
Rockchip Linux USB Developer Guide

ID: RK-KF-YF-097

Release Version: V2.2.0

Release Date: 2024-10-09

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset name Kernel version

All Rockchip chips except MCU Linux-4.4 and above

Date Version Author Revision description

2017-
12-22

v1.0
william.wu,
frank.wang

The initial version

2018-
06-08

v1.1 william.wu
Support RK3308、RK3326、PX30
Correct formats and errors

2019-
03-11

v1.2 william.wu Fix style issues by markdownlint

2019-
11-12

v1.2.1 william.wu Modify document name，support Linux-4.19

2020-
02-19

v1.2.2 william.wu Add DISCLAIMER，Trademark Statement, etc.

Preface

Overview

The purpose of this manual is to show you the hardware circuits of USB, how to configure the USB in Kernel,
and help you to develop and debug the driver of USB PHYs and Controllers quickly.

Product version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers
Software development engineers
Hardware development engineers

Revision history

Date Version Author Revision description

2020-
05-13

v1.3.0 jianing.ren

1. Correct the content of most chapters to improve
readability;
2. Add new chapters "5.1 Linux USB Driver
Framework";
3. Add new chapters "7 USB Common Debug Methods
And Commands";
4. Add analysis of common problems.

2020-
12-16

v1.4.0 william.wu
1. Fix hyperlinks error
2. Add support for RV1109/RV1126/RK3566/RK3568;
3. Add force mode method for RV1109/RV1126;

2022-
01-14

v1.5.0 william.wu Add support for RK3588

2022-
04-16

v1.6.0 william.wu Add support for RV1103/RV1106

2024-
04-23

v2.0.0 william.wu Add support for RK3528/RK3562/RK3576

2024-
08-06

v2.1.0 william.wu Add support for RK3506/RV1103B

2024-
10-09

v2.2.0 william.wu
1. Adding methods to disable USB low-power
mechanisms
2. Adding methods to set USB Quirks configurations

Contents

Rockchip Linux USB Developer Guide
1. Overview

1.1 RK USB Controllers Solution
1.2 USB 2.0 Host
1.3 USB 2.0 OTG
1.4 USB 3.0 OTG
1.5 USB 2.0 PHY
1.6 Type-C USB 3.0 PHY

2. Hardware Circuits and Signals
2.1 USB 2.0 Host Hardware Circuits

2.1.1 USB 2.0 Host Common Hardware Circuit
2.1.2 USB 2.0 HSIC Hardware Circuit

2.2 USB OTG Hardware Circuits
2.2.1 USB 2.0 OTG Hardware Circuit
2.2.2 USB 3.0 OTG Hardware Circuit

3. Kernel USB CONFIG
3.1 USB PHY CONFIG
3.2 USB Host CONFIG
3.3 USB OTG CONFIG
3.4 USB Gadget CONFIG
3.5 USB Device Class Driver CONFIG

3.5.1 Mass Storage Class CONFIG
3.5.2 USB Serial Converter CONFIG
3.5.3 USB HID CONFIG
3.5.4 USB Net CONFIG
3.5.5 USB Camera CONFIG
3.5.6 USB Audio CONFIG
3.5.7 USB HUB CONFIG

4. USB DTS Configuration
4.1 USB 2.0/3.0 PHY DTS

4.1.1 USB 2.0 PHY DTS
4.1.2 USB 3.0 PHY DTS

4.2 USB 2.0 Controller DTS
4.2.1 USB 2.0 Host Controller DTS
4.2.2 USB 2.0 OTG Controller DTS

4.3 USB 3.0 Controller DTS
4.3.1 USB 3.0 Host Controller DTS
4.3.2 USB 3.0 OTG Controller DTS

5. USB Driver Development
5.1 Linux USB Driver Framework
5.2 USB PHY Drivers

5.2.1 USB 2.0 PHY Driver
5.2.2 USB 3.0 PHY Drivers

5.3 USB Controller Drivers
5.3.1 USB 2.0 OTG Driver

5.3.1.1 USB 2.0 OTG Driver Framework
5.3.1.2 USB 2.0 OTG Driver Overview
5.3.1.3 USB 2.0 OTG Debug Interface

5.3.2 USB 2.0 Host Driver
5.3.2.1 USB 2.0 Host Controller framework
5.3.2.2 USB 2.0 Host Driver Overview
5.3.2.3 USB 2.0 Host Debug Interface

5.3.3 USB 3.0 OTG Driver
5.3.3.1 USB 3.0 OTG Controller Framework
5.3.3.2 USB 3.0 OTG Driver Overview

5.3.3.3 USB 3.0 OTG Debug Interface
6. Android USB Gadget Configuration

6.1 USB Gadget Configfs Framework
6.2 USB Gadget Configuration File
6.3 USB VID And PID Configuration
6.4 USB Gadget Debug Interface

7. USB Common Debug Methods And Commands
7.1 USB Common Debug Methods
7.2 USB Common Commands
7.3 Methods to Disable USB Low Power Mechanism

7.3.1 Disable the auto-suspend feature of USB Host and peripherals
7.3.2 Disable DWC3 Host mode USB2 LPM Feature
7.3.3 Disable DWC3 Device mode USB2 LPM Feature
7.3.4 Disable DWC3 Suspend USB2/USB3 PHY Feature
7.3.5 Disable USB 2.0 PHY Charging Detection and Dynamic Suspend Feature

7.4 Method for Adding USB Peripheral Quirks
7.4.1 Adding USB Quirks in the Linux Kernel
7.4.2 View USB quirks

8. Analysis of Common USB Questions
8.1 Device Enumeration Log

8.1.1 USB 2.0 OTG Normal Boot Log
8.1.2 USB 2.0 Device Normal Connection Log
8.1.3 USB 2.0 Device Disconnect Log
8.1.4 USB 2.0 Host Enumerate LS Device Log
8.1.5 USB 2.0 Host Enumerate FS Device Log
8.1.6 USB 2.0 Host Enumerate HS Device Log
8.1.7 USB 2.0 Host-LS/FS/HS Device Disconnect Log
8.1.8 USB 3.0 Device Normal Connection Log
8.1.9 USB 3.0 Host Enumerate SS Device Log

8.2 Analysis of Common Questions
8.2.1 USB Hardware Circuit Problem
8.2.2 USB Device Problem
8.2.3 USB Host Problem
8.2.4 USB Camera Problem
8.2.5 USB Charge Detection
8.2.6 USB Transfer Rate Problem
8.2.7 USB Enumeration Rate
8.2.8 USB3.0 Recognized Problem
8.2.9 USB 3.0 Disk Copy Problem
8.2.10 USB3.0 Camera Transmission Problem

8.3 About PC USB Driver
9. USB Signal Quality Test

Chip
USB 2.0 HOST
(EHCI&OHCI)

USB HSIC
(EHCI)

USB 2.0/3.0 OTG
(DWC3/xHCI)

USB 2.0 OTG
(DWC2)

RK3399Pro 2 1 2 0

RK3399 2 1 2 0

RK3368 1 1 0 1

RK3366 1 0 1 1

RK3328 1 0 1 1

RK3288 0 1 0
2

(HOST+OTG)

1. Overview

1.1 RK USB Controllers Solution

Rockchip SoC usually has several USB controllers built in, and different controllers are independent of each
other. Please get detailed information in the chip TRM. Because some USB controllers have limitations on
usage, it is important to clarify the requirements of the scheme and the limitations of the controller before
determining the design scheme of USB. The built-in USB controllers of each chip are shown in Table 1-1.

Table 1‑1 USB Controllers List

af://n104
af://n105

Chip
USB 2.0 HOST
(EHCI&OHCI)

USB HSIC
(EHCI)

USB 2.0/3.0 OTG
(DWC3/xHCI)

USB 2.0 OTG
(DWC2)

RK3228 3 0 0 1

RK312X 1 0 0 1

RK3188 1 1 0 1

RK30XX 1 0 0 1

RK3308 1 0 0 1

RK3326 0 0 0 1

RK1808 1 0 1 0

RK1108 1 0 0 1

PX30 1 0 0 1

RV1103 0 0 1 (OTG 2.0) 0

RV1103B 0 0 1 (OTG 2.0) 0

RV1106 0 0 1 (OTG 2.0) 0

RV1109 1 0 1 (OTG 2.0) 0

RV1126 1 0 1 (OTG 2.0) 0

RK3506 0 0 0 2 x OTG 2.0

RK3528 1 0 1 (OTG 3.0) 0

RK3562 1 0 1 (OTG 3.0) 0

RK3576 0 0 2 (OTG 3.0) 0

RK3566 2 0
2 (OTG 2.0 + Host

3.0)
0

RK3568 2 0 2 (OTG 3.0+ Host 3.0) 0

RK3588 2 0
3 (2 x OTG 3.0 +

1 x Host 3.0)
0

RK3588S 2 0
2 (1 x OTG 3.0 +

1 x Host 3.0)
0

Note：

1. In the table, the number N indicates that it supports N independent USB controllers.
2. In the table, "EHCI/OHCI" indicates that the USB controller integrates the EHCI controller and OHCI

controller. "DWC3/xHCI" indicates that the USB controller integrates the DWC3 controller and xHCI
controller.

3. RK3288 supports two independent DWC2 controllers. One DWC2 supports OTG function and the other
DWC2 only supports Host function.

4. RV1103/RV1106/RV1109/RV1126/RK3566 DWC3 controller only supports OTG 2.0, no support OTG
3.0, the maximal transfer rate is 480 Mb/s (High speed).

5. The difference between the USB modules of RK3588 and RK3588S is that RK3588S doesn't support
Type-C1 (1 x USB 3.0 OTG controller + 1 x DP controller + 1 x USB3.0/DP combo PHY + 1 x USB 2.0
PHY).

6. RK3588 and RK3588S Host 3.0 controller (USB30_2 interface) only support USB 3.0 and not downward
compatible with USB 2.0.

7. RV1103/RV1103B/RV1106 USB PHY don't support OTG_ID and therefore not support OTG Device/Host
mode switch automatically by hardware. If you want to switch OTG mode, please refer to the chapter USB
Common Commands to switch OTG mode by software.

8. The RK3506 supports two fully functional DWC2 OTG controllers, which can be applied to dual Device
product forms, but only OTG0 supports BC1.2 charging detection and Device hot-plug disconnect
detection. In addition, the RK3506 SDK's hardware and software can support the use of GPIO to detect
VBUS and ID voltage as an alternative to the conventional USB PHY VBUSDET and OTG_ID pins.

1.2 USB 2.0 Host

Compatible Specification

Universal Serial Bus Specification, Revision 2.0
Enhanced Host Controller Interface Specification(EHCI), Revision 1.0
Open Host Controller Interface Specification(OHCI), Revision 1.0a

Features

Support high-speed(480Mbps), full-speed(12Mbps) and low-speed(1.5Mbps). The block diagram of the
USB 2.0 Host controller is shown in Figure 1-1.

Figure 1-1 USB 2.0 Host Controller Block Diagram

1.3 USB 2.0 OTG

af://n301
af://n316

Compatible Specification

Universal Serial Bus Specification, Revision 2.0

Features

Supports Host mode and Device mode
Support OTG ID detection, and automatically switch between Host mode and Device mode by ID status
Does not support ADP/SRP/HNP protocols
Supports high speed, full speed, and low speed in Host mode, and only supports high speed and full speed
in Device mode
Support 9 channels in host mode
9 Device mode endpoints in addition to control endpoint 0, 4 in, 3 out and 2 IN/OUT
Built-in one 1024x35 bits FIFO
Internal DMA with scatter/gather function
Supports packet-based, dynamic FIFO memory allocation for endpoints for flexible, efficient use of RAM
Support dynamic FIFO sizing
Support Battery Charge in device role
Support Uart Bypass Mode

Figure 1‑2 USB 2.0 OTG Block Diagram

1.4 USB 3.0 OTG

Compatible Specification

Universal Serial Bus 3.0 Specification, Revision 1.0
Universal Serial Bus Specification, Revision 2.0
eXtensible Host Controller Interface for Universal Serial Bus(xHCI), Revision 1.1

DWC3 Features

Support Control/Bulk(including stream)/Interrupt/IsochronousTransfer
Simultaneous IN and OUT transfer for USB 3.0, up to 8Gbps bandwidth
Descriptor Caching and Data Pre-fetching
USB 3.0 Device Features
Up to 7 IN endpoints, including control endpoint 0
Up to 6 OUT endpoints, including control endpoint 0
Up to 13 endpoint transfer resources, each one for each endpoint
Flexible endpoint configuration for multiple applications/USBset-configuration modes
Hardware handles ERDY and burst
Stream-based bulk endpoints with controller automatically initiatingdata movement
Isochronous endpoints with isochronous data in data buffers

af://n349

Flexible Descriptor with rich set of features to support bufferinterrupt moderation, multiple transfers,
isochronous, control, and scatteredbuffering support
USB 3.0 Dual-Role Device(DRD) Features
Static Device operation
Static Host operation
USB 3.0/USB 2.0 OTG A device and B device basing on ID
UFP/DFP and Data Role Swap Defined in USB TypeC Specification
Not support USB 3.0/USB 2.0 OTG session request protocol(SRP), hostnegotiation protocol(HNP) and
Role Swap Protocol(RSP)

USB 3.0 xHCI Host Features

Support up to 64 devices
Support 1 interrupter
Support 1 USB 2.0 port and 1 Super-Speed port
Concurrent USB 3.0/USB 2.0 traffic, up to 8.48Gbps bandwidth
Support standard or open-source xHCI and class driver
Support xHCI Debug Capability

Figure 1‑3 USB 3.0 OTG Block Diagram

1.5 USB 2.0 PHY

The USB 2.0 PHY supports two designs, one port and two ports. Figure 1-4 below is a block diagram that
supports two ports.

af://n412

Figure 1‑4 USB 2.0 PHY Block Diagram

Host Port: connect to USB 2.0 Host controller via UTMI+
OTG Port: connect to USB 3.0 OTG controller or USB 2.0 logic module of USB 2.0 OTG controller via
UTMI+

1.6 Type-C USB 3.0 PHY

Support USB 3.0 (SuperSpeed only)
Support DisplayPort 1.3 (RBR, HBR and HBR2 data rates only)
Support DisplayPort AUX channel
Support USB TypeC and DisplayPort Alt Mode
Support DisplayPort Alt Mode on TypeC A, B, C, D, E and F pinassignments
Support Normal and Flipped orientation

Figure 1‑5 TypeC PHY Block Diagram

af://n421

2. Hardware Circuits and Signals

2.1 USB 2.0 Host Hardware Circuits

This chapter introduces the hardware circuit design and signal of USB 2.0 HOST. According to the type of USB
2.0 PHY used, it can be divided into common USB 2.0 HOST hardware circuit and USB 2.0 HSIC hardware
circuit.

2.1.1 USB 2.0 Host Common Hardware Circuit

USB 2.0 works at 480MHz clock, it is suggested that the width of USB 2.0 DP/DM lines should be 7-8 MIL and
90 Ω impedance differential. It is better to layout on the surface layer and cover the ground, and no interference
source on the edge and no other signal line on the right upper and lower layers.

Example (USB 2.0 HOST hardware circuit design of RK3399 SoC).

The SoC pins of the USB 2.0 Host controller are shown in Figure 2-1

Figure 2‑1 USB 2.0 HOST pin in SoC

The control circuit and interface circuit of USB 2.0 Host VBUS are shown in Figure 2-2 and Figure 2-3

af://n438
af://n439
af://n441

Figure 2-2 USB 2.0 Host VBUS control circuit and interface circuit

Figure 2‑3 USB 2.0 Host VBUS GPIO controller pin

2.1.2 USB 2.0 HSIC Hardware Circuit

HSIC (High Speed Inter Chip) uses 240 MHz DDR signal, so the transmission rate is 480 Mbps, the same as
USB 2.0, and the typical line impedance is 50 Ω. It is suggested that the maximum length of the line should not
exceed 10 cm on the PCB.

As shown in Figure 2-4, USIC_STROBE is 240MHz DDR signal line, USIC_DATA is data line. The power
supply voltage is only 0.9V and 1.2V, and standard voltage of signal transmission is 1.2V, which has lower
power consumption than USB 2.0 PHY.

Example (USB 2.0 HSIC hardware circuit design of RK3399 SoC)

Figure 2‑4 USB 2.0 HSIC pin in SoC

2.2 USB OTG Hardware Circuits

2.2.1 USB 2.0 OTG Hardware Circuit

USB 2.0 OTG related hardware signals:

OTG_DP/OTG_DM: USB differential signal D+/D-, need to place 2.2Ω series resistance on each signal
line.
USB_DET: Input signal, used for OTG Peripheral mode to determine whether to connect to Host or USB
charger. Default is low level 0V. If connect to Host or USB charger, the high level is 3.0~3.2 V.
USB_ID: Input signal, used to determine whether to switch to Host mode or Peripheral mode. Default is
high level 1.8V (pull-up inside chip), and OTG works as Peripheral mode. The USB_ID will be pull-down
to the ground if connect with OTG-Host cable, and the USB driver will swith OTG to Host mode if the
USB_ID level changes from high to low voltage.

af://n456
af://n462
af://n463

USB_RBIAS: Base resistance of USB 2.0 PHY. Because the resistance of the resistor will affect the
amplitude of the USB signal, so please strictly follow the resistance design of the SDK reference schematic
diagram.
VCC5V0_OTG: When OTG work as Peripheral mode, it's the input origin signal of USB_DET. When
OTG work as Host mode, it's supply VBUS 5V for USB Devices.
USB_AVDD_1V0/USB_AVDD_1V8/USB_AVDD_3V3: Power supply for USB 2.0 PHY.

