
Rockchip Application Notes Storage

ID: RK-SM-YF-017

Release Version: V2.1.0

Release Date: 2024-01-15

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

No. Document Name Content Overview

1 "Rockchip_Introduction_Partition"
Partition configuration
introduction

2 "Rockchip-Developer-Guide-UBoot-nextdev-CN"
Uboot development
documentation

3 "RK Vendor Storage Application Note"
Vendor Stroage
application note

4 "Rockchip Mass Production Burning Guide_v1.2"
Mass production
burning guide

5 "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN"
Flash open source
storage solution
development document

6 "Rockchip_Developer_Guide_Dual_Storage_CN"
Dual storage
development document

Chipset Kernel Version

ALL SOC \

Preface

Overview

This article mainly guides readers to understand the boot process and configure and debug storage.

For more detailed content, please refer to the following documents:

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Version Author Date Change Description

V2.0.0 Jon Lin 2024-01-08 Initial version

V2.1.0 Jon Lin 2024-01-15 Add content to the introduction chapter of Flash

Revision History

Contents

Rockchip Application Notes Storage
1. Naming Conventions
2. Flash Introduction

2.1 Flash Storage Types
2.2 Flash Selection
2.3 Simple Comparison of Flash
2.4 Common Flash Packages
2.5 Flash Prices
2.6 Basic Principles of Nand
2.7 Basic Principles of Nor
2.8 Nand Storage ECC Dependency
2.9 Original Bad Blocks in Nand
2.10 Lifespan and ECC Errors in Nand
2.11 Technical Key Points of Nand FTL
2.12 Evolution of RK Nand Storage Solutions (including PP Nand and SPI Nand)
2.13 Flash Host Controller

2.13.1 SFC Controller
2.13.2 FSPI Controller
2.13.3 NandC Controller
2.13.4 General SPI Interface

2.14 SPI Flash Output Latency Statistics
3. Particle Verification

3.1 Overview of SLC Nand/SPI Nand/SPI Nor Verification Content
3.2 RK Flash Sample Submission Requirements

3.2.1 Verification-related Information
3.2.2 Verification Process
3.2.3 Verification Mailing Address
3.2.4 Customer Patches Distribution

4. Device Bootup Process
4.1 RK SOC BOOTROM Boot Support Status
4.2 RK SOC Storage Interface Specifications
4.3 BOOTROM Process
4.4 Pre Loader Process

4.4.1 Miniloader
4.4.2 u-boot spl
4.4.3 loader

5. Partition and Data Storage
5.1 Data Storage

5.1.1 Introduction to Address Conversion
5.1.2 Partition and Data Logical Address Storage

5.2 Partition Table Partition
5.2.1 MTD Partition
5.2.2 GPT
5.2.3 RK partition
5.2.4 ENV Partition

5.3 Partition Table Modification Tool
5.4 Partition Write Protection Settings

5.4.1 Block Device Partition Write Protection Settings
5.4.2 MTD Device Partition Write Protection Settings

6. Firmware Burning
6.1 USB Upgrade

6.1.1 Flowchart
6.1.2 WIN Development Tool RKDevTool
6.1.3 WIN Development Tool SocToolKit
6.1.4 Linux Development Tool upgrade_tool

6.1.5 Linux Development Tool SocToolKit
6.1.6 Mass Production Tool

6.2 SD Card Upgrade
6.3 UART Upgrade
6.4 EMMC Image Burning
6.5 SLC Nand Image Burning
6.6 SPI Nand Image Burning
6.7 SPI Nor Image Burning

7. Storage Software Driver Configuration
7.1 u-boot
7.2 kernel

7.2.1 MLC Nand、TLC Nand rknand scheme
7.2.2 SLC Nand、SPI Nand 及 SPI Nor rkflash scheme
7.2.3 SLC Nand、SPI Nand 及 SPI Nor MTD open source scheme

7.3 Configuration of iomux/clk for storage devices at different stages and scanning order
7.4 Expansion of dual storage solution

8. Open source OTA solution
9. File system support

9.1 UBIFS file system
9.2 JFFS2 file system support

10. Vendor Storage usage instructions
10.1 Vendor Storage ID
10.2 Vendor Storage API

10.2.1 Uboot API
10.2.2 kernel API
10.2.3 User API
10.2.4 PC Tool API

10.3 Usage Notes
10.3.1 Maximum Data Size for a Single Vendor Partition Item
10.3.2 Dual Backup Support for VENDOR Data

11. Appendix References

Naming Introduction

SPI Nand SPI protocol Nand, mostly SLC Nand

SPI Nor SPI protocol Nor

PP Nand Parallel peripherals Nand, parallel Nand, SLC\MLC\TLC Nand

Flash SPI Nand、SPI Nor、PP Nand collectively referred to as

Nand SPI Nand and PP Nand and other Nand particles collectively referred to as

Octal SPI DTR Nor flash Octal SPI Nor flash with dual sampling

OCTA flash Octal SPI Flash, including Octal SPI Nor、Octal SPI Nand

1. Naming Conventions

af://n86

2. Flash Introduction

2.1 Flash Storage Types

Flash memory, in a broad sense, refers to all non-volatile storage technologies based on Nand flash and Nor
flash. For example, the commonly used EMMC and SPI flash on our RK devices, or the PCIe SSD, SATA SSD,
and UFS that have gradually entered our field of vision in recent years. You may be curious about the differences
between these storages. Here is a brief introduction.

Flash die are the ultimate carrier for storing user data, such as the Nand Flash Array shown in the screenshot.
The devices manufacturers produce chips of different capacity sizes and then combine them with different
controllers to form specific storage devices for various industries. For example, EMMC devices are composed of
Nand flash die encapsulated EMMC interfaces, and SPI Nor devices are composed of Nor flash die encapsulated
SPI interfaces. Of course, these storage particles usually have firmware running inside, also known as Firmware
firmware, just like our chips. The following are the corresponding explanations for some storage particles:

af://n113
af://n114

Device
Device
Introduction

Host Controller Special Drivers on Host Side

SPI
Nor

Nor + SPI Interface
FSPI/SPI
Controller

A relatively simple file system that supports
wear leveling and out-of-place updates is
sufficient.

PP
Nand

Nand + Parallel Port
NandC
Controller

FTL algorithm or file system with FTL

SPI
Nand

Nand + SPI
Interface

FSPI/SPI
Controller

FTL algorithm or file system with FTL

eMMC
Nand + eMMC
Interface + FTL
algorithm

SDMMC/SDHCI
Controller

MMC protocol framework

SD
Card

Nand + SDIO
Interface+ FTL
algorithm

SDMMC
Controller

MMC protocol framework

SATA
SSD

Nand + Sata
Interface+ FTL
algorithm

Sata Controller SATA protocol framework

NVMe
SSD

Nand + PCIe
Interface+ FTL
algorithm

PCIe Controller NVMe protocol framework

UFS
Nand + UFS
Interface+ FTL
algorithm

UFS Controller UFS protocol framework

...

Note:

Flash devices are essentially iterating in the direction of faster interface controllers, higher internal parallel
complexity, and larger capacities.

torage Type Stability Price Package Speed
Selectable
Capacity

EMMC Good High 13x11.5 153 FBGA
200M
DDR
(HS400)

>= 1GB

SLC Nand Nornal Nornal 20x12 TSOP48 30M SDR 128MB~512MB

SPI Nand Nornal Low 8x6 WSON
133M
SDR
80M DDR

64MB~512MB

SPI Nor Good Low 5x4 SOP8

166M
SDR
104M
DDR

<= 128MB

Octal SPI
N l Hi h

8x6 24-BALL 120M
128MB 512MB

In addition to supporting the above common storage, RK products also support SD Nand (surface-mount
packaging).
The devices composed of Nand flash need to store the FTL algorithm to manage Nand, and the reason is
explained in the "Basic Principles of Nand" chapter
PP Nand/SPI Nand, as the device itself does not integrate FTL algorithm, the host software should include
FTL algorithm or file system with FTL algorithm support
Explanation of combination of die manufacturer, brand manufacturer, and RK main control:

Due to the dependence of MLC/TLC Nand on FTL algorithm, the impact of NandC controller on SOC
area, and the disadvantages of multiple pins of PP Nand, RK has gradually eliminated the PP Nand
interface in recent years. Therefore, the current Flash products of RK mainly include SPI Flash products.

