commands for Rockchip USB driver USB, including 2.0 OTG switch
command, USB 3.0 OTG switch command, USB 3.0 force USB 2.0 only command and USB eye diagram test

command.

e USB 2.0 OTG switch command

Function: Through software method, force USB 2.0 OTG to Host mode or Device mode without being
affected by OTG ID level.

For the USB 2.0 OTG switch command, please refer to the description of the USB 2.0 PHY debug
interface in USB 2.0 PHY Driver.

e USB 3.0 OTG switch command

Function: Through software method, force USB 3.0 OTG to Host mode or Device mode without being
affected by OTG ID level or Type-C interface.

For the USB 3.0 OTG switch command, please refer to the USB 3.0 OTG switch command description in
USB 3.0 OTG Debug Interface.

e USB 3.0 force USB 2.0 only command
Function: Force USB 3.0 Host controller and PHY to work in USB 2.0 only mode.

For USB 3.0 force USB 2.0 only command, please refer to USB 3.0 PHY drivers.

e USB eye diagram test command
Function: Set the USB 3.0/2.0 controller to test mode.

For the USB eye diagram test command, please refer to the document:
{Rockchip_Developer Guide USB_SQ Test CN)

7.3 Methods to Disable USB Low Power Mechanism

In order to control the dynamic runtime power consumption of the USB module, the Rockchip SDK platform
natively supports a low power mechanism known as USB auto-suspend. When the USB is not connected or there
is no data transfer, the USB controller and PHY will automatically enter suspend mode to reduce power
consumption. It is important to note that for the USB low power mechanism to function properly, both the USB
Host and Device must adhere to the USB protocol's auto-suspend and resume behavior. If the product focuses
more on the stability and compatibility of USB communication, consider disabling the USB low power

mechanism.

7.3.1 Disable the auto-suspend feature of USB Host and peripherals

Applicable scope: All USB Host controllers (DWC2/DWC3-xHCI/EHCI/OHCI), all external USB HUBs,
specific USB Cameras.

TIPS: When debugging autosuspend compatibility issues, you can dynamically disable all USB autosuspend

features by using the following commands to quickly troubleshoot the problem.

for 1 in $(find /sys -name control | grep usb);do echo on > $ijecho "echo on >

$i";done;
¢ Disable autosuspend for all USB controllers and all USB HUB peripherals

Note: This method cannot disable the auto-suspend function of USB Cameras
Method 1. Add usbcore.autosuspend=-1 in CMDLINE

Take RK3588 Linux-5.10 as an example:

af://n1417
af://n1419

arch/arm64/boot/dts/rockchip/rk3588-android.dtsi
chosen: chosen {

bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQO0
irgchip.gicv3 pseudo nmi=0 rcupdate.rcu expedited=1l rcu nocbs=all
usbcore.autosuspend=-1";

}i

Method 2. Modify the usb_autosuspend delay in the driver

Take Linux-5.10 as an example:

diff --git a/drivers/usb/core/usb.c b/drivers/usb/core/usb.c
index 3500e3c94c4b..3a90d3a9%2cl0a 100644

--- a/drivers/usb/core/usb.c

+++ b/drivers/usb/core/usb.c

@@ -63,7 +63,7 @@ EXPORT SYMBOL_ GPL (usb_disabled);

#ifdef CONFIG PM

/* Default delay value, in seconds */

-static int usb autosuspend delay = CONFIG USB AUTOSUSPEND DELAY;
+static int usb autosuspend delay = -1;

module param named(autosuspend, usb autosuspend delay, int, 0644);

MODULE PARM DESC (autosuspend, "default autosuspend delay");

¢ Disable the autosuspend for specific USB HUB peripherals

Method: Add the specific USB hub to hub_id table[] and set id->driver info =
HUB QUIRK DISABLE AUTOSUSPEND

Example:

Disable the auto-suspend feature for CYPRESS CY7C65632 USB HUB (VID = 0x04b4, PID = 0x6570)

diff --git a/drivers/usb/core/hub.c b/drivers/usb/core/hub.c
index fc7d6cdacfl6..df8e69%e60aaf 100644

--- a/drivers/usb/core/hub.c

+++ b/drivers/usb/core/hub.c

@@ -41,6 +41,8 @@

#define USB VENDOR GENESYS LOGIC 0x05e3
#define USB_VENDOR SMSC 0x0424
#define USB_PRODUCT USB5534B 0x5534
+#define USB VENDOR CYPRESS 0x04b4
+#define USB PRODUCT CY7C65632 0x6570
#define HUB QUIRK CHECK PORT AUTOSUSPEND 0x01
#define HUB QUIRK DISABLE AUTOSUSPEND 0x02
@@ -5697,6 +5699,11 @@ static const struct usb device id hub id table[] = {