USB 2.0 OTG PHY power supply：USB_AVDD_1V0，USB_AVDD_1V8，USB_AVDD_3V3

The complete USB 2.0 OTG reference circuit is shown in Figures 2-5 ~ 2-8 (Reference to PX30 EVB).

Figure 2-5 USB 2.0 OTG pin in SoC

Figure 2-6 USB 2.0 OTG Micro-Interface

Figure 2-7 USB 2.0 OTG_DET circuit

Figure 2-8 USB 2.0 OTG_DRV circuit

2.2.2 USB 3.0 OTG Hardware Circuit

The maximum transmission rate of USB 3.0 OTG is 5Gbps, which is downward compatible with USB 2.0 OTG
function. The physical interface is Type-C or Type-A. The USB 3.0 OTG supports 4-wire differential signal lines
up to 3 meters and 11-inch PCB. In order to avoid interference and reduce electromagnetic interference, the
5Gbps signal is transmitted by differential signal on long cable.

Figure 2-9 ~ 2-14 is the Type-C USB 3.0 related circuit design of RK3399 platform.

af://n488

Figure 2‑9 Type-C interface definition

Figure 2‑10 USB 3.0 OTG pin in SoC

Figure 2‑11 USB 3.0 OTG Type-C interface

Figure 2‑12 USB 3.0 Type-C CC detection circuit (FUSB302)

Figure 2‑13 USB 3.0 VBUS Control Circuit-1 (Control by GPIO)

Figure 2‑14 USB 3.0 VBUS Control-2 (Control by RK818)

3. Kernel USB CONFIG

The configuration and saving of the USB module is the same as the other kernel modules.

Import the default configuration：

Select kernel configuration：

Save the configuration：

Use the defconfig instead of the rockchip_defconfig

3.1 USB PHY CONFIG

"Rockchip INNO USB2PHY Driver" is used for USB 2.0 PHY with Innosilicon IP block；

“Rockchip TYPEC PHY Driver” is used for USB 3.0 PHY IP block, e.g. RK3399;

"Rockchip INNO USB 3.0 PHY Driver" is used for USB 3.0 PHY with Innosilicon IP block, e.g. RK3328；

3.2 USB Host CONFIG

The configuration of the USB Host module is located at

make ARCH=arm64 rockchip_defconfig

make ARCH=arm64 menuconfig

make ARCH=arm64 savedefconfig

Device Drivers --->

 PHY Subsystem --->

 ...

 <*> Rockchip INNO USB2PHY Driver

 ...

 <*> Rockchip TYPEC PHY Driver

 ...

 <*> Rockchip INNO USB 3.0 PHY Driver

Device Drivers --->

 [*] USB support --->

 -*- Support for Host-side USB

 ...

 <*> xHCI HCD (USB 3.0) support

af://n507
af://n516
af://n521

Select the "USB support" first to add core support for USB.

Select the "Supportfor Host-side USB" to add core support for USB HOST.

Select the OHCI configurations to support USB 1.1 HOST.

Select the EHCI configurations to support USB 2.0 HOST.

Select the xHCI configurations to support USB 3.0 HOST.

Note: In order to cut the Kernel core, the rk3308_linux_defconfig used for RK3308 doesn't support USB HOST.
But actually, RK3308 SoC integrates one USB 2.0 Host controller (EHCI&OHCI). Select the OHCI/EHCI
configurations and the related device class drivers if you want to use USB 2.0 HOST interface on RK3308
Board.

3.3 USB OTG CONFIG

Select the “DesignWare USB2 DRD Core Support” and the mode for USB 2.0 OTG controller driver.

Select the “DesignWare USB3 DRD Core Support“ and the mode for USB 3.0 OTG Controller driver.

3.4 USB Gadget CONFIG

Rockchip platforms support the USB Gadget ACM、RNDIS、MSC、MTP、PTP、Accessory、ADB、
MIDI、Audio function by default. Developers can enable more USB Gadget functions according to actual
product requirements, but at the same time, init files in Android system need to be modified.
(init.rk30board.usb.rc and init.usb.configfs.rc)。

 -*- Generic xHCI driver for a platform device

 ...

 <*> EHCI HCD (USB 2.0) support

 [] Root Hub Transaction Translators

 [*] Improved Transaction Translator scheduling

 <*> Generic EHCI driver for a platform device

 ...

 <*> OHCI HCD (USB 1.1) support

 < > OHCI support for PCI-bus USB controllers

 <*> Generic OHCI driver for a platform device

Device Drivers --->

 -*- Support for Host-side USB

 [*] USB support --->

 ...

 <*> DesignWare USB2 DRD Core Support

 DWC2 Mode Selection (Dual Role mode)

 ...

 <*> DesignWare USB3 DRD Core Support

 DWC3 Mode Selection (Dual Role mode)

DeviceDrivers --->

af://n530
af://n534

3.5 USB Device Class Driver CONFIG

3.5.1 Mass Storage Class CONFIG

The U disk belongs to SCSI device, so the SCSI options need to be configured before enable the USB Mass
Storage configuration.

 [*]USB support --->

 [*] USB Gadget Support --->

 ...

 USBGadget Drivers (USB functions configurable through configfs) ---

>

 [] Generic serial bulk in/out

 [*] Abstract Control Model (CDC ACM)

 [] Object Exchange Model (CDC OBEX)

 [] Network Control Model (CDC NCM)

 [] Ethernet Control Model (CDC ECM)

 [] Ethernet Control Model (CDC ECM) subset

 [*] RNDIS

 [] Ethernet Emulation Model (EEM)

 [*] Mass storage

 [] Loopback and sourcesink function (for testing)

 [*] Function filesystem (FunctionFS)

 [*] MTP gadget

 [*] PTP gadget

 [*] Accessory gadget

 [*] Audio Source gadget

 [*] Uevent notification of Gadget state

 [] Audio Class 1.0

 [] Audio Class 2.0

 [*] MIDI function

 [] HID function

 [] USB Webcam function

 [] Printer function

Device Drivers --->

 SCSI device support --->

 <*> SCSI device support

 [] SCSI: use blk-mq I/O path by default

 [*] legacy /proc/scsi/ support

 *** SCSI support type (disk, tape, CD-ROM) ***

 <*> SCSI disk support

 < > SCSI tape support

 < > SCSI OnStream SC-x0 tape support

 < > SCSI CDROM support

 <*> SCSI generic support

 <*> SCSI media changer support

 [*] Verbose SCSI error reporting (kernel size +=75K)

 [*] SCSI logging facility

 [*] Asynchronous SCSI scanning

 SCSI Transports --->

 [*] SCSI low-level drivers --->

af://n537
af://n538

After add SCSI Device Support, you can enable the "USB Mass Storage support" in "USB Support".

3.5.2 USB Serial Converter CONFIG

Support USB 3G Modem

Support PL2303

Select the following configuration for PL203, and disable the "USB driver for GSM and CDMA modems"
configuration at the same time. Otherwise, PL2303 may be misidentified as USB 3G modem.

Support USB GPS (e.g. u-blox 6 - GPS Receiver)

 [] PCMCIA SCSI adapter support ----

 [] SCSI Device Handlers ----

Device Driver --->

 [*] USB support --->

 <*> USB Mass Storage support

Device Driver --->

 [*] USB support --->

 <*> USB Serial Converter support --->

 <*> USB driver for GSM and CDMA modems

Device Driver --->

 [*] Network device support --->

 <*> PPP (point-to-point protocol) support

 <*> PPP BSD-Compress compression

 <*> PPP Deflate compression

 [*] PPP filtering

 <*> PPP MPPE compression (encryption)

 [*] PPP multilink support

 <*> PPP over Ethernet

 <*> PPP over L2TP

 <*> PPP on L2TP Access Concentrator

 <*> PPP on PPTP Network Server

 <*> PPP support for async serial ports

 <*> PPP support for sync tty ports

Device Driver --->

 [*] USB support --->

 <*> USB Serial Converter support --->

 <*> USB Prolific 2303 Single Port Serial Driver

af://n543

3.5.3 USB HID CONFIG

Select the following HID configuration to support generic USB Mouse and Keyboard.

3.5.4 USB Net CONFIG

USB Bluetooth CONFIG

USB WIFI CONFIG

Need to add WIFI Vendor special driver.

USB Ethernet CONFIG

Device Drivers --->

 [*] USB support --->

 [*] USB Modem (CDC ACM) support

Device Drivers --->

 [*] HID support

 [*] USB HID transport layer

 [] PID device support

 [*] /dev/hiddev raw HID device support

[*] Networking support --->

 ...

 <*> Bluetooth subsystem support --->

 Bluetooth device drivers --->

 ...

 <*> HCI USB driver

 [*] Broadcom protocol support (NEW)

 [*] Realtek protocol support (NEW)

 ...

Device Driver --->

 [*] Network device support --->

 <*> USB Network Adapters --->

 <*> USB CATC NetMate-based Ethernet device support

 <*> USB KLSI KL5USB101-based ethernet device support

 <*> USB Pegasus/Pegasus-II based ethernet device support

 <*> USB RTL8150 based ethernet device support

 <*> Realtek RTL8152/RTL8153 Based USB Ethernet Adapters

 < > Microchip LAN78XX Based USB Ethernet Adapters

 <*> Multi-purpose USB Networking Framework

 <*> ASIX AX88xxx Based USB 2.0 Ethernet Adapters

af://n558
af://n561

3.5.5 USB Camera CONFIG

3.5.6 USB Audio CONFIG

 <*> ASIX AX88179/178A USB 3.0/2.0 to Gigabit Ethernet

 -*- CDC Ethernet support (smart devices such as cable modems)

 <*> CDC EEM support

 -*- CDC NCM support

 < > Huawei NCM embedded AT channel support

 <*> CDC MBIM support

 <*> Davicom DM96xx based USB 10/100 ethernet devices

 < > CoreChip-sz SR9700 based USB 1.1 10/100 ethernet devices

 < > CoreChip-sz SR9800 based USB 2.0 10/100 ethernet devices

 <*> SMSC LAN75XX based USB 2.0 gigabit ethernet devices

 <*> SMSC LAN95XX based USB 2.0 10/100 ethernet devices

 <*> GeneSys GL620USB-A based cables

 <*> NetChip 1080 based cables (Laplink, ...)

 <*> Prolific PL-2301/2302/25A1/27A1 based cables

 <*> MosChip MCS7830 based Ethernet adapters

 <*> Host for RNDIS and ActiveSync devices

 <*> Simple USB Network Links (CDC Ethernet subset)

 [*] ALi M5632 based 'USB 2.0 Data Link' cables

 [*] AnchorChips 2720 based cables (Xircom PGUNET, ...)

 [*] eTEK based host-to-host cables (Advance, Belkin, ...)

 [*] Embedded ARM Linux links (iPaq, ...)

 [*] Epson 2888 based firmware (DEVELOPMENT)

 [*] KT Technology KC2190 based cables (InstaNet)

 <*> Sharp Zaurus (stock ROMs) and compatible

 <*> Conexant CX82310 USB ethernet port

 <*> Samsung Kalmia based LTE USB modem

 <*> QMI WWAN driver for Qualcomm MSM based 3G and LTE modems

 <*> Option USB High Speed Mobile Devices

 <*> Intellon PLC based usb adapter

 <*> Apple iPhone USB Ethernet driver

 <*> USB-to-WWAN Driver for Sierra Wireless modems

 < > LG VL600 modem dongle

 < > QingHeng CH9200 USB ethernet support

Device Driver --->

 <*> Multimedia support --->

 [*] Media USB Adapters --->

 *** Webcam devices ***

 <*> USB Video Class (UVC)

 [*] UVC input events device support

af://n574
af://n576

3.5.7 USB HUB CONFIG

Disable the configuration “Disable external HUBs” to support the external USB HUB.

There are many other USB devices that may be used, such as GPS, Printer, etc. It may need Vendor customized
driver or standard Class driver. If you need to support these USB devices, you can search methods via internet to
support them. Rockchip platforms have no special requirements, you can directly refer to those methods.

Device Driver --->

 <*> Sound card support --->

 <*> Advanced Linux Sound Architecture --->

 ...

 [*] USB sound devices --->

 [*] USB Audio /MIDI driver

Device Drivers --->

 [*] USB support --->

 -*- Support for Host-side USB

 ...

 [] Disable external hubs

af://n578

4. USB DTS Configuration

4.1 USB 2.0/3.0 PHY DTS

USB PHY is divided into USB 2.0 PHY and USB 3.0 PHY. These two PHYs are independent of each other, and
their characteristics are quite different, so you need to configure DTS separately.

Note: The USB PHY DTS configuration of the RK3399 SoC is more flexible and complicated, please refer to
the document:

Rockchip_RK3399_Developer_Guide_USB_DTS_CN

4.1.1 USB 2.0 PHY DTS

Rockchip series SoCs mainly use two USB 2.0 PHY IPs: Innosilicon IP and Synopsis IP. The hardware design of
these two IPs is different, so the corresponding PHY DTS configuration is also different. Most of the Rockchip
series USB 2.0 PHYs use Innosilicon IP.

1. USB 2.0 PHY DTS Configuration Document

Innosilicon USB 2.0 PHY DTS configuration document (for SoCs other than RK3188/RK3288)

Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.txt

Synopsis USB 2.0 PHY DTS Configuration document (for RK3188/RK3288 SoC)

Documentation/devicetree/bindings/phy/rockchip-usb-phy.txt

2. USB 2.0 PHY DTS Example

Example (RK3399 USB 2.0 PHY0 DTS)

USB 2.0 PHY parent node: RK3399 USB 2.0 PHY registers are in GRF, so use GRF node as the parent of
USB 2.0 PHY, and use the base address of GRF.
USB 2.0 PHY node: RK3399 USB 2.0 PHY is a combphy, it comprises with a Host port and a OTG port.
And both of these two port use the same reference input clock and the same 480MHz out clock. And also
use the same address offset of GRF for USB PHY configuration.
USB 2.0 PHY sub-nodes: A sub-node is required for each port the phy provides. The sub-node name is
used to identify Host or OTG port, "otg-port" is the name of otg port, "host-port" is the name of host port.
These two port has different interrupts.

grf: syscon@ff770000 {

 compatible = "rockchip,rk3399-grf", "syscon", "simple-mfd";

 reg = <0x0 0xff770000 0x0 0x10000>;

 #address-cells = <1>;

 #size-cells = <1>;

 u2phy0: usb2-phy@e450 {

 compatible = "rockchip,rk3399-usb2phy";

 reg = <0xe450 0x10>;

 clocks = <&cru SCLK_USB2PHY0_REF>;

af://n583
af://n584
af://n588

For Host port and OTG port host mode, we may need to config regulator for USB VBUS 5V in board DTS, it's
an optional property.

Example (RK3399 USB 2.0 Host VBUS regulator property in DTS)

The control method of RK3399 USB 2.0 Host VBUS is: if GPIO is pulled high, the VBUS 5V output is enabled;
when GPIO is pulled low, the VBUS 5V output is closed. In DTS, regulator is used to configure GPIO. Among
them, the attribute "regulator-always-on" indicates that after the system is started, the GPIO is pulled up to
enable the VBUS 5V output until the system is shut down.

Set the “phy-supply” property to the regulator “vcc5v0_host“ that provides power to VBUS 5V. In this way, the
core code of the PHY framework will automatically parse the attribute and control the GPIO corresponding to
the USB VBUS.

 clock-names = "phyclk";

 #clock-cells = <0>;

 clock-output-names = "clk_usbphy0_480m";

 status = "disabled";

 u2phy0_host: host-port {

 #phy-cells = <0>;

 interrupts = <GIC_SPI 27 IRQ_TYPE_LEVEL_HIGH 0>;

 interrupt-names = "linestate";

 status = "disabled";

 };

 u2phy0_otg: otg-port {

 #phy-cells = <0>;

 interrupts = <GIC_SPI 103 IRQ_TYPE_LEVEL_HIGH 0>,

 <GIC_SPI 104 IRQ_TYPE_LEVEL_HIGH 0>,

 <GIC_SPI 106 IRQ_TYPE_LEVEL_HIGH 0>;

 interrupt-names = "otg-bvalid", "otg-id",

 "linestate";

 status = "disabled";

 };

 };

};

vcc5v0_host: vcc5v0-host-regulator {

 compatible = "regulator-fixed";

 enable-active-high;

 gpio = <&gpio4 25 GPIO_ACTIVE_HIGH>;

 pinctrl-names = "default";

 pinctrl-0 = <&host_vbus_drv>;

 regulator-name = "vcc5v0_host";

 regulator-always-on;

};

usb2 {

 host_vbus_drv: host-vbus-drv {

 rockchip,pins =

 <4 25 RK_FUNC_GPIO &pcfg_pull_none>;

 };

};

4.1.2 USB 3.0 PHY DTS

Rockchip series SoCs mainly use three types of USB 3.0 PHY IP: Type-C PHY IP, Innosilicon USB 3.0 PHY IP
and Innosilicon USB 3.0 CombPhy IP. These three IPs have different hardware designs, so their corresponding
PHY DTS configurations are also different.

