Rockchip Application Notes Storage

ID: RK-SM-YF-017

Release Version: V2.1.0

Release Date: 2024-01-15

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

Overview

This article mainly guides readers to understand the boot process and configure and debug storage.

For more detailed content, please refer to the following documents:

No. Document Name

1 "Rockchip_Introduction_Partition"

2 "Rockchip-Developer-Guide-UBoot-nextdev-CN"

3 "RK Vendor Storage Application Note"

4 "Rockchip Mass Production Burning Guide v1.2"

5 "Rockchip Developer_Guide Linux_Flash Open_Source Solution CN"
6 "Rockchip Developer Guide Dual Storage CN"

Product Version

Chipset Kernel Version

ALL SOC \

Intended Audience
This document (this guide) is mainly intended for:
Technical support engineers

Software development engineers

Content Overview

Partition configuration

introduction

Uboot development

documentation

Vendor Stroage
application note

Mass production
burning guide

Flash open source
storage solution

development document

Dual storage

development document

Revision History

Version Author Date Change Description
v2.0.0 Jon Lin 2024-01-08 Initial version

V2.1.0 Jon Lin 2024-01-15 Add content to the introduction chapter of Flash

Contents

Rockehip Application Notes Storage
1. Naming Conventions
2. Flash Introduction
2.1 Flash Storage Types
2.2 Flash Selection
2.3 Simple Comparison of Flash
2.4 Common Flash Packages
2.5 Flash Prices
2.6 Basic Principles of Nand
2.7 Basic Principles of Nor
2.8 Nand Storage ECC Dependency
2.9 Original Bad Blocks in Nand
2.10 Lifespan and ECC Errors in Nand
2.11 Technical Key Points of Nand FTL
2.12 Evolution of RK Nand Storage Solutions (including PP Nand and SPI Nand)
2.13 Flash Host Controller
2.13.1 SFC Controller
2.13.2 FSPI Controller
2.13.3 NandC Controller
2.13.4 General SPI Interface
2.14 SPI Flash Output Latency Statistics
3. Particle Verification
3.1 Overview of SLC Nand/SPI Nand/SPI Nor Verification Content
3.2 RK Flash Sample Submission Requirements
3.2.1 Verification-related Information
3.2.2 Verification Process
3.2.3 Verification Mailing Address
3.2.4 Customer Patches Distribution
4. Device Bootup Process
4.1 RK SOC BOOTROM Boot Support Status
4.2 RK SOC Storage Interface Specifications
4.3 BOOTROM Process
4.4 Pre Loader Process
4.4.1 Miniloader
4.4.2 u-boot spl
4.4.3 loader
5. Partition and Data Storage
5.1 Data Storage
5.1.1 Introduction to Address Conversion
5.1.2 Partition and Data Logical Address Storage
5.2 Partition Table Partition
5.2.1 MTD Partition
522 GPT
5.2.3 RK partition
5.2.4 ENV Partition
5.3 Partition Table Modification Tool
5.4 Partition Write Protection Settings
5.4.1 Block Device Partition Write Protection Settings
5.4.2 MTD Device Partition Write Protection Settings
6. Firmware Burning
6.1 USB Upgrade
6.1.1 Flowchart
6.1.2 WIN Development Tool RKDevTool
6.1.3 WIN Development Tool SocToolKit
6.1.4 Linux Development Tool upgrade tool

6.2
6.3
6.4
6.5
6.6
6.7

6.1.5 Linux Development Tool SocToolKit
6.1.6 Mass Production Tool

SD Card Upgrade

UART Upgrade

EMMC Image Burning

SLC Nand Image Burning

SPI Nand Image Burning

SPI Nor Image Burning

7. Storage Software Driver Configuration

7.1
7.2

7.3
7.4

u-boot

kernel

7.2.1 MLC Nand. TLC Nand rknand scheme

7.2.2 SLC Nand. SPINand A SPI Nor rkflash scheme

7.2.3 SLC Nand. SPINand /% SPI Nor MTD open source scheme

Configuration of iomux/clk for storage devices at different stages and scanning order

Expansion of dual storage solution

8. Open source OTA solution

9. File system support

9.1
9.2

UBIFS file system
JFFS2 file system support

10. Vendor Storage usage instructions
10.1 Vendor Storage ID
10.2 Vendor Storage API

10.2.1 Uboot API
10.2.2 kernel API
10.2.3 User API
10.2.4 PC Tool API

10.3 Usage Notes

10.3.1 Maximum Data Size for a Single Vendor Partition Item
10.3.2 Dual Backup Support for VENDOR Data

11. Appendix References

1. Naming Conventions

Naming

SPI Nand

SPI Nor

PP Nand

Flash

Nand

Octal SPI DTR Nor flash

OCTA flash

Introduction

SPI protocol Nand, mostly SLC Nand

SPI protocol Nor

Parallel peripherals Nand, parallel Nand, SLC\MLC\TLC Nand

SPI Nand. SPI Nor. PP Nand collectively referred to as

SPI Nand and PP Nand and other Nand particles collectively referred to as
Octal SPI Nor flash with dual sampling

Octal SPI Flash, including Octal SPI Nor. Octal SPI Nand

af://n86

2. Flash Introduction

2.1 Flash Storage Types

Flash memory, in a broad sense, refers to all non-volatile storage technologies based on Nand flash and Nor
flash. For example, the commonly used EMMC and SPI flash on our RK devices, or the PCle SSD, SATA SSD,
and UFS that have gradually entered our field of vision in recent years. You may be curious about the differences

between these storages. Here is a brief introduction.

£
eMMC {}

eMMC Interface

Flash Controller

Mand Interface

Mand flash Array
(die)

Flash die are the ultimate carrier for storing user data, such as the Nand Flash Array shown in the screenshot.
The devices manufacturers produce chips of different capacity sizes and then combine them with different
controllers to form specific storage devices for various industries. For example, EMMC devices are composed of
Nand flash die encapsulated EMMC interfaces, and SPI Nor devices are composed of Nor flash die encapsulated
SPI interfaces. Of course, these storage particles usually have firmware running inside, also known as Firmware

firmware, just like our chips. The following are the corresponding explanations for some storage particles:

af://n113
af://n114

Device

SPI
Nor

PP
Nand

SPI

Nand

eMMC

SD
Card

SATA
SSD

NVMe
SSD

UFS

Note:

¢ Flash devices are essentially iterating in the direction of faster interface controllers, higher internal parallel

complexity, and larger capacities.

Device

Introduction

Nor + SPI Interface

Nand + Parallel Port

Nand + SPI

Interface

Nand + eMMC
Interface + FTL

algorithm

Nand + SDIO
Interface+ FTL

algorithm

Nand + Sata
Interfacet+ FTL

algorithm

Nand + PCle
Interface+ FTL

algorithm

Nand + UFS
Interface+ FTL

algorithm

Host Controller

FSPI/SPI

Controller

NandC

Controller

FSPI/SPI
Controller

SDMMC/SDHCI

Controller

SDMMC
Controller

Sata Controller

PCle Controller

UFS Controller

Special Drivers on Host Side

A relatively simple file system that supports
wear leveling and out-of-place updates is

sufficient.

FTL algorithm or file system with FTL

FTL algorithm or file system with FTL

MMC protocol framework

MMC protocol framework

SATA protocol framework

NVMe protocol framework

UFS protocol framework

¢ In addition to supporting the above common storage, RK products also support SD Nand (surface-mount
packaging).

¢ The devices composed of Nand flash need to store the FTL algorithm to manage Nand, and the reason is
explained in the "Basic Principles of Nand" chapter

e PP Nand/SPI Nand, as the device itself does not integrate FTL algorithm, the host software should include
FTL algorithm or file system with FTL algorithm support

¢ Explanation of combination of die manufacturer, brand manufacturer, and RK main control:

<j XESYE RK A0S
_

EERHED, 288, cc

LIRS

¢ Due to the dependence of MLC/TLC Nand on FTL algorithm, the impact of NandC controller on SOC
area, and the disadvantages of multiple pins of PP Nand, RK has gradually eliminated the PP Nand

interface in recent years. Therefore, the current Flash products of RK mainly include SPI Flash products.

2.2 Flash Selection

SLC Nand, SPI Nand, SPI Nor

Refer to the GigaDevice selection reference to understand the range of Flash material selection. GD Chip_

Selection Reference Link

2.3 Simple Comparison of Flash

Selectable
torage Type Stability Price Package Speed .
Capacity
200M
EMMC Good High 13x11.5 153 FBGA DDR >=1GB
(HS400)
SLC Nand Nornal Nornal 20x12 TSOP48 30M SDR 128MB~512MB
133M
SPI Nand Nornal Low 8x6 WSON SDR 64MB~512MB
80M DDR
166M
SDR
SPI Nor Good Low 5x4 SOP8 <=128MB
104M
DDR

Octal SPI . 8x6 24-BALL 120M

af://n185
https://www.gigadevice.com.cn/Public/Uploads/uploadfile/files/resource-center/GigaDevice-Selection-Guide-cn.pdf
af://n188

Nornal High 128MB~>12MB

Nand TFBGA DDR Selectable
torage Type Stability Price Package Speed ¢ m
_ 8x6 24-BALL 200M apactty
Octal SPI Nor Good High <=128MB
TFBGA DDR
Note:

e EMMC has advantages such as large capacity, high stability, and fast read and write rates, but it has
disadvantages such as high unit price, large packaging, and high initialization time overhead (usually

reaching the level of one hundred milliseconds)

e SPI Nand has optimizations such as small packaging, low single-chip price, and larger capacity compared

to Norflash. However, due to limitations such as ECC and storage algorithm management, the read and
write speed and stability of Nand are relatively average

¢ SPI Nor has the advantages of small package size, high stability, low single-chip price, and low software
initialization time overhead. Especially in small firmware scenarios, SPI Nor has good loading speed, but
its continuous data transmission speed is not as fast as EMMC, and when the capacity increases, the unit
price is relatively expensive

¢ Due to the dependence of MLC/TLC PP Nand on FTL algorithm, the large chip area occupied by NandC
controllers, and the large number of pins, RK has phased out the PP Nand interface in recent years.