2.2 Flash Selection

SLC Nand, SPI Nand, SPI Nor

Refer to the GigaDevice selection reference to understand the range of Flash material selection. GD Chip
Selection Reference Link

2.3 Simple Comparison of Flash

af://n185
https://www.gigadevice.com.cn/Public/Uploads/uploadfile/files/resource-center/GigaDevice-Selection-Guide-cn.pdf
af://n188

torage Type Stability Price Package Speed
Selectable
Capacity

Nand
Nornal High

TFBGA DDR
128MB~512MB

Octal SPI Nor Good High
8x6 24-BALL
TFBGA

200M
DDR

<= 128MB

Note:

EMMC has advantages such as large capacity, high stability, and fast read and write rates, but it has
disadvantages such as high unit price, large packaging, and high initialization time overhead (usually
reaching the level of one hundred milliseconds)
SPI Nand has optimizations such as small packaging, low single-chip price, and larger capacity compared
to Norflash. However, due to limitations such as ECC and storage algorithm management, the read and
write speed and stability of Nand are relatively average
SPI Nor has the advantages of small package size, high stability, low single-chip price, and low software
initialization time overhead. Especially in small firmware scenarios, SPI Nor has good loading speed, but
its continuous data transmission speed is not as fast as EMMC, and when the capacity increases, the unit
price is relatively expensive
Due to the dependence of MLC/TLC PP Nand on FTL algorithm, the large chip area occupied by NandC
controllers, and the large number of pins, RK has phased out the PP Nand interface in recent years.
Therefore, small capacity storage mainly refers to SPI Flash, and MLC/TLC PP Nand is not included in the
above table
The price is based on the calculation of a single chip, and the price per MB decreases as the capacity
increases.

2.4 Common Flash Packages

Comparison of several packaging options:

af://n251

SLC Nand/SPI flash：

Introduction to Packaging

2.5 Flash Prices

https://www.gigadevice.com.cn/Public/Uploads/uploadfile/files/resource-center/GigaDevice-Selection-Guide-cn.pdf
af://n258

Storage Type Capacity
Price
(USD)

SPINand 1Gbits QPI Comsummer 0.53

SPINand 2Gbits QPI Comsummer 0.75

SPINand 4Gbits QPI Comsummer 1.7

SPINand (Continuous read mode, single
material)

compare to the same capacity
devices

+30%

PP 1Gbits QPI Comsummer 0.6

PP 2Gbits QPI Comsummer 1.7

PP 4Gbits QPI Comsummer 3.8

Nor 32Mbits QPI Comsummer 0.12

Nor 64Mbits QPI Comsummer 0.17

Nor 128Mbits QPI Comsummer 0.28

Nor 256Mbits QPI Comsummer 0.9

Nor 512Mbits QPI Comsummer 2.1

Nor 256Mbits OPI Auto 2.1

Nor 512Mbits OPI Auto 3.6

Note:

The above prices are market quotes from specific manufacturers and do not include any markup for
customer communication.
The above prices mainly reflect the price differences between different storage devices and the trend of
prices increasing with capacity for the same type of storage device.

2.6 Basic Principles of Nand

Nand Physical Structure

Taking the common structure of SLC Nand as an example:

Note：

SLC Nand is composed of multiple flash blocks, typically reaching 1024, 2048, or 4096 blocks. The
screenshot above shows 2048 blocks
Block is the smallest erasing unit of Nand flash, and the SLC Nand block size is usually 128KB or 256KB,
which changes from logical 0 to 1 after erasing
A block typically consists of 64 pages, with some particles reaching up to 128 pages
The page is the basic unit for Nand flash programming and reading, and the SLC Nand page size is usually
2KB or 4KB, which changes from logic 1 to 0 after programming

Logically, 0 or 1 is actually the level value on each physical unit of the Bit cell

Take the SLC NAND implemented by floating gate as an example:

af://n327

The actual unit that stores data in Flash is the internal floating gate (Floating gate). By controlling the voltage
applied to the control gate and the substrate, it determines whether to charge or discharge the floating gate. The
logical state of 0 or 1 on the data is represented by whether the stored charge exceeds a specific threshold Vth:

For writing to NAND Flash, it involves charging the floating gate by applying high voltage to the control
gate. When the voltage exceeds the threshold Vth, it represents a 0.

Data Retention issue: When charged at high voltage, the charge remains stored in the floating gate
without any erasing action. However, due to the electric field between the floating gate and the
substrate, the charge gradually leaks over time.
P/E cycle issue: As the number of program/erase cycles (P/E Cycles) increases, the oxide layer
between the floating gate and the substrate ages, which also affects the ability of the floating gate to
store charge.

For erasing in NAND Flash, it involves discharging the floating gate by applying high voltage to the
substrate. When the voltage is below the threshold Vth, it represents a 1.

Design of Wordline and Bitline

In order to efficiently complete the charging and discharging actions of thousands of Nand flash cells, the
designer has implemented auxiliary circuit structures such as Bitline/Wireline. For example, multiple cells are
connected in series, and multiple sets of cells form a Nand string. The ends of a Nand string are called Bit Line
and Source line. Each cell's control gate is connected by a single Wordline. Cells controlled by the same
Wordline constitute a logical page (Page). Together, they form a block. All cells within a block share the same
substrate, so the minimum erase unit is a block.

Bitline 图片来源

Abort SLC\MLC\TLC\QLC：

As mentioned above, Bitine can be used to control the charging and discharging behavior, determining the level
state of the bit cell. In fact, by controlling the amount of charging, different level performances of a single bit
cell can be achieved:

SLC, Single Level cell, represents 1 bits data with only 0/1 two levels of logic.
MLC, supports 2 bits data with 4 levels of states from 0 to 3.
TLC, supports 3 bits data with 8 levels of states from 0 to 7.
QLC, supports 4 bits data with 16 levels of states from 0 to 15.

—— Image sourced from the internet

https://www.tonguebusy.com/a/peixun/xinxi/03-we-q-w-06.html

Bit cell charge storage capacity failure with bit flip

Due to the specific physical structure of Nand, there is a possibility that the charging and discharging process of
Nand particles may be unstable, and the physical structure may age due to friction and wear, which may affect
the energy storage capacity. This can lead to changes in logical levels, such as bit flip. At the user level, data
errors, firmware anomalies, and file system crashes may occur. Therefore, Nand flash products will introduce
ECC error correction algorithms with different capabilities to support, in order to extend the lifespan of particles
and enhance the robustness of Nand products.

Characteristics of Nand Products

The physical implementation principle of Nand determines that Nand products have the following
characteristics:

Out-of-place Update. Nand Flash programming can only change the storage unit from 1 to 0, so an erase
operation is needed before reprogramming. Moreover, programming is done in pages while erasing is done
in blocks (a block includes multiple pages). If in-place update is used, it means repeatedly updating the
same logical address to the same location. In this case, every update requires an erase operation first. Since
erasing operations consume time and damage Flash, FTL generally uses out-of-place update to map
updated data to a new location.
Limited P/E cycles. As mentioned earlier, each block of Nand Flash has a limit on the number of erase
cycles. After a certain number of erase cycles, this block becomes unstable and the data programmed into
it may be prone to errors or even fail to erase.
Better performance. Unlike traditional mechanical hard drives, Flash storage does not have mechanical
devices, such as seeking. The access overhead for all addresses is the same, especially in random read
performance, where SSD is much better than traditional mechanical hard drives. According to this
reasoning, the speed of Flash device random access and sequential access should be the same. However, in
reality, Flash supports Cache operations, which can preemptively read the next page's data into internal
registers during

2.7 Basic Principles of Nor

The principle is similar to Nand, with the following main differences:

The implementation principle of bit cell is similar, but each cell is directly connected to the Bit Line and
Source line at both ends, making it more stable. Therefore, Nor usually does not require ECC mechanism
to prevent physical aging (however, there is still a tiny probability of flipping anomalies). However, the
circuit structure around the cell is more complex, resulting in higher cost per die for the same capacity.

Block/page size is different from Nand.

Generally supports two formats of erasable blocks - Block/Sector in a broad sense, which are 64KB
and 4KB respectively.
Generally supports basic programming (writing) unit page as 256B.

2.8 Nand Storage ECC Dependency

af://n384
af://n396

Chip Type Main Control\ECC Support ECC Selection Dependent

EMMC No Need EMMC devices

SPI Nand Without ECC SPI Nand devices

SLC Nand Nand V6 16 bits per 1KB NandC Control

MLC TLC Nand Nand V9 16 bits and more NandC Control

Note：

Some particles in SLC Nand come with ECC, while the rest of PP Nand do not integrate ECC and rely on
the ECC provided by the controller itself

2.9 Original Bad Blocks in Nand

Due to physical characteristics, a certain proportion of original bad blocks are allowed in the manufacturing
process of Nand Flash. At the time of shipment, the manufacturer will set the original bad block mark in a
specific area of the flash, usually in the spare first byte (or referred to as the OOB area). Typically, the original
bad block mark cannot be destroyed.

W25N01GV SPI Nand is an exception.