1. USB 3.0 PHY DTS Configuration Document

Type-C PHY DTS configuration document(for RK3399/RK3399Pro SoC)

Documentation/devicetree/bindings/phy/phy-rockchip-typec.txt

Innosilicon USB 3.0 PHY DTS configuration document(for RK3228H/RK3228 Soc)

Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb3.txt

Innosilicon USB 3.0 Combphy configuration document(for RK1808 SoC, USB 3.0 & PCIe Combphy)

Documentation/devicetree/bindings/phy/phy-rockchip-inno-combophy.txt

2. USB 3.0 PHY DTS Example

Example (RK3399 Type-C0 USB 3.0 PHY)

Type-C PHY is a combination of USB 3.0 SuperSpeed PHY and DisplayPort Transmit PHY. So the tcphy0 has
two sub-nodes "tcphy0_dp" and "tcphy0_usb3".

main DTS attribute description:

rockchip,grf : phandle to the syscon managing the "general register files" .
rockchip,typec-conn-dir : the register of type-c connector direction.
rockchip,usb3tousb2-en : the register of type-c force usb3 to usb2 enable.
rockchip,external-psm : the register of type-c phy external psm clock.
rockchip,pipe-status : the register of type-c phy pipe status.
rockchip,uphy-dp-sel : the register of type-c phy selection for DP.

u2phy0_host: host-port {

 phy-supply = <&vcc5v0_host>;

 status = "okay";

};

tcphy0: phy@ff7c0000 {

 compatible = "rockchip,rk3399-typec-phy";

 reg = <0x0 0xff7c0000 0x0 0x40000>;

 rockchip,grf = <&grf>;

 #phy-cells = <1>;

 clocks = <&cru SCLK_UPHY0_TCPDCORE>,

 <&cru SCLK_UPHY0_TCPDPHY_REF>;

 clock-names = "tcpdcore", "tcpdphy-ref";

 assigned-clocks = <&cru SCLK_UPHY0_TCPDCORE>;

 assigned-clock-rates = <50000000>;

 power-domains = <&power RK3399_PD_TCPD0>;

 resets = <&cru SRST_UPHY0>,

 <&cru SRST_UPHY0_PIPE_L00>,

 <&cru SRST_P_UPHY0_TCPHY>;

 reset-names = "uphy", "uphy-pipe", "uphy-tcphy";

 rockchip,typec-conn-dir = <0xe580 0 16>;

af://n615

Note:

There are 2 type-c phys for RK3399, and they are almost identical.

This document only describes the configuration of RK3399 USB 3.0 Type-C PHY in DTSI. In fact, there are some
related configurations in DTS such as the extcon attribute and the hardware attributes of CC chip (FUSB302).
For details, please refer to the document:

《Rockchip_RK3399_Developer_Guide_USB_CN》

4.2 USB 2.0 Controller DTS

There are two different architectures controllers:

EHCI (Enhanced Host Controller Interfac, only support USB 2.0) and OHCI (Open Host Controller
Interface, support USB 1.1 & 1.0)
DWC2 (DesignWare Cores USB 2.0 Hi-Speed On-The-Go (OTG), support USB 2.0 & 1.1 & & 1.0)

The following describes the two different architectures of the USB 2.0 controller DTS.

4.2.1 USB 2.0 Host Controller DTS

1. USB 2.0 Host Controller DTS configuration document

Documentation/devicetree/bindings/usb/usb-ehci.txt

Documentation/devicetree/bindings/usb/usb-ohci.txt

2. USB 2.0 Host Controller DTS example

Example (DTS of RK3399 USB 2.0 Host0 EHCI & OHCI Controller)

The compatible of the EHCI controller is fixed as “generic-ehci”, and the compatible of the OHCI controller is
fixed as “generic-ohci”. In addition, EHCI and OHCI multiplex the same clocks and phys.

Attribute "power-domains" needs to be configured only when the SoC's USB 2.0 Host controller supports the
power-domains function.

 rockchip,usb3tousb2-en = <0xe580 3 19>;

 rockchip,usb3-host-disable = <0x2434 0 16>;

 rockchip,usb3-host-port = <0x2434 12 28>;

 rockchip,external-psm = <0xe588 14 30>;

 rockchip,pipe-status = <0xe5c0 0 0>;

 rockchip,uphy-dp-sel = <0x6268 19 19>;

 status = "disabled";

 tcphy0_dp: dp-port {

 #phy-cells = <0>;

 };

 tcphy0_usb3: usb3-port {

 #phy-cells = <0>;

 };

};

af://n650
af://n658

4.2.2 USB 2.0 OTG Controller DTS

1. USB 2.0 OTG Controller DTS configuration document

The USB 2.0 OTG uses a DWC2 controller. In the Linux-4.4 kernel, the DWC2 controller driver has two
versions (dwc2 driver and dwc_otg_310 driver). Among them, the dwc_otg_310 driver is an older version of the
driver only used for RK3288/RK3368 SoC. In the Linux-4.19 kernel, DWC2 controller use the dwc2 driver
version for all SoCs and is no longer compatible with the old dwc_otg_310 driver.

DTS configuration file for dwc2 driver (for Linux-4.4 and newer kernels)

Documentation/devicetree/bindings/usb/dwc2.txt

Documentation/devicetree/bindings/usb/generic.txt

DTS configuration document for dwc_otg_310 driver (only for Linux-4.4, RK3288/RK3368 SoC)

Documentation/devicetree/bindings/usb/rockchip-usb.txt

2. USB 2.0 OTG Controller example

Example (DTS of RK3328 USB 2.0 OTG)

Main attribute as follows:

dr_mode: shall be one of "host", "peripheral" and "otg" (Refer to usb/generic.txt).
g-rx-fifo-size: size of rx fifo size in gadget mode.
g-np-tx-fifo-size: size of non-periodic tx fifo size in gadget mode.
g-tx-fifo-size: size of tx fifo per endpoint (except ep0) in gadget mode.
g-use-dma: enable dma usage in gadget driver.
phys: phy provider specifier.

usb_host0_ehci: usb@fe380000 {

 compatible = "generic-ehci";

 reg = <0x0 0xfe380000 0x0 0x20000>;

 interrupts = <GIC_SPI 26 IRQ_TYPE_LEVEL_HIGH 0>;

 clocks = <&cru HCLK_HOST0>, <&cru HCLK_HOST0_ARB>,

 <&cru SCLK_USBPHY0_480M_SRC>;

 clock-names = "hclk_host0", "hclk_host0_arb", "usbphy0_480m";

 phys = <&u2phy0_host>;

 phy-names = "usb";

 power-domains = <&power RK3399_PD_PERIHP>;

 status = "disabled";

};

usb_host0_ohci: usb@fe3a0000 {

 compatible = "generic-ohci";

 reg = <0x0 0xfe3a0000 0x0 0x20000>;

 interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH 0>;

 clocks = <&cru HCLK_HOST0>, <&cru HCLK_HOST0_ARB>,

 <&cru SCLK_USBPHY0_480M_SRC>;

 clock-names = "hclk_host0", "hclk_host0_arb", "usbphy0_480m";

 phys = <&u2phy0_host>;

 phy-names = "usb";

 power-domains = <&power RK3399_PD_PERIHP>;

 status = "disabled";

};

af://n670

phy-names: shall be "usb2-phy".

Among them, "g-np-tx-fifo-size", "g-rx-fifo-size" and "g-tx-fifo-size" are used for fifo configuration in device
mode, which can be configured accroding to the actual USB device application of the product. The requirements
are described as follows:

1. "g-np-tx-fifo-size" configure the endpoint 0 fifo of the device. It is recommended to fix it to 16 (unit:
4Bytes);

2. "g-rx-fifo-size" configure the receiving fifo of the device OUT Endpoint. All OUT Endpoints share one
receiving fifo. It is recommended to fix it to 275 (unit: 4Bytes);

3. "g-tx-fifo-size" configure the sending fifo of the device IN Endpoint, each IN Endpoint has a dedicated
sending fifo. The corresponding tx-fifo can be configured according to the number of IN Endpoints
actually used. When configuring tx-fifo, there are two principles:

1) tx-fifo cannot be smaller than EP max-packet;

2) The larger the tx-fifo, the better the transmission performance, so if the tx-fifo is large enough, it is
recommended to configure it to be 2 times or larger than the EP max-packet;

4.3 USB 3.0 Controller DTS

4.3.1 USB 3.0 Host Controller DTS

USB 3.0 Host controller is xHCI, integrated in DWC3 OTG IP, so it is not necessary to configure DTS
separately for xHCI. We only need to configure DWC3 DTS, and set the "dr_mode" attribute of DWC3 to "otg"
or "host".

4.3.2 USB 3.0 OTG Controller DTS

1. USB 3.0 OTG Controller DTS Configuration Document

usb20_otg: usb@ff580000 {

 compatible = "rockchip,rk3328-usb", "rockchip,rk3066-usb",

 "snps,dwc2";

 reg = <0x0 0xff580000 0x0 0x40000>;

 interrupts = <GIC_SPI 23 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&cru HCLK_OTG>, <&cru HCLK_OTG_PMU>;

 clock-names = "otg", "otg_pmu";

 dr_mode = "otg";

 g-np-tx-fifo-size = <16>;

 g-rx-fifo-size = <275>;

 g-tx-fifo-size = <256 128 128 64 64 32>;

 g-use-dma;

 phys = <&u2phy_otg>;

 phy-names = "usb2-phy";

 status = "disabled";

};

af://n711
af://n712
af://n714

The USB 3.0 OTG uses a DWC3 controller. Linux-4.4 and Linux-4.19 or later kernel versions have different
USB 3.0 OTG DTS configurations because Linux-4.19 USB DWC3 controller driver has been upgraded
significantly compared to Linux-4.4 (for specific differences, please refer to USB 3.0 OTG Driver)

Linux-4.4 USB 3.0 OTG controller DTS configuration document

Documentation/devicetree/bindings/usb/dwc3.txt (DWC3 Controller common attribute
configuration description)
Documentation/devicetree/bindings/usb/generic.txt (USB Controller common attribute
configuration description)
Documentation/devicetree/bindings/usb/rockchip,dwc3.txt (for RK3399/RK1808 SoC)
Documentation/devicetree/bindings/usb/rockchip-inno,dwc3.txt (for RK3328/RK3228H
SoC)

Linux-4.19 and newer kernel USB 3.0 OTG Controller DTS configuration document

Documentation/devicetree/bindings/usb/dwc3.txt (DWC3 Controller common attribute
configuration description)
Documentation/devicetree/bindings/usb/generic.txt (USB Controller common attribute
configuration description)
Documentation/devicetree/bindings/usb/rockchip-inno,dwc3.txt (for RK3328/RK3228H
SoC)

Differences in DTS configuration between Linux-4.4 and 4.19 USB 3.0 controllers

DWC3's power-domains, restets and extcon attribute have different reference locations. In Linux-4.4
kernel, these three attributes are placed on the parent node (usbdrd3) of the DWC3 controller, while in
Linux-4.19 kernel, these three attributes are moved to the child nodes (usbdrd_dwc3) of the DWC3
controller;
When configuring Type-C to Type-A USB 2.0/3.0 OTG DTS, it is necessary to add the configuration of
the extcon attribute in the USB controller sub-node (usbdrd_dwc3) to support software switching OTG
mode in Linux-4.19 kernel, but not in Linux-4.4 kernel.

2. USB 3.0 OTG Controller DTS Example

Example (RK3399 USB 3.0 OTG DTS in Linux-4.4 kernel)

The USB 3.0 OTG DTS includes a parent node "usbdrd3_0" and a child node "usbdrd_dwc3_0". For all SoCs
except for RK3328/RK3228H supporting DWC3 controller, compatible attribute in the parent node must add
"rockchip, rk3399-dwc3". The child nodes of all SoCs are configured as "snps, dwc3". The role of the parent
node is to configure chip-level related attributes, such as clocks, power-domains, and reset. The role of the child
node is to configure the controller-related attributes in which the quirk attribute is applicable to the DWC3
controllers of all SoCs.

usbdrd3_0: usb0 {

 compatible = "rockchip,rk3399-dwc3";

 clocks = <&cru SCLK_USB3OTG0_REF>, <&cru SCLK_USB3OTG0_SUSPEND>,

 <&cru ACLK_USB3OTG0>, <&cru ACLK_USB3_GRF>;

 clock-names = "ref_clk", "suspend_clk",

 "bus_clk", "grf_clk";

 power-domains = <&power RK3399_PD_USB3>;

 resets = <&cru SRST_A_USB3_OTG0>;

 reset-names = "usb3-otg";

 #address-cells = <2>;

 #size-cells = <2>;

 ranges;

 status = "disabled";

5. USB Driver Development

5.1 Linux USB Driver Framework

The Linux USB protocol stack is a layered architecture, as shown in Figure 5-1 below. The left is the USB
device driver, the right is the USB host driver, and the bottom layer is the driver for the different USB controllers
and PHYs of the Rockchip SoCs.

Figure 5-1 Linux USB driver framework

 usbdrd_dwc3_0: dwc3@fe800000 {

 compatible = "snps,dwc3";

 reg = <0x0 0xfe800000 0x0 0x100000>;

 interrupts = <GIC_SPI 105 IRQ_TYPE_LEVEL_HIGH 0>;

 dr_mode = "otg";

 phys = <&u2phy0_otg>, <&tcphy0_usb3>;

 phy-names = "usb2-phy", "usb3-phy";

 phy_type = "utmi_wide";

 snps,dis_enblslpm_quirk;

 snps,dis-u2-freeclk-exists-quirk;

 snps,dis_u2_susphy_quirk;

 snps,dis-del-phy-power-chg-quirk;

 snps,tx-ipgap-linecheck-dis-quirk;

 snps,xhci-slow-suspend-quirk;

 snps,xhci-trb-ent-quirk;

 snps,usb3-warm-reset-on-resume-quirk;

 status = "disabled";

 };

 };

af://n749
af://n750

5.2 USB PHY Drivers

This chapter mainly introduces the driver code of PHY briefly. If you want to know more about the hardware
framework, register description, signal adjustment of PHY, please refer to the document

Rockchip_Developer_Guide_Linux_USB_PHY_CN

5.2.1 USB 2.0 PHY Driver

Rockchip SoCs mainly use two USB 2.0 PHY IPs: Innosilicon IP and Synopsis IP. The hardware design of these
two IPs is different, so a separate USB PHY driver is required. At the same time, SoCs with the same USB 2.0
PHY IP use the same driver, instead of each SoC having a dedicated driver.

1. USB 2.0 PHT driver code

Innosilicon USB 2.0 PHY Driver code

drivers/phy/phy-rockchip-inno-usb2.c

Synopsis USB 2.0 PHY Driver code (only used for RK3188/RK3288):

drivers/phy/rockchip/phy-rockchip-usb.c

For the time being, most of SoCs except RK3188/RK3288 use Innosilicon IP, so this chapter mainly introduces
Innosilicon IP.

2. Innosilicon USB 2.0 PHY IP feature

Fully compliant with USB specification Rev 2.0
Support 480Mbps/12Mbps/1.5Mbps serial data transmission
Support all test modes defined in USB2.0 Specification
Support one port of one PHY, or two ports of one PHY (Comprises with one OTG port and one Host port)
OTG Port support dual-role device
fully support Battery Charge 1.2 Specification

3. USB 2.0 PHY driver's important structure

In the USB 2.0 PHY driver, there is an important structure rockchip_usb2phy_cfg, which is mainly used to
operate the USB PHY related registers. When adding a new SoC support for Innosilicon USB 2.0 PHY, the main
job is to add the corresponding rkxxxx_phy_cfgs structure.

The members of the rockchip_usb2phy_cfg structure are described as follows:

reg: the offset address of the USB PHY in the GRF module. This address should be the same as the
corresponding reg attrbute of the DTS USB 2.0 PHY. The purpose is to match the configuration of the DTS
PHY and the PHY in the driver.
num_ports: defines the number of ports supported by the USB PHY. For example, if OTG port and Host
port are supported, num_ports is 2.

struct rockchip_usb2phy_cfg {

 unsigned int reg;

 unsigned int num_ports;

 int (*phy_tuning)(struct rockchip_usb2phy *);

 struct usb2phy_reg clkout_ctl;

 const struct rockchip_usb2phy_port_cfg port_cfgs[USB2PHY_NUM_PORTS];

 const struct rockchip_chg_det_reg chg_det;

};

af://n754
af://n757

phy_tuning: used for USB PHY signal adjustment, such as increasing pre-emphasis and increasing signal
amplitude.
clkout_ctl: controls the USB PHY's 480MHz output clock.
port_cfgs: register configuration of USB PHY port.
chg_det: register configuration related to charge detection.

4. USB 2.0 PHY state machine

The USB 2.0 PHY driver has three works that are used to handle different state machines:

rockchip_chg_detect_work: charge detection function for OTG port device mode;
rockchip_usb2phy_otg_sm_work: detect the connection status of the OTG port and control the PHY to
enter/exit suspend;
rockchip_usb2phy_sm_work: detect the connection status of the host port and control the PHY to
enter/exit suspend;

In the driver, dev_dbg log has been added in key places, which makes it easy to view the state machine rotation
during device connection and disconnection.