.idProduct = USB_PRODUCT_USB5534B,

.bInterfaceClass = USB_CLASS HUB,

.driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND},
{ .match flags = USB_DEVICE ID MATCH VENDOR

| USB DEVICE ID MATCH PRODUCT,

.idVendor = USB_VENDOR CYPRESS,

.idProduct = USB_PRODUCT CY7C65632,

.driver info = HUB QUIRK DISABLE AUTOSUSPEND},

+ + o+ + o+

¢ Disable the auto-suspend feature for specific USB Cameras (UVC & UAC)

The mechanism for enabling auto-suspend for USB Cameras is implemented by the driver
drivers/media/usb/uvc/uve_driver.c calling the usb_enable autosuspend interface. By default, the driver
enables auto-suspend for all USB Cameras. To disable the auto-suspend feature for a specific USB
Camera, you need to add USB_QUIRK _AUTO_SUSPEND.

Note: The latest Upstream Mainline driver uses UVC_QUIRK DISABLE AUTOSUSPEND.
Example.

Disable the auto-suspend feature for USB Camera (VID = 0x05a3, PID = 0x9230)

diff --git a/drivers/usb/core/quirks.c b/drivers/usb/core/quirks.c

index 76acb5d6555ae..d799e93b%a0d 100644

--- a/drivers/usb/core/quirks.c

+++ b/drivers/usb/core/quirks.c

@@ -322,6 +322,9 @@ static const struct usb device id usb quirk list[] = {
/* Alcor Micro Corp. Hub */
{ USB_DEVICE (0x058f, 0x9254), .driver info = USB_QUIRK RESET RESUME

+ /* HD Camera Manufacturer */

+ { USB DEVICE (0x05a3, 0x9230), .driver info = USB_QUIRK AUTO SUSPEND

7.3.2 Disable DWC3 Host mode USB2 LPM Feature

Applicable Scope: All chips that support DWC3 controllers, effective only when DWC3 is operating in Host

mode.
Method: Add the property snps,usb2-lpm-disable in the dtsi usb dwc3 controller node.
Take RK3568 Linux-5.10 as an example:

&usbdrd dwc3 {

snps,usb2-lpm-disable;
}i

&usbhost dwc3 {
snps,usb2-lpm-disable;
}i

7.3.3 Disable DWC3 Device mode USB2 LPM Feature

Applicable Scope: All chips that support DWC3 controllers, effective only when DWC3 is operating in Device

mode.
Method: Add the property snps,usb2-gadget-lpm-disable in the dtsi usb dwc3 controller node.
Take RK3568 Linux-5.10 as an example:

&usbdrd dwc3 {

snps,usb2-gadget-lpm-disable;
}i

af://n1446
af://n1451

7.3.4 Disable DWC3 Suspend USB2/USB3 PHY Feature

Applicable Scope: All chips that support DWC3 controllers, effective in both Host and Device modes.

Method: Add the properties snps,dis u2 susphy quirk and snps,dis u3 susphy quirk in the dtsi

usb dwc3 controller node.

Take RK3568 Linux-5.10 as an example:

&usbdrd dwc3 {
snps,dis u2 susphy quirk;
snps,dis u3 susphy quirk;

}i

&usbhost dwc3 {
snps,dis u2 susphy quirk;

snps,dis u3 susphy quirk;

7.3.5 Disable USB 2.0 PHY Charging Detection and Dynamic Suspend Feature

Applicable Scope: All chips using the driver drivers/phy/rockchip/phy-rockchip-inno-usb2.c
Example 1.

Disable the charging detection feature of rk3568 usb2 phyO0 otg port (which will also disable the dynamic entry

into suspend feature)

&u2phy0 _otg {
rockchip,vbus-always-on;

}i

Example 2.

Disable dynamic entry into suspend for rk3568 usb2 phy0 otg port while retaining the charging detection

mechanism.

&u2phy0 otg {
rockchip,dis-u2-susphy;
}i

7.4 Method for Adding USB Peripheral Quirks

To improve the compatibility of the Linux USB driver with various peripherals, the USB core and USB device
class drivers support adding quirks information for specific peripherals to handle issues with special devices.
Common USB peripherals include: USB flash drives, USB HUBs, USB HIDs, USB Cameras, USB Audio

devices.