Therefore, small capacity storage mainly refers to SPI Flash, and MLC/TLC PP Nand is not included in the

above table
¢ The price is based on the calculation of a single chip, and the price per MB decreases as the capacity

increases.

2.4 Common Flash Packages

Comparison of several packaging options:

af://n251

(2% SLC Nand (PP Nand)

AK3ZEE
ShenL8iM8 1)

SLC Nand/SPI flash:

(B 1.20mm

1.00mm

RE 8.00mm
AE 1.27mm AE 0.40mm

TFo0k 2 i
wE 4 FE £33
L/ 2

&y Omm EE 1.20mm 6.00mm
T y == 6.00mm ﬁ 3 120mm
BE(BX) 5mm FE(RX) 0.40mm

RE 8.00mm
(X) 1.20mir

6.00mm
0.80mm

ey T 5.23mm 8.00mm R 6.00mm
EE 7.90mm 1.50mm
B (B 216mm

mE 127mm

W (k) 0.50mm
aE 0.40mm

1.27mm nE 1.00mm

) Sore 0ami H Usona 1571 5mm H I oGk sl sramm(s sl oy

B 2.00mm
B (BX 0.50mm
e 0.50mm

Lo, kE 4.50mm
xE 6.00mm
B (#X) 0.90mm

27mm aE 0.80mm

g 1.27mm

3.00mm 6.00mm e 9.00mm
5.00mm L * = 110mm
0.80mm (8K 1.00mm

3.00mn P 8.00mm KR 20.00mm
790mm 4.00mm Y m =S 6.00mm = 12.00mm
1.00mm 0.60mm S (8X) 0.80mm (8K) 1.20mm
1.27mm @E 0.80mm A 1.27mm AE 050mm

Usous imm I

Usong &*4mm e |

L = 10.30mm ¥ 4.00mm
- 1035mm pposs L ’
BATRESS
BE(BX) 265mm B (EX) 0.50mm

2 & ¢ %

As 127mm i 0.80mm

Introduction to Packaging

2.5 Flash Prices

https://www.gigadevice.com.cn/Public/Uploads/uploadfile/files/resource-center/GigaDevice-Selection-Guide-cn.pdf
af://n258

Price

Storage Type Capacity (USD)
SPINand 1Gbits QPI Comsummer 0.53
SPINand 2Gbits QPI Comsummer 0.75
SPINand 4Gbits QPI Comsummer 1.7
SPINand (Continuous read mode, single compare to the same capacity A0%
material) devices
PP 1Gbits QPI Comsummer 0.6
PP 2Gbits QPI Comsummer 1.7
PP 4Gbits QPI Comsummer 3.8
Nor 32Mbits QPI Comsummer 0.12
Nor 64Mbits QPI Comsummer 0.17
Nor 128Mbits QPI Comsummer 0.28
Nor 256Mbits QPI Comsummer 0.9
Nor 512Mbits QPI Comsummer 2.1
Nor 256Mbits OPI Auto 2.1
Nor 512Mbits OPI Auto 3.6
Note:

¢ The above prices are market quotes from specific manufacturers and do not include any markup for
customer communication.
¢ The above prices mainly reflect the price differences between different storage devices and the trend of

prices increasing with capacity for the same type of storage device.

2.6 Basic Principles of Nand

Nand Physical Structure
Taking the common structure of SLC Nand as an example:

«—2,112bytes —

- - Vo o
Cache Register 2 048 i54 IIO/7
' L
Data Register 2,048 ;64

1 block

} 64 pages
20ibiccs | [-

per device 1 page (2K + 64 bytes)

1 block (2K + 64) bytes x 64 pages
(128K + 4K) bytes

Note:

e SLC Nand is composed of multiple flash blocks, typically reaching 1024, 2048, or 4096 blocks. The
screenshot above shows 2048 blocks

¢ Block is the smallest erasing unit of Nand flash, and the SLC Nand block size is usually 128KB or 256KB,
which changes from logical 0 to 1 after erasing

¢ A block typically consists of 64 pages, with some particles reaching up to 128 pages

e The page is the basic unit for Nand flash programming and reading, and the SLC Nand page size is usually
2KB or 4KB, which changes from logic 1 to 0 after programming

Logically, 0 or 1 is actually the level value on each physical unit of the Bit cell

Take the SLC NAND implemented by floating gate as an example:

Yeumapy Control gate Vcg = OV
Floating gate
“;"" eeee UIV ﬂ“?t eeee ﬂlt:at
1T

Vsub = OV Vsub = 20V

Program Erase
F-N Tunneling F-N Tunneling

Off cell On cell

(Solid-0) (Solid-1)

af://n327

The actual unit that stores data in Flash is the internal floating gate (Floating gate). By controlling the voltage
applied to the control gate and the substrate, it determines whether to charge or discharge the floating gate. The
logical state of 0 or 1 on the data is represented by whether the stored charge exceeds a specific threshold Vth:

¢ For writing to NAND Flash, it involves charging the floating gate by applying high voltage to the control
gate. When the voltage exceeds the threshold Vth, it represents a 0.

o Data Retention issue: When charged at high voltage, the charge remains stored in the floating gate
without any erasing action. However, due to the electric field between the floating gate and the
substrate, the charge gradually leaks over time.

o P/E cycle issue: As the number of program/erase cycles (P/E Cycles) increases, the oxide layer
between the floating gate and the substrate ages, which also affects the ability of the floating gate to
store charge.

¢ For erasing in NAND Flash, it involves discharging the floating gate by applying high voltage to the
substrate. When the voltage is below the threshold Vth, it represents a 1.

Design of Wordline and Bitline

In order to efficiently complete the charging and discharging actions of thousands of Nand flash cells, the
designer has implemented auxiliary circuit structures such as Bitline/Wireline. For example, multiple cells are
connected in series, and multiple sets of cells form a Nand string. The ends of a Nand string are called Bit Line
and Source line. Each cell's control gate is connected by a single Wordline. Cells controlled by the same
Wordline constitute a logical page (Page). Together, they form a block. All cells within a block share the same
substrate, so the minimum erase unit is a block.

PO P1
BLOCK 0 BLOCK 1 i

=2 O .

=~ ® 000 OO

WL Col Decoder

Wordline Wordline Wordline Wordline

".page

B - _ - — - Bitline
- _, - -— - Bitline
-__, o — ‘.__* -------------- i Bitline

i , _"'x,_ = _ - ‘W Bitline

S

k F — 2 S R - — Bitline

Bitline &1 kIE
Abort SLC\MLC\TLC\QLC:

As mentioned above, Bitine can be used to control the charging and discharging behavior, determining the level
state of the bit cell. In fact, by controlling the amount of charging, different level performances of a single bit

cell can be achieved:

e SLC, Single Level cell, represents 1 bits data with only 0/1 two levels of logic.
e MLC, supports 2 bits data with 4 levels of states from 0 to 3.

e TLC, supports 3 bits data with 8 levels of states from 0 to 7.

e QLC, supports 4 bits data with 16 levels of states from 0 to 15.

4 bits/cell

1

“ M A |161.C
3 bits/cell

|

3 A 8L.C
2 bits/cell

EI

¥ M LC
1 bit/cell

'E

: SL.C

—— Image sourced from the internet

https://www.tonguebusy.com/a/peixun/xinxi/03-we-q-w-06.html

Bit cell charge storage capacity failure with bit flip

Due to the specific physical structure of Nand, there is a possibility that the charging and discharging process of
Nand particles may be unstable, and the physical structure may age due to friction and wear, which may affect
the energy storage capacity. This can lead to changes in logical levels, such as bit flip. At the user level, data
errors, firmware anomalies, and file system crashes may occur. Therefore, Nand flash products will introduce
ECC error correction algorithms with different capabilities to support, in order to extend the lifespan of particles

and enhance the robustness of Nand products.
Characteristics of Nand Products

The physical implementation principle of Nand determines that Nand products have the following

characteristics:

¢ Out-of-place Update. Nand Flash programming can only change the storage unit from 1 to 0, so an erase
operation is needed before reprogramming. Moreover, programming is done in pages while erasing is done
in blocks (a block includes multiple pages). If in-place update is used, it means repeatedly updating the
same logical address to the same location. In this case, every update requires an erase operation first. Since
erasing operations consume time and damage Flash, FTL generally uses out-of-place update to map
updated data to a new location.

e Limited P/E cycles. As mentioned earlier, each block of Nand Flash has a limit on the number of erase
cycles. After a certain number of erase cycles, this block becomes unstable and the data programmed into
it may be prone to errors or even fail to erase.

e Better performance. Unlike traditional mechanical hard drives, Flash storage does not have mechanical
devices, such as seeking. The access overhead for all addresses is the same, especially in random read
performance, where SSD is much better than traditional mechanical hard drives. According to this
reasoning, the speed of Flash device random access and sequential access should be the same. However, in
reality, Flash supports Cache operations, which can preemptively read the next page's data into internal

registers during

2.7 Basic Principles of Nor

The principle is similar to Nand, with the following main differences:

¢ The implementation principle of bit cell is similar, but each cell is directly connected to the Bit Line and
Source line at both ends, making it more stable. Therefore, Nor usually does not require ECC mechanism
to prevent physical aging (however, there is still a tiny probability of flipping anomalies). However, the

circuit structure around the cell is more complex, resulting in higher cost per die for the same capacity.
¢ Block/page size is different from Nand.

o Generally supports two formats of erasable blocks - Block/Sector in a broad sense, which are 64KB
and 4KB respectively.
o Generally supports basic programming (writing) unit page as 256B.