2.10 Lifespan and ECC Errors in Nand

Nand flash has durability, which is typically characterized by P/E (erase/write). After reaching a certain number
of P/E cycles, failure may occur. In actual tests, abnormalities may occur in some particles even at 30K times
(the actual value may differ from the manufacturer's claim, contact the manufacturer for details).

When approaching the lifespan of Nand flash, there are usually the following warnings:

The read data bit flip reaches a situation that requires refreshing the data.

The data is valid and can be used normally.

When reaching or exceeding the lifespan of Nand flash, the following abnormalities may occur:

The read data bit flip reaches a situation that requires refreshing the data.

The data is valid and can be used normally.
Reading data reports ECC fail.

The data is invalid, and there is a retry mechanism at the bottom, so it may cause high CPU usage of
threads.
Some data is lost, which may lead to upper layer exceptions.

Erase/write fail.

Marked as a bad block, does not affect use, and data will not be lost.

2.11 Technical Key Points of Nand FTL

Address mapping management. Flash memory is a black box to the outside world, integrating Nand Flash
and FTL, etc. Upper-layer applications use logical addresses for access. FTL maps logical addresses to

af://n422
af://n427
af://n455

different physical addresses, managing the physical location where the latest data of each logical address is
stored.
Garbage collection. As data is written, some parts of the data in some blocks of the flash memory have
become invalid, and it is necessary to move the valid data from the block and then erase it to receive new
data.
Wear leveling and bad block management. Because the P/E cycle of each block is limited, some blocks
may be damaged due to repeated use, while some blocks are rarely accessed and have not been operated.
To avoid this situation, FTL adds wear leveling functionality, which is generally achieved by controlling
garbage collection and empty block pool management, thereby balancing the usage frequency of each
block. The ideal situation is that all blocks reach the wear threshold together. Since there are some bad
blocks in Flash itself, some blocks will become unstable during use. Therefore, when managing, FTL
needs to avoid these useless blocks and copy the data on the unstable blocks that become unstable in time
to stable locations.

2.12 Evolution of RK Nand Storage Solutions (including PP Nand and
SPI Nand)

Early only supported closed-source FTL solutions from RK

Mainly including RK3326\RK3308\RV1108
Customers began to have UBIFS, MTD, and burner burning requirements, requiring the use of MTD
storage drive framework

Starting from RK3308 chip, because this solution is open source from driver to algorithm to file
system, it is usually called MTD open source solution internally compared with closed-source
solutions
RK3308 provides low-level drivers, and the upper connection is completed by customers (with
strong development capabilities) themselves
RK3308 products have provided SDK configuration for PP SLC Nand MTD open source solution

Completely switched to MTD open source solution and provided more detailed support and guidance:

RV1126\RK3568 and subsequent chips

2.13 Flash Host Controller

2.13.1 SFC Controller

The Serial Flash Controller (SFC) is used to control the data transfer between the chip system and serial
nor/nand flash memory devices.

The SFC supports the following features:

Supports SPI Nor, SPI Nand
Supports SPI Nor 1-wire, 2-wire, and 4-wire transmission
DMA transmission

2.13.2 FSPI Controller

FSPI (Flexible Serial Peripheral Interface) is a flexible serial transmission controller. It is a new design of SFC,
considering changes in supported devices, so it is renamed as FSPI. It has the following main features:

af://n463
af://n484
af://n485
af://n495

 1.8 V 3.3 V 1.65-3.6

FORESEE < 8 ns

BIWIN < 9 ns

Dosilicon <10 ns <8 ns

ESMT <8 ns

Toshiba <6 ns

WINBONG <7 ns

MXIC <8 ns

MXIC (SPI NOR) <12 ns(30 pf)<10 ns(15 pf)

Supports SPI Nor, SPI Nand, PSRAM, and SRAM under SPI protocol
Supports SPI Nor 1-wire, 2-wire, and 4-wire transmission，Version 8 and later support 8-line DDR
transmission
XIP technology
DMA transmission

2.13.3 NandC Controller

NandC is the main controller used to complete the data transfer between Nand flash and the main chip. It
supports direct data transmission through the AHB bus master. To adapt to different application scenarios, RK
currently has two versions of NandC: the highly integrated NandC V9 and the simplified NandC V6 with smaller
chip area.

Generally, a chip selects the NandC version based on its market position. NandC V6 only supports SLC Nand
and is usually placed in products with small storage capacity (usually SLC Nand is less than 512MB). NandC V9
can support MLC and TLC, so it can be applied in products with large storage capacity.

2.13.4 General SPI Interface

While FSPI is a dedicated SPI Flash interface, RK SOC usually has multiple general SPI interfaces. This
interface also supports external SPI Flash devices, but generally these interface devices cannot be used as
bootdev.

2.14 SPI Flash Output Latency Statistics

Summary:

Notes:

The specific particles are subject to the manual, and the table is for reference only.

af://n506
af://n509
af://n511

Storage
Type

Functional
Verification

Particle Reliability
Verification

Software Compatibility and Stability
Verification

SPI Nor Y N*1 N

SPI Nand Y Y TBD*2

SLC
Nand

Y N*3 TBD*2

3. Particle Verification

3.1 Overview of SLC Nand/SPI Nand/SPI Nor Verification Content

Verification Explanation:

Small-capacity particles are generally more stable and have better compatibility with the main controller.
Therefore, most of them only undergo functional verification, and their reliability and stability mainly depend on
the extensive tests and reports conducted by the original manufacturer.

1. Functional Verification
2. Basic Product Lifecycle Reliability Verification
3. Software Compatibility and Stability Verification

Notes:

1. SPI Nor only undergoes functional verification, mainly considering its relative stability, good
compatibility, and the fact that reliability and stability verification need to reach a large number of tests to
test the boundary conditions. The reliability and stability verification are guaranteed by the particle's
original manufacturer.

2. TBD: Only the storage particles with significant compatibility changes and the storage driver version
updates are subject to corresponding tests. Generally, this test is not performed.

3. The ECC part of SLC Nand is mainly provided by the RK Nand main control, which can correct errors up
to 16 bits/1KB, resulting in high redundancy and stability. No further verification of its reliability is
required, and the reliability and stability verification are guaranteed by the particle's original manufacturer.

Verification Methods:

1. Functional Verification

Main control compatibility: The system can boot up normally, basic functions are normal, and flash 10
loop stress testing passes.

2. Particle Reliability Verification

Retention Test:

After a certain proportion of P/E cycle processing on the flash, bake it to simulate the product lifespan.

3. Software Compatibility and Stability Abnormal Power-off Verification (recommended for actual products)

Abnormal Power-off Test:

Power off once every minute for 1 minute.

af://n564
af://n565

Boot into the Linux system during power-on.
Continuously perform dd commands during power-on without comparison, mainly testing FTL data
migration performance.
Continue for 7 days (meeting the basic requirements of most products, approximately 10K reads and
writes, around 10,000 power-offs).

3.2 RK Flash Sample Submission Requirements

3.2.1 Verification-related Information

General Information:

1. Small-capacity storage includes SLC PP Nand, SPI Nand, and SPI Flash.
2. Prioritize submitting the main selling particles.
3. This channel is for verification purposes only; no business-related suggestions can be provided at this time.
4. The support list for small-capacity storage is typically updated every 1-2 months, but actual particle

verification times may vary and will be completed before the support list is updated.
5. At least 10 pieces should be submitted, along with the corresponding particle manual.
6. Prioritize verifying particles that are urgently needed by customers.

Special Notes for SPI Nand:

1. Particles must have an ECC module; otherwise, they are not supported as the RK main control does not
have an integrated ECC module.

2. There should be no continuous bad blocks at the end of the Flash; otherwise, it will destroy the information
in the bad block table at the end, and if it cannot be resolved, it cannot be supported.

3. Some particles have a 2-plane structure and require plane select bits to be set on the address to select odd
plane data. However, there is compatibility issues with these particles on the RK platform, and the driver
needs to handle compatibility; therefore, it is not recommended to use them.

Special Notes for SPI Nor:

1. SPI Nor particles require a tRST of less than 200us.

3.2.2 Verification Process

The internal team will perform functional testing and stress testing to verify the compatibility between the
particles and the main control. However, the stability of the particles and their performance during stress
tests should be determined by the original manufacturer's specifications.
Verification will only be conducted on classic platforms. The small-capacity storage main control IP of RK
is a compatible IP, so only RK3568 will be verified, but it can be compatible with most SOCs that have
corresponding control devices. For example, if SPI Nand is verified as OK on RK3568, it will also be
compatible with RV1126 and RK3308.