7.4.1 Adding USB Quirks in the Linux Kernel

af://n1456
af://n1461
af://n1469
af://n1471

There are two primary methods for adding USB peripheral quirks in the Linux kernel:

1. Modifying Quirks Directly in the Driver File: This method involves directly editing the quirks driver file
and is suitable for non-GKI (General Kernel Interface) platforms.

2. Using Module Parameters: This method involves passing parameters to the module and is applicable for
both GKI and non-GKI platforms.

Method 1: Modifying Quirks Directly in the Driver File

1. Identify the Device: Determine the Vendor ID (VID) and Product ID (PID) of the USB device that
requires a quirk.

2. Locate the Quirks Table: Find the appropriate quirks table in the USB driver source code. This could be
in files like drivers/usb/core/quirks.c for general devices or
drivers/usb/storage/unusual devs.h for USB Mass Storage devices.

3. Add a New Entry: Add a new entry to the quirks table with the VID, PID, and the specific quirk flags

needed.

Example.

1. Add USB core quirks

include/linux/usb/quirks.h

drivers/usb/core/quirks.c

/* Lists of quirky USB devices */
static const struct usb device id usb quirk list[] = {
{ USB_DEVICE (0x0204, 0x6025), .driver info = USB QUIRK RESET RESUME
s
{ USB DEVICE (0x21c4, 0x0Ocdl), .driver info = USB QUIRK NO LPM },
i

static const struct usb device id usb interface quirk list[] = {
{ USB_VENDOR_AND_INTERFACE_INFO(OXO46d, USB CLASS VIDEO, 1, 0),
.driver info = USB_QUIRK RESET RESUME },
}i

static const struct usb device id usb endpoint ignore[] = {

{ USB_DEVICE INTERFACE NUMBER (0x06£8, 0xb000, 5), .driver info =
0x01 1},
bi

2. Add USB storage quirks

include/linux/usb_usual.h

drivers/usb/storage/unusual devs.h /* Driver for USB Mass Storage
compliant devices */

drivers/usb/storage/unusual uas.h /* Driver for USB Attached SCSI devices

- Unusual Devices File */

/* Example of USB Mass Storage unusual device */
UNUSUAL DEV (0x0951, 0x1697, 0x0100, 0x0100,
"Kingston",
"DT Ultimate G3",
USB_SC DEVICE, USB PR DEVICE, NULL,
US_FL _NO_WP_DETECT)

/* Example of USB Attached SCSI unusual device */

UNUSUAL DEV (0x0b05, 0x1932, 0x0000, 0x9999,
"ASUS",
"External HDD",
USB_SC DEVICE, USB PR DEVICE, NULL,
US FL IGNORE UAS)

3. Add USB HUB quirks

drivers/usb/core/hub.c

/* Example of USB HUB unusual device */
static const struct usb device id hub id table[] = {
{ .match flags = USB_DEVICE ID MATCH VENDOR
| USB_DEVICE ID MATCH PRODUCT
| USB_DEVICE ID MATCH INT CLASS,
.idvendor = USB_VENDOR_SMSC,
.idProduct = USB_PRODUCT USB5534B,
.bInterfaceClass = USB CLASS HUB,
.driver info = HUB QUIRK DISABLE AUTOSUSPEND},
bi

4. Add USB HID quirks

include/linux/hid.h
drivers/hid/hid-quirks.c

/* Example of USB HID unusual device */
static const struct hid device id hid quirks[] = {

{ HID USB DEVICE (USB_VENDOR ID LOGITECH,
USB_DEVICE ID LOGITECH C007), HID QUIRK ALWAYS POLL },
}i

5. Add USB Camera quirks

drivers/media/usb/uvc/uvcvideo.h

drivers/media/usb/uvc/uvc _driver.c

/* Example of USB Camera unusual device */

static const struct usb device id uvc ids[] = {
{ .match _flags = USB_DEVICE ID MATCH DEVICE
| USB DEVICE ID MATCH INT INFO,
.idVendor = 0x05c8,
.idProduct = 0x0403,
.bInterfaceClass = USB_CLASS VIDEO,
.bInterfaceSubClass =1,
.bInterfaceProtocol =0,
.driver info = (kernel ulong t)&uvc quirk fix bandwidth

}y
i

6. Add USB Audio quirks

sound/usb/usbaudio.h

sound/usb/quirks.c

/* Example of USB Audio unusual device */
static const struct usb audio quirk flags table quirk flags table[] = {
DEVICE FLG(0x046d, 0x084c, /* Logitech ConferenceCam Connect */
QUIRK FLAG GET SAMPLE RATE |
QUIRK FLAG CTL MSG DELAY 1M),
}i