5. USB 2.0 PHY Driver Development Example

Example (RK3399 USB 3.0 PHY driver)

RK3399 supports two independent USB 2.0 PHYs. Each PHY comprises with one OTG port and one Host port.
OTG port is used for USB3.0 OTG controller with Type-C USB 3.0 PHY to comprise as fully feature Type-C.
Host port is used for USB2.0 host controller. The detailed rk3399_phy_cfgs structure code is as follows:

The registers in port_cfgs is mainly used for PHY suspend mode control, VBUS level status detection, OTG ID
level status detection, DP/DM line level status detection, etc. For the specific function description of each
member, please refer to the notes of the structure members in the driver.

static const struct rockchip_usb2phy_cfg rk3399_phy_cfgs[] = {

 {

 .reg = 0xe450,

 .num_ports = 2,

 .phy_tuning = rk3399_usb2phy_tuning,

 .clkout_ctl = { 0xe450, 4, 4, 1, 0 },

 .port_cfgs = {

 [USB2PHY_PORT_OTG] = {

 .phy_sus = { 0xe454, 8, 0, 0x052, 0x1d1 },

 .bvalid_det_en = { 0xe3c0, 3, 3, 0, 1 },

 .bvalid_det_st = { 0xe3e0, 3, 3, 0, 1 },

 .bvalid_det_clr = { 0xe3d0, 3, 3, 0, 1 },

 .bypass_dm_en = { 0xe450, 2, 2, 0, 1 },

 .bypass_sel = { 0xe450, 3, 3, 0, 1 },

 .idfall_det_en = { 0xe3c0, 5, 5, 0, 1 },

 .idfall_det_st = { 0xe3e0, 5, 5, 0, 1 },

 .idfall_det_clr = { 0xe3d0, 5, 5, 0, 1 },

 .idrise_det_en = { 0xe3c0, 4, 4, 0, 1 },

 .idrise_det_st = { 0xe3e0, 4, 4, 0, 1 },

 .idrise_det_clr = { 0xe3d0, 4, 4, 0, 1 },

 .ls_det_en = { 0xe3c0, 2, 2, 0, 1 },

 .ls_det_st = { 0xe3e0, 2, 2, 0, 1 },

 .ls_det_clr = { 0xe3d0, 2, 2, 0, 1 },

 .utmi_avalid = { 0xe2ac, 7, 7, 0, 1 },

 .utmi_bvalid = { 0xe2ac, 12, 12, 0, 1 },

 .utmi_iddig = { 0xe2ac, 8, 8, 0, 1 },

 .utmi_ls = { 0xe2ac, 14, 13, 0, 1 },

 .vbus_det_en = { 0x449c, 15, 15, 1, 0 },

 },

 [USB2PHY_PORT_HOST] = {

 .phy_sus = { 0xe458, 1, 0, 0x2, 0x1 },

 .ls_det_en = { 0xe3c0, 6, 6, 0, 1 },

 .ls_det_st = { 0xe3e0, 6, 6, 0, 1 },

 .ls_det_clr = { 0xe3d0, 6, 6, 0, 1 },

 .utmi_ls = { 0xe2ac, 22, 21, 0, 1 },

 .utmi_hstdet = { 0xe2ac, 23, 23, 0, 1 }

 }

 },

 .chg_det = {

 .opmode = { 0xe454, 3, 0, 5, 1 },

 .cp_det = { 0xe2ac, 2, 2, 0, 1 },

 .dcp_det = { 0xe2ac, 1, 1, 0, 1 },

 .dp_det = { 0xe2ac, 0, 0, 0, 1 },

 .idm_sink_en = { 0xe450, 8, 8, 0, 1 },

 .idp_sink_en = { 0xe450, 7, 7, 0, 1 },

 .idp_src_en = { 0xe450, 9, 9, 0, 1 },

 .rdm_pdwn_en = { 0xe450, 10, 10, 0, 1 },

 .vdm_src_en = { 0xe450, 12, 12, 0, 1 },

 .vdp_src_en = { 0xe450, 11, 11, 0, 1 },

 },

 },

 {

 .reg = 0xe460,

 .num_ports = 2,

 .phy_tuning = rk3399_usb2phy_tuning,

 .clkout_ctl = { 0xe460, 4, 4, 1, 0 },

 .port_cfgs = {

 [USB2PHY_PORT_OTG] = {

 .phy_sus = { 0xe464, 8, 0, 0x052, 0x1d1 },

 .bvalid_det_en = { 0xe3c0, 8, 8, 0, 1 },

 .bvalid_det_st = { 0xe3e0, 8, 8, 0, 1 },

 .bvalid_det_clr = { 0xe3d0, 8, 8, 0, 1 },

 .idfall_det_en = { 0xe3c0, 10, 10, 0, 1 },

 .idfall_det_st = { 0xe3e0, 10, 10, 0, 1 },

 .idfall_det_clr = { 0xe3d0, 10, 10, 0, 1 },

 .idrise_det_en = { 0xe3c0, 9, 9, 0, 1 },

 .idrise_det_st = { 0xe3e0, 9, 9, 0, 1 },

 .idrise_det_clr = { 0xe3d0, 9, 9, 0, 1 },

 .ls_det_en = { 0xe3c0, 7, 7, 0, 1 },

 .ls_det_st = { 0xe3e0, 7, 7, 0, 1 },

 .ls_det_clr = { 0xe3d0, 7, 7, 0, 1 },

 .utmi_avalid = { 0xe2ac, 10, 10, 0, 1 },

 .utmi_bvalid = { 0xe2ac, 16, 16, 0, 1 },

 .utmi_iddig = { 0xe2ac, 11, 11, 0, 1 },

 .utmi_ls = { 0xe2ac, 18, 17, 0, 1 },

 .vbus_det_en = { 0x451c, 15, 15, 1, 0 },

 },

 [USB2PHY_PORT_HOST] = {

 .phy_sus = { 0xe468, 1, 0, 0x2, 0x1 },

 .ls_det_en = { 0xe3c0, 11, 11, 0, 1 },

 .ls_det_st = { 0xe3e0, 11, 11, 0, 1 },

 .ls_det_clr = { 0xe3d0, 11, 11, 0, 1 },

 .utmi_ls = { 0xe2ac, 26, 25, 0, 1 },

 .utmi_hstdet = { 0xe2ac, 27, 27, 0, 1 }

 }

6. USB 2.0 PHY Debug Interface

The "otg_mode" node is used to switch the OTG Device/Host mode by software, and it is not affected by the
OTG ID level status.

For example：

Force host mode

echo host > /sys/devices/platform/[u2phy dev name]/otg_mode

Force device mode

echo peripheral > /sys/devices/platform/[u2phy dev name]/otg_mode

Force otg mode

echo otg > /sys/devices/platform/[u2phy dev name]/otg_mode

At the same time, the node is still compatible with the old order of Linux-3.10 and earlier, namely:

Force host mode

echo 1 > /sys/devices/platform/[u2phy dev name]/otg_mode

Force device mode

echo 2 > /sys/devices/platform/[u2phy dev name]/otg_mode

Force otg mode

echo 0 > /sys/devices/platform/[u2phy dev name]/otg_mode

Note:

1. [U2phy dev name] in the USB 2.0 PHY full path needs to be modified to the specific PHY node name
corresponding to the SoC.

2. RV1126/RV1109 USB OTG needs additional operations for force mode.

RV1126/RV1109 USB OTG force Host mode

 },

 .chg_det = {

 .opmode = { 0xe464, 3, 0, 5, 1 },

 .cp_det = { 0xe2ac, 5, 5, 0, 1 },

 .dcp_det = { 0xe2ac, 4, 4, 0, 1 },

 .dp_det = { 0xe2ac, 3, 3, 0, 1 },

 .idm_sink_en = { 0xe460, 8, 8, 0, 1 },

 .idp_sink_en = { 0xe460, 7, 7, 0, 1 },

 .idp_src_en = { 0xe460, 9, 9, 0, 1 },

 .rdm_pdwn_en = { 0xe460, 10, 10, 0, 1 },

 .vdm_src_en = { 0xe460, 12, 12, 0, 1 },

 .vdp_src_en = { 0xe460, 11, 11, 0, 1 },

 },

 },

 { /* sentinel */ }

};

/sys/devices/platform/[u2phy dev name] # ls

driver extcon of_node phy subsystem

driver_override modalias otg_mode power uevent

echo disconnect > /sys/class/udc/ffd00000.dwc3/soft_connect (disconnect usb device)

echo host > /sys/devices/platform/ff4c0000.usb2-phy/otg_mode

RV1126/RV1109 USB OTG force Device mode

echo peripheral > /sys/devices/platform/ff4c0000.usb2-phy/otg_mode

echo connect > /sys/class/udc/ffd00000.dwc3/soft_connect (connect usb device)

RV1126/RV1109 USB OTG force OTG mode

echo otg > /sys/devices/platform/ff4c0000.usb2-phy/otg_mode

echo connect > /sys/class/udc/ffd00000.dwc3/soft_connect (connect usb device)

5.2.2 USB 3.0 PHY Drivers

Rockchip SoCs mainly use three types of USB 3.0 PHY IP: Type-C PHY IP, Innosilicon USB 3.0 PHY IP and
Innosilicon USB 3.0 CombPhy IP. These three IPs have different hardware designs, so they need separate USB
PHY drivers.

Note that all three USB 3.0 PHY IPs only support SuperSpeed, so they must be used together with USB 2.0 PHY
to fully support the USB 3.0 protocol(supporting HighSpeed/FullSpeed/LowSpeed).

The three different USB 3.0 PHY IP drivers are briefly described below.

1. Type-C PHY Driver

Type-C USB 3.0 PHY driver code

drivers/phy/rockchip/phy-rockchip-typec.c

Type-C USB 3.0 PHY driver example

Example (RK3399 Type-C PHY)

Type-C PHY is a combination of USB 3.0 SuperSpeed PHY and DisplayPort Transmit PHY. Please refer to
Type-C USB 3.0 PHY to learn about Type-C PHY's features.

In the probe function of Type-C PHY driver, rockchip_dp_phy_ops of "dp-port" and rockchip_usb3_phy_ops of
"usb3-port" are created respectively, that is, the operation functions of USB 3.0 PHY and DP PHY such as
power_on and power_off are independent and do not affect each other.

The Type-C PHY driver can support the following 4 working modes:

USB 3.0 only: only works in USB 3.0 mode, such as a Type-C to Type-A USB 3.0 adapter cable;
DP only: only works in DP mode, such as connecting a DP cable;
USB 3.0 + DP 2 lanes: support USB 3.0 and DP 2 lanes work at the same time, such as connecting Type-C
dongle;
USB 2.0 + DP 4 lanes: support USB 2.0 and DP 4 lanes work at the same time, such as connecting Type-C
VR headset;

In order to support the above four working modes, the Type-C PHY needs to be combined with a CC chip
(FUSB302 chip is recommended) to detect the type of the inserted Type-C cable. The CC chip sends a message
to the Type-C PHY using the extcon notification mechanism.

Important USB 3.0 phy_ops:

rockchip_usb3_phy_power_on: used for USB 3.0 Controller to power on Type-C USB 3.0 PHY.
rockchip_usb3_phy_power_off: used for USB 3.0 Controller to power off Type-C USB 3.0 PHY.

Other important functions for USB 3.0:

af://n866

tcphy_cfg_usb3_to_usb2_only: used to force USB 3.0 works on USB 2.0 only.
tcphy_cfg_usb3_pll: config PHY PLL for USB 3.0.

2. Innosilicon USB 3.0 PHY Driver

Innosilicon USB 3.0 PHY driver code

drivers/phy/rockchip/phy-rockchip-inno-usb3.c

Innosilicon USB 3.0 PHY driver example

Example (RK3328 USB 3.0 PHY).

RK3328 USB 3.0 PHY is combination of USB 3.0 PHY and USB 2.0 PHY. Some key features of the USB3.0
PHY are:

Supports 5.0Gb/s serial data transmission rate
Utilizes 8-bit, 16-bit or 32- bit parallel interface to transmit and receive USB SuperSpeed data
Allows integration of high speed components into a single functional block as seen by the device designer
Data and clock recovery from serial stream on the USB SuperSpeed bus
Holding registers to stage transmit and receive data
Supports direct disparity control for use in transmitting compliance pattern
8b/10b encode/decode and error indication
Can not detect peripheral disconnection

The Innosilicon USB 3.0 PHY driver has two special features:

The USB 2.0 PHY and USB 3.0 PHY operation functions are implemented at the same time (although the
two PHYs are independent from the hardware), which is different from other USB 3.0 PHYs. In the driver,
“U3PHY_TYPE_UTMI” and “U3PHY_TYPE_PIPE” are used as the indexes of USB 2.0 PHY and USB
3.0 PHY respectively. For details, please refer to the following functions in the driver code:

rockchip_u3phy_port_init (): Initializes the USB 2.0 port and USB 3.0 port of USB 3.0.

rockchip_u3phy_power_on (): Turn on the clock, and configure the USB 2.0 PHY to Normal mode, and
configure the USB 3.0 PHY to enter the P0 state.

rockchip_u3phy_power_off (): Configure the USB 2.0 PHY to suspend mode, configure the USB 3.0 PHY
to enter P3 state, and turn off the clock to save the overall power consumption of the PHY.

In order to solve the USB 3.0 PHY cannot detect the disconnection status of the peripheral, a special
function has been added, which is different from other USB 3.0 PHYs. For details, please refer to the
following functions in the driver:

rockchip_u3phy_on_disconnect (): When the USB HUB core driver determines that the peripheral has
been disconnected by detecting changes in the state of the linkstate, it will call the disconnect function
through the notifier registered by the PHY to complete a series of soft disconnect operations.

rockchip_u3phy_on_shutdown (): This function is provided to the DWC3 controller driver call, and its role
is to reset the USB3 PHY during the soft disconnect process.

rockchip_u3phy_on_init (): This function is provided to the DWC3 controller driver call. Its role is to
release the reset signal of the USB 3.0 PHY at the end of the soft disconnect process;

The Innosilicon USB 3.0 PHY supports software commands to force the PHY to work only in USB 2.0 only
mode:

Command to configure USB 3.0 PHY to USB 2.0 only mode

echo u2> /sys/kernel/debug/[phy name]/u3phy_mode

Command to configure USB 3.0 PHY to support both USB 3.0 and USB 2.0 mode (default after driver
initialization)

echo u3> /sys/kernel/debug/[phy name]/u3phy_mode

Note: [phy name] needs to be modified to the specific PHY node name corresponding to the SoC.

3. Innosilicom USB 3.0 CombPhy Driver

Innosilicon USB 3.0 CombPhy driver code

drivers/phy/rockchip/phy-rockchip-inno-combphy.c

Innosilicon USB 3.0 CombPhy driver example

Example (RK1808 USB 3.0 combphy)

RK1808 USB 3.0 combphy is a combination of USB 3.0 SuperSpeed PHY and PCIe PHY, and the USB 3.0
PHY and PCIe PHY can't works at the same time. In the driver, PHY interface function
rockchip_combphy_xlate() is registered and provided to USB 3.0 controller driver and PCIe driver to configure
the USB 3.0 CombPHY to work at the type required by the controller.

If you are using USB 3.0, configure the USB 3.0 controller DTS's phys attribute to

If you are using PCIe, configure the PCIe controller DTS's phys attribute to

For USB 3.0 PHY, it only supports SuperSpeed, and it works with USB 2.0 PHY OTG port to comprise as fully
feature USB 3.0/2.0/1.1/1.0.

Some key features of the USB3.0 CombPhy are:

Supports 5.0Gb/s serial data transmission rate
Utilizes 8-bit, 16-bit or 32- bit parallel interface to transmit and receive USB SuperSpeed data
Allows integration of high speed components into a single functional block as seen by the device designer
Data and clock recovery from serial stream on the USB SuperSpeed bus
Holding registers to stage transmit and receive data
Supports direct disparity control for use in transmitting compliance pattern
8b/10b encode/decode and error indication

Important USB 3.0 PHY and PCIe PHY multiplex phy_ops:

rockchip_combphy_init: prepare PHY reference clock, set PHY type and init PHY regitsters
rockchip_combphy_exit: unprepare PHY reference clock
rockchip_combphy_power_on: used for USB 3.0 controller to power on USB 3.0 PHY block
rockchip_combphy_power_off: used for USB 3.0 controller to power off USB 3.0 PHY block to save
power

Other important functions for USB 3.0:

rk1808_combphy_low_power_control: used for lower power control for USB 3.0 PHY when system enter
deepsleep

u3phy_mode_store/u3phy_mode_show: used to force USB 3.0 to works on USB 2.0 only via
"u3phy_mode" in sysfs.

It needs to reinit the xHCI when switch between USB 2.0 only and USB 2.0/3.0 mode dynamically. In
order to reinit the xHCI, we use the "otg_mode" node in sysfs to remove/add xHCI HCD.

phys = <&u2phy_otg>, <&combphy PHY_TYPE_USB3>;

phy-names = "usb2-phy", "usb3-phy";

phys = <&combphy PHY_TYPE_PCIE>;

phy-names = "pcie-phy";

Note：

[u3phy dev name] and [u2phy dev name] need to be modified to the specific PHY node names
corresponding to the SoC;
USB's default mode, which is determined by the attribute "dr_mode" in the DTS of the DWC3 controller;

5.3 USB Controller Drivers

5.3.1 USB 2.0 OTG Driver

5.3.1.1 USB 2.0 OTG Driver Framework

The USB 2.0 OTG uses a DWC2 controller. The system-level block diagram is shown in Figure 5-2 below. The
DWC2 controller has both AHB master interface and AHB slave interface. This is because that the DWC2
controller has internal DMA to move data between USB FIFO and Memory via the AHB bus.
At the same time, please note that the green box in the figure is hardware IP optional function. The DWC2
controller of the Rockchip SoC does not support external DMA function and endp_multi_proc_interrupt. The
interface protocol for communication with the USB PHY is UTMI +.