3.2.3 Verification Mailing Address

Submit a request on the RK Redmine issue tracking platform, and the storage module software engineer will
provide the address.

af://n631
af://n632
af://n659
af://n665

3.2.4 Customer Patches Distribution

Due to new flash materials, especially SPI Flash materials, source code patches are usually required after
verification. If customers have driver requirements, please submit a request on the RK Redmine issue
feedback platform, and patch packages will be provided online at that time.

af://n667

BootROM preloader

uboot

trust

kernel rootfs linux app

SOC
Emmc
Boot

Nand
Boot

SPI NAND
Boot

SD
Boot

SPI NOR
Boot

RV1108 Y Y Y Y Y

RV1126/RV1109 Y Y Y Y Y

RK2108 Y N N Y Y

RK2206 Y N N Y Y

RK3036 Y Y Y Y Y

RK3126C Y Y Y*1 Y Y

RK3128 Y Y Y Y Y

RK3228 Y Y Y*1 Y Y

RK3288 Y Y Y Y Y

4. Device Bootup Process

The bootup process refers to the software flow from system power-on to system startup completion. The
following is the Linux system bootup process:

4.1 RK SOC BOOTROM Boot Support Status

af://n672
af://n675

SOC
Emmc
Boot

Nand
Boot

SPI NAND
Boot

SD
Boot

SPI NOR
Boot

RK3308 Y Y Y Y Y

RK3326/PX30 Y Y Y*1 Y Y

RK3328 N Y Y*1 Y Y

RK3368/PX5 Y Y Y*1 Y Y*1

RK3399 N Y Y Y Y

RK3568/RK3566 Y Y Y Y Y

RK3588 Y N Y Y Y

RV1106/RV1103 Y N Y Y Y

RK3528 Y N Y Y Y

RK3562 Y N Y Y Y

*1: The chip hardware supports it, but the SDK release development package does not support it.

4.2 RK SOC Storage Interface Specifications

af://n818

AP NANDC SPI0 SPI1 SPI2 SFC SD SDIO EMMC USB0 USB1

RK3188
60bits MLC
SLC

Boot - -
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0 OTG

RK3128
60bits MLC
SLC

 - - Boot
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0 OTG

RK3126
60bits MLC
SLC

 - - Boot
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0 OTG

RK3036
60bits MLC
SLC

 - - Boot
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0 OTG

RK3288
60bits MLC
SLC

 Boot -
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0 OTG

RK3399 - - Boot - -
SD
3.0

SDIO
3.0

HS400
HS200

3.0
OTG
TYPEC

3.0 OTG
TYPEC

RK3368
60bits MLC
SLC

 Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0 OTG

RK3228
RK3229

60bits MLC
SLC

Boot - - -
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0 OTG

RK3328 - Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

3.0 OTG

RK3228H - Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

3.0 OTG

RK3128X
60bits MLC
SLC

Boot - - -
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0 OTG

RV1107 RV1108 16bits SLC Boot
SD
3.0

SDIO
3.0

HS200 - 2.0 OTG

RV1109 RV1126 16bits SLC Boot
SD
3.0

SDIO
3.0

HS200 - 2.0 OTG

RK3308 16bits SLC Boot
SD
3.0

SDIO
3.0

HS200

RK3326
70bits TLC
MLC SLC

 Boot
SD
3.0

SDIO
3.0

HS200

RKPX3
60bits MLC
SLC

Boot - -
SD
3.0

SDIO
3.0

SD50
DDR50

2.0
Host

2.0 OTG

RKPX3SE
60bits MLC
SLC

 Boot
SD
3.0

SDIO
3.0

SD50
DDR50

RKPX5
60bits MLC
SLC

 Boot
SD
3.0

SDIO
3.0

HS200
2.0
Host

2.0 OTG

RKPX30
70bits TLC
MLC SLC

 Boot
SD
3.0

SDIO
3.0

HS200

RK1608 - Boot - - - - - -

RK1808 - Boot - - HS200

RK3568
RK3566

70bits TLC
MLC SLC

 Boot
SD
3.0

SDIO
3.0

HS200
2.0
HOST

3.0
OTG(RK3568
Only)

RK3588 - - - - Boot
SD
3.0

SDIO
3.0

HS400
2.0
Host

3.0 OTG

RV1106/RV1103 - - - - Boot
SD
3.0

- HS50

RK3528 - - - - Boot
SD
3.0

SDIO
3.0

HS400
2.0
Host

3.0 OTG

RK3562 - - - - Boot
SD
3.0

SDIO
3.0

HS400
2.0
Host

3.0 OTG

NO

YES

NO

NO

BOOTROM

Check ID BLOCK from NAND FLASH

ID correct?

Check ID BLOCK from EMMC

ID correct?

Check ID BLOCK from SPI NOR

ID correct?

*1: The chip hardware supports it, but the SDK release development package does not support it.

4.3 BOOTROM Process

Both the AP and MCU have an integrated BOOTROM. When the system is powered on, the BOOTROM code
will be executed first, and then the BOOTROM code will detect peripheral memory and load the Loader code.

The order in which different chips' BOOTROMs detect peripheral memory may vary. The following diagram is
an example of the BOOTROM startup process:

af://n1145

YES

YES

NO

YESNO

YES

NO YES

load loader code and run

Check ID BLOCK from SPI NAND

ID correct?

Check ID BLOCK from SD CARD

ID correct?

Boot from USB

Note：

Some chips have a setting that supports using different input levels for the ADC Key to specify the storage
device for BOOTROM probing
Detecting memory devices is usually confirmed by the detector device ID to determine if they are from
external devices
If no valid firmware is detected in all devices, the device entersIf no valid firmware is detected in all
devices, the device enters maskrom mode and waits for a specific interface such as USB/UART to
download the firmware. However, not all chips support USB/UART interface upgrades.

Boot ROM Boot Sequence for Each Chip

AP No.1 No.2 No.3 No.4 No.5 No.6

RK3188 SD0 NAND
SPI
NOR(SPI0)

SPI
NAND(SPI0)

EMMC USB

RK3128 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3126(B) NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3036 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3288 NAND EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB

RK3399
SPI
NOR(SPI2)

SPI
NAND(SPI2)

EMMC SD0 USB --

RK3368 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3228/9 NAND EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB

RK3328 EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB --

RK3228H EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB --

RK3128X/H NAND EMMC
SPI
NOR(SPI2)

SPI
NAND(SPI2)

SD0 USB

RV1107/8 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RV1109
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RV1126
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RK3308 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK3326 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RKPX3 SD0 NAND
SPI
NOR(SPI0)

SPI
NAND(SPI0)

EMMC USB

RKPX3SE NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RKPX5 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RKPX30 NAND EMMC
SPI
NOR(SFC)

SPI
NAND(SFC)

SD0 USB

RK1608 SPI SLAVE
SPI
NOR(SPI2)

SPI
NAND(SPI2)

-- -- --

RK1808 SPI SLAVE
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC USB --

AP No.1 No.2 No.3 No.4 No.5 No.6

RK3399PRO
SPI
NOR(SPI2)

SPI
NAND(SPI2)

EMMC SD0 USB --

RK3568
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RK3566
SPI
NOR(SFC)

SPI
NAND(SFC)

NAND EMMC SD0 USB

RK3588
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB

RV1106/RV1103
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB/UART

RK3528
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB

RK3562
SPI
NOR(SFC)

SPI
NAND(SFC)

EMMC-- SD0 USB

4.4 Pre Loader Process

The image generated by compiling the RK SDK project usually includes a file named MiniloaderAll.bin, which
actually has two main functions:

Boot burning
Burning idb image

The idb image is an effective image extracted from MiniloaderAll.bin, also known as idblock, and is finally
burned into the flash memory. Typically, the idb image is packaged by ddr.bin and Pre Loader image, and some
chips support packaging more functional images. Currently, there are three main types of Pre Loader: miniloader
(non-open source), uboot spl, and loader.

4.4.1 Miniloader

Introduction

The miniloader firmware is the non-open source preLoader firmware of RK, which is usually packaged with
ddr.bin usbplug.bin as loader.bin, with the following structure:

af://n1399
af://n1407

SD CARD NAND FLASH EMMC SPI NOR FLASH SPI NAND FLASH

Comments:

1. ddr.bin: DDR initialization firmware, abbreviated as 471
2. usbplug.bin: Boot firmware for burning, abbreviated as 472
3. miniloader.bin: Closed-source pre-loader firmware
4. MiniloaderAll.bin: Unified naming file for SDK, actually the loader.bin for the corresponding chip

packaging firmware
5. During the upgrade process of RK upgrade tool, it will extract and upgrade idblock.bin from loader.bin and

make multiple backups
6. idblock, the firmware is the packed firmware of ddr.bin + pre-loader, and the closed-source version of pre-

loader refers to miniloader.bin

rkbin repository packs and generates Miniloader

Taking rk3308 as an example, enter the sdk directory in the rkbin directory of the SDK, and finally generate
rk3308_loader_v1.xx.1xx.bin:

Pre Loader Process

Similar to BootRom, in order to be compatible with different storage types, the Preloader stage will also detect
different storage peripherals during the boot process:

Due to the code not being open source, users cannot modify the startup sequence on their own.