2.8 Nand Storage ECC Dependency

af://n384
af://n396

Chip Type Main Contro\ECC Support ECC Selection Dependent

EMMC No Need EMMC devices

SPI Nand Without ECC SPI Nand devices

SLC Nand Nand V6 16 bits per 1KB NandC Control

MLC TLC Nand Nand V9 16 bits and more NandC Control
Note:

e Some particles in SLC Nand come with ECC, while the rest of PP Nand do not integrate ECC and rely on
the ECC provided by the controller itself

2.9 Original Bad Blocks in Nand

Due to physical characteristics, a certain proportion of original bad blocks are allowed in the manufacturing
process of Nand Flash. At the time of shipment, the manufacturer will set the original bad block mark in a
specific area of the flash, usually in the spare first byte (or referred to as the OOB area). Typically, the original
bad block mark cannot be destroyed.

e W25NO1GV SPI Nand is an exception.

2.10 Lifespan and ECC Errors in Nand

Nand flash has durability, which is typically characterized by P/E (erase/write). After reaching a certain number
of P/E cycles, failure may occur. In actual tests, abnormalities may occur in some particles even at 30K times

(the actual value may differ from the manufacturer's claim, contact the manufacturer for details).
When approaching the lifespan of Nand flash, there are usually the following warnings:

¢ The read data bit flip reaches a situation that requires refreshing the data.

o The data is valid and can be used normally.
When reaching or exceeding the lifespan of Nand flash, the following abnormalities may occur:

¢ The read data bit flip reaches a situation that requires refreshing the data.

o The data is valid and can be used normally.

e Reading data reports ECC fail.

o The data is invalid, and there is a retry mechanism at the bottom, so it may cause high CPU usage of
threads.
o Some data is lost, which may lead to upper layer exceptions.

o FErase/write fail.

o Marked as a bad block, does not affect use, and data will not be lost.

2.11 Technical Key Points of Nand FTL

¢ Address mapping management. Flash memory is a black box to the outside world, integrating Nand Flash

and FTL, etc. Upper-layer applications use logical addresses for access. FTL maps logical addresses to

af://n422
af://n427
af://n455

different physical addresses, managing the physical location where the latest data of each logical address is
stored.

e Garbage collection. As data is written, some parts of the data in some blocks of the flash memory have
become invalid, and it is necessary to move the valid data from the block and then erase it to receive new
data.

e Wear leveling and bad block management. Because the P/E cycle of each block is limited, some blocks
may be damaged due to repeated use, while some blocks are rarely accessed and have not been operated.
To avoid this situation, FTL adds wear leveling functionality, which is generally achieved by controlling
garbage collection and empty block pool management, thereby balancing the usage frequency of each
block. The ideal situation is that all blocks reach the wear threshold together. Since there are some bad
blocks in Flash itself, some blocks will become unstable during use. Therefore, when managing, FTL
needs to avoid these useless blocks and copy the data on the unstable blocks that become unstable in time

to stable locations.

2.12 Evolution of RK Nand Storage Solutions (including PP Nand and
SPI Nand)

e Early only supported closed-source FTL solutions from RK

o Mainly including RK3326\RK3308\RV 1108
e Customers began to have UBIFS, MTD, and burner burning requirements, requiring the use of MTD

storage drive framework

o Starting from RK3308 chip, because this solution is open source from driver to algorithm to file
system, it is usually called MTD open source solution internally compared with closed-source
solutions

o RK3308 provides low-level drivers, and the upper connection is completed by customers (with
strong development capabilities) themselves

o RK3308 products have provided SDK configuration for PP SLC Nand MTD open source solution

e Completely switched to MTD open source solution and provided more detailed support and guidance:

o RVI1126\RK3568 and subsequent chips

2.13 Flash Host Controller

2.13.1 SFC Controller

The Serial Flash Controller (SFC) is used to control the data transfer between the chip system and serial

nor/nand flash memory devices.
The SFC supports the following features:

¢ Supports SPI Nor, SPI Nand
e Supports SPI Nor 1-wire, 2-wire, and 4-wire transmission

e DMA transmission

2.13.2 FSPI Controller

FSPI (Flexible Serial Peripheral Interface) is a flexible serial transmission controller. It is a new design of SFC,

considering changes in supported devices, so it is renamed as FSPI. It has the following main features:

af://n463
af://n484
af://n485
af://n495

¢ Supports SPI Nor, SPI Nand, PSRAM, and SRAM under SPI protocol

e Supports SPI Nor 1-wire, 2-wire, and 4-wire transmission, Version 8 and later support 8-line DDR
transmission

¢ XIP technology

e DMA transmission

2.13.3 NandC Controller

NandC is the main controller used to complete the data transfer between Nand flash and the main chip. It
supports direct data transmission through the AHB bus master. To adapt to different application scenarios, RK
currently has two versions of NandC: the highly integrated NandC V9 and the simplified NandC V6 with smaller
chip area.

Generally, a chip selects the NandC version based on its market position. NandC V6 only supports SLC Nand
and is usually placed in products with small storage capacity (usually SLC Nand is less than 512MB). NandC V9
can support MLC and TLC, so it can be applied in products with large storage capacity.

2.13.4 General SPI Interface

While FSPI is a dedicated SPI Flash interface, RK SOC usually has multiple general SPI interfaces. This
interface also supports external SPI Flash devices, but generally these interface devices cannot be used as

bootdev.

2.14 SPI Flash Output Latency Statistics

Summary:
1.8V 33V 1.65-3.6

FORESEE <8ns

BIWIN <9ns

Dosilicon <10 ns <8 ns

ESMT <8 ns

Toshiba <6 ns

WINBONG <7 ns

MXIC <8 ns

MXIC (SPI NOR) <12 ns(30 pf)<10 ns(15 pf)
Notes:

¢ The specific particles are subject to the manual, and the table is for reference only.

af://n506
af://n509
af://n511

3. Particle Verification

3.1 Overview of SLC Nand/SPI Nand/SPI Nor Verification Content

Verification Explanation:

Small-capacity particles are generally more stable and have better compatibility with the main controller.
Therefore, most of them only undergo functional verification, and their reliability and stability mainly depend on

the extensive tests and reports conducted by the original manufacturer.

1. Functional Verification
2. Basic Product Lifecycle Reliability Verification
3. Software Compatibility and Stability Verification

Storage Functional Particle Reliability Software Compatibility and Stability
Type Verification Verification Verification
SPI Nor Y N*1 N
SPI Nand Y Y TBD*2
SLC
Y N*3 TBD*2
Nand
Notes:

1. SPI Nor only undergoes functional verification, mainly considering its relative stability, good
compatibility, and the fact that reliability and stability verification need to reach a large number of tests to
test the boundary conditions. The reliability and stability verification are guaranteed by the particle's
original manufacturer.

2. TBD: Only the storage particles with significant compatibility changes and the storage driver version
updates are subject to corresponding tests. Generally, this test is not performed.

3. The ECC part of SLC Nand is mainly provided by the RK Nand main control, which can correct errors up
to 16 bits/1KB, resulting in high redundancy and stability. No further verification of its reliability is

required, and the reliability and stability verification are guaranteed by the particle's original manufacturer.
Verification Methods:

1. Functional Verification

e Main control compatibility: The system can boot up normally, basic functions are normal, and flash 10

loop stress testing passes.
2. Particle Reliability Verification
Retention Test:
¢ After a certain proportion of P/E cycle processing on the flash, bake it to simulate the product lifespan.
3. Software Compatibility and Stability Abnormal Power-off Verification (recommended for actual products)
Abnormal Power-off Test:

e Power off once every minute for 1 minute.

af://n564
af://n565

¢ Boot into the Linux system during power-on.

¢ Continuously perform dd commands during power-on without comparison, mainly testing FTL data
migration performance.

¢ Continue for 7 days (meeting the basic requirements of most products, approximately 10K reads and

writes, around 10,000 power-offs).

3.2 RK Flash Sample Submission Requirements

3.2.1 Verification-related Information

General Information:

1. Small-capacity storage includes SLC PP Nand, SPI Nand, and SPI Flash.

2. Prioritize submitting the main selling particles.

3. This channel is for verification purposes only; no business-related suggestions can be provided at this time.

4. The support list for small-capacity storage is typically updated every 1-2 months, but actual particle
verification times may vary and will be completed before the support list is updated.

5. At least 10 pieces should be submitted, along with the corresponding particle manual.

6. Prioritize verifying particles that are urgently needed by customers.
Special Notes for SPI Nand:

1. Particles must have an ECC module; otherwise, they are not supported as the RK main control does not
have an integrated ECC module.

2. There should be no continuous bad blocks at the end of the Flash; otherwise, it will destroy the information
in the bad block table at the end, and if it cannot be resolved, it cannot be supported.