Method 2. Passing Parameters through Module Parameters

Reference Kernel Document: Documentation/admin-guide/kernel-parameters.txt for descriptions related to

usbcore, usbhid, and usb-storage.
Working Mechanism:

1. Parse usb quirks: During the kernel startup phase, call quirks param_ops -> quirks param_set -> Create a
quirk_list and parse usb quirks from the cmdline parameters, then add the parsed quirk information to the
quirk_list;

2. Match usb quirks: During the usb enumeration phase, When enumerating usb devices, the driver
drivers/usb/core/hub.c executes hub_port init ->usb_detect quirks ->usb_detect dynamic quirks,
searches for the usb device's vid/pid in the quirk list, if a match is found, the corresponding flags from the

quirk_list are passed to the usb device class driver.
Example 1. GKI Platform

Disable the USB auto-suspend feature on the GKI platform, disable the LPM feature for VID:PID(325d:6410),
disable the sleep wake reset function for VID:PID(058f:6387), disable the REPORT _OPCODES function for
VID:PID(174c:x55aa), disable the UAS function for VID:PID(0bc2:2321), and set the MAX SECTORS 64 and
IGNORE_RESIDUE quirk attributes for VID:PID(05¢3:0749).

Add quirks configuration in device/rockchip/common/modules/make boot.mk.

ifeq ($(BOARD BUILD GKI),true)

When GKI enable, pass param to usb through cmdline

ref:Documentation/admin-guide/kernel-parameters.txt

BOARD KERNEL CMDLINE += usbcore.autosuspend=-1

BOARD KERNEL CMDLINE += usbcore.quirks=325d:6410:k,058f:6387:e

BOARD KERNEL CMDLINE += usb-storage.quirks=174c:x55aa:f,0bc2:2321:u,05e€3:0749:mr
endif

Example 2. Non-GKI Platform

Disable the USB auto-suspend feature on the RK3588 platform.
arch/armé64/boot/dts/rockchip/rk3588-android.dtsi
chosen: chosen {
bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQO0

irgchip.gicv3 pseudo nmi=0 rcu usbcore.autosuspend=-1";

}i

7.4.2 View USB quirks

After the system boots, check the USB quirks information through the following kernel nodes.

af://n1521

cat
cat
cat
cat
cat

cat

/proc/cmdline
/sys/module/usbcore/parameters/quirks
/sys/module/usb_storage/parameters/quirks
/sys/module/usbhid/parameters/quirks
/sys/module/uvcvideo/parameters/quirks

/sys/module/snd_usb_audio/parameters/quirk flags

8. Analysis of Common USB Questions

8.1 Device Enumeration Log

8.1.1 USB 2.0 OTG Normal Boot Log

Default mode is device when booting without USB cable.

© o 0 0 0 0

.764441]
.764925]
.866923]
.867280]
.867787]
.868294]
.868700]

otg id chg last id -1 currentid 67108864

PortPower off

Using Buffer DMA mode

Periodic Transfer Interrupt Enhancement- disabled
Multiprocessor InterruptEnhancement - disabled
OTG VER PARAM: 0, OTG VER FLAG: O

ANANANNANNANAAAAAAADayCce Mode

8.1.2 USB 2.0 Device Normal Connection Log

133.

368479]

133.500590]

[

[

[133.
[133.
[133.
[133.
[133.
[133
[133.
[133.
[133.
[133.
[133.

]
]
]
]
]
.618581]
]
]
]
]
]

500886
501391
501875
502255
502630

710877
714269
947001
947649
995447

***ybusdetect*
Using Buffer DMA mode

Periodic Transfer InterruptEnhancement - disabled
Multiprocessor InterruptEnhancement - disabled
OTG VER PARAM: 0, OTG VER FLAG: O
NANNANANANANNNNNADeyvice Mode
k*********softconnect! l !*******************
USB RESET

android work: sent ueventUSB STATE=CONNECTED

USB RESET

configfs-gadget gadget: high-speed config #1: b
android work: sent ueventUSB STATE=CONFIGURED
mtp open

8.1.3 USB 2.0 Device Disconnect Log

[187.
[187.

085682]
086486]

rrAEkxxkFrsession end ,softdisconnect**r**xxkkxx

android work: sent ueventUSB STATE=DISCONNECTED

[187.087217] mtp release

8.1.4 USB 2.0 Host Enumerate LS Device Log

af://n1525
af://n1526
af://n1527
af://n1530
af://n1532
af://n1534

325.
325.
328 o
325.
325.