./tools/boot_merger ./RKBOOT/RK3308MINIALL.ini .

./tools/boot_merger ./RKBOOT/RK3308MINIALL_WO_FTL.ini . /* Files with suffix

_WO_FTL are Pre Loaders selected for open source storage solutions, and the file

system chooses ubifs or jaffs2 */

./tools/boot_merger ./RKBOOT/RK3326MINIALL_SLC.ini . /* Files with suffix _SLC

are Pre Loaders dedicated to small capacity storage (SLC Nand, SPI Nand, SPI

Nor) solutions, with built-in rk ftl algorithm, not supporting ubifs */

Mini Loader

Load Trust Load UBoot

Check Trust Check UBoot

Boot Trust

Boot UBoot

Boot Flow

4.4.2 u-boot spl

For chip support information, please refer to the document "Rockchip-Developer-Guide-UBoot-nextdev-CN".
When supporting NAND and SPI NAND without FTL algorithm, only use the open source NAND driver and it
is recommended to use the UBIFS file system.

Introduction

af://n1434

SD CARD NAND FLASH / SPI NAND / SPI Nor EMMC

Comments:

1. ddr.bin: DDR initialization firmware, abbreviated as 471
2. usbplug.bin: Boot firmware used for burning, abbreviated as 472
3. spl.bin: u-boot source code compiled spl firmware, output file in the uboot directory of spl/u-boot-spl.bin
4. MiniloaderAll.bin: Unified naming file for the SDK, actually the spl_loader.bin corresponding to the chip

packaging firmware
5. During the RK upgrade tool upgrade process, idblock.bin will be extracted from loader.bin for upgrading

and multiple backups will be made.
6. idblock, the firmware is the packed firmware of ddr.bin + pre-loader, and the spl version pre-loader refers

to u-boot-spl.bin, RK SDK will regularly compile u-boot-spl.bin and store it in the corresponding directory
of rkbin, named as rkxxxx_spl_vx.xx.bin.

7. The PC upgrade tool SLC Nand/SPI Flash idblock image will be duplicated, while the other storage device
idblock images will be backed up five times

Based on the process of BOOTROOM, understand the behavior of "loading xxx. bin and running xxx function":

Burning process:

BOOTROM loads ddr.bin and initializes ddr
BOOTROM loads usbplug.bin, using the USB plug firmware (burning)

Startup process:

BOOTROM loads ddr.bin and initializes ddr
BOOTROM loads spl.bin, executes the Loader function, and loads the subsequent firmware
Some chips also package mcu.bin and PCIe.bin in the idblock, which have similar behavior and
goals, pre-loading the pre-loader

spl Storage Probe Order

Explanation:

The spl supports enabling the SD card boot function, detecting the presence of an SD card and a valid
firmware within it, loading subsequent firmware from the SD card, and completing SD card boot.
The spl firmware that supports atags prioritizes detecting and using the storage device successfully
detected by BOOTROM for booting. For detailed information on the atags feature, refer to the u-boot
development manual.

spl log

Boot Flow

U-Boot SPL 2017.09-gcc781e0266-230509-dirty #ldq (Nov 24 2023 - 00:15:39)

unknown raw ID 0 0 0

unrecognized JEDEC id bytes: 00, 00, 00

Trying to boot from MMC2

MMC: no card present

mmc_init: -123, time 0

spl: mmc init failed with error: -123

Trying to boot from MMC1 # bootdev detection：MMC2(SD Card)、

MMC1(EMMC)、MTD0(SLC Nand)、MTD1(SPI Nand)、MTD2(SPI Nor)

No misc partition

Trying fit image at 0x4000 sector

SPL

Load Trust Load UBoot

Check Trust Check UBoot

Boot Trust

Boot UBoot

SD CARD SLC NAND EMMC SPI NOR FLASH SPI NAND FLASH

Storage Probe Order

Boot Process

YES

NO

YESNO

Loader

Load kernel

Check USB Connected?

ROCKUSB

Check Kerenl OK?

Boot Kernel

Chip SD CARD SLC NAND EMMC SPI NOR SPI NAND

RV1107/8 Supported Supported Supported Supported Supported

RK3036 Supported Supported*1 Supported*1 Supported Supported

RK3128 Supported Supported*1 Supported*1 Supported Supported

RK3229 Supported Supported*1 Supported*1 Supported Not Supported

4.4.3 loader

Supports platforms such as RV1107, RV1108, RK3036, RK3128, and RK3229. It is generally used to support
small capacity storage without using uboot and directly boot the kernel.

af://n1488

SD CARD SLC NAND EMMC SPI NOR FLASH SPI NAND FLASH

YES

NO

YESNO

Loader

Load kernel

Check USB Connected?

ROCKUSB

Check Kerenl OK?

Boot Kernel

*1 RK3036, RK3128, and RK3229 projects using SLC NAND and EMMC usually use miniloader directly.

Storage Probing Order

Boot Process

5. Partition and Data Storage

5.1 Data Storage

5.1.1 Introduction to Address Conversion

If you have knowledge of storage, you should know that most storage chips are not flat mapped, but are
converted from user logical sector address (lba) to Flash physical sector address (pba) by the user. This mapping
process is called FTL (Flash translation layer). FTL needs to integrate data wear, bad block management,
garbage collection and other requirements for address conversion. Whether or not there is an FTL, users and files
only need to care about logical addresses, and the details of address conversion are completed by software.

Assuming a user needs to access the address 0x4000 sector, the address conversion relationship is as follows:

Assuming a file system interface accesses the address 0x4000 sector, the address conversion relationship is as
follows:

af://n1532
af://n1533
af://n1534

5.1.2 Partition and Data Logical Address Storage

5.2 Partition Table Partition

In the RK storage solution, there are three types of partition tables that can be solidified into the storage
partition: MTD Partition, GPT, and RK partition.

af://n1540
af://n1542

Partition Description
Applicable
Platforms

Restrictions

MTD
Partition

Defined in the parameter file and passed through
cmdline, no longer supported by the uboot-next
branch

All AP*1
Needs to be
stored in a
separate partition

GPT
EFI general partition table, supported by the uboot-
next branch

All AP*2 Uses a little more
resources

RK
partition

Designed with reference to GPT, mainly used for
small capacity storage to save resources

RV1107/8,
MCU

RK custom, not
universal

For more detailed information, please refer to the document "Rockchip_Introduction_Partition".

*1 Platforms using the uboot-next branch no longer support MTD partition. If needed, it must be adapted by
yourself.

*2 Platforms using the uboot-next branch default to using GPT as the partition table. If another partition table is
needed, it must be adapted by yourself.

5.2.1 MTD Partition

Refer to the "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.md" document.

5.2.2 GPT

GPT partition table is also configured through a parameter file, and its structure is similar to MTD Partition. The
four differences are:

1. Set TYPE to GPT.
2. No definition of parameter partition (if defined, it will not be used).
3. The last partition needs to add the keyword "grow".
4. Need to specify the rootfs uuid, which may be different for different SDKs and needs to match the rootfs

uuid defined in DTS.

af://n1568
af://n1570

GPT partition table upgrade process:

1. Tool reads partition definition in parameter file

2. Get storage device capacity from loader

3. Modify last partition size and create gpt partition table file

4. Burn partition table to storage device's 0 address and - 33 (end) address

Note: 1. The parameter file itself will not be burned to the storage device.

5.2.3 RK partition

RK is a customized partition table with a structure similar to GPT, which occupy less resources and initialize
faster. It is mainly used on RV1107/8 platforms and MCU platforms.