#1. Default is USB 3.0 OTG mode, config to USB 2.0 only mode

 echo u2 > /sys/devices/platform/[u3phy dev name]/u3phy_mode

 echo host > /sys/devices/platform/[u2phy dev name]/otg_mode

#2. Default is USB 3.0 Host mode, config to USB 2.0 only mode

 echo otg > /sys/devices/platform/[u2phy dev name]/otg_mode

 echo u2 > /sys/devices/platform/[u3phy dev name]/u3phy_mode

 echo host > /sys/devices/platform/[u2phy dev name]/otg_mode

#3. Default is USB 2.0 only Host mode, config to USB 3.0 mode

 echo otg > /sys/devices/platform/[u2phy dev name]/otg_mode

 echo u3 > /sys/devices/platform/[u3phy dev name]/u3phy_mode

 echo host > /sys/devices/platform/[u2phy dev name]/otg_mode

af://n1014
af://n1015
af://n1016

Figure 5-2 DWC2 controller system-level block diagram

Figure 5-3 below illustrates the interrupt handling hierarchy of the DWC2 controller. From the figure, it can be
seen that DWC2 supports device interrupt/host interrupt/OTG interrupt. These three types of interrupts also
include sub-interrupts. All interrupts are connected to the chip's interrupt processing module through a total
interrupt signal.

Figure 5-3 Interrupt level of DWC2 controller

5.3.1.2 USB 2.0 OTG Driver Overview

1. USB 2.0 OTG Controller driver code

The Rockchip platform have two sets of DWC2 controller drivers: dwc2 driver and dwc_otg_310 driver

dwc2 driver: (used for most SoCs)

drivers/usb/dwc2/*

dwc_otg_310 driver: (Legacy driver, only used for RK3288/RK3368)

drivers/usb/dwc_otg_310/*

2. USB 2.0 OTG controller driver code structure description

Considering Linux-4.19 and newer kernel, the DWC2 controllers of all chips have used the dwc2 driver instead
of the old dwc_otg_310 driver, so this document focuses on the dwc2 driver.

USB OTG 2.0 is a Dual-Role Device controller, which supports both device and host functions
and is fully compliant with OTG Supplement to USB2.0 specification, and support high-speed
(480Mbps), full-speed (12Mbps), low-speed (1.5Mbps) transfer.

The structure of the dwc2 driver code is as follows:

~/src/android_Q/kernel/drivers/usb/dwc2$ tree .

├── core.c (dwc2 core reset, configure core param and other general operations)

├── core.h

af://n1023

5.3.1.3 USB 2.0 OTG Debug Interface

DWC2 Driver Debug Interface

Example (RK3328 SoC):

ep*in/out: Shows the state of the given endpoint (one is registered for each available).

fifo: Show the FIFO information for the overall fifo and all the periodic transmission FIFOs.

state: shows the overall state of the hardware and some general information about each of the endpoints
available to the system.

regdump: Gets register values of core.

testmode: Modify the current usb test mode.

DWC_OTG_310 Driver Debug Interface

Example (RK3288 SoC):

├── core_intr.c (dwc2 general interrupt events, including otg intr, id intr,

wakeup intr, etc.)

├── debugfs.c (dwc2 debug interface, such as printing register information)

├── debug.h

├── gadget.c (all tasks related to dwc2 gadget mode, such as gadget

initialization, gadget interrupt event)

├── hcd.c (dwc2 host mode related tasks and core init, phy init, device/host

mode switching)

├── hcd_ddma.c (dwc2 descriptor DMA related tasks)

├── hcd.h

├── hcd_intr.c (handling of all interrupt events in dwc2 host mode)

├── hcd_queue.c (dwc2 host mode transmission queue processing)

├── hw.h

├── Kconfig

├── Makefile

├── pci.c (initialization of pci bus interface, Rockchip dwc2 uses AHB bus)

└── platform.c (implement dwc2 probe, initialize dwc2 lowlevel hw resources

according to core_params configuration of different chips)

rk3328_box:/sys/kernel/debug/ff580000.usb # ls

ep0 ep2out ep4out ep6out ep8in ep9in fifo state

ep1in ep3in ep5in ep7in ep8out ep9out regdump testmode

rk3288:/sys/devices/platform/ff580000.usb # ls

busconnected fr_interval gsnpsid modalias regoffset uevent

buspower gadget guid mode regvalue usb5

bussuspend ggpio gusbcfg mode_ch_tim_en remote_wakeup wr_reg_test

devspeed gnptxfsiz hcd_frrem pools spramdump

disconnect_us gotgctl hcddump power subsystem

driver gpvndctl hprt0 rd_reg_test test_sq

enumspeed grxfsiz hptxfsiz regdump udc

rk3328_box:/sys/devices/platform/ff580000.usb/driver # ls

bind dwc_otg_conn_en force_usb_mode uevent vbus_status

debuglevel ff580000.usb op_state unbind versio

af://n1043

busconnected: Gets or sets the Core Control Status Register.

fr_interval: On read, shows the value of HFIR Frame Interval. On write, dynamically reload HFIR register
during runtime. The application can write a value to this register only after the Port Enable bit of the Host Port
Control and Status register (HPRT.PrtEnaPort) has been set.

gsnpsid: Gets the value of the Synopsys ID Regester.

regoffset: Sets the register offset for the next Register Access.

buspower: Gets or sets the Power State of the bus (0 - Off or 1 - On).

guid: Gets or sets the value of the User ID Register.

regvalue: Gets or sets the value of the register at the offset in the regoffset attribute.

bussuspend: Suspends the USB bus.

ggpio: Gets the value in the lower 16-bits of the General Purpose IO Register or sets the upper 16 bits.

gusbcfg: Gets or sets the Core USB Configuration Register.

mode_ch_tim_en: This bit is used to enable or disable the host core to wait for 200 PHY clock cycles at the end
of Resume to change the opmode signal to the PHY to 00 after Suspend or LPM.

remote_wakeup: On read, shows the status of Remote Wakeup. On write, initiates a remote wakeup of the host.
When bit 0 is 1 and Remote Wakeup is enabled, the Remote Wakeup signalling bit in the Device Control
Register is set for 1 milli-second.

wr_reg_test: Displays the time required to write the GNPTXFSIZ register many times (the output shows the
number of times the register is written).

devspeed: Gets or sets the device speed setting in the DCFG register.

gnptxfsiz: Gets or sets the non-periodic Transmit Size Register.

spramdump: Dumps the contents of core registers.

disconnect_us: On read, shows the status of disconnect_device_us. On write, sets disconnect_us which causes
soft disconnect for 100us. Applicable only for device mode of operation.

gotgctl: Gets or sets the Core Control Status Register.

hcddump: Dumps the current HCD state.

gpvndctl: Gets or sets the PHY Vendor Control Register.

hprt0: Gets or sets the value in the Host Port Control and Status Register.

rd_reg_test: Displays the time required to read the GNPTXFSIZ register many times (the output shows the
number of times the register is read).

test_sq: Gets or sets the usage of usb controler test_sq attribute.

enumspeed: Gets the device enumeration Speed.

grxfsiz: Gets or sets the Receive FIFO Size Register.

hptxfsiz: Gets the value of the Host Periodic Transmit FIFO.

regdump: Dumps the contents of core registers.

dwc_otg_conn_en: Enable or disable connect to PC in device mode.

force_usb_mode: Force work mode of core (0 - Normal, 1 - Host, 2 - Device).

vbus_status: Gets the Voltage of VBUS.

debuglevel: Gets or sets the driver Debug Level.

op_state: Gets or sets the operational State, during transations (a_host>>a_peripherial and b_device=>b_host)
this may not match the core but allows the software to determine transitions.

version: Gets the Driver Version.

5.3.2 USB 2.0 Host Driver

5.3.2.1 USB 2.0 Host Controller framework

The USB 2.0 Host controller is composed of a USB 2.0 EHCI controller and a USB 1.1 OHCI controller. The
green box in Figure 5-4 is the hardware IP optional function. The USB 2.0 Host controller of the Rockchip SoC
is configured as an EHCI controller and an OHCI controller, and communicate with the USB PHY by UTMI +
interface. Both EHCI and OHCI use internal DMA to access system memory via the AHB bus. EHCI is
responsible for handling HighSpeed transmission transactions, and OHCI is responsible for handling FullSpeed
and LowSpeed transmission transactions.

Figure 5-4 EHCI & OHCI controller system-level block diagram

5.3.2.2 USB 2.0 Host Driver Overview

1. USB 2.0 Host driver code

drivers/usb/host/ehci* (USB 2.0 Host Driver)

drivers/usb/host/ohci* (USB 1.1/1.0 Host Driver)

2. USB 2.0 Host driver code structure description

The ehci driver code structure is as follows:

Other ehci driver files not listed are platform ehci drivers implemented by different Vendors, such as ehci-
exynos.c. Rockchip's EHCI controller design conforms to the standard EHCI controller specifications, so the
general platform ehci driver "ehci-platform.c" is used.

af://n1092
af://n1093
af://n1097

Important EHCI Structure:

~/src/android_Q/kernel/drivers/usb/host$ tree

├── ehci-dbg.c (ehci debugfs debugging interface, such as printing ehci register

information)

├── ehci.h

├── ehci-hcd.c (Initialization of ehci controller, interrupt event processing,

urb queue management, etc.)

├── ehci-hub.c (control and status query of ehci root hub, bus suspend/resume)

├── ehci-mem.c (allocation and initialization of ehci mem, allocation and

initialization of qtd/qh resources)

├── ehci-pci.c (Initialization of pci bus interface, Rockchip ehci uses AHB bus,

does not use this driver)

├── ehci-platform.c (ehci universal platform driver, implement ehci probe,

register ehci hcd with usb bus, enable ehci controller)

├── ehci-q.c (processing of ehci qtd/qh transmission queue)

├── ehci-sched.c (cyclic transmission scheduling processing of ehci interrupt,

iso, split iso)

├── ehci-sysfs.c (ehci sysfs debugging interface, display companion controller,

display uframe_periodic_max)

├── ehci-timer.c (task processing related to ehci timer)

static const struct hc_driver ehci_hc_driver = {

 .description = hcd_name,

 .product_desc = "EHCI Host Controller",

 .hcd_priv_size = sizeof(struct ehci_hcd),

 /*

 * generic hardware linkage

 */

 .irq = ehci_irq,

 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,

 /*

 * basic lifecycle operations

 */

 .reset = ehci_setup,

 .start = ehci_run,

 .stop = ehci_stop,

 .shutdown = ehci_shutdown,

 /*

 * managing i/o requests and associated device resources

 */

 .urb_enqueue = ehci_urb_enqueue,

 .urb_dequeue = ehci_urb_dequeue,

 .endpoint_disable = ehci_endpoint_disable,

 .endpoint_reset = ehci_endpoint_reset,

 .clear_tt_buffer_complete = ehci_clear_tt_buffer_complete,

 /*

 * scheduling support

 */

 .get_frame_number = ehci_get_frame,

 /*

 * root hub support

 */

 .hub_status_data = ehci_hub_status_data,

 .hub_control = ehci_hub_control,

 .bus_suspend = ehci_bus_suspend,

The structure of ochi driver code is as follows:

Other ohci driver files not listed are platform ohci drivers implemented by different Vendors, such as ohci-
exynos.c. The OHCI controller design of the Rockchip chip conforms to the standard OHCI controller
specifications, so the general platform ohci driver "ohci-platform.c" is used.

Important OHCI Structures:

 .bus_resume = ehci_bus_resume,

 .relinquish_port = ehci_relinquish_port,

 .port_handed_over = ehci_port_handed_over,

 /*

 * device support

 */

 .free_dev = ehci_remove_device,

};

~/src/android_Q/kernel/drivers/usb/host$ tree

├── ohci-dbg.c (ohci debugfs debugging interface, such as printing ohci register

information)

├── ohci.h

├── ohci-hcd.c (initialization of ohci controller, interrupt event processing,

urb queue management, etc.)

├── ohci-hub.c (control and status query of ohci root hub, bus suspend/resume)

├── ohci-mem.c (allocation and initialization of ohci mem, allocation and

initialization of td/ed resources)

├── ohci-pci.c (Initialization of pci bus interface, Rockchip ohci uses AHB bus,

does not use this driver file)

├── ohci-platform.c (ohci universal platform driver, implement ohci probe,

register ohci hcd with usb bus, enable ohci controller)

├── ohci-q.c (handling of ohci td/ed transmission queue)

static const struct hc_driver ohci_hc_driver = {

 .description = hcd_name,

 .product_desc = "OHCI Host Controller",

 .hcd_priv_size = sizeof(struct ohci_hcd),

 /*

 * generic hardware linkage

 */

 .irq = ohci_irq,

 .flags = HCD_MEMORY | HCD_USB11,

 /*

 * basic lifecycle operations

 */

 .reset = ohci_setup,

 .start = ohci_start,

 .stop = ohci_stop,

 .shutdown = ohci_shutdown,

 /*

 * managing i/o requests and associated device resources

 */

 .urb_enqueue = ohci_urb_enqueue,

 .urb_dequeue = ohci_urb_dequeue,

 .endpoint_disable = ohci_endpoint_disable,

 /*

 * scheduling support

5.3.2.3 USB 2.0 Host Debug Interface

Example (RK3399 USB 2.0 EHCI/OHCI)

EHCI Driver Debug Interface

 (Need to enable CONFIG_DYNAMIC_DEBUG)

async: Dump a snapshot of the Async Schedule.

bandwidth: Dump the HS Bandwidth Table.

periodic: Dump a snapshot of the Periodic Schedule.

registers: Dump Capability Registers, Interrupt Params and Operational Registers.

companion: Print EHCI's companion controller information

uframe_periodic_max: Displays the maximum usable microframe bandwidth for EHCI periodic transmission,
the default is 100 (unit: microseconds), and the maximum can be configured to 125 microseconds

OHCI Driver Debug Interface

 (Need to enable CONFIG_DYNAMIC_DEBUG)

async: Display Control and Bulk Lists together, for simplicity

periodic: Dump a snapshot of the Periodic Schedule (and load)

registers: Dump driver info, then registers in Spec order and other registers mostly affect Frame Timings

 */

 .get_frame_number = ohci_get_frame,

 /*

 * root hub support

 */

 .hub_status_data = ohci_hub_status_data,

 .hub_control = ohci_hub_control,

#ifdef CONFIG_PM

 .bus_suspend = ohci_bus_suspend,

 .bus_resume = ohci_bus_resume,

#endif

 .start_port_reset = ohci_start_port_reset,

};

rk3399_box:/sys/kernel/debug/usb/ehci/fe380000.usb # ls

async bandwidth periodic registers

rk3399:/sys/devices/platform/fe380000.usb # ls

companion driver_override of_node power uevent usb5

driver modalias pools subsystem uframe_periodic_max usbmon

rk3399_box:/sys/kernel/debug/usb/ohci/fe3a0000.usb # ls

async periodic registers

af://n1116

5.3.3 USB 3.0 OTG Driver

5.3.3.1 USB 3.0 OTG Controller Framework

USB 3.0 OTG Controller is DWC3 Controller, as shown in Figure 5-5 below.

Figure 5-5 DWC3 controller system-level block diagram

USB 3.0 OTG Controller is Synopsys DesignWare Core USB 3.0 Controller integrated with xHCI USB 3.0 host
controller. It can act as static host, static device, USB2.0/3.0 OTG A device or B device basing on the status of
input ID from USB2.0 PHY or DFP/UFP/Data Role Swap defined in USB TypeC specification. It can perform
data transmission between host and device as host or device for Super-Speed/High-Speed/Full-Speed/Low-
Speed.

The characteristics of the USB3.0 controller are as follows:

Support USB 3.0/2.0/1.1/1.0 protocol
Integrated xHCI Host controller
Only DRD mode (dule role) is supported, OTG mode is not supported
Device and Host functions cannot be used at the same time
The USB2.0 Port and USB3.0 Port of Host can be used independently at the same time
The USB2.0 Port and USB3.0 Port of Device can not be used independently at the same time
Only DMA mode is supported, Slave mode is not supported
Requires System Memory (Sram/Dram)
xHCI is a standard USB3.0 Host controller, with the PC USB 3.0 interface. And, it can support Force
USB2.0 only mode.

5.3.3.2 USB 3.0 OTG Driver Overview

1. USB 3.0 OTG driver code

drivers/usb/dwc3/* (USB 3.0 OTG Global core and Peripheral driver)
drivers/usb/host/xhci* (USB 3.0 Host driver)

af://n1137
af://n1138
af://n1163

2. USB 3.0 OTG driver code structure description

Linux-4.19 USB DWC3 controller driver has been greatly upgraded compared to Linux-4.4, but the code file
structure remains basically the same. The differences are mainly reflected in:

Linux-4.19 added drd.c driver file for dynamic switching of dule rote mode;
Linux-4.19 deletes the dwc3-rockchip.c file and uses the generic driver dwc3-of-simple.c instead;
Linux-4.19 still retains dwc3-rockchip-inno.c, which is dedicated to RK3328/RK3228H chip;

Linux-4.19 DWC3 and xHCI driver code structure is as follows:

~/src/kernel-4.19/drivers/usb/dwc3$ tree .

├── core.c (implementation of dwc3 core probe, allocate various resources,

initialize controller, PM runtime management)

├── core.h

├── debugfs.c (implementation of dwc3 debugfs debug interface)

├── debug.h

├── drd.c (dwc3 drd/otg mode dynamic switching processing)

├── dwc3-of-simple.c (dwc3 universal platform driver, realize the first level

dwc3_of_simple_probe of dwc3, and call the second level dwc3_probe of dwc3 core

through of_platform_populate)

├── dwc3-pci.c (Initialization of pci bus interface, Rockchip dwc3 uses AXI bus,

does not use this driver file)

├── dwc3-rockchip-inno.c (glue layer for RK3328/RK3228H, increase the

realization of disconnect work)

├── ep0.c (task processing of dwc3 gadget ep0)

├── gadget.c (dwc3 gadget endpoint task processing except ep0, interrupt entry

function implementation)

├── gadget.h

├── host.c (dwc3 host resource allocation, and call xhci_plat_probe of xHCI

through platform_device_add)

├── io.h

├── Kconfig

├── Makefile

├── trace.c (Dwc3 trace implementation, Linux-based trace interface)

├── trace.h

└── ulpi.c (code implementation of ulpi phy interface, Rockchip dwc3 does not

use ulpi)

~/src/kernel-4.19/drivers/usb/host$ tree

├── xhci.c (initialize xhci_hc_driver, start xHCI controller, manage urb queue,

etc.)