3. Some particles have a 2-plane structure and require plane select bits to be set on the address to select odd
plane data. However, there is compatibility issues with these particles on the RK platform, and the driver

needs to handle compatibility; therefore, it is not recommended to use them.
Special Notes for SPI Nor:

1. SPI Nor particles require a tRST of less than 200us.

3.2.2 Verification Process

¢ The internal team will perform functional testing and stress testing to verify the compatibility between the
particles and the main control. However, the stability of the particles and their performance during stress
tests should be determined by the original manufacturer's specifications.

e Verification will only be conducted on classic platforms. The small-capacity storage main control IP of RK
is a compatible IP, so only RK3568 will be verified, but it can be compatible with most SOCs that have
corresponding control devices. For example, if SPI Nand is verified as OK on RK3568, it will also be
compatible with RV1126 and RK3308.

3.2.3 Verification Mailing Address

Submit a request on the RK Redmine issue tracking platform, and the storage module software engineer will

provide the address.

af://n631
af://n632
af://n659
af://n665

3.2.4 Customer Patches Distribution

¢ Due to new flash materials, especially SPI Flash materials, source code patches are usually required after
verification. If customers have driver requirements, please submit a request on the RK Redmine issue

feedback platform, and patch packages will be provided online at that time.

af://n667

4. Device Bootup Process

The bootup process refers to the software flow from system power-on to system startup completion. The

following is the Linux system bootup process:

T

uboot

BootROM ————»{ preloader

trust

4.1 RK SOC BOOTROM Boot Support Status

SOC Emmec Nand
Boot Boot
RV1108 Y Y
RV1126/RV1109 Y Y
RK2108 Y N
RK2206 Y N
RK3036 Y Y
RK3126C Y Y
RK3128 Y Y
RK3228 Y Y

RK3288 Y Y

» kernel

SPI NAND
Boot

Y

y*!

y*l

rootfs

SD
Boot

linux app

SPI NOR

Boot

Y

af://n672
af://n675

Emmc Nand SPI NAND SD SPI NOR

S0C Boot Boot Boot Boot Boot
RK3308 Y Y Y Y Y
RK3326/PX30 Y Y Y™l Y Y
RK3328 N Y y*1 Y Y
RK3368/PX5 Y Y y*l Y y*l
RK3399 N Y Y Y Y
RK3568/RK3566 Y Y Y Y Y
RK3588 Y N Y Y Y
RV1106/RV1103 Y N Y Y Y
RK3528 Y N Y Y Y
RK3562 Y N Y Y Y

*1: The chip hardware supports it, but the SDK release development package does not support it.

4.2 RK SOC Storage Interface Specifications

af://n818

AP

RK3188

RK3128

RK3126

RK3036

RK3288

RK3399

RK3368

RK3228
RK3229

RK3328

RK3228H

RK3128X

RV1107 RV1108

RV1109 RV1126

RK3308

RK3326

RKPX3

RKPX3SE

RKPXS5

RKPX30

RK1608

RK1808

RK3568
RK3566

RK3588

RVI1106/RV1103

RK3528

RK3562

NANDC SPI0

60bits MLC
SLC

Boot

60bits MLC

SLC

60bits MLC
SLC

60bits MLC
SLC

60bits MLC
SLC

60bits MLC
SLC

60bits MLC
SLC

Boot

60bits MLC
SLC

Boot

16bits SLC

16bits SLC

16bits SLC

70bits TLC

MLC SLC

60bits MLC
SLC

Boot

60bits MLC

SLC

60bits MLC
SLC

70bits TLC
MLC SLC

- Boot

70bits TLC
MLC SLC

SPI1

Boot

SPI2

Boot

Boot

Boot

SFC

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

Boot

SD

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD

3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD
3.0

SD

3.0

SD
3.0

SD
3.0

SD
3.0

SDIO

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO

3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

SDIO
3.0

EMMC

SD50
DDR50

SD50
DDR50

SD50
DDRS50

SD50
DDRS50

HS200

HS400
HS200

HS200

HS200

HS200

HS200

SD50
DDRS50

HS200

HS200

HS200

HS200

SD50
DDR50

SD50
DDRS50

HS200

HS200

HS200

HS200

HS400

HS50

HS400

HS400

USBO0

2.0
Host

2.0
Host

2.0
Host

2.0
Host

2.0
Host

3.0
OTG
TYPEC

2.0
Host

2.0
Host

2.0
Host

2.0
Host

2.0
Host

2.0
Host

2.0
ost

2.0
HOST

2.0
Host

2.0
Host

2.0
Host

USB1

2.0 0TG

2.0 0TG

2.0 OTG

2.0 OTG

2.0 OTG

3.00TG
TYPEC

2.0 0TG

2.0 OTG

3.00TG

3.0 0TG

2.0 0TG

2.0 0TG

2.0 0TG

2.0 OTG

2.0 OTG

3.0
OTG(RK3568
Only)

3.00TG

3.00TG

3.0 0TG

*1: The chip hardware supports it, but the SDK release development package does not support it.

4.3 BOOTROM Process

Both the AP and MCU have an integrated BOOTROM. When the system is powered on, the BOOTROM code
will be executed first, and then the BOOTROM code will detect peripheral memory and load the Loader code.

The order in which different chips' BOOTROMs detect peripheral memory may vary. The following diagram is

an example of the BOOTROM startup process:
BOOTROM

A 4
Check ID BLOCK from NAND FLASH

2

Check ID BLOCK from EMMC

2

Check ID BLOCK from SPI NOR

l\ll< N\ \V4 da

af://n1145

1

Check ID BLOCK from SPI NAND

NO

Check ID BLOCK from SD CARD

Boot from USB

Note:

e Some chips have a setting that supports using different input levels for the ADC Key to specify the storage

device for BOOTROM probing

N

load loader code and run

¢ Detecting memory devices is usually confirmed by the detector device ID to determine if they are from

external devices

e Ifno valid firmware is detected in all devices, the device enterslf no valid firmware is detected in all

devices, the device enters maskrom mode and waits for a specific interface such as USB/UART to

download the firmware. However, not all chips support USB/UART interface upgrades.

Boot ROM Boot Sequence for Each Chip

AP

RK3188

RK3128

RK3126(B)

RK3036

RK3288

RK3399

RK3368

RK3228/9

RK3328

RK3228H

RK3128X/H

RV1107/8

RV1109

RV1126

RK3308

RK3326

RKPX3

RKPX3SE

RKPXS5

RKPX30

RK1608

RK1808

No.1

SDO

NAND

NAND

NAND

NAND

SPI
NOR(SPI2)

NAND

NAND

EMMC

EMMC

NAND

NAND

SPI
NOR(SFC)

SPI
NOR(SFC)

NAND

NAND

SDO

NAND

NAND

NAND

SPI SLAVE

SPI SLAVE

No.2

NAND

EMMC

EMMC

EMMC

EMMC

SPI
NAND(SPI2)

EMMC

EMMC

SPI
NOR(SPI2)

SPI
NOR(SPI2)

EMMC

EMMC

SPI
NAND(SFC)

SPI
NAND(SFC)

EMMC

EMMC

NAND

EMMC

EMMC

EMMC

SPI
NOR(SPI2)

SPI
NOR(SFC)

No.3

SPI
NOR(SPIO)

SPI
NOR(SFC)

SPI
NOR(SFC)

SPI
NOR(SFC)

SPI
NOR(SPI2)

EMMC
SPI

NOR(SFC)

SPI
NOR(SPI2)

SPI
NAND(SPI2)

SPI
NAND(SPI2)

SPI
NOR(SPI2)

SPI
NOR(SFC)

NAND

NAND
SPI
NOR(SFC)

SPI
NOR(SFC)

SPI
NOR(SPIO)

SPI
NOR(SFC)

SPI
NOR(SFC)

SPI
NOR(SFC)

SPI
NAND(SPI2)

SPI
NAND(SFC)

No.4

SPI
NAND(SPIO)

SPI
NAND(SFC)

SPI
NAND(SFC)

SPI
NAND(SFC)

SPI
NAND(SPI2)

SDO

SPI
NAND(SFC)

SPI
NAND(SPI2)

SDO

SDO

SPI
NAND(SPI2)

SPI
NAND(SFC)

EMMC

EMMC
SPI
NAND(SFC)

SPI
NAND(SFC)

SPI
NAND(SPIO)

SPI
NAND(SFC)

SPI
NAND(SFC)

SPI
NAND(SFC)

EMMC

No.5

EMMC

SDO

SDO

SDO

SDO

USB

SDO

SDO

USB

USB

SDO

SDO

SDO

SDO

SDO

SDO

EMMC

SDO

SDO

SDO

USB

No.6

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

USB

AP No.1 No.2 No.3 No.4 No.5 No.6

SPI SPI

RK3399PRO EMMC SDO USB -
NOR(SPI2) NAND(SPI2)
SPI SPI

RK3568 NAND EMMC SDO USB
NOR(SFC) NAND(SFC)
SPI SPI

RK3566 NAND EMMC SDO USB
NOR(SFC) NAND(SFC)
SPI SPI

RK3588 EMMC-- SDO USB
NOR(SFC) NAND(SFC)
SPI SPI

RV1106/RV1103 EMMC-- SDO USB/UART
NOR(SFC) NAND(SFC)
SPI SPI

RK3528 EMMC-- SDO USB
NOR(SFC) NAND(SFC)
SPI SPI

RK3562 EMMC-- SDO USB
NOR(SFC) NAND(SFC)

4.4 Pre Loader Process

The image generated by compiling the RK SDK project usually includes a file named MiniloaderAll.bin, which

actually has two main functions:

¢ Boot burning

e Burning idb image

The idb image is an effective image extracted from MiniloaderAll.bin, also known as idblock, and is finally
burned into the flash memory. Typically, the idb image is packaged by ddr.bin and Pre Loader image, and some
chips support packaging more functional images. Currently, there are three main types of Pre Loader: miniloader

(non-open source), uboot spl, and loader.