412454]
619507]
620116]
620809]
621222]

usb
usb
usb
usb

usb

2-1

2=1l 3
2=1.3

2=1
2-1

new low-speed USB device number 2 using ohci-platform
New USB device found, idVendor=046d, idProduct=c077

New USB device strings:Mfr=1, Product=2, SerialNumber=0
Product: USB OpticalMouse

Manufacturer: Logitech

8.1.5 USB 2.0 Host Enumerate FS Device Log

370.
371.
371.
371.
371.
371.

896519]
109574]
110183]
110832]
111251]
123172]

usb
usb
usb
usb

usb

2=1¢
2-1:
2=13¢
2=13
2-1:

new full-speed USB device number 3 using ohci-platform
New USB device found,idVendor=1915, idProduct=0199

New USB device strings:Mfr=1, Product=2, SerialNumber=0
Product: Memsartcontroller

Manufacturer: Memsart

input: Memsart Memsart controlleras /

8.1.6 USB 2.0 Host Enumerate HS Device Log

CCs

[406.
[408.

GiB)

408

405.
405.
405.
405.
405.
405.
405.
405.
406.

408.]
408.]

.174453]
408.]
408.]

400521]
536569]
537178]
537815]
538151]
538533]
541111]
542472]
584573]

586425]
171256]

172788
173970

223001
229280

usb
usb
usb
usb
usb

usb

1=ilg
l1=ilg
1=1g
1=ig
1=ilg
1=13

new high-speed USB device number 5 using ehci-platform
New USB device found, idVendor=0951, idProduct=1687

New USB device strings:Mfr=1, Product=2, SerialNumber=3
Product: DT R400

Manufacturer: Kingston

SerialNumber:0018F3D97D02BB91517E017D

usb-storage 1-1:1.0: USB MassStorage device detected

scsi hostl: usb-storage 1-1:1.0
scsi 1:0:0:0: Direct-AccessKingston DT R400 PMAP PQ: O ANSI: O

sd
sd

sd
sd
sd

1

i g

sda:
sd 1:0:0:0: [sda] Attached SCSIremovable disk

0:0:0: Attached scsi genericsg0 type 0

0:0:0: [sda] 15646720512-byte logical blocks: (8.01 GB/7.46
:0:0:0: [sda] Write Protectis off

:0:0:0: [sda] No Caching modepage found

0:0:0: [sda] Assuming drivecache: write through

sdal

8.1.7 USB 2.0 Host-LS/FS/HS Device Disconnect Log

[443.

1510671

usb 1-1:

USB disconnect, devicenumber 3

8.1.8 USB 3.0 Device Normal Connection Log

af://n1536
af://n1538
af://n1540
af://n1542

72.310531] android work: sent ueventUSB STATE=CONNECTED

[]

[72.689120] configfs-gadget gadget: super-speed config #1: b
[72.690110] android work: sent ueventUSB STATE=CONFIGURED

[72.767950] mtp_ open

8.1.9 USB 3.0 Host Enumerate SS Device Log

26.715320] usb 8-1: new SuperSpeed USB device number 2 using xhci-hcd
26.732190] usb 8-1: New USB device found, idVendor=0bc2, idProduct=2320
26.732812] usb 8-1: New USB device strings:Mfr=2, Product=3, SerialNumber=1
26.733515] usb 8-1: Product: Expansion

[]
[]
[]
[]
[26.733885] usb 8-1: Manufacturer: Seagate
[]
[]
[]
[]

26.734263] usb 8-1: SerialNumber: NA45HT1K

26.738410] usb-storage 8-1:1.0: USB MassStorage device detected

26.740446] scsi hostO: usb-storage 8-1:1.0

27.745028] scsi 0:0:0:0: Direct-Access Seagate Expansion 0608 PQ:
0 ANSI:6

[27.753066] sd 0:0:0:0: [sda] 1953525167512-byte logical blocks: (1.00 TB/932
GiB)

[27.754245] sd 0:0:0:0: [sda] Write Protectis off

[27.754982] sd 0:0:0:0: Attached scsi genericsg0 type 0

[27.755281] sd 0:0:0:0: [sda] Write cache:enabled, read cache: enabled,
doesn't support DPO or FUA

[27.783395] sda: sdal

[27.791561] sd 0:0:0:0: [sda] Attached SCSIdisk

8.2 Analysis of Common Questions

8.2.1 USB Hardware Circuit Problem

1. Use multimeter to measure the voltage of PHY power supply, VCC5V0_OTG, USB_DET, USB_ID.
2. Measuring voltage ripple of PHY power supply with oscilloscope.
3. Test USB eye diagram with oscilloscope.