Below is the template for Linux\Android product partition definition files:

FIRMWARE_VER:8.1

MACHINE_MODEL:RK3326

MACHINE_ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK_MASK: 0x80

PWR_HLD: 0,0,A,0,1

TYPE: GPT /* GPT partition */

CMDLINE:mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot),0x00002000@0x00006000

(trust),0x00002000@0x00008000 (misc),0x00008000@0x0000a000

(resource),0x00010000@0x00012000 (kernel),0x00010000@0x00022000

(boot),0x00020000@0x00032000 (recovery),0x00038000@0x00052000

(backup),0x00002000@0x0008a000 (security),0x000c0000@0x0008c000

(cache),0x00300000@0x0014c000 (system),0x00008000@0x0044c000

(metadata),0x000c0000@0x00454000 (vendor),0x00040000@0x00514000

(oem),0x00000400@0x00554000 (frp),-@0x00554400 (userdata:grow)

uuid:rootfs=614e0000-0000-4b53-8000-1d28000054a9

#Flag currently only has two values, 1 for partition that needs to be

downloaded, 0 for no need to download

#type currently has 5 values, 0x1=Vendor partition, 0x2=IDBlock partition,

0x4=Kernel partition, 0x8=boot partition, 0x80000000 = ordinary partition

#PartSize and PartOffset fields' values are in sectors

[System]

FwVersion=16.12.23

If Nano=1, then generate an idblock in nano format

Nano=

If BLANK_GAP=1, then the generated idblock will be saved with a blank of 2k

data interval every 2k data interval

BLANK_GAP=1

#FILL_BYTE indicates what data is used to fill the blank at the end of the

partition, default is 0

FILL_BYTE=

[IDBlock]

Flag=1

af://n1593

Below is the template for RTOS product partition definition files, where the bits [8,10] flag in the Flag field are
only valid for RTOS products:

DDR_Bin=rk3399_DDR_800MHz_v1.17.bin

Loader_Bin=rk3399_miniloader_spi_nor_v1.14.bin

PartOffset=0x40

PartSize=0x780

[UserPart1]

Name=trust

Type=0x10

Flag=1

File=trust_1MB.img

PartOffset=0x800

PartSize=0x800

[UserPart2]

Name=uboot

Type=0x20

Flag=1

File=uboot_1MB.img

PartOffset=0x1000

PartSize=0x800

#Flag:

bits filed:

[0] : skip : 0 - disabled (default), 1 - enable

[2] : no partition size : 0 - diabled (default), 1 - enable

[8, 9] : property : 0 - do not register (default), 1 - read

only, 2 - write only, 3 - rw

[10] : register type : 0 - block partition (default), 1 - MTD

partition

#type can support 32 partiton types,0x0:undefined 0x1:Vendor 0x2:IDBlock

,bit3:bit31 are available

#PartSize and PartOffset unit by sector

#Gpt_Enable 1:compact gpt,0:normal gpt

#Backup_Partition_Enable 0:no backup,1:backup

#Loader_Encrypt 0:no encrypt,1:rc4

#nano 1:generate idblock in nano format

[System]

FwVersion=1.0

Gpt_Enable=

Backup_Partition_Enable=

Nano=

Loader_Encrypt=

Chip=

Model=

[UserPart1]

Name=IDBlock

Type=0x2

PartOffset=0x80

PartSize=0x80

Flag=

File=../../Image/rk2108_loader.bin,../../Image/Boot2_Fake.bin

[UserPart2]

Name=rtthread

Type=0x8

PartOffset=0x100

PartSize=0xa00

5.2.4 ENV Partition

ENV (Environment-Variables) is a global data management and transfer method supported by U-Boot. The
principle is to build a HASH mapping table, managing user data as "key-value" entries.

Some RK chip platforms use the ENV information stored in flash, defining it as an ENV partition. At the same
time, the mtdparts partition table information in cmdlines is generated and recorded in the ENV information
table, and passed from SPL or U-Boot to the kernel.

5.3 Partition Table Modification Tool

The Partition Table Modification Tool can be used to modify partitions defined by the parameter, and when a
partition size is modified, the offset of subsequent partitions will match the modification.

5.4 Partition Write Protection Settings

5.4.1 Block Device Partition Write Protection Settings

Flag=

File=../../Image/rtthread.img

[UserPart3]

Name=root

Type=

PartOffset=0x1100

PartSize=0x6f00

Flag=0x305

File=../../Image/root.img

af://n1599
af://n1602
af://n1605
af://n1606

In the Linux Kernel, EMMC and SD CARD are block devices, and when using the rknand or rkflash driver for
NAND FLASH, they are also block devices. You can configure the read-write attribute of partitions through the
following commands.

Example 1: Set the system partition to read-only:

Example 2: Set the system partition to read-write:

Note: It is recommended that partition configuration is done before partition mounting, otherwise if partition
mounting is set to read-write and the partition property is configured to read-only, the file system will report an
error.

5.4.2 MTD Device Partition Write Protection Settings

MTD is generally defined by cmdline to partition, and you can set this partition as read-only by adding the
character 'ro' after the partition name. You can modify mtdparts when U-Boot passes cmdline to the kernel to
achieve specific partition write protection.

Example: Modify the partition table and set the boot partition as read-only:

./busybox blockdev --setro /dev/block/by-name/system

./busybox blockdev --setrw /dev/block/by-name/system

mtdparts=rk29xxnand:0x00002000@0x00004000(uboot),0x00004000@0x00006000(boot)ro,.

..

af://n1613

PC Tools PC rockusb USB IF AP rockusb NVM

6. Firmware Burning

Currently, there are three main ways to burn firmware in mass production: USB upgrade, SD card upgrade, and
programmer burning.

6.1 USB Upgrade

There are currently two protocols for USB upgrade: rockusb and fastboot. This document only introduces the
rockusb upgrade method. If you need to use the fastboot upgrade method, you can refer to the U-Boot
development document "Rockchip-Developer-Guide-UBoot-nextdev-CN".

6.1.1 Flowchart

AP rockusb: maskrom rockusb, miniloader rockusb and uboot rockusb.

NVM： SPI NOR， SPI NAND， SLC NAND， EMMC，M/TLC NAND.

6.1.2 WIN Development Tool RKDevTool

GPT/RK Partition Scheme:

When the AP SDK is released, a configured development tool will be provided for burning the complete
firmware or updating data of some partitions during development. The tool comes with a variety of features, and
detailed feature descriptions can be found in the documentation that comes with the tool. Here are several
practical functions:

1. Read device partition table: In the loader upgrade mode, clicking the "Device Partition Table" button
allows you to read the device's partition table.

2. Switch to loader upgrade mode: In MSC or MTP mode, you can click the "Switch" button to switch to
loader upgrade mode.

3. Switch from loader to maskrom upgrade mode: In the advanced functions, clicking the "Enter maskrom"
button allows you to switch from loader upgrade mode to maskrom upgrade mode.

4. Restart the device: In loader mode or maskrom mode, you can click the "Restart Device" function in the
advanced functions.

Tool Interface:

af://n1618
af://n1620
af://n1622
af://n1626

Advanced Functions:

1. For maskrom upgrade mode, you need to select the loader file to download and run in DDR.
2. Unpack the update.img firmware.
3. Support script running.
4. Read FLASH ID.
5. Read FLASH information.
6. Read chip information.
7. Read loader support extended functions.
8. Test if it's ready.
9. Restart the device.

10. Restart into maskrom upgrade mode, usually switching from loader upgrade mode to maskrom upgrade
mode.

11. Overwrite and write data, clearing the serial number, which may damage the firmware.
12. Export the header IDB structure of the loader.
13. Erase sectors based on the starting address and sector number defined in 16 and 17, which needs to be

aligned to 4MB, otherwise it may erase more or less than expected.
14. Export the serial port information for the loader running, saved in the output directory of the tool.
15. Export the firmware image based on the starting address and sector number defined in 16 and 17, saved in

the output directory of the tool.
16. Define the starting sector.

17. Define the number of sectors to operate on.
18. Tool log

6.1.3 WIN Development Tool SocToolKit

ENV Scheme:

Some AP platforms of RK support the open-source ENV partition information, which supports recording
partition tables, bootargs, and other information in the ENV partition table and passing them to the kernel
through the cmdlines method. This scheme has a specific image packaging solution and upgrade tool.

Tool Interface:

6.1.4 Linux Development Tool upgrade_tool

The Linux tool is similar to the Android tool and has similar functions.

Tool Interface:

af://n1679
af://n1684

6.1.5 Linux Development Tool SocToolKit

The Linux tool is similar to the Android tool and has similar functions.

6.1.6 Mass Production Tool

The mass production tool supports one-click multi-async firmware burning. After running the upgrade function,
each time a device is connected, the tool will start upgrading the firmware independently for multiple machines.

Tool Interface:

af://n1688
af://n1690

There is a config.ini configuration file in the tool directory, with detailed comments for each option. Here are
some commonly used configurations:

1. FW_BURN_EFUSE Burns the firmware while burning the efuse, enabling secure boot.
AP uses OTP, or if the PCB does not reserve an EFUSE power control circuit, this feature cannot be turned
on.

2. NOTRESET_AFTER_UPGRADE Does not restart the machine after upgrading.
Some products require that the first boot cannot be interrupted, so it needs to be set up not to restart after
upgrading the firmware.

3. FORCE_DATA_BAND Modifies the USB single packet transmission data size. If there is a usb timeout
error when burning SPI NOR, you can reduce this value.