├── xhci-dbg.c (realize debug function for printing log)

├── xhci-dbgcap.c (xHCI hardware module debug capability function is not

supported by Rockchip)

├── xhci-dbgcap.h

├── xhci-debugfs.c (xHCI debugfs debugging interface)

├── xhci-debugfs.h

├── xhci-ext-caps.c (xHCI extended capability function implementation, not

supported by Rockchip)

├── xhci-ext-caps.h

├── xhci.h

├── xhci-hub.c (xHCI root hub control and status query, bus suspend/resume)

├── xhci-mem.c (xHCI mem management, including allocation, initialization,

release and other operations)

├── xhci-pci.c (Initialization of pci bus interface, Rockchip xHCI uses AXI bus,

does not use this driver file)

Important Gadget Structure:

Important Host Structure:

├── xhci-plat.c (xHCI universal platform driver, implement xhci_plat_probe,

Rockchip uses this driver)

├── xhci-plat.h

├── xhci-ring.c (management of xHCI transfer/command/event ring)

├── xhci-trace.c (xHCI trace implementation, Linux-based trace interface)

└── xhci-trace.h

static const struct usb_gadget_ops dwc3_gadget_ops = {

 .get_frame = dwc3_gadget_get_frame,

 .wakeup = dwc3_gadget_wakeup,

 .set_selfpowered = dwc3_gadget_set_selfpowered,

 .pullup = dwc3_gadget_pullup,

 .udc_start = dwc3_gadget_start,

 .udc_stop = dwc3_gadget_stop,

};

static const struct hc_driver xhci_hc_driver = {

 .description = "xhci-hcd",

 .product_desc = "xHCI Host Controller",

 .hcd_priv_size = sizeof(struct xhci_hcd *),

 /*

 * generic hardware linkage

 */

 .irq = xhci_irq,

 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,

 /*

 * basic lifecycle operations

 */

 .reset = NULL, /* set in xhci_init_driver() */

 .start = xhci_run,

 .stop = xhci_stop,

 .shutdown = xhci_shutdown,

 /*

 * managing i/o requests and associated device resources

 */

 .urb_enqueue = xhci_urb_enqueue,

 .urb_dequeue = xhci_urb_dequeue,

 .alloc_dev = xhci_alloc_dev,

 .free_dev = xhci_free_dev,

 .alloc_streams = xhci_alloc_streams,

 .free_streams = xhci_free_streams,

 .add_endpoint = xhci_add_endpoint,

 .drop_endpoint = xhci_drop_endpoint,

 .endpoint_reset = xhci_endpoint_reset,

 .check_bandwidth = xhci_check_bandwidth,

 .reset_bandwidth = xhci_reset_bandwidth,

 .address_device = xhci_address_device,

 .enable_device = xhci_enable_device,

 .update_hub_device = xhci_update_hub_device,

5.3.3.3 USB 3.0 OTG Debug Interface

Example (Linux-4.19 RK3399 USB 3.0 OTG0)

Common debugging nodes：

mode: dr_mode read or store

testmode: Set DWC3 to enter HighSpeed test mode for eye diagram test

link_state: Link state read or store

regdump: Dump registers of DWC3

ep*in/out: Directory of EP debug files

descriptor_fetch_queue: Dump the available DescFetchQ space of EP

 .reset_device = xhci_discover_or_reset_device,

 /*

 * scheduling support

 */

 .get_frame_number = xhci_get_frame,

 /*

 * root hub support

 */

 .hub_control = xhci_hub_control,

 .hub_status_data = xhci_hub_status_data,

 .bus_suspend = xhci_bus_suspend,

 .bus_resume = xhci_bus_resume,

 /*

 * call back when device connected and addressed

 */

 .update_device = xhci_update_device,

 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,

 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,

 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,

 .find_raw_port_number = xhci_find_raw_port_number,

};

console:/sys/kernel/debug/fe800000.dwc3 # ls

ep0in ep1in ep2in ep3in ep4in ep5in ep6out lsp_dump regdump

ep0out ep1out ep2out ep3out ep4out ep5out link_state mode testmode

console:/sys/kernel/debug/fe800000.dwc3/ep0in # ls

descriptor_fetch_queue rx_info_queue trb_ring

event_queue rx_request_queue tx_fifo_queue

rx_fifo_queue transfer_type tx_request_queue

console:/sys/kernel/debug/usb/xhci/xhci-hcd.0.auto # ls

command-ring ports reg-ext-legsup:00 reg-op

devices reg-cap reg-ext-protocol:00 reg-runtime

event-ring reg-ext-dbc:00 reg-ext-protocol:01

af://n1189

rx_info_queue: Dump the available RXInfoQ space of EP

trb_ring: Dump the TRB pool of EP

event_queue: Dump the avaliable EventQ space of EP

rx_request_queue: Dump the avaliable RxReqQ space of EP

tx_fifo_queue: Dump the avaliable TxFIFO space of EP

rx_fifo_queue: Dump the avaliable RxFIFO space of EP

transfer_type: Print the Transfer Type of EP

tx_request_queue: Dump the abaliable TxReqQ space of EP

command-ring: Print the status information of xHCI command ring

event-ring: Print the status information of xHCI event ring

reg-op: Print xHCI register status information

USB 3.0 OTG tracepoint

sys/kernel/debug/tracing/events/xhci-hcd

sys/kernel/debug/tracing/events/dwc3

For more details, please refer to：

sys/kernel/debug/tracing/README

USB 3.0 OTG switch command

Function: Through software method, force OTG to work in Host mode or Device mode without being affected
by USB hardware circuit.

Linux-4.4 USB 3.0 OTG switch command

Linux-4.4 old command (only used for RK3399)：

Linux-4.4 new command (only used for RK3399/RK1808)：

#RK3399 Type-C0 USB OTG switch command

#1.Force host mode

 echo host > sys/kernel/debug/usb@fe800000/rk_usb_force_mode

#2.Force peripheral mode

 echo peripheral > sys/kernel/debug/usb@fe800000/rk_usb_force_mode

Linux-4.19 USB 3.0 OTG switch command (used for all SoCs with DWC3 Controller)

Linux-5.10 USB 3.0 OTG switch command (used for all SoCs with DWC3 Controller)

#RK3399 Type-C0 USB OTG switch command

#1.Force host mode

 echo host > sys/devices/platform/usb0/dwc3_mode

#2.Force peripheral mode

 echo peripheral > sys/devices/platform/usb0/dwc3_mode

#RK1808 USB OTG switch command

#1.Force host mode

 echo host > sys/devices/platform/usb/dwc3_mode

#2.Force peripheral mode

 echo peripheral > sys/devices/platform/usb/dwc3_mode

#RK3399 Type-C0 USB OTG switch command

#1.Force host mode

 echo host > sys/devices/platform/ff770000.syscon/ff770000.syscon:usb2-

phy@e450/otg_mode

#2.Force peripheral mode

 echo peripheral > sys/devices/platform/ff770000.syscon/ff770000.syscon:usb2-

phy@e450/otg_mode

#For other SoCs, the method is similar, just search for the "otg_mode" node

under the sys/devices/platform path, and then set the node.

#RK3588 Type-C0 USB OTG switch command

#Method1. [Legacy] use usb phy node

#1.Force host mode

 echo host > /sys/devices/platform/fd5d0000.syscon/fd5d0000.syscon:usb2-

phy@0/otg_mode

#2.Force peripheral mode

 echo peripheral > /sys/devices/platform/fd5d0000.syscon/fd5d0000.syscon:usb2-

phy@0/otg_mode

#Method2.[New] use usb controller node

#1.Force host mode

 echo host > /sys/kernel/debug/usb/fc000000.usb/mode

#2.Force peripheral mode

 echo device > /sys/kernel/debug/usb/fc000000.usb/mode

#For other SoCs, the method is similar, just search for the "otg_mode" or "mode"

node under the sys path, and then set the node.

6. Android USB Gadget Configuration

6.1 USB Gadget Configfs Framework

Since Linux-3.11, USB Gadgets have been configured in the framework of Configfs, and the android.c file in the
Gadget directory has been deleted from the kernel. Device class drivers that support the Configfs framework are
moved to the directory drivers/usb/gadget/function .

For instructions on how to use Android ConfigFS Gadgets, please refer to Linux documentations:

Documentation/ABI/testing/configfs-usb-gadget-xxxx.txt

Documentation/filesystems/configfs/configfs.txt

Documentation/usb/gadget_configfs.txt

Documentation/usb/gadget-testing.txt

Kernel USB Gadget Configfs Interface

TIZEN USB

https://wiki.linaro.org/LMG/Kernel/AndroidConfigFSGadgets

6.2 USB Gadget Configuration File

USB-related scripts in Android include:

1. init.usb.rc: Android standard RC files, no need change.
2. fstab.rk30board.bootmode.emmc: Android fstab file, it can be used to configure the mount paths of sdcard

and usb storage. On Rockchip platform, the Vold can use wildcard to search and match USB mount paths
automatically.

3. init.rk30board.usb.rc and init.usb.configfs.rc: used for usb functions configuration.

init.usb.rc

init.usb.configfs.rc

init.rk30board.usb.rc

fstab.rk30board.bootmode.emmc

for USB 2.0

/devices/platform/*.usb* auto vfat defaults voldmanaged=usb:auto

for USB 3.0

/devices/platform/usb@*/*.dwc3* auto vfat defaults voldmanaged=usb:auto

af://n1230
af://n1231
https://events.static.linuxfound.org/sites/events/files/slides/USB%20Gadget%20Configfs%20API_0.pdf
https://wiki.tizen.org/Category:USB
https://wiki.linaro.org/LMG/Kernel/AndroidConfigFSGadgets
af://n1241

The three attributes of serialnumber, manufacturer and product are dynamically configured by the Android
application layer. If the serialnumber is not configured successfully, it may cause ADB to be unusable.

on boot

 mkdir /dev/usb-ffs 0770 shell shell

 mkdir /dev/usb-ffs/adb 0770 shell shell

 mount configfs none /config

 mkdir /config/usb_gadget/g1 0770 shell shell

 write /config/usb_gadget/g1/idVendor 0x2207

 write /config/usb_gadget/g1/bcdDevice 0x0310

 write /config/usb_gadget/g1/bcdUSB 0x0200

 mkdir /config/usb_gadget/g1/strings/0x409 0770

 write /config/usb_gadget/g1/strings/0x409/serialnumber ${ro.serialno}

 write /config/usb_gadget/g1/strings/0x409/manufacturer

${ro.product.manufacturer}

 write /config/usb_gadget/g1/strings/0x409/product ${ro.product.model}

 mkdir /config/usb_gadget/g1/functions/accessory.gs2

 mkdir /config/usb_gadget/g1/functions/audio_source.gs3

 mkdir /config/usb_gadget/g1/functions/ffs.adb

 mkdir /config/usb_gadget/g1/functions/mtp.gs0

 mkdir /config/usb_gadget/g1/functions/ptp.gs1

 mkdir /config/usb_gadget/g1/functions/rndis.gs4

 write /config/usb_gadget/g1/functions/rndis.gs4/wceis 1

 mkdir /config/usb_gadget/g1/functions/midi.gs5

 mkdir /config/usb_gadget/g1/configs/b.1 0770 shell shell

 mkdir /config/usb_gadget/g1/configs/b.1/strings/0x409 0770 shell shell

 write /config/usb_gadget/g1/os_desc/b_vendor_code 0x1

 write /config/usb_gadget/g1/os_desc/qw_sign "MSFT100"

 write /config/usb_gadget/g1/configs/b.1/MaxPower 500

 symlink /config/usb_gadget/g1/configs/b.1 /config/usb_gadget/g1/os_desc/b.1

 mount functionfs adb /dev/usb-ffs/adb uid=2000,gid=2000

 setprop sys.usb.configfs 1

 setprop sys.usb.controller "fe800000.dwc3"

on property:sys.usb.config=none && property:sys.usb.configfs=1

 write /config/usb_gadget/g1/os_desc/use 0

 setprop sys.usb.ffs.ready 0

on property:init.svc.adbd=stopped

 setprop sys.usb.ffs.ready 0

on property:sys.usb.config=mtp && property:sys.usb.configfs=1

 write

/config/usb_gadget/g1/functions/mtp.gs0/os_desc/interface.MTP/compatible_id

"MTP"

 write /config/usb_gadget/g1/os_desc/use 1

 write /config/usb_gadget/g1/idProduct 0x0001

on property:sys.usb.config=mtp,adb && property:sys.usb.configfs=1

 write

/config/usb_gadget/g1/functions/mtp.gs0/os_desc/interface.MTP/compatible_id

"MTP"

 write /config/usb_gadget/g1/os_desc/use 1

 write /config/usb_gadget/g1/idProduct 0x0011

"setprop sys.usb.controller" is used to enable the corresponding USB controller of Gadget. For RK3399, it has
two OTG controllers, both of them can support the function of USB Gadget. But because the current architecture
of USB Gadget Driver only supports one USB controller, it is necessary to configure the corresponding USB
controller according to the actual product requirements, such as RK3399 Android SDK, which configures the
Type-C0 as the USB Gadget function by default.

Note:

The Kernel USB Gadget Framework only supports one USB Gadget at the same time. And RK3399 supports
two Type-C USB 3.0 OTG controllers (Type-C0 and Type-C1). If you want to use Type-C1 USB 3.0 as USB
Gadget instead of Type-C0, simply change two configurations:

1. Use Type-C1 controller name "fe900000.usb" instead of “fe800000.usb” in init.rk30board.usb.rc.

2. set dr_mode = "otg" in usbdrd_dwc3_1 node in DTS.

6.3 USB VID And PID Configuration

USB VID and PID configuration need to follow the following principles:

VID is fixed at 0x2207 (authorized by USB-IF)
PID can be defined according to product requirements, but the upper 8 bits must be 0 to avoid conflicts
with Maskrom/Loader USB PID
VID and PID of accessory need to be configured as defined by Google
USB-IF stipulates that VID is unique to each Vendor, and the same VID cannot be authorized for different
Vendors

VID and PID commonly used in the Andorid platform are defined as follows:

setprop sys.usb.controller "fe800000.usb"

setprop sys.usb.controller "fe900000.usb"

&usbdrd_dwc3_1 {

 status = "okay";

 dr_mode = "otg"; /* Configure Type-C1 USB Controller to OTG mode */

 extcon = <&fusb1>; /* Note：extcon should be configured according to

actual hardware */

};

af://n1266

USB Function VID PID

MTP 0x2207 0x0001

PTP 0x2207 0x0002

RNDIS 0x2207 0x0003

MIDI 0x2207 0x0004

UVC 0x2207 0x0005

ADB 0x2207 0x0006

MTP,ADB 0x2207 0x0011

PTP,ADB 0x2207 0x0012

RNDIS,ADB 0x2207 0x0013

MIDI,ADB 0x2207 0x0014

UVC,ADB 0x2207 0x0015

ACCESSORY 0x18d1 0x18d1

ACCESSORY,ADB 0x18d1 0x2d01

6.4 USB Gadget Debug Interface

Configfs Configure Interface

The kernel provides device nodes to view key configuration information for USB Gadgets, as follows:

Refer to

Documentation/usb/gadget_configfs.txt

In order to enable the gadget it must be bound to a UDC (USB Device Controller).

Example:

Bind Type-C0 USB Device Contoller in RK3399 to UDC

Unbind USB Device Controller

root@rk3399:/config/usb_gadget/g1 # ls

UDC bDeviceProtocol bMaxPacketSize0 bcdUSB functions idVendor strings

bDeviceClass bDeviceSubClass bcdDevice configs idProduct os_desc

echo <udc name> > UDC

#where <udc name> is one of those found in /sys/class/udc/*

echo fe800000.dwc3 > config/usb_gadget/g1/UDC

af://n1335

View USB Device Connection Status

echo none > config/usb_gadget/g1/UDC

rk3399:/sys/class/udc/fe800000.dwc3 # ls

a_alt_hnp_support device is_selfpowered srp

a_hnp_support function maximum_speed state

b_hnp_enable is_a_peripheral power subsystem

current_speed is_otg soft_connect uevent

rk3399:/sys/class/android_usb/android0 # ls

f_audio_source f_midi power state subsystem uevent

7. USB Common Debug Methods And Commands

7.1 USB Common Debug Methods

1. Common USB Debug Instruments And Software Tools

Multimeter: for simple voltage test, such as: USB VBUS, OTG_ID and USB PHY power supply.
High-bandwidth oscilloscope: used to measure the signal quality of the USB eye diagram, USB charging
detection and handshake signals, USB VBUS voltage collapse, etc.
USB protocol analyzer: Analyze the USB communication protocol flow, and locate whether it is a host
problem or a device problem.
Windows tools: BusHound software is used to grab USB bus packets; Usbview software is used to view
detailed descriptor information of USB devices.
Linux tools: usbmon is a tool for grabbing USB bus packets; vusb-analyzer graphical tool is used to parse
the data captured by usbmon; lsusb command is used to view detailed descriptor information of USB
devices.