4.4.1 Miniloader

Introduction

The miniloader firmware is the non-open source preLoader firmware of RK, which is usually packaged with

ddr.bin usbplug.bin as loader.bin, with the following structure:

af://n1399
af://n1407

- [fhome1/dg/rk-linurkbin] git(master) X cat RKBOOT/RK3308MINIALL ini
[CHIP_NAME]

NAME=RK3308

[VERSION]

MAJOR=1

MINOR=05

[CODE471_OPTION]

NUM=1

Path1=bin/rk33/rk3308_ddr_589MHz_uari2_m1_v1.31.bin

Sleep=1

[CODE472_OPTION]

NUM=1

Path1=bin/rk33/rk3308_usbplug_v1.28 bin

[LOADER_OPTION] 472 usbplug_bin
NUM=2
LOADER1=FlashData
LOADERZ2=FlashBoot -
FlashData=bin/rk33/rk3308_ddr_589MHz_uart?_m1_v1.31_bin IDE_ddr.bin

471 ddr.bin

FlashBoot=bin/rk33/rk3308_miniloader_v1.28.bin

[OUTPUT] - .
PATH=rk3308_loader v1.31.128.bin LRI

Mintoadatin -~ €
(rk3308_loader_v1.31.128 bin)

RK FHRTEHE
(471 472 (UES|SEERTIEE, Flash
R idblock B flash) o

IDB_head

IDB_ddr.bin

IDE_miniloader.bin

(6]

idblock

Comments:

1. ddr.bin: DDR initialization firmware, abbreviated as 471

2. usbplug.bin: Boot firmware for burning, abbreviated as 472

3. miniloader.bin: Closed-source pre-loader firmware

4. MiniloaderAll.bin: Unified naming file for SDK, actually the loader.bin for the corresponding chip
packaging firmware

5. During the upgrade process of RK upgrade tool, it will extract and upgrade idblock.bin from loader.bin and
make multiple backups

6. idblock, the firmware is the packed firmware of ddr.bin + pre-loader, and the closed-source version of pre-

loader refers to miniloader.bin
rkbin repository packs and generates Miniloader

Taking k3308 as an example, enter the sdk directory in the rkbin directory of the SDK, and finally generate
k3308 loader v1.xx.1xx.bin:

./tools/boot_merger ./RKBOOT/RK3308MINIALL.ini

./tools/boot merger ./RKBOOT/RK3308MINIALL WO FTL.ini . /* Files with suffix
_WO_FTL are Pre Loaders selected for open source storage solutions, and the file
system chooses ubifs or jaffs2 */

./tools/boot merger ./RKBOOT/RK3326MINIALL SLC.ini . /* Files with suffix SLC
are Pre Loaders dedicated to small capacity storage (SLC Nand, SPI Nand, SPI
Nor) solutions, with built-in rk ftl algorithm, not supporting ubifs */

Pre Loader Process

Similar to BootRom, in order to be compatible with different storage types, the Preloader stage will also detect

different storage peripherals during the boot process:

SD CARD » NAND FLASH EMMC SPI NOR FLASH SPI NAND FLASH

Due to the code not being open source, users cannot modify the startup sequence on their own.

Boot Flow

Mini Loader
Load Trust Load UBoot
y A
Check Trust Check UBoot
Boot Trust
A
Boot UBoot

4.4.2 u-boot spl

For chip support information, please refer to the document "Rockchip-Developer-Guide-UBoot-nextdev-CN".
When supporting NAND and SPI NAND without FTL algorithm, only use the open source NAND driver and it

is recommended to use the UBIFS file system.

Introduction

= [home1/idgfrk-linuwx/rkbin] git:(master) X cat RKBOOT/RK3568MINIALL ini
[CHIF_NAME]

NAME=RK3568

[VERSION]

MAJOR=1

MINOR=1

[CODE47T1_OFTION]

NUM=1
Path1=bin/rk35/rk3568_ddr_1560MHz_v1.10_bin
Sleep=1

[CODE47T2_OPTION]

NUM=1
Path1=bin/rk35/rk356x_usbplug_v1.12_bin

[LOADER_OPTION]
NUM=2

LOADER1=FlashData

471 ddrbin

LOADER2=FlashBoot
FlashData=bin/rk35/rk3568_ddr_1560MHz_v1.10.bin
FlashBooi=bin/rk35/rk356x_spl_v1.11.bin

[OUTPUT]

472 usbplug.bin

PATH=ri356x_spl_loader_v1.10.111_bin

[SYSTEM]
NEWIDE=true

|IDE_ddr.bin

[FLAG]
471_RC4_OFF=true

RC4_OFF=true

IDB_spl.bin

©

{I'|k356x_spl_|0ad er_v1.10.111.bin)

—

RK AR TEAE
(471 472 (U5 | 2EERTIEE,
EREFEER idblock B flash)

MiniloadAlLin
rk356x_spl_loader_ v1.10.111.bin

(5]

IDE_head

IDB_ddr.bin

IDE_miniloader.bin

idblock @

4]

=1

Flash

af://n1434

Comments:

1. ddr.bin: DDR initialization firmware, abbreviated as 471

2. usbplug.bin: Boot firmware used for burning, abbreviated as 472

3. spl.bin: u-boot source code compiled spl firmware, output file in the uboot directory of spl/u-boot-spl.bin

4. MiniloaderAll.bin: Unified naming file for the SDK, actually the spl loader.bin corresponding to the chip
packaging firmware

5. During the RK upgrade tool upgrade process, idblock.bin will be extracted from loader.bin for upgrading
and multiple backups will be made.

6. idblock, the firmware is the packed firmware of ddr.bin + pre-loader, and the spl version pre-loader refers
to u-boot-spl.bin, RK SDK will regularly compile u-boot-spl.bin and store it in the corresponding directory
of rkbin, named as rkxxxx_spl vx.xx.bin.

7. The PC upgrade tool SLC Nand/SPI Flash idblock image will be duplicated, while the other storage device
idblock images will be backed up five times

Based on the process of BOOTROOM, understand the behavior of "loading xxx. bin and running xxx function":

e Burning process:

o BOOTROM loads ddr.bin and initializes ddr
o BOOTROM loads usbplug.bin, using the USB plug firmware (burning)

e Startup process:

o BOOTROM loads ddr.bin and initializes ddr
o BOOTROM loads spl.bin, executes the Loader function, and loads the subsequent firmware
o Some chips also package mcu.bin and PCle.bin in the idblock, which have similar behavior and

goals, pre-loading the pre-loader

spl Storage Probe Order

SD CARD > NAND FLASH / SPI NAND / SPI Nor EMMC

Explanation:

¢ The spl supports enabling the SD card boot function, detecting the presence of an SD card and a valid
firmware within it, loading subsequent firmware from the SD card, and completing SD card boot.

e The spl firmware that supports atags prioritizes detecting and using the storage device successfully
detected by BOOTROM for booting. For detailed information on the atags feature, refer to the u-boot

development manual.

spl log

U-Boot SPL 2017.09-gcc781e0266-230509-dirty #1ldg (Nov 24 2023 - 00:15:39)
unknown raw ID 0 0 O

unrecognized JEDEC id bytes: 00, 00, 00

Trying to boot from MMC2

MMC: no card present

mmc_init: -123, time 0

spl: mmc init failed with error: -123

Trying to boot from MMC1 # bootdev detection: MMC2 (SD Card)
MMC1 (EMMC) « MTDO (SLC Nand). MTD1 (SPI Nand). MTD2 (SPI Nor)

No misc partition

Trying fit image at 0x4000 sector

Boot Flow

SPL

Load UBoot

A

Check UBoot

Load Trust
y

Check Trust

Boot Trust
A
Boot UBoot
Storage Probe Order
SD CARD SLC NAND EMMC

Boot Process

SPI NOR FLASH

SPI NAND FLASH

Loader

Load kernel

Check USB Connected?

Check Kerenl OK?

ROCKUSB Boot Kernel

4.4.3 loader

Supports platforms such as RV1107, RV1108, RK3036, RK3128, and RK3229. It is generally used to support

small capacity storage without using uboot and directly boot the kernel.

Chip
RV1107/8

RK3036

RK3128

RK3229

SD CARD
Supported

Supported

Supported

Supported

SLC NAND

Supported
Supported* 1
Supported* !

Supported* !

EMMC

Supported
Supported* 1
Supported* !

Supported* !

SPI NOR
Supported

Supported

Supported

Supported

SPI NAND
Supported
Supported
Supported

Not Supported

af://n1488

*1 RK3036, RK3128, and RK3229 projects using SLC NAND and EMMC usually use miniloader directly.

SPI NOR FLASH

SPI NAND FLASH

Storage Probing Order
SD CARD SLC NAND EMMC
Boot Process
Loader
Load kernel

ROCKUSB

Check USB Connected?

Check Kerenl OK?

Boot Kernel

S. Partition and Data Storage

5.1 Data Storage

5.1.1 Introduction to Address Conversion

If you have knowledge of storage, you should know that most storage chips are not flat mapped, but are
converted from user logical sector address (Iba) to Flash physical sector address (pba) by the user. This mapping
process is called FTL (Flash translation layer). FTL needs to integrate data wear, bad block management,
garbage collection and other requirements for address conversion. Whether or not there is an FTL, users and files

only need to care about logical addresses, and the details of address conversion are completed by software.