4. SN_DLL_ON Turns on the function of burning SN during the firmware upgrade process.
5. RB_CHECK_OFF Whether the firmware upgrade needs to read back and call

6.2 SD Card Upgrade

Use the SD_Firmware_Tool to burn the update.img firmware into the SD card, and insert the prepared upgrade
SD (TF) card into the machine's SD card slot. When powered on, it will start from the SD card to recovery and
upgrade the firmware to the internal storage of the machine.

Tool interface:

af://n1706

Tool function description:

1. PCBA test: Check this option to perform PCBA testing before upgrading the firmware.
2. SD boot: Create a boot card, with the complete firmware stored in the SD card.
3. Recover disk: Delete the boot code from the boot card and restore it to a normal SD card.

6.3 UART Upgrade

Specific chips support upgrading images through UART interfaces, as well as Linux, Windows, and production
tools.

af://n1718

6.4 EMMC Image Burning

Use SpiImageTools to convert update.img into an image for the programmer.

Tool interface:

Tool configuration instructions:

1. Blank fill: EMMC selects 0x0
2. SPI FLASH: Do not check
3. Data area reservation: Need to check

If using GPT partitioned firmware, when creating the image, the parameter needs to be configured with the
DISKSIZE parameter, refer to the document "Rockchip Mass Production Burning Guide_v1.2" for details.

Programmer configuration instructions:

1. Burn data.bin to the user partition of EMMC

2. If it is RK3188/RKPX3, also burn boot0.bin to the boot1 and boot2 partitions of EMMC

3. Programmer configuration skips all data that is set to 0 and does not burn it

4. CSD values are all used with default values and cannot be modified

5. EXT CSD configuration:

For items not listed, use default values and cannot be modified.
For RK3188/RKPX3:
EXT_CSD[167] = 0x1f (if EMMC chip supports, need to configure)
EXT_CSD[162] = 0x1 (enable reset pin function)
EXT_CSD[177] = 0x0 (default value)
EXT_CSD[178] = 0x0 (default value)
EXT_CSD[179] = 0x8 (0x8, boot from boot1)
For other APs:
EXT_CSD[167] = 0x1f (if EMMC chip supports, need to configure)
EXT_CSD[162] = 0x0 (default value)
EXT_CSD[177] = 0x0 (default value)
EXT_CSD[178] = 0x0 (default value)
EXT_CSD[179] = 0x0 (default value)

6.5 SLC Nand Image Burning

Refer to the corresponding chapter of
"Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf".

af://n1721
af://n1753

6.6 SPI Nand Image Burning

Refer to the corresponding chapter of
"Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf".

6.7 SPI Nor Image Burning

Refer to the corresponding chapter of
"Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN.pdf".

af://n1755
af://n1757

Abbreviation
Mainly supported
flash types

Mainly supported
file systems

Supported burning methods

eMMC scheme eMMC
FAT、EXT、
SquashFS

USB upgrade、SD card
upgrade

rknand scheme MLC、TLC Nand
FAT、EXT、
SquashFS

USB upgrade、SD card
upgrade

rkflash scheme
SLC Nand、SPI
Nand

FAT、EXT、
SquashFS

USB upgrade、SD card
upgrade

rkflash scheme (SPI
Nor support)

SPI Nor SquashFS、JFFS2
USB upgrade、SD card
upgrade、Burner upgrade

SLC Nand open
source scheme

SLC Nand UBIFS
USB upgrade、SD card
upgrade、Burner upgrade

SPI Nand open
source scheme

SPI Nand UBIFS
USB upgrade、SD card
upgrade、Burner upgrade

SPI Nor open source
scheme

SPI Nor SquashFS、JFFS2
USB upgrade、SD card
upgrade、Burner upgrade

7. Storage Software Driver Configuration

RK mainly provides the following storage solutions:

7.1 u-boot

For detailed information, please refer to Chapter CH05 - Storage Driver Module of "Rockchip-Developer-Guide-
UBoot-nextdev-CN".

7.2 kernel

Due to the incomplete support for open source SPI Flash in kernel 4.4 and older versions, the open source flash
solution in the kernel is different from the implementation under uboot:

af://n1760
af://n1803
af://n1805

Abbreviation
Mainly
supported
flash types

Main control
driver

Flash
framework

Registered
device
types

Mainly
supported
file systems

Supported
burning
methods

rknand scheme
MLC TLC
Nand

drivers/rkand drivers/rkand
block
device

FAT、
EXT、
SquashFS

USB
upgrade、SD
card upgrade

rkflash scheme
SLC Nand、
SPI Nand

drivers/rkflash drivers/rkflash
block
device

FAT、
EXT、
SquashFS

USB
upgrade、SD
card upgrade

rkflash scheme
(SPI Nor
support)

SPI Nor drivers/rkflash drivers/rkflash
block or
mtd device

SquashFS、
JFFS2

USB
upgrade、SD
card
upgrade、
Burner
upgrade

SLC Nand
open source
scheme

SLC Nand
drivers/mtd/
nand/raw

drivers/mtd/
nand/raw

mtd UBIFS

USB
upgrade、SD
card
upgrade、
Burner
upgrade

SPI Nand open
source scheme

SPI Nand drivers/rkflash drivers/rkflash mtd UBIFS

USB
upgrade、SD
card
upgrade、
Burner
upgrade

SPI Nor open
source scheme

SPI Nor drivers/rkflash drivers/rkflash
mtd or mtd
block
device

SquashFS、
JFFS2

USB
upgrade、SD
card
upgrade、
Burner
upgrade

7.2.1 MLC Nand、TLC Nand rknand scheme

Configuration:

Driver files:

7.2.2 SLC Nand、SPI Nand 及 SPI Nor rkflash scheme

Refer to the "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.md" document.

7.2.3 SLC Nand、SPI Nand 及 SPI Nor MTD open source scheme

CONFIG_RK_NAND=y

./drivers/rk_nand/

af://n1864
af://n1869
af://n1871

Stage Storage Devices
Configuration of
iomux

Configuration
of clock

Driver
Configuration

maskrom Scan nor、spinand、EMMC、sdcard
Configured (only for
devices detected
successfully)

Configured

spl

Priority1 (supports atags scheme):
maskrom detected devices
Priority2: Scan nor、spinand、
EMMC、sdcard

1. Not configured
(default)
2. Supplementary
configuration
needed for iommux

Configured
(driver-
configured)

dts/defconfig
configured
based on
specific sdk

uboot

Priority1 (default not enabled):
CONFIG_ROCKCHIP_BOOTDEV
specifies target storage
Priority2 (supports atags scheme):
maskrom detected devices
Priority3: Scan nor、spinand、
EMMC、sdcard

Not configured
Configured
(driver-
configured)

dts/defconfig
configured
based on
specific sdk

kernel Scan nor、spinand、EMMC、sdcard

dts/defconfig
configured
based on
specific sdk

Refer to the "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.md" document.

7.3 Configuration of iomux/clk for storage devices at different stages
and scanning order

7.4 Expansion of dual storage solution

Refer to the "Rockchip_Developer_Guide_Dual_Storage_CN.md" document.

af://n1873
af://n1905

8. Open source OTA solution

Refer to the "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.md" document.

af://n1908

9. File system support

9.1 UBIFS file system

Refer to the "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.md" document.

9.2 JFFS2 file system support

Refer to the "Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.md" document.

af://n1911
af://n1912
af://n1914

10. Vendor Storage usage instructions

Vendor Storage is designed to store some non-secure small data, such as SN、MAC, etc. For detailed
information, refer to the following documents:

EMMC: "RK Vendor Storage Application Note"
Flash support for the rkflash solution: "RK Vendor Storage Application Note"
Flash support for the MTD solution:
"Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_EN.pdf"

10.1 Vendor Storage ID

Vendor Storage is accessed by ID (16 bits), and it does not need to be concerned about where the data is stored in
the partition. It can be simply considered that the ID is an index or a filename. IDs 0-31 are reserved for general
SDK functions, and customers should use 32-65535 when customizing storage.