For more information, please refer to the documentation:

Documentation/usb/usbmon.txt

《USB Debugging and Profiling Techniques》

2. Common USB Debug Interface

Sysfs entry in host: /sys/bus/usb/* (view USB devices and drivers supported by the system)

Debugfs entry in host:

/sys/kernel/debug/usb/devices (view all USB device information on the USB bus)

/sys/kernel/debug/*.dwc3 (DWC3 controller debug interface)

/sys/kernel/debug/usb/usbmon (USBMon packet capture tool)

/sys/kernel/debug/usb/xhci (xHCI controller debug interface)

/sys/kernel/debug/usb/uvcvideo (UVC device debug interface)

Debugfs for controllers: refer to USB 2.0 OTG Debug Interface, USB 2.0 Host Debug Interface, USB 3.0
OTG Debug Interface

trace for usb gadget/dwc3/xHCI:

/sys/kernel/debug/tracing/events/gadget (trace Gadget Driver interacting with Device
Controller Driver)

/sys/kernel/debug/tracing/events/dwc3 (trace DWC3 controller transmission process)

/sys/kernel/debug/tracing/events/xhci-hcd (trace xHCI controller transmission process)

Print usb host uvc log: echo 0xffff>/sys/module/uvcvideo/parameters/trace

Print usb devio driver log: echo 1>/sys/module/usbcore/parameters/usbfs_snoop

7.2 USB Common Commands

af://n1355
af://n1356
https://elinux.org/images/1/17/USB_Debugging_and_Profiling_Techniques.pdf
af://n1398

This chapter mainly describes the specific commands for Rockchip USB driver USB, including 2.0 OTG switch
command, USB 3.0 OTG switch command, USB 3.0 force USB 2.0 only command and USB eye diagram test
command.

USB 2.0 OTG switch command

Function: Through software method, force USB 2.0 OTG to Host mode or Device mode without being
affected by OTG ID level.

For the USB 2.0 OTG switch command, please refer to the description of the USB 2.0 PHY debug
interface in USB 2.0 PHY Driver.

USB 3.0 OTG switch command

Function: Through software method, force USB 3.0 OTG to Host mode or Device mode without being
affected by OTG ID level or Type-C interface.

For the USB 3.0 OTG switch command, please refer to the USB 3.0 OTG switch command description in
USB 3.0 OTG Debug Interface.

USB 3.0 force USB 2.0 only command

Function: Force USB 3.0 Host controller and PHY to work in USB 2.0 only mode.

For USB 3.0 force USB 2.0 only command, please refer to USB 3.0 PHY drivers.

USB eye diagram test command

Function: Set the USB 3.0/2.0 controller to test mode.

For the USB eye diagram test command, please refer to the document:
《Rockchip_Developer_Guide_USB_SQ_Test_CN》

7.3 Methods to Disable USB Low Power Mechanism

In order to control the dynamic runtime power consumption of the USB module, the Rockchip SDK platform
natively supports a low power mechanism known as USB auto-suspend. When the USB is not connected or there
is no data transfer, the USB controller and PHY will automatically enter suspend mode to reduce power
consumption. It is important to note that for the USB low power mechanism to function properly, both the USB
Host and Device must adhere to the USB protocol's auto-suspend and resume behavior. If the product focuses
more on the stability and compatibility of USB communication, consider disabling the USB low power
mechanism.

7.3.1 Disable the auto-suspend feature of USB Host and peripherals

Applicable scope: All USB Host controllers (DWC2/DWC3-xHCI/EHCI/OHCI), all external USB HUBs,
specific USB Cameras.

TIPS: When debugging autosuspend compatibility issues, you can dynamically disable all USB autosuspend
features by using the following commands to quickly troubleshoot the problem.

for i in $(find /sys -name control | grep usb);do echo on > $i;echo "echo on >

$i";done;

Disable autosuspend for all USB controllers and all USB HUB peripherals

Note: This method cannot disable the auto-suspend function of USB Cameras

Method 1. Add usbcore.autosuspend=-1 in CMDLINE

Take RK3588 Linux-5.10 as an example:

af://n1417
af://n1419

Method 2. Modify the usb_autosuspend_delay in the driver

Take Linux-5.10 as an example:

Disable the autosuspend for specific USB HUB peripherals

Method: Add the specific USB hub to hub_id_table[] and set id->driver_info =

HUB_QUIRK_DISABLE_AUTOSUSPEND

Example:

Disable the auto-suspend feature for CYPRESS CY7C65632 USB HUB (VID = 0x04b4, PID = 0x6570)

Disable the auto-suspend feature for specific USB Cameras (UVC & UAC)

arch/arm64/boot/dts/rockchip/rk3588-android.dtsi

chosen: chosen {

 bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0

irqchip.gicv3_pseudo_nmi=0 rcupdate.rcu_expedited=1 rcu_nocbs=all

usbcore.autosuspend=-1";

};

diff --git a/drivers/usb/core/usb.c b/drivers/usb/core/usb.c

index 3500e3c94c4b..3a90d3a92c0a 100644

--- a/drivers/usb/core/usb.c

+++ b/drivers/usb/core/usb.c

@@ -63,7 +63,7 @@ EXPORT_SYMBOL_GPL(usb_disabled);

 #ifdef CONFIG_PM

 /* Default delay value, in seconds */

-static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;

+static int usb_autosuspend_delay = -1;

 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);

 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");

diff --git a/drivers/usb/core/hub.c b/drivers/usb/core/hub.c

index fc7d6cdacf16..df8e69e60aaf 100644

--- a/drivers/usb/core/hub.c

+++ b/drivers/usb/core/hub.c

@@ -41,6 +41,8 @@

 #define USB_VENDOR_GENESYS_LOGIC 0x05e3

 #define USB_VENDOR_SMSC 0x0424

 #define USB_PRODUCT_USB5534B 0x5534

+#define USB_VENDOR_CYPRESS 0x04b4

+#define USB_PRODUCT_CY7C65632 0x6570

 #define HUB_QUIRK_CHECK_PORT_AUTOSUSPEND 0x01

 #define HUB_QUIRK_DISABLE_AUTOSUSPEND 0x02

@@ -5697,6 +5699,11 @@ static const struct usb_device_id hub_id_table[] = {

 .idProduct = USB_PRODUCT_USB5534B,

 .bInterfaceClass = USB_CLASS_HUB,

 .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND},

+ { .match_flags = USB_DEVICE_ID_MATCH_VENDOR

+ | USB_DEVICE_ID_MATCH_PRODUCT,

+ .idVendor = USB_VENDOR_CYPRESS,

+ .idProduct = USB_PRODUCT_CY7C65632,

+ .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND},

The mechanism for enabling auto-suspend for USB Cameras is implemented by the driver
drivers/media/usb/uvc/uvc_driver.c calling the usb_enable_autosuspend interface. By default, the driver
enables auto-suspend for all USB Cameras. To disable the auto-suspend feature for a specific USB
Camera, you need to add USB_QUIRK_AUTO_SUSPEND.

Note: The latest Upstream Mainline driver uses UVC_QUIRK_DISABLE_AUTOSUSPEND.

Example.

Disable the auto-suspend feature for USB Camera (VID = 0x05a3, PID = 0x9230)

7.3.2 Disable DWC3 Host mode USB2 LPM Feature

Applicable Scope: All chips that support DWC3 controllers, effective only when DWC3 is operating in Host
mode.

Method: Add the property snps,usb2-lpm-disable in the dtsi usb dwc3 controller node.

Take RK3568 Linux-5.10 as an example:

7.3.3 Disable DWC3 Device mode USB2 LPM Feature

Applicable Scope: All chips that support DWC3 controllers, effective only when DWC3 is operating in Device
mode.

Method: Add the property snps,usb2-gadget-lpm-disable in the dtsi usb dwc3 controller node.

Take RK3568 Linux-5.10 as an example:

diff --git a/drivers/usb/core/quirks.c b/drivers/usb/core/quirks.c

index 76ac5d6555ae..d799e93b9a0d 100644

--- a/drivers/usb/core/quirks.c

+++ b/drivers/usb/core/quirks.c

@@ -322,6 +322,9 @@ static const struct usb_device_id usb_quirk_list[] = {

 /* Alcor Micro Corp. Hub */

 { USB_DEVICE(0x058f, 0x9254), .driver_info = USB_QUIRK_RESET_RESUME

},

+ /* HD Camera Manufacturer */

+ { USB_DEVICE(0x05a3, 0x9230), .driver_info = USB_QUIRK_AUTO_SUSPEND

},

&usbdrd_dwc3 {

 snps,usb2-lpm-disable;

};

&usbhost_dwc3 {

 snps,usb2-lpm-disable;

};

&usbdrd_dwc3 {

 snps,usb2-gadget-lpm-disable;

};

af://n1446
af://n1451

7.3.4 Disable DWC3 Suspend USB2/USB3 PHY Feature

Applicable Scope: All chips that support DWC3 controllers, effective in both Host and Device modes.

Method: Add the properties snps,dis_u2_susphy_quirk and snps,dis_u3_susphy_quirk in the dtsi
usb dwc3 controller node.

Take RK3568 Linux-5.10 as an example:

7.3.5 Disable USB 2.0 PHY Charging Detection and Dynamic Suspend Feature

Applicable Scope: All chips using the driver drivers/phy/rockchip/phy-rockchip-inno-usb2.c

Example 1.

Disable the charging detection feature of rk3568 usb2 phy0 otg port (which will also disable the dynamic entry
into suspend feature)

Example 2.

Disable dynamic entry into suspend for rk3568 usb2 phy0 otg port while retaining the charging detection
mechanism.

7.4 Method for Adding USB Peripheral Quirks

To improve the compatibility of the Linux USB driver with various peripherals, the USB core and USB device
class drivers support adding quirks information for specific peripherals to handle issues with special devices.
Common USB peripherals include: USB flash drives, USB HUBs, USB HIDs, USB Cameras, USB Audio
devices.

7.4.1 Adding USB Quirks in the Linux Kernel

&usbdrd_dwc3 {

 snps,dis_u2_susphy_quirk;

 snps,dis_u3_susphy_quirk;

};

&usbhost_dwc3 {

 snps,dis_u2_susphy_quirk;

 snps,dis_u3_susphy_quirk;

};

&u2phy0_otg {

 rockchip,vbus-always-on;

};

&u2phy0_otg {

 rockchip,dis-u2-susphy;

};

af://n1456
af://n1461
af://n1469
af://n1471

There are two primary methods for adding USB peripheral quirks in the Linux kernel:

1. Modifying Quirks Directly in the Driver File: This method involves directly editing the quirks driver file
and is suitable for non-GKI (General Kernel Interface) platforms.

2. Using Module Parameters: This method involves passing parameters to the module and is applicable for
both GKI and non-GKI platforms.

Method 1: Modifying Quirks Directly in the Driver File

1. Identify the Device: Determine the Vendor ID (VID) and Product ID (PID) of the USB device that
requires a quirk.

2. Locate the Quirks Table: Find the appropriate quirks table in the USB driver source code. This could be
in files like drivers/usb/core/quirks.c for general devices or
drivers/usb/storage/unusual_devs.h for USB Mass Storage devices.

3. Add a New Entry: Add a new entry to the quirks table with the VID, PID, and the specific quirk flags
needed.

Example.

1. Add USB core quirks

2. Add USB storage quirks

include/linux/usb/quirks.h

drivers/usb/core/quirks.c

/* Lists of quirky USB devices */

static const struct usb_device_id usb_quirk_list[] = {

 { USB_DEVICE(0x0204, 0x6025), .driver_info = USB_QUIRK_RESET_RESUME

},

 { USB_DEVICE(0x21c4, 0x0cd1), .driver_info = USB_QUIRK_NO_LPM },

};

static const struct usb_device_id usb_interface_quirk_list[] = {

 { USB_VENDOR_AND_INTERFACE_INFO(0x046d, USB_CLASS_VIDEO, 1, 0),

 .driver_info = USB_QUIRK_RESET_RESUME },

};

static const struct usb_device_id usb_endpoint_ignore[] = {

 { USB_DEVICE_INTERFACE_NUMBER(0x06f8, 0xb000, 5), .driver_info =

0x01 },

};

include/linux/usb_usual.h

drivers/usb/storage/unusual_devs.h /* Driver for USB Mass Storage

compliant devices */

drivers/usb/storage/unusual_uas.h /* Driver for USB Attached SCSI devices

- Unusual Devices File */

/* Example of USB Mass Storage unusual device */

UNUSUAL_DEV(0x0951, 0x1697, 0x0100, 0x0100,

 "Kingston",

 "DT Ultimate G3",

 USB_SC_DEVICE, USB_PR_DEVICE, NULL,

 US_FL_NO_WP_DETECT)

/* Example of USB Attached SCSI unusual device */

3. Add USB HUB quirks

4. Add USB HID quirks

5. Add USB Camera quirks

6. Add USB Audio quirks

UNUSUAL_DEV(0x0b05, 0x1932, 0x0000, 0x9999,

 "ASUS",

 "External HDD",

 USB_SC_DEVICE, USB_PR_DEVICE, NULL,

 US_FL_IGNORE_UAS)

drivers/usb/core/hub.c

/* Example of USB HUB unusual device */

static const struct usb_device_id hub_id_table[] = {

 { .match_flags = USB_DEVICE_ID_MATCH_VENDOR

 | USB_DEVICE_ID_MATCH_PRODUCT

 | USB_DEVICE_ID_MATCH_INT_CLASS,

 .idVendor = USB_VENDOR_SMSC,

 .idProduct = USB_PRODUCT_USB5534B,

 .bInterfaceClass = USB_CLASS_HUB,

 .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND},

};

include/linux/hid.h

drivers/hid/hid-quirks.c

/* Example of USB HID unusual device */

static const struct hid_device_id hid_quirks[] = {

 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH,

USB_DEVICE_ID_LOGITECH_C007), HID_QUIRK_ALWAYS_POLL },

};

drivers/media/usb/uvc/uvcvideo.h

drivers/media/usb/uvc/uvc_driver.c

/* Example of USB Camera unusual device */

static const struct usb_device_id uvc_ids[] = {

 { .match_flags = USB_DEVICE_ID_MATCH_DEVICE

 | USB_DEVICE_ID_MATCH_INT_INFO,

 .idVendor = 0x05c8,

 .idProduct = 0x0403,

 .bInterfaceClass = USB_CLASS_VIDEO,

 .bInterfaceSubClass = 1,

 .bInterfaceProtocol = 0,

 .driver_info = (kernel_ulong_t)&uvc_quirk_fix_bandwidth

},

};

Method 2. Passing Parameters through Module Parameters

Reference Kernel Document: Documentation/admin-guide/kernel-parameters.txt for descriptions related to
usbcore, usbhid, and usb-storage.

Working Mechanism:

1. Parse usb quirks: During the kernel startup phase, call quirks_param_ops -> quirks_param_set -> Create a
quirk_list and parse usb quirks from the cmdline parameters, then add the parsed quirk information to the
quirk_list;

2. Match usb quirks: During the usb enumeration phase, When enumerating usb devices, the driver
drivers/usb/core/hub.c executes hub_port_init -> usb_detect_quirks -> usb_detect_dynamic_quirks,
searches for the usb device's vid/pid in the quirk_list, if a match is found, the corresponding flags from the
quirk_list are passed to the usb device class driver.

Example 1. GKI Platform

Disable the USB auto-suspend feature on the GKI platform, disable the LPM feature for VID:PID(325d:6410),
disable the sleep wake reset function for VID:PID(058f:6387), disable the REPORT_OPCODES function for
VID:PID(174c:x55aa), disable the UAS function for VID:PID(0bc2:2321), and set the MAX_SECTORS_64 and
IGNORE_RESIDUE quirk attributes for VID:PID(05e3:0749).

Add quirks configuration in device/rockchip/common/modules/make_boot.mk.

Example 2. Non-GKI Platform

Disable the USB auto-suspend feature on the RK3588 platform.

7.4.2 View USB quirks

After the system boots, check the USB quirks information through the following kernel nodes.

sound/usb/usbaudio.h

sound/usb/quirks.c

/* Example of USB Audio unusual device */

static const struct usb_audio_quirk_flags_table quirk_flags_table[] = {

 DEVICE_FLG(0x046d, 0x084c, /* Logitech ConferenceCam Connect */

 QUIRK_FLAG_GET_SAMPLE_RATE |

QUIRK_FLAG_CTL_MSG_DELAY_1M),

};

ifeq ($(BOARD_BUILD_GKI),true)

When GKI enable, pass param to usb through cmdline

ref:Documentation/admin-guide/kernel-parameters.txt

BOARD_KERNEL_CMDLINE += usbcore.autosuspend=-1

BOARD_KERNEL_CMDLINE += usbcore.quirks=325d:6410:k,058f:6387:e

BOARD_KERNEL_CMDLINE += usb-storage.quirks=174c:x55aa:f,0bc2:2321:u,05e3:0749:mr

endif

arch/arm64/boot/dts/rockchip/rk3588-android.dtsi

chosen: chosen {

 bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0

irqchip.gicv3_pseudo_nmi=0 rcu usbcore.autosuspend=-1";

};

af://n1521

cat /proc/cmdline

cat /sys/module/usbcore/parameters/quirks

cat /sys/module/usb_storage/parameters/quirks

cat /sys/module/usbhid/parameters/quirks

cat /sys/module/uvcvideo/parameters/quirks

cat /sys/module/snd_usb_audio/parameters/quirk_flags

8. Analysis of Common USB Questions

8.1 Device Enumeration Log

8.1.1 USB 2.0 OTG Normal Boot Log

Default mode is device when booting without USB cable.