Assuming a user needs to access the address 0x4000 sector, the address conversion relationship is as follows:

RK FTL in OS driver

Host Controller

FTL In Device

Device Controller

Device Flash Array

SPI Nor Mand Flash\5P1 Nand EMMCA\SD card

Assuming a file system interface accesses the address 0x4000 sector, the address conversion relationship is as

follows:

af://n1532
af://n1533
af://n1534

LBA = PBA Ox4000

FileSystem
FileSystem Without FTL
FTL in FileSystem
PBA X
RKFTLin OS driver
o5
PBA
Host Controller
Device Controller
Device Flash Array PBA 04000 PBA PRA
oA Lol o FoA X
SPIMNor Mand Flash\SPI Nand

5.1.2 Partition and Data Logical Address Storage

Storage view

LBA Ox4

FTL In Device

PBA x

5]

EMMC\SD card

For upgrading/flashing
firmware to eMMC

with rkdevelsptool, LR

rloo_loader v oc.xxx.bin

idbspl.img (by mkimage)

SYSTEM START =

LOADER1_START
>

o

| aL3 78 _sTan

0x8000
040 (64) * 0x200(512)
A 0 IH000
Ox1cO(448) * Bx200{512}
TI4KE
T

mESCAVEDZ STAAT

=
-]
[]
=
"
<
o
o | padded to 026800 with 0
a
o
3
m
w
boot e
A AT 1 m Rockchip bins
] loaderimage i
l.________________. Blue! Rockchip tools
I trustmerge I -
i mdRage ~ " " | u-boot
| For RK33, result file size:0x2e800 | I‘_ ="
| Add 2KB (0xBOOB) Header, —Grayl| u-boot tools
| padding bin file to 0x2e000 with 0 I_ i
| (0x30000-0x2000} Jl
————————————— yellow ARM TF

| bl33:uboot.bin 1
| (re UEFI.FD) !

CONPIG_SYE_MMCSD, Rk Jeoon.

LOADER2_START
4

0xa 0000
0x20Q.[‘5“!_.%‘ 0:<200{512)

u_Bo

obPaGERL) ° 3E38

0u3e00[15872) * 5128
ity TRIEEE

oeoosiaisi+ 313
i
r

0800000
0x4000(16384) * 0x200(512)
amMe
Dx3000(8182) * $128

ams

A 4

0xCO0000
0x6000(24576) * Ox200(512)

12MB

0=2000(81%2) * 5120
AMB

Y
01000000
DxB000{32768) * Dx200{512)

Ox40000(262144) * 5128
128ME

5.2 Partition Table Partition

In the RK storage solution, there are three types of partition tables that can be solidified into the storage
partition: MTD Partition, GPT, and RK partition.

af://n1540
af://n1542

For more detailed information, please refer to the document "Rockchip Introduction_Partition".

. L. Applicable .
Partition Description Restrictions
Platforms
MTD Defined in the parameter file and passed through Needs to be
. cmdline, no longer supported by the uboot-next All AP™! stored in a
Partition .
branch separate partition
EFI general partition table, supported by the uboot- Uses a little more
GPT M PP Y All AP™2
next branch resources
RK Designed with reference to GPT, mainly used for RV1107/8, RK custom, not
partition small capacity storage to save resources MCU universal

*1 Platforms using the uboot-next branch no longer support MTD partition. If needed, it must be adapted by

yourself.

*2 Platforms using the uboot-next branch default to using GPT as the partition table. If another partition table is

needed, it must be adapted by yourself.

5.2.1 MTD Partition

Refer to the "Rockchip Developer Guide Linux Flash Open_Source Solution EN.md" document.

5.2.2 GPT

GPT partition table is also configured through a parameter file, and its structure is similar to MTD Partition. The

four differences are:

1. Set TYPE to GPT.

2. No definition of parameter partition (if defined, it will not be used).

3. The last partition needs to add the keyword "grow".

4. Need to specify the rootfs uuid, which may be different for different SDKs and needs to match the rootfs
uuid defined in DTS.

af://n1568
af://n1570

FIRMWARE VER:8.1

MACHINE MODEL:RK3326

MACHINE ID:007

MANUFACTURER: RK3326

MAGIC: 0x5041524B

ATAG: 0x00200800

MACHINE: 3326

CHECK MASK: 0x80

PWR HLD: 0,0,A,0,1

TYPE: GPT /* GPT partition */
CMDLINE:mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot),0x00002000@0x00006000
(trust), 0x00002000@0x00008000 (misc),0x00008000@0x0000a000
(resource) ,0x00010000@0x00012000 (kernel), 0x00010000@0x00022000
(boot) ,0x00020000@0x00032000 (recovery),0x00038000@0x00052000
(backup) ,0x00002000@0x0008a000 (security),0x000c0000@0x0008c000
(cache), 0x00300000@0x0014c000 (system),0x00008000@0x0044c000
(metadata), 0x000c0000@0x00454000 (vendor),0x00040000@0x00514000
(oem) ,0x00000400@0x00554000 (frp),-@0x00554400 (userdata:grow)
uuid:rootfs=614e0000-0000-4b53-8000-1d28000054a9

GPT partition table upgrade process:

1. Tool reads partition definition in parameter file

2. Get storage device capacity from loader

3. Modify last partition size and create gpt partition table file

4. Burn partition table to storage device's 0 address and - 33 (end) address

Note: 1. The parameter file itself will not be burned to the storage device.

5.2.3 RK partition

RK is a customized partition table with a structure similar to GPT, which occupy less resources and initialize
faster. It is mainly used on RV1107/8 platforms and MCU platforms.

Below is the template for Linux\Android product partition definition files:

#Flag currently only has two values, 1 for partition that needs to be
downloaded, 0 for no need to download

#type currently has 5 values, Oxl=Vendor partition, 0x2=IDBlock partition,
Ox4=Kernel partition, 0x8=boot partition, 0x80000000 = ordinary partition
#PartSize and PartOffset fields' values are in sectors

[System]

FwVersion=16.12.23

If Nano=1, then generate an idblock in nano format

Nano=

If BLANK GAP=1, then the generated idblock will be saved with a blank of 2k
data interval every 2k data interval

BLANK GAP=1

#FILL BYTE indicates what data is used to fill the blank at the end of the
partition, default is O

FILL BYTE=

[IDBlock]

Flag=1

af://n1593

DDR_Bin=rk3399 DDR 800MHz v1.17.bin

Loader Bin=rk3399 miniloader spi nor vl.

PartOffset=0x40
PartSize=0x780
[UserPartl]
Name=trust
Type=0x10

Flag=1

File=trust 1MB.img
PartOffset=0x800
PartSize=0x800
[UserPart2]
Name=uboot
Type=0x20

Flag=1

File=uboot 1MB.img
PartOffset=0x1000
PartSize=0x800

14.bin

Below is the template for RTOS product partition definition files, where the bits [8,10] flag in the Flag field are

only valid for RTOS products:

#Flag:

bits filed:

[0] skip : 0 -
[2] no partition size : 0 -
[8, 9] property 3 0 =
only, 2 - write only, 3 - rw

[10] register type : 0 -
partition

#type can support 32 partiton types, 0x0
,bit3:bit31 are available

#PartSize and PartOffset unit by sector
#Gpt Enable l:compact gpt,0:normal gpt

disabled (default), 1 - enable
diabled (default), 1 - enable

do not register (default), 1 - read
block partition (default), 1 - MTD

:undefined 0Ox1:Vendor 0x2:IDBlock

#Backup Partition Enable 0:no backup, l:backup

#Loader Encrypt 0:no encrypt,l:rcd
#nano l:generate idblock in nano format
[System]

FwVersion=1.0

Gpt Enable=

Backup Partition Enable=
Nano=

Loader Encrypt=

Chip=

Model=

[UserPartl]

Name=IDBlock

Type=0x2

PartOffset=0x80

PartSize=0x80

Flag=

File=../../Image/rk2108 loader.bin,
[UserPart?2]

Name=rtthread

Type=0x8

PartOffset=0x100
PartSize=0xa00

so0f oo

/Image/Boot2 Fake.bin

Flag=
File=../../Image/rtthread.img
[UserPart3]

Name=root

Type=

PartOffset=0x1100
PartSize=0x6£00
Flag=0x305
File=../../Image/root.img

5.2.4 ENV Partition

ENV (Environment-Variables) is a global data management and transfer method supported by U-Boot. The

principle is to build a HASH mapping table, managing user data as "key-value" entries.

Some RK chip platforms use the ENV information stored in flash, defining it as an ENV partition. At the same
time, the mtdparts partition table information in cmdlines is generated and recorded in the ENV information
table, and passed from SPL or U-Boot to the kernel.

5.3 Partition Table Modification Tool

The Partition Table Modification Tool can be used to modify partitions defined by the parameter, and when a
partition size is modified, the offset of subsequent partitions will match the modification.

IDBlock

uboot
‘boot
rootfs
app
param

varigrow

5.4 Partition Write Protection Settings

5.4.1 Block Device Partition Write Protection Settings

af://n1599
af://n1602
af://n1605
af://n1606

In the Linux Kernel, EMMC and SD CARD are block devices, and when using the rknand or rkflash driver for
NAND FLASH, they are also block devices. You can configure the read-write attribute of partitions through the

following commands.