The following table defines the function of each ID:

af://n1917
af://n1926

ID Function

0 reserved

1 SN

2 WIFI MAC

3 LAN MAC

4 BT MAC

5 HDCP 1.4 HDMI

6 HDCP 1.4 DP

7 HDCP 2.X

8 DRM KEY

9 PLAYREADY Cert

10 ATTENTION KEY

11 PLAYREADY ROOT KEY 0

12 PLAYREADY ROOT KEY 1

13 SENSOR CALIBRATION

14 RK reserved for future use

15 IMEI

16 LAN_RGMII_DL

17 – 31 RK reserved for future use

32 - 65535 Vendor use

10.2 Vendor Storage API

10.2.1 Uboot API

int vendor_storage_init (void)

 function: Initialize vendor storage

 input: none

 return: 0, Initialize success

 other, Initialize fail

int vendor_storage_read (u32 id, void *pbuf, u32 size)

 function: read vendor storage by id

 input: id, item id; pbuf, data buffer; size, number byte to read.

 return: -1, read fail.

 other: number byte have read.

af://n1990
af://n1991

10.2.2 kernel API

Source code : kernel/drivers/soc/rockchip/rk_vendor_storage.c

Include header：include/linux/soc/rockchip/rk_vendor_storage.h

10.2.3 User API

User applications access vendor storage via IOCTL interface, here are reference code for reading and writing.

int rk_vendor_write (u32 id, void *pbuf, u32 size)

 function: write vendor storage by id

 input: id, item id; pbuf: data buffer; size: number bytes to write.

 return: 0: write success

 other : write fail

int vendor_storage_init (void)

 function: Initialize vendor storage

 input: none

 return: 0, Initialize success

 other, Initialize fail

int vendor_storage_read (u32 id, void *pbuf, u32 size)

 function: read vendor storage by id

 input: id, item id; pbuf, data buffer; size, number byte to read.

 return: -1, read fail.

 other: number byte have read.

int rk_vendor_write (u32 id, void *pbuf, u32 size)

 function: write vendor storage by id

 input: id, item id; pbuf: data buffer; size: number bytes to write.

 return: 0: write success

 other : write fail

#include <fcntl.h>

#include <sys/ioctl.h>

#define VENDOR_REQ_TAG 0x56524551

#define VENDOR_READ_IO _IOW ('v', 0x01, unsigned int)

#define VENDOR_WRITE_IO _IOW ('v', 0x02, unsigned int)

#define VENDOR_SN_ID 1

#define VENDOR_WIFI_MAC_ID 2

#define VENDOR_LAN_MAC_ID 3

#define VENDOR_BLUETOOTH_ID 4

struct rk_vendor_req {

 u32 tag;

 u16 id;

 u16 len;

 u8 data [1];

};

af://n1995
af://n2001

static void print_hex_data (uint8 *s, uint32 *buf, uint32 len)

{

 uint32 i, j, count;

 ERROR ("% s", s);

 for (i = 0; i < len; i += 4)

 ERROR ("% x % x % x % x", buf [i], buf [i + 1], buf [i + 2], buf [i +

3]);

}

int vendor_storage_read_test (void)

{

 u32 i;

 int ret, sys_fd;

 u8 p_buf [2048];/* malloc req buffer or used extern buffer */

 struct rk_vendor_req *req;

 req = (struct rk_vendor_req *) p_buf;

 sys_fd = open ("/dev/vendor_storage", O_RDWR, 0);

 if (sys_fd < 0){

 ERROR ("vendor_storage open fail\n");

 return -1;

 }

 req->tag = VENDOR_REQ_TAG;

 req->id = VENDOR_SN_ID;

 req->len = 512; /* max read length to read*/

 ret = ioctl (sys_fd, VENDOR_READ_IO, req);

 print_hex_data ("vendor read:", (uint32*) req, req->len + 8);

/* return req->len is the real data length stored in the NV-storage */

 if (ret){

 ERROR ("vendor read error\n");

 return -1;

 }

 return 0;

}

int vendor_storage_write_test (void)

{

 uint32 i;

 int ret, sys_fd;

 uint8 p_buf [2048]; /* malloc req buffer or used extern buffer */

 struct rk_vendor_req *req;

 req = (struct rk_vendor_req *) p_buf;

 sys_fd = open ("/dev/vendor_storage", O_RDWR, 0);

 if (sys_fd < 0){

 ERROR ("vendor_storage open fail\n");

 return -1;

 }

 req->tag = VENDOR_REQ_TAG;

 req->id = VENDOR_SN_ID;

 req->len = 32; /* data len */

 for (i = 0; i < 32; i++)

 req->data [i] = i;

10.2.4 PC Tool API

PC tool has provided reference source code developed by C++, here are two API interfaces for reading and
writing.

10.3 Usage Notes

10.3.1 Maximum Data Size for a Single Vendor Partition Item

The Nand and EMMC Vendor partitions combined have a total of 64KB, while the Nor partition has a size of
4KB. These are stored in the vendor structure:

So if you only write one item:

1. The data size for a single Nand and EMMC item is 65488 bytes (64 * 1024 - 32 - 8 -4 -4)
2. The data size for a single Nor item is 4048 bytes (4 * 1024 - 32 -8 -4 -4)

10.3.2 Dual Backup Support for VENDOR Data

 print_hex_data ("vendor write:", (uint32*) req, req->len + 8);

 ret = ioctl (sys_fd, VENDOR_WRITE_IO, req);

 if (ret){

 ERROR ("vendor write error\n");

 return -1;

 }

 return 0;

}

int RK_ReadProvisioningData (int id, (PBYTE) pbuf, int size)

 function: read vendor storage by id

 input: id, item id; pbuf, data buffer; size, number byte to read.

 return: 0, read data okay.

 other: read fail.

int RK_WriteProvisioningData (int id, (PBYTE) pbuf, int size)

 function: write vendor storage by id

 input: id, item id; pbuf: data buffer; size: number bytes to write.

 return: 0: write success

 other : write fail

struct vendor_info {

 struct vendor_hdr *hdr; //32byte

 struct vendor_item *item; //8byte * item

 u8 *data; //size = sum (item 1, item 2, ... item n)

 u32 *hash;

 u32 *version2;

};

af://n2004
af://n2008
af://n2009
af://n2018

VENDOR data is backed up by default in two copies, so:

If power is lost while writing the first copy, the old data will be used (unavoidable)
If power is lost while writing the second copy, the first copy will be used

11. Appendix References

[1] UBI FAQ: http://www.linux-mtd.infradead.org/faq/ubi.html

[2] UBIFS FAQ: http://www.linux-mtd.infradead.org/faq/ubifs.html#L_lebsz_mismatch

[3] MTD FAQ: http://www.linux-mtd.infradead.org/faq/general.html

af://n2026
http://www.linux-mtd.infradead.org/faq/ubi.html
http://www.linux-mtd.infradead.org/faq/ubifs.html#L_lebsz_mismatch
http://www.linux-mtd.infradead.org/faq/general.html

	Rockchip Application Notes Storage
	Naming Conventions
	Flash Introduction
	Flash Storage Types
	Flash Selection
	Simple Comparison of Flash
	Common Flash Packages
	Flash Prices
	Basic Principles of Nand
	Basic Principles of Nor
	Nand Storage ECC Dependency
	Original Bad Blocks in Nand
	Lifespan and ECC Errors in Nand
	Technical Key Points of Nand FTL
	Evolution of RK Nand Storage Solutions (including PP Nand and SPI Nand)
	Flash Host Controller
	SFC Controller
	FSPI Controller
	NandC Controller
	General SPI Interface

	SPI Flash Output Latency Statistics

	Particle Verification
	Overview of SLC Nand/SPI Nand/SPI Nor Verification Content
	RK Flash Sample Submission Requirements
	Verification-related Information
	Verification Process
	Verification Mailing Address
	Customer Patches Distribution

	Device Bootup Process
	RK SOC BOOTROM Boot Support Status
	RK SOC Storage Interface Specifications
	BOOTROM Process
	Pre Loader Process
	Miniloader
	u-boot spl
	loader

	Partition and Data Storage
	Data Storage
	Introduction to Address Conversion
	Partition and Data Logical Address Storage

	Partition Table Partition
	MTD Partition
	GPT
	RK partition
	ENV Partition

	Partition Table Modification Tool
	Partition Write Protection Settings
	Block Device Partition Write Protection Settings
	MTD Device Partition Write Protection Settings

	Firmware Burning
	USB Upgrade
	Flowchart
	WIN Development Tool RKDevTool
	WIN Development Tool SocToolKit
	Linux Development Tool upgrade_tool
	Linux Development Tool SocToolKit
	Mass Production Tool

	SD Card Upgrade
	UART Upgrade
	EMMC Image Burning
	SLC Nand Image Burning
	SPI Nand Image Burning
	SPI Nor Image Burning

	Storage Software Driver Configuration
	u-boot
	kernel
	MLC Nand、TLC Nand rknand scheme
	SLC Nand、SPI Nand 及 SPI Nor rkflash scheme
	SLC Nand、SPI Nand 及 SPI Nor MTD open source scheme

	Configuration of iomux/clk for storage devices at different stages and scanning order
	Expansion of dual storage solution

	Open source OTA solution
	File system support
	UBIFS file system
	JFFS2 file system support

	Vendor Storage usage instructions
	Vendor Storage ID
	Vendor Storage API
	Uboot API
	kernel API
	User API
	PC Tool API

	Usage Notes
	Maximum Data Size for a Single Vendor Partition Item
	Dual Backup Support for VENDOR Data

	Appendix References