8.2.2 USB Device Problem

The phenomenon that the USB Device is normally connected to the PC mainly includes:

1. The serial port output normal log, see USB 2.0 Device Normol Connection Log;
2. The drive letter appears on the PC, but it cannot be accessed by default; (Windows 7 and MAC OS may

only appear in the device manager);

3. "USB connected" logo appears in the status bar of the device UI;

4. Open the prompt window of USB connected. The default is charger only mode. After selecting "MTP" or
"PTP", the PC can access the drive letter.

Issue-1: When the USB is plug in, the PC does not respond, and no usb enumeration log.

af://n1544
af://n1546
af://n1547
af://n1555

First, make sure you have selected "MTP", "PTP" or "ADB" on device side. Second, check if USB controller has
worked as Device mode via kernel debug interface. Third, check the USB hardware circuit and the USB D+/D-

signals.

Issue-2: PC fails to recognize USB device, and dump the following log on device side:

[36.682587] DWC OTG:

********Softconnect! ! !*********~k~k******************************

[36.688603] DWC OTG: USB SUSPEND
[36.807373] DWC OTG: USB RESET

Maybe it's USB signal quality problem. Please test USB eye diagram and check the USB hardware circuit.
Issue-3: After connecting to PC, the kernel usb enumeration log is normal, but PC cannot access the device
USB driver is OK, maybe it's Andorid USB server issue. Need to dump android log to analysis this issue.
Issue-4: When the USB cable is unplugged, the UI status bar still shows "USB Connected", and dump the
following log:

[25.330017] DWC OTG: USB SUSPEND
Without the following log:

[25.514407] DWC OTG: session end intr, softdisconnect

This issue is always caused by USB_DET voltage abnormality. Use multimeter to measure the voltage of
USB_DET. Normally, the voltage is low (0V) when USB cable is unplugged. If the voltage is still high (~3V)

after USB cable is unplugged, it will cause the disconnection issue.

8.2.3 USB Host Problem

Issue-1: No USB enumeration log when USB device plug into the USB Host port.

First, use multimeter to measure the voltage of VBUS, normally, the voltage of VBUS must be 5V. Second,
check if the Kernel USB driver has support USB Host driver and the USB Class driver. Refer to Kernel USB
CONFIG

Issue-2: USB Disk cannot be mounted

First, check if the Kernel has identified the partition information of the U disk. Second, check whether the mount

patch in the fstab script is correct.

Issue-3: urb transfer buffer address not align

DWC OTG:dwc_otg hcd urb enqueue urb->transfer buffer address not align to 4-
byteOxd6eab00a
DWC OTG:dwc_otg hcd urb enqueue urb->transfer buffer address not align to 4-
byteOxccf6140a

af://n1578

The dwc2 otg driver requires the transfer buffer address of urb must be 4 bytes aligned. Generally, the buffer

address of urb is allocated in USB class drivers, so try to fix this issue in corresponding USB class driver.

8.2.4 USB Camera Problem

1. USB camera cannot be turned on

First, check whether there is a camera device node videoO or Videol in the /dev directory. If not, check
whether the kernel is configured correctly. If there are nodes, make sure that USB camera is inserted before
the system boots, because Rockchip SDK doesn't support USB camera hot-plug by default. If you want to
support USB Camera hot plug-in, please contact the Engineer in charge of Camera to support you. The
USB driver doesn't need to be modified.

2. Image jitter, no image and abnormal exit of camera application

It may be caused by frame loss of USB driver. You need to use USB analyzer to analyze the actual USB

communication data.

8.2.5 USB Charge Detection

USB 2.0 PHY supports charging detection of BC1.2 standard. It can detect four charging types:
SDP/CDP/standard DCP (D+/D-short connection) and non-standard DCP (D+/D-not short connection).

Refer to drivers/phy/rockchip/phy-rockchip-inno-usb2.c
SDP: Standard Downstream Port

According to the USB 2.0 specification, when a USB peripheral is in an un-connected or suspend state, a
Standard Downstream Port can provide an average current of no more than 2.5mA to the peripheral; when the
peripheral is connected and not sleeping, the current can reach a maximum of 100mA (USB 3.0 150mA); and

when the peripheral is configured and not sleeping, the maximum current can be 500 mA (USB 3.0 900 mA).
CDP: Charging Downstream Port

It is compatible with the USB 2.0 specification and optimized downlink USB interface for USB charging. It

provides the maximum 1.5A power supply current to meet the needs of high current fast charging.
DCP: Dedicated Charging Port (USB Charger)

BC1.2 spec requires D + and D - in USB Charger to be short connected to match the recognition action of USB

peripherals, but it does not have the ability to communicate with USB devices.