Example 1: Set the system partition to read-only:
./busybox blockdev --setro /dev/block/by-name/system
Example 2: Set the system partition to read-write:
./busybox blockdev --setrw /dev/block/by-name/system
Note: It is recommended that partition configuration is done before partition mounting, otherwise if partition

mounting is set to read-write and the partition property is configured to read-only, the file system will report an

€Iror.

5.4.2 MTD Device Partition Write Protection Settings

MTD is generally defined by cmdline to partition, and you can set this partition as read-only by adding the
character 'ro' after the partition name. You can modify mtdparts when U-Boot passes cmdline to the kernel to

achieve specific partition write protection.

Example: Modify the partition table and set the boot partition as read-only:

mtdparts=rk29xxnand:0x00002000@0x00004000 (uboot), 0x00004000@0x00006000 (boot) ro, .

af://n1613

6. Firmware Burning

Currently, there are three main ways to burn firmware in mass production: USB upgrade, SD card upgrade, and

programmer burning.

6.1 USB Upgrade

There are currently two protocols for USB upgrade: rockusb and fastboot. This document only introduces the
rockusb upgrade method. If you need to use the fastboot upgrade method, you can refer to the U-Boot
development document "Rockchip-Developer-Guide-UBoot-nextdev-CN".

6.1.1 Flowchart

PC Tools » PCrockusb » USB IF » AP rockusb » NVM

AP rockusb: maskrom rockusb, miniloader rockusb and uboot rockusb.

NVM: SPINOR, SPINAND, SLCNAND, EMMC, M/TLC NAND.

6.1.2 WIN Development Tool RKDevTool

GPT/RK Partition Scheme:

When the AP SDK is released, a configured development tool will be provided for burning the complete
firmware or updating data of some partitions during development. The tool comes with a variety of features, and
detailed feature descriptions can be found in the documentation that comes with the tool. Here are several

practical functions:

1. Read device partition table: In the loader upgrade mode, clicking the "Device Partition Table" button
allows you to read the device's partition table.

2. Switch to loader upgrade mode: In MSC or MTP mode, you can click the "Switch" button to switch to
loader upgrade mode.

3. Switch from loader to maskrom upgrade mode: In the advanced functions, clicking the "Enter maskrom"
button allows you to switch from loader upgrade mode to maskrom upgrade mode.

4. Restart the device: In loader mode or maskrom mode, you can click the "Restart Device" function in the

advanced functions.

Tool Interface:

af://n1618
af://n1620
af://n1622
af://n1626

Ly BURFTETE v2.7 — x
THER FEEY SEmE
| O] #iht E=c) 1%
H I l0x00000000 | Leader
z | [| ox00000000 Farameter
3 | [| ox0ooooooo Uboot
4 | [| ox00000000 trust
5 | [| 0x00000000 Misec
& | [| oxo00o0000 Resource
7 | | oxoooooooo Kernel
g | [| oxoooo000o Eoot
3 | [| ox00000000 Recovery
10 | [| 0x00000000 System
11 | [| 0x00000000 Backup
< >
Loader: thiT 1T BETES HE

Advanced Functions:

B scamaTs 274
THiEE THEEE SR @
= | T
B el | =
L= e 47

oi;ﬁll’lashl]] .sﬁlﬂas}\fﬁ% . éﬁl[ﬁhipf—é% . .WCapability;

o"EE oéEi%% @i&)\:«askm: P i
S PR o SHEORE
@ IDE | @a E|ES | 0 |

@E&iﬁf& HmE: p RES: E

| TR RREE

. For maskrom upgrade mode, you need to select the loader file to download and run in DDR.
. Unpack the update.img firmware.

. Support script running.

. Read FLASH ID.

. Read FLASH information.

. Read chip information.

. Read loader support extended functions.

0 N N L B WD~

. Test if it's ready.
9. Restart the device.

10. Restart into maskrom upgrade mode, usually switching from loader upgrade mode to maskrom upgrade
mode.

11. Overwrite and write data, clearing the serial number, which may damage the firmware.

12. Export the header IDB structure of the loader.

13. Erase sectors based on the starting address and sector number defined in 16 and 17, which needs to be
aligned to 4MB, otherwise it may erase more or less than expected.

14. Export the serial port information for the loader running, saved in the output directory of the tool.

15. Export the firmware image based on the starting address and sector number defined in 16 and 17, saved in
the output directory of the tool.

16. Define the starting sector.

17. Define the number of sectors to operate on.
18. Tool log

6.1.3 WIN Development Tool SocToolKit

ENV Scheme:

Some AP platforms of RK support the open-source ENV partition information, which supports recording
partition tables, bootargs, and other information in the ENV partition table and passing them to the kernel

through the cmdlines method. This scheme has a specific image packaging solution and upgrade tool.

Tool Interface:

? B TEE v1.85(RV1106) - O
IRE EED
BT EMsife sDEIR
@ useigs -
O =0iEE v EEE v
£= it)

1 [|[Hesalsadnin

T SEERE

O=:EigsE =
| |[emee.
| || =t AR

6.1.4 Linux Development Tool upgrade_tool

The Linux tool is similar to the Android tool and has similar functions.

Tool Interface:

af://n1679
af://n1684

[/home/1dq] upgrade_tool -h

ListDevi
SwitchbDev
UpgradeFirmware:
uUpgradelL oader :
DownloadImage:

Tool Usage

v

[

Upgrade Command
cD

LD

sD
<Firmware> [-noreset]
<Loader> [-noreset]
<-pl-b|-k|-s|-r|-m]-u|-t|-re image=
<L paders

pownloadBoot :
x <Loader [firmware> [DirectLBA]

-Professional Command

TD

RD [subcode]

RP [pipe]

RCB

RID

ResetPipe:
ReadCapability:
ReadrlashiD:
rReadrFlashInfo:
ReadChipInfo:
Reads <BeginSec> <SectorLen> [-decode] [File]
WriteSec =3
: orLern> [File]
WritelLBA:
EraseBlo BlokcLen> [--Force]

6.1.5 Linux Development Tool SocToolKit

The Linux tool is similar to the Android tool and has similar functions.

6.1.6 Mass Production Tool

The mass production tool supports one-click multi-async firmware burning. After running the upgrade function,

each time a device is connected, the tool will start upgrading the firmware independently for multiple machines.

Tool Interface:

af://n1688
af://n1690

n FactoryTool(Release Vesion) v1.61

-\’.! Firavare Exit

Firmware| | Firmware Ver:

Loader Ver:

Beno | | chip:

1D Fail Device List Device Type 1D Upgrade Prompt 1D Success
= @ My Computer ~
E-%5 RootHub20
-+ Port[l]
-+ Port[2]
-+ Port[3]
-+ Port[4]
-+ Pori[5]
-+ Pori[6]
-+ Pori[7]
.o Port[8]
5% Port[g] Hub 9
& Port[l]
iaGs Port[2]
M8 portf3] Hub 29
oG Port[d]
-+ Port[10]
-+ Pori11]
-+ Pori[12] v

Wizard:

1.First use, Tag USE port:plug device in, record ID showing on the tool.Tag all. Success: 00000
2. After pluging device in, connect another until dewice iz doing upgrade.

_ _ _ . Fail: 00000
3d.1led is green,plug dewice in;led iz red, do not plug dewvice in or out.

4. ifter finishing upgrade, green to show success, red to show failure. Total: 00000

B.Ta show successzful device on the right of grid and failed dewice on the left of grid.

There is a config.ini configuration file in the tool directory, with detailed comments for each option. Here are

some commonly used configurations:

1. FW_BURN_EFUSE Burns the firmware while burning the efuse, enabling secure boot.
AP uses OTP, or if the PCB does not reserve an EFUSE power control circuit, this feature cannot be turned
on.

2. NOTRESET_AFTER _UPGRADE Does not restart the machine after upgrading.
Some products require that the first boot cannot be interrupted, so it needs to be set up not to restart after
upgrading the firmware.

3. FORCE_DATA_ BAND Modifies the USB single packet transmission data size. If there is a usb timeout
error when burning SPI NOR, you can reduce this value.

4. SN_DLL_ON Turns on the function of burning SN during the firmware upgrade process.

5. RB_CHECK OFF Whether the firmware upgrade needs to read back and call

6.2 SD Card Upgrade

Use the SD_Firmware Tool to burn the update.img firmware into the SD card, and insert the prepared upgrade
SD (TF) card into the machine's SD card slot. When powered on, it will start from the SD card to recovery and

upgrade the firmware to the internal storage of the machine.

Tool interface:

af://n1706

f BEERIEFREETE v1.59

B PRI E SDBoot:2.12 |
MMC Card 14.7G w

B AR
[i FHR (] ecEauliz, [Isn5zh

H= 4 PHEFHRE 28 |
| | REE ~

B AR Den oA (A% |
| || #fEDeno .
LEEEEEEEEEEEEEEEOEEE | s |

N
S

Tool function description:

1. PCBA test: Check this option to perform PCBA testing before upgrading the firmware.
2. SD boot: Create a boot card, with the complete firmware stored in the SD card.

3. Recover disk: Delete the boot code from the boot card and restore it to a normal SD card.

6.3 UART Upgrade

Specific chips support upgrading images through UART interfaces, as well as Linux, Windows, and production

tools.

P BETETEE v1.85(RV1106) - o x
s B0
B rEE Edsife sDEIR

® usBigE -
O =Oigs = .
EF ik g

e S0ThE

O=ZiRE hE
| | mzze.
| || = R

af://n1718

6.4 EMMC Image Burning

Use SpilmageTools to convert update.img into an image for the programmer.