8.1.2 USB 2.0 Device Normal Connection Log

8.1.3 USB 2.0 Device Disconnect Log

8.1.4 USB 2.0 Host Enumerate LS Device Log

[8.764441]otg id chg last id -1 currentid 67108864

[8.764925] PortPower off

[8.866923] Using Buffer DMA mode

[8.867280] Periodic Transfer Interrupt Enhancement- disabled

[8.867787] Multiprocessor InterruptEnhancement - disabled

[8.868294] OTG VER PARAM: 0, OTG VER FLAG: 0

[8.868700] ^^^^^^^^^^^^^^^^^Device Mode

[133.368479] ***vbusdetect*

[133.500590] Using Buffer DMA mode

[133.500886] Periodic Transfer InterruptEnhancement - disabled

[133.501391] Multiprocessor InterruptEnhancement - disabled

[133.501875] OTG VER PARAM: 0, OTG VER FLAG: 0

[133.502255] ^^^^^^^^^^^^^^^^^Device Mode

[133.502630] ***************softconnect!!!*******************

[133.618581] USB RESET

[133.710877] android_work: sent ueventUSB_STATE=CONNECTED

[133.714269] USB RESET

[133.947001] configfs-gadget gadget: high-speed config #1: b

[133.947649] android_work: sent ueventUSB_STATE=CONFIGURED

[133.995447] mtp_open

[187.085682] ********session end ,softdisconnect***********

[187.086486] android_work: sent ueventUSB_STATE=DISCONNECTED

[187.087217] mtp_release

af://n1525
af://n1526
af://n1527
af://n1530
af://n1532
af://n1534

8.1.5 USB 2.0 Host Enumerate FS Device Log

8.1.6 USB 2.0 Host Enumerate HS Device Log

8.1.7 USB 2.0 Host-LS/FS/HS Device Disconnect Log

8.1.8 USB 3.0 Device Normal Connection Log

[325.412454] usb 2-1: new low-speed USB device number 2 using ohci-platform

[325.619507] usb 2-1: New USB device found,idVendor=046d, idProduct=c077

[325.620116] usb 2-1: New USB device strings:Mfr=1, Product=2, SerialNumber=0

[325.620809] usb 2-1: Product: USB OpticalMouse

[325.621222] usb 2-1: Manufacturer: Logitech

[370.896519] usb 2-1: new full-speed USB device number 3 using ohci-platform

[371.109574] usb 2-1: New USB device found,idVendor=1915, idProduct=0199

[371.110183] usb 2-1: New USB device strings:Mfr=1, Product=2, SerialNumber=0

[371.110832] usb 2-1: Product: Memsartcontroller

[371.111251] usb 2-1: Manufacturer: Memsart

[371.123172] input: Memsart Memsart controlleras /

[405.400521] usb 1-1: new high-speed USB device number 5 using ehci-platform

[405.536569] usb 1-1: New USB device found,idVendor=0951, idProduct=1687

[405.537178] usb 1-1: New USB device strings:Mfr=1, Product=2, SerialNumber=3

[405.537815] usb 1-1: Product: DT R400

[405.538151] usb 1-1: Manufacturer: Kingston

[405.538533] usb 1-1: SerialNumber:0018F3D97D02BB91517E017D

[405.541111] usb-storage 1-1:1.0: USB MassStorage device detected

[405.542472] scsi host1: usb-storage 1-1:1.0

[406.584573] scsi 1:0:0:0: Direct-AccessKingston DT R400 PMAP PQ: 0 ANSI: 0

CCS

[406.586425] sd 1:0:0:0: Attached scsi genericsg0 type 0

[408.171256] sd 1:0:0:0: [sda] 15646720512-byte logical blocks: (8.01 GB/7.46

GiB)

[408.172788] sd 1:0:0:0: [sda] Write Protectis off

[408.173970] sd 1:0:0:0: [sda] No Caching modepage found

[408.174453] sd 1:0:0:0: [sda] Assuming drivecache: write through

[408.223001] sda: sda1

[408.229280] sd 1:0:0:0: [sda] Attached SCSIremovable disk

[443.151067] usb 1-1: USB disconnect, devicenumber 3

af://n1536
af://n1538
af://n1540
af://n1542

8.1.9 USB 3.0 Host Enumerate SS Device Log

8.2 Analysis of Common Questions

8.2.1 USB Hardware Circuit Problem

1. Use multimeter to measure the voltage of PHY power supply, VCC5V0_OTG, USB_DET, USB_ID.
2. Measuring voltage ripple of PHY power supply with oscilloscope.
3. Test USB eye diagram with oscilloscope.

8.2.2 USB Device Problem

The phenomenon that the USB Device is normally connected to the PC mainly includes:

1. The serial port output normal log, see USB 2.0 Device Normol Connection Log;
2. The drive letter appears on the PC, but it cannot be accessed by default; (Windows 7 and MAC OS may

only appear in the device manager);
3. "USB connected" logo appears in the status bar of the device UI;
4. Open the prompt window of USB connected. The default is charger only mode. After selecting "MTP" or

"PTP", the PC can access the drive letter.

Issue-1: When the USB is plug in, the PC does not respond, and no usb enumeration log.

[72.310531] android_work: sent ueventUSB_STATE=CONNECTED

[72.689120] configfs-gadget gadget: super-speed config #1: b

[72.690110] android_work: sent ueventUSB_STATE=CONFIGURED

[72.767950] mtp_open

[26.715320] usb 8-1: new SuperSpeed USB device number 2 using xhci-hcd

[26.732190] usb 8-1: New USB device found,idVendor=0bc2, idProduct=2320

[26.732812] usb 8-1: New USB device strings:Mfr=2, Product=3, SerialNumber=1

[26.733515] usb 8-1: Product: Expansion

[26.733885] usb 8-1: Manufacturer: Seagate

[26.734263] usb 8-1: SerialNumber: NA45HT1K

[26.738410] usb-storage 8-1:1.0: USB MassStorage device detected

[26.740446] scsi host0: usb-storage 8-1:1.0

[27.745028] scsi 0:0:0:0: Direct-Access Seagate Expansion 0608 PQ:

0 ANSI:6

[27.753066] sd 0:0:0:0: [sda] 1953525167512-byte logical blocks: (1.00 TB/932

GiB)

[27.754245] sd 0:0:0:0: [sda] Write Protectis off

[27.754982] sd 0:0:0:0: Attached scsi genericsg0 type 0

[27.755281] sd 0:0:0:0: [sda] Write cache:enabled, read cache: enabled,

doesn't support DPO or FUA

[27.783395] sda: sda1

[27.791561] sd 0:0:0:0: [sda] Attached SCSIdisk

af://n1544
af://n1546
af://n1547
af://n1555

First, make sure you have selected "MTP", "PTP" or "ADB" on device side. Second, check if USB controller has
worked as Device mode via kernel debug interface. Third, check the USB hardware circuit and the USB D+/D-
signals.

Issue-2: PC fails to recognize USB device，and dump the following log on device side：

Maybe it's USB signal quality problem. Please test USB eye diagram and check the USB hardware circuit.

Issue-3: After connecting to PC, the kernel usb enumeration log is normal, but PC cannot access the device

USB driver is OK, maybe it's Andorid USB server issue. Need to dump android log to analysis this issue.

Issue-4: When the USB cable is unplugged, the UI status bar still shows "USB Connected", and dump the
following log:

Without the following log:

This issue is always caused by USB_DET voltage abnormality. Use multimeter to measure the voltage of
USB_DET. Normally, the voltage is low (0V) when USB cable is unplugged. If the voltage is still high (~3V)
after USB cable is unplugged, it will cause the disconnection issue.

8.2.3 USB Host Problem

Issue-1：No USB enumeration log when USB device plug into the USB Host port.

First, use multimeter to measure the voltage of VBUS, normally, the voltage of VBUS must be 5V. Second,
check if the Kernel USB driver has support USB Host driver and the USB Class driver. Refer to Kernel USB
CONFIG

Issue-2：USB Disk cannot be mounted

First, check if the Kernel has identified the partition information of the U disk. Second, check whether the mount
patch in the fstab script is correct.

Issue-3：urb transfer_buffer address not align

[36.682587] DWC_OTG:

********softconnect!!!***

[36.688603] DWC_OTG: USB SUSPEND

[36.807373] DWC_OTG: USB RESET

[25.330017] DWC_OTG: USB SUSPEND

[25.514407] DWC_OTG: session end intr, softdisconnect

DWC_OTG:dwc_otg_hcd_urb_enqueue urb->transfer_buffer address not align to 4-

byte0xd6eab00a

DWC_OTG:dwc_otg_hcd_urb_enqueue urb->transfer_buffer address not align to 4-

byte0xccf6140a

af://n1578

The dwc2 otg driver requires the transfer buffer address of urb must be 4 bytes aligned. Generally, the buffer
address of urb is allocated in USB class drivers, so try to fix this issue in corresponding USB class driver.

8.2.4 USB Camera Problem

1. USB camera cannot be turned on

First, check whether there is a camera device node video0 or Video1 in the /dev directory. If not, check
whether the kernel is configured correctly. If there are nodes, make sure that USB camera is inserted before
the system boots, because Rockchip SDK doesn't support USB camera hot-plug by default. If you want to
support USB Camera hot plug-in, please contact the Engineer in charge of Camera to support you. The
USB driver doesn't need to be modified.

2. Image jitter, no image and abnormal exit of camera application

It may be caused by frame loss of USB driver. You need to use USB analyzer to analyze the actual USB
communication data.

8.2.5 USB Charge Detection

USB 2.0 PHY supports charging detection of BC1.2 standard. It can detect four charging types:
SDP/CDP/standard DCP (D+/D-short connection) and non-standard DCP (D+/D-not short connection).

Refer to drivers/phy/rockchip/phy-rockchip-inno-usb2.c

SDP: Standard Downstream Port

According to the USB 2.0 specification, when a USB peripheral is in an un-connected or suspend state, a
Standard Downstream Port can provide an average current of no more than 2.5mA to the peripheral; when the
peripheral is connected and not sleeping, the current can reach a maximum of 100mA (USB 3.0 150mA); and
when the peripheral is configured and not sleeping, the maximum current can be 500 mA (USB 3.0 900 mA).

CDP: Charging Downstream Port

It is compatible with the USB 2.0 specification and optimized downlink USB interface for USB charging. It
provides the maximum 1.5A power supply current to meet the needs of high current fast charging.

DCP: Dedicated Charging Port (USB Charger)

BC1.2 spec requires D + and D - in USB Charger to be short connected to match the recognition action of USB
peripherals, but it does not have the ability to communicate with USB devices.

The USB charging type detection process is shown in the following figure:

af://n1586
af://n1594

Figure 8‑1 USB Charging Detection Process

In the typical SDP detection process, the D+/D- signals is shown as follows:

Figure 8‑2 SDP detection signals

In the typical DCP detection process, the D+/D- signals is shown as follows:

Figure 8‑3 DCP detection signals

If connected to an USB charger, but it is found that charging is slow, may be the DCP is misdetected as SDP,
resulting in charging current set to 500 mA. This problem may happens when the USB cable connection is
unstable or the charging detection driver is wrong.

Try to fix it step by step:

1. Capture the uart log when connected to the USB charger and judge the charging type by the prompt of the
log. The normal charging type log should be DCP.

2. If the log shows that the charge type is SDP, then an error detection has occurred. First, try to change an
USB cable, and test again, if this issue still exits, please use oscilloscope to capture D+/D- signals when
USB cable plug in, and send both the error kernel log and D+/D- signals to us.

3. If the connection is a USB charger and the logs show it's DCP, it indicates that the software detects
normally, but if the charging is still slow, it may be a problem of charging IC or battery.

8.2.6 USB Transfer Rate Problem

The main factors affecting the transmission rate:

USB signal quality
USB controller bus frequency
CPU/DDR operating frequency
Read and write performance of storage media
File system format of storage device
USB device class driver

Reference:

《Rockchip_Developer_Guide_Linux_USB_Performance_Analysis_CN》

af://n1621

8.2.7 USB Enumeration Rate

Pay attention to the printed log of the USB enumeration. "high-speed" means recognized as USB 2.0, and
"super-speed" means recognized as USB 3.0.

8.2.8 USB3.0 Recognized Problem

After the USB3.0 device is plugged in, nothing happens, how to troubleshoot?

According to the definition of USB3.0 enumeration process, it is generally stuck at the Link Training process of
USB 3.0 PHY, that is, the problem of USB PHY signal. You can use the USB3.0 analyzer to capture the Link
Training process and combine it with the LTSSM state machine described in the USB 3.0 Spec for analysis.

8.2.9 USB 3.0 Disk Copy Problem

Confirm whether the VBUS supply current meets the requirements
On the PC side, perform the same operation for comparison
Use USB 3.0 analyzer to capture communication protocol
Reduce the size of the data block transmitted once, update the xHCI driver, and open the xHCI debug log

8.2.10 USB3.0 Camera Transmission Problem

It is generally related to the efficiency of USB access to the DDR bus.

Optimization means:

ddr fixed frequency 800MHz;
Improve USB QOS;
Optimize the interrupt processing efficiency of uvc driver, put memcpy operation in the lower half;
urb buffer uses kmalloc allocation instead of the default dma_alloc_coherent method;
If the RK platform is for UVC Gadget, you can dynamically allocate TxFIFO to increase the size of
TxFIFO;

8.3 About PC USB Driver

The developers often use USB download mode (rockusb) and USB debug mode (ADB) on Rockchip platforms
during development stage.

1. PC Windows USB Driver

Need to install Rockchip vendor special USB driver in Windows. Rockchip provides a tool
“DriverAssitant” for you to install Rockchip vendor special USB driver.

2. PC Ubuntu USB Driver

No need to install vendor special USB driver.

af://n1638
af://n1640
af://n1643
af://n1653
af://n1667

9. USB Signal Quality Test

Refer to the document《Rockchip_Developer_Guide_USB_SQ_Test_CN》 or Rockchip USB SQ Tool.

Rockchip USB SQ Tool: https://redmine.rockchip.com.cn/documents/113

af://n1677
https://redmine.rockchip.com.cn/documents/113

	Rockchip Linux USB Developer Guide
	Overview
	RK USB Controllers Solution
	USB 2.0 Host
	USB 2.0 OTG
	USB 3.0 OTG
	USB 2.0 PHY
	Type-C USB 3.0 PHY

	Hardware Circuits and Signals
	USB 2.0 Host Hardware Circuits
	USB 2.0 Host Common Hardware Circuit
	USB 2.0 HSIC Hardware Circuit

	USB OTG Hardware Circuits
	USB 2.0 OTG Hardware Circuit
	USB 3.0 OTG Hardware Circuit

	Kernel USB CONFIG
	USB PHY CONFIG
	USB Host CONFIG
	USB OTG CONFIG
	USB Gadget CONFIG
	USB Device Class Driver CONFIG
	Mass Storage Class CONFIG
	USB Serial Converter CONFIG
	USB HID CONFIG
	USB Net CONFIG
	USB Camera CONFIG
	USB Audio CONFIG
	USB HUB CONFIG

	USB DTS Configuration
	USB 2.0/3.0 PHY DTS
	USB 2.0 PHY DTS
	USB 3.0 PHY DTS

	USB 2.0 Controller DTS
	USB 2.0 Host Controller DTS
	USB 2.0 OTG Controller DTS

	USB 3.0 Controller DTS
	USB 3.0 Host Controller DTS
	USB 3.0 OTG Controller DTS

	USB Driver Development
	Linux USB Driver Framework
	USB PHY Drivers
	USB 2.0 PHY Driver
	USB 3.0 PHY Drivers

	USB Controller Drivers
	USB 2.0 OTG Driver
	USB 2.0 OTG Driver Framework
	USB 2.0 OTG Driver Overview
	USB 2.0 OTG Debug Interface

	USB 2.0 Host Driver
	USB 2.0 Host Controller framework
	USB 2.0 Host Driver Overview
	USB 2.0 Host Debug Interface

	USB 3.0 OTG Driver
	USB 3.0 OTG Controller Framework
	USB 3.0 OTG Driver Overview
	USB 3.0 OTG Debug Interface

	Android USB Gadget Configuration
	USB Gadget Configfs Framework
	USB Gadget Configuration File
	USB VID And PID Configuration
	USB Gadget Debug Interface

	USB Common Debug Methods And Commands
	USB Common Debug Methods
	USB Common Commands
	Methods to Disable USB Low Power Mechanism
	Disable the auto-suspend feature of USB Host and peripherals
	Disable DWC3 Host mode USB2 LPM Feature
	Disable DWC3 Device mode USB2 LPM Feature
	Disable DWC3 Suspend USB2/USB3 PHY Feature
	Disable USB 2.0 PHY Charging Detection and Dynamic Suspend Feature

	Method for Adding USB Peripheral Quirks
	Adding USB Quirks in the Linux Kernel
	View USB quirks

	Analysis of Common USB Questions
	Device Enumeration Log
	USB 2.0 OTG Normal Boot Log
	USB 2.0 Device Normal Connection Log
	USB 2.0 Device Disconnect Log
	USB 2.0 Host Enumerate LS Device Log
	USB 2.0 Host Enumerate FS Device Log
	USB 2.0 Host Enumerate HS Device Log
	USB 2.0 Host-LS/FS/HS Device Disconnect Log
	USB 3.0 Device Normal Connection Log
	USB 3.0 Host Enumerate SS Device Log

	Analysis of Common Questions
	USB Hardware Circuit Problem
	USB Device Problem
	USB Host Problem
	USB Camera Problem
	USB Charge Detection
	USB Transfer Rate Problem
	USB Enumeration Rate
	USB3.0 Recognized Problem
	USB 3.0 Disk Copy Problem
	USB3.0 Camera Transmission Problem

	About PC USB Driver

	USB Signal Quality Test