The USB charging type detection process is shown in the following figure:

af://n1586
af://n1594

Plug Receptacle
Portable Device]

1 ' VBUS Datoct VEILIS I | [et VEILIG
j VTGS v wihisn VELES is assarind b T] [=1 D-

P s D i - - - - i

GO T] [— GND
— L J
AT — | Data Contact Detect ‘\\
e _gne Dwriect when data pins have made - -
e _\-._
WDAT_pr W= o
A LARIT D C DR ERAEM)

= Primary Detection tljj Eﬁ&ﬁ EEI%“%
Detiscss. bitarsins SDP and DCPY I: D'Hﬁ:l D‘*%E% :'

PHY
ACA_A
Sacondary Detection
FDAT L ai 5] Diwterts bot DR and COP
VIAT_a } L
- ACA Detoction
W Camcm s 7]
I B ——
_ © DCRICDPSOP
ACA-DockiACA_A
L o ACA_B
ACAC

Figure 8-1 USB Charging Detection Process

In the typical SDP detection process, the D+/D- signals is shown as follows:

File Confrol Setup Trigger Measure Analyze LUhlities Help 1 un 2015 7:16 PM

is N i .
. I o - [.l 3'1 & an

[E==3] i1

InfiniiScan Off

Figure 8-2 SDP detection signals

In the typical DCP detection process, the D+/D- signals is shown as follows:

Trigger Measure Analyze Utlities Help 11un 2015 7:15PM

[Ea| an
(2]]

Edge (1)

InfiniiScan Off

Figure 8-3 DCP detection signals

If connected to an USB charger, but it is found that charging is slow, may be the DCP is misdetected as SDP,
resulting in charging current set to 500 mA. This problem may happens when the USB cable connection is

unstable or the charging detection driver is wrong.
Try to fix it step by step:

1. Capture the uart log when connected to the USB charger and judge the charging type by the prompt of the
log. The normal charging type log should be DCP.

2. If the log shows that the charge type is SDP, then an error detection has occurred. First, try to change an
USB cable, and test again, if this issue still exits, please use oscilloscope to capture D+/D- signals when
USB cable plug in, and send both the error kernel log and D+/D- signals to us.

3. If the connection is a USB charger and the logs show it's DCP, it indicates that the software detects
normally, but if the charging is still slow, it may be a problem of charging IC or battery.

8.2.6 USB Transfer Rate Problem

The main factors affecting the transmission rate:

e USB signal quality

¢ USB controller bus frequency

e CPU/DDR operating frequency

¢ Read and write performance of storage media
¢ File system format of storage device

e USB device class driver
Reference:

{Rockchip_Developer Guide Linux_ USB_Performance Analysis CN})

af://n1621

8.2.7 USB Enumeration Rate

Pay attention to the printed log of the USB enumeration. "high-speed" means recognized as USB 2.0, and

"super-speed" means recognized as USB 3.0.

8.2.8 USB3.0 Recognized Problem

After the USB3.0 device is plugged in, nothing happens, how to troubleshoot?

According to the definition of USB3.0 enumeration process, it is generally stuck at the Link Training process of
USB 3.0 PHY, that is, the problem of USB PHY signal. You can use the USB3.0 analyzer to capture the Link
Training process and combine it with the LTSSM state machine described in the USB 3.0 Spec for analysis.

8.2.9 USB 3.0 Disk Copy Problem

¢ Confirm whether the VBUS supply current meets the requirements
¢ On the PC side, perform the same operation for comparison
e Use USB 3.0 analyzer to capture communication protocol

¢ Reduce the size of the data block transmitted once, update the xHCI driver, and open the xHCI debug log

8.2.10 USB3.0 Camera Transmission Problem

It is generally related to the efficiency of USB access to the DDR bus.
Optimization means:

e ddr fixed frequency 800MHz;

e Improve USB QOS;

¢ Optimize the interrupt processing efficiency of uve driver, put memcpy operation in the lower half;

¢ urb buffer uses kmalloc allocation instead of the default dma_alloc_coherent method,

e [fthe RK platform is for UVC Gadget, you can dynamically allocate TXFIFO to increase the size of
TxFIFO;

8.3 About PC USB Driver

The developers often use USB download mode (rockusb) and USB debug mode (ADB) on Rockchip platforms
during development stage.

1. PC Windows USB Driver

Need to install Rockchip vendor special USB driver in Windows. Rockchip provides a tool
“DriverAssitant” for you to install Rockchip vendor special USB driver.

2. PC Ubuntu USB Driver

No need to install vendor special USB driver.

af://n1638
af://n1640
af://n1643
af://n1653
af://n1667

9. USB Signal Quality Test

Refer to the document {Rockchip Developer Guide USB_SQ Test CN) or Rockchip USB SQ Tool.

Rockchip USB SQ Tool: https://redmine.rockchip.com.cn/documents/113

af://n1677
https://redmine.rockchip.com.cn/documents/113

	Rockchip Linux USB Developer Guide
	Overview
	RK USB Controllers Solution
	USB 2.0 Host
	USB 2.0 OTG
	USB 3.0 OTG
	USB 2.0 PHY
	Type-C USB 3.0 PHY

	Hardware Circuits and Signals
	USB 2.0 Host Hardware Circuits
	USB 2.0 Host Common Hardware Circuit
	USB 2.0 HSIC Hardware Circuit

	USB OTG Hardware Circuits
	USB 2.0 OTG Hardware Circuit
	USB 3.0 OTG Hardware Circuit

	Kernel USB CONFIG
	USB PHY CONFIG
	USB Host CONFIG
	USB OTG CONFIG
	USB Gadget CONFIG
	USB Device Class Driver CONFIG
	Mass Storage Class CONFIG
	USB Serial Converter CONFIG
	USB HID CONFIG
	USB Net CONFIG
	USB Camera CONFIG
	USB Audio CONFIG
	USB HUB CONFIG

	USB DTS Configuration
	USB 2.0/3.0 PHY DTS
	USB 2.0 PHY DTS
	USB 3.0 PHY DTS

	USB 2.0 Controller DTS
	USB 2.0 Host Controller DTS
	USB 2.0 OTG Controller DTS

	USB 3.0 Controller DTS
	USB 3.0 Host Controller DTS
	USB 3.0 OTG Controller DTS

	USB Driver Development
	Linux USB Driver Framework
	USB PHY Drivers
	USB 2.0 PHY Driver
	USB 3.0 PHY Drivers

	USB Controller Drivers
	USB 2.0 OTG Driver
	USB 2.0 OTG Driver Framework
	USB 2.0 OTG Driver Overview
	USB 2.0 OTG Debug Interface

	USB 2.0 Host Driver
	USB 2.0 Host Controller framework
	USB 2.0 Host Driver Overview
	USB 2.0 Host Debug Interface

	USB 3.0 OTG Driver
	USB 3.0 OTG Controller Framework
	USB 3.0 OTG Driver Overview
	USB 3.0 OTG Debug Interface

	Android USB Gadget Configuration
	USB Gadget Configfs Framework
	USB Gadget Configuration File
	USB VID And PID Configuration
	USB Gadget Debug Interface

	USB Common Debug Methods And Commands
	USB Common Debug Methods
	USB Common Commands
	Methods to Disable USB Low Power Mechanism
	Disable the auto-suspend feature of USB Host and peripherals
	Disable DWC3 Host mode USB2 LPM Feature
	Disable DWC3 Device mode USB2 LPM Feature
	Disable DWC3 Suspend USB2/USB3 PHY Feature
	Disable USB 2.0 PHY Charging Detection and Dynamic Suspend Feature

	Method for Adding USB Peripheral Quirks
	Adding USB Quirks in the Linux Kernel
	View USB quirks

	Analysis of Common USB Questions
	Device Enumeration Log
	USB 2.0 OTG Normal Boot Log
	USB 2.0 Device Normal Connection Log
	USB 2.0 Device Disconnect Log
	USB 2.0 Host Enumerate LS Device Log
	USB 2.0 Host Enumerate FS Device Log
	USB 2.0 Host Enumerate HS Device Log
	USB 2.0 Host-LS/FS/HS Device Disconnect Log
	USB 3.0 Device Normal Connection Log
	USB 3.0 Host Enumerate SS Device Log

	Analysis of Common Questions
	USB Hardware Circuit Problem
	USB Device Problem
	USB Host Problem
	USB Camera Problem
	USB Charge Detection
	USB Transfer Rate Problem
	USB Enumeration Rate
	USB3.0 Recognized Problem
	USB 3.0 Disk Copy Problem
	USB3.0 Camera Transmission Problem

	About PC USB Driver

	USB Signal Quality Test