Tool interface:

#= SpilmageTools v1.41

IRHEE

220 s N

[~ SPI Flash P°(QifiZs: (& 0x0 (" OxFF

Tool configuration instructions:

1. Blank fill: EMMC selects 0x0
2. SPI FLASH: Do not check

3. Data area reservation: Need to check

If using GPT partitioned firmware, when creating the image, the parameter needs to be configured with the

DISKSIZE parameter, refer to the document "Rockchip Mass Production Burning Guide v1.2" for details.
Programmer configuration instructions:

1. Burn data.bin to the user partition of EMMC

2. If it is RK3188/RKPX3, also burn boot0.bin to the bootl and boot2 partitions of EMMC
3. Programmer configuration skips all data that is set to 0 and does not burn it

4. CSD values are all used with default values and cannot be modified

5. EXT CSD configuration:

o For items not listed, use default values and cannot be modified.
o For RK3188/RKPX3:
EXT _CSD[167] = 0x1f (if EMMC chip supports, need to configure)
EXT _CSD[162] = 0x1 (enable reset pin function)
EXT _CSD[177] = 0x0 (default value)
EXT CSD[178] = 0x0 (default value)
EXT_CSD[179] = 0x8 (0x8, boot from boot1)
o For other APs:
EXT_CSD[167] = 0x1f (if EMMC chip supports, need to configure)
EXT _CSDJ[162] = 0x0 (default value)
EXT_CSD[177] = 0x0 (default value)
EXT CSD[178] = 0x0 (default value)
EXT_CSD[179] = 0x0 (default value)

6.5 SLC Nand Image Burning

Refer to the corresponding chapter of

"Rockchip Developer Guide Linux Nand Flash Open_Source Solution CN.pdf".

af://n1721
af://n1753

6.6 SPI Nand Image Burning

Refer to the corresponding chapter of
"Rockchip Developer Guide Linux Nand Flash Open_Source Solution CN.pdf".

6.7 SPI Nor Image Burning

Refer to the corresponding chapter of

"Rockchip Developer Guide Linux Nand Flash Open_Source Solution CN.pdf".

af://n1755
af://n1757

7. Storage Software Driver Configuration

Abbreviation

eMMC scheme

rknand scheme

rkflash scheme

RK mainly provides the following storage solutions:

Mainly supported
flash types

eMMC

MLC. TLC Nand

SLC Nand. SPI
Nand

Mainly supported
file systems

FAT. EXT.
SquashFS

FAT. EXT.
SquashFS

FAT. EXT.
SquashFS

Supported burning methods

USB upgrade. SD card
upgrade

USB upgrade. SD card
upgrade

USB upgrade. SD card
upgrade

rkflash scheme (SPI USB upgrade. SD card
SPI Nor SquashFS. JFFS2

Nor support) upgrade. Burner upgrade

SLC Nand open USB upgrade. SD card
SLC Nand UBIFS

source scheme upgrade. Burner upgrade

SPI Nand open USB upgrade. SD card
SPI Nand UBIFS

source scheme upgrade. Burner upgrade

SPI Nor open source USB upgrade. SD card
SPI Nor SquashFS. JFFS2

scheme upgrade. Burner upgrade

7.1 u-boot

For detailed information, please refer to Chapter CHOS - Storage Driver Module of "Rockchip-Developer-Guide-
UBoot-nextdev-CN".

7.2 kernel

Due to the incomplete support for open source SPI Flash in kernel 4.4 and older versions, the open source flash

solution in the kernel is different from the implementation under uboot:

af://n1760
af://n1803
af://n1805

Mainly . Registered
Main control Flash
Abbreviation supported i device
driver framework
flash types types
MLC TLC . . block
rknand scheme drivers/rkand drivers/rkand X
Nand device
SLC Nand.)) block
rkflash scheme drivers/rkflash drivers/rkflash .
SPI Nand device
rkflash scheme
. . block or
(SPI Nor SPI Nor drivers/rkflash drivers/rkflash .
mtd device
support)
SLC Nand . .
drivers/mtd/ drivers/mtd/
open source SLC Nand mtd
nand/raw nand/raw
scheme
SPI Nand open . .
SPI Nand drivers/rkflash drivers/rkflash mtd
source scheme
mtd or mtd
SPI Nor open . .
SPI Nor drivers/rkflash drivers/rkflash block
source scheme .
device

7.2.1 MLC Nand. TLC Nand rknand scheme

Configuration:
CONFIG_RK_NAND=y
Driver files:

./drivers/rk_nand/

7.2.2 SLC Nand. SPI Nand /2 SPI Nor rkflash scheme

Mainly
supported
file systems

FAT.
EXT.
SquashFS

FAT.
EXT.
SquashFS

SquashFS.
JFFS2

UBIFS

UBIFS

SquashFS.
JFFS2

Supported
burning

methods

USB
upgrade. SD
card upgrade

USB
upgrade. SD
card upgrade

USB
upgrade. SD
card
upgrade.
Burner

upgrade

USB
upgrade. SD
card
upgrade.
Burner

upgrade

USB
upgrade. SD
card
upgrade.
Burner

upgrade

USB
upgrade. SD
card
upgrade.
Burner

upgrade

Refer to the "Rockchip Developer Guide Linux Flash Open_Source Solution EN.md" document.

7.2.3 SLC Nand. SPI Nand /% SPI Nor MTD open source scheme

af://n1864
af://n1869
af://n1871

Refer to the "Rockchip Developer Guide Linux Flash Open_Source Solution EN.md" document.

7.3 Configuration of iomux/clk for storage devices at different stages

and scanning order

Stage

maskrom

spl

uboot

kernel

Storage Devices

Scan nor. spinand. EMMC. sdcard

Priorityl (supports atags scheme):
maskrom detected devices
Priority2: Scan nor. spinand.
EMMC. sdcard

Priorityl (default not enabled):
CONFIG_ROCKCHIP_BOOTDEV
specifies target storage

Priority2 (supports atags scheme):
maskrom detected devices
Priority3: Scan nor. spinand.
EMMC. sdcard

Scan nor. spinand. EMMC. sdcard

Configuration of

iomux

Configured (only for
devices detected

successfully)

1. Not configured
(default)

2. Supplementary
configuration

needed for iommux

Not configured

7.4 Expansion of dual storage solution

Refer to the "Rockchip_Developer Guide Dual Storage CN.md" document.

Configuration
of clock

Configured

Configured
(driver-

configured)

Configured
(driver-

configured)

Driver

Configuration

dts/defconfig
configured
based on

specific sdk

dts/defconfig
configured
based on

specific sdk

dts/defconfig
configured
based on

specific sdk

af://n1873
af://n1905

8. Open source OTA solution

Refer to the "Rockchip Developer Guide Linux Flash Open Source Solution EN.md" document.

af://n1908

9. File system support

9.1 UBIFS file system

Refer to the "Rockchip Developer Guide Linux Flash Open_Source Solution EN.md" document.

9.2 JFFS2 file system support

Refer to the "Rockchip Developer Guide Linux Flash Open Source Solution EN.md" document.

af://n1911
af://n1912
af://n1914

10. Vendor Storage usage instructions

Vendor Storage is designed to store some non-secure small data, such as SN. MAC, etc. For detailed

information, refer to the following documents:

e EMMC: "RK Vendor Storage Application Note"
¢ Flash support for the rkflash solution: "RK Vendor Storage Application Note"
¢ Flash support for the MTD solution:

"Rockchip Developer Guide Linux Flash Open Source Solution EN.pdf"

10.1 Vendor Storage ID

Vendor Storage is accessed by ID (16 bits), and it does not need to be concerned about where the data is stored in
the partition. It can be simply considered that the ID is an index or a filename. IDs 0-31 are reserved for general

SDK functions, and customers should use 32-65535 when customizing storage.

The following table defines the function of each ID:

af://n1917
af://n1926

ID Function

0 reserved
1 SN
2 WIFI MAC
3 LAN MAC
4 BT MAC
5 HDCP 1.4 HDMI
6 HDCP 1.4 DP
7 HDCP 2.X
8 DRM KEY
9 PLAYREADY Cert
10 ATTENTION KEY
1 PLAYREADY ROOT KEY 0
12 PLAYREADY ROOT KEY 1
13 SENSOR CALIBRATION
14 RK reserved for future use
15 IMEI
16 LAN_RGMII_DL
17-31 RK reserved for future use
32 - 65535 Vendor use
10.2 Vendor Storage API

10.2.1 Uboot API

int vendor storage init (void)
function: Initialize vendor storage
input: none
return: 0, Initialize success

other, Initialize fail

int vendor storage read (u32 id, void *pbuf, u32 size)
function: read vendor storage by id
input: id, item id; pbuf, data buffer; size, number byte to read.
return: -1, read fail.

other: number byte have read.

af://n1990
af://n1991

int rk vendor write (u32 id,
function:
id,

return: O:

input: item id; pbuf:
write success

other write fail

10.2.2 kernel API

void *pbuf,
write vendor storage by id

data buffer;

u32 size)

size: number bytes to write.

Source code : kernel/drivers/soc/rockchip/rk _vendor storage.c

Include header: include/linux/soc/rockchip/tk_vendor storage.h

int vendor storage init (void)

function: Initialize vendor storage
input: none
return: 0, Initialize success

other, Initialize fail

int vendor storage read (u32 id, void *pbuf, u32 size)

function:
id,
-1,

other:

read vendor storage by id

input: item id; pbuf,

return: read fail.

int rk vendor write (u32 id, void *pbuf,

function:
id,

input: item id; pbuf:

return: 0: write success

other write fail

10.2.3 User API

data buffer;

number byte have read.

write vendor storage by id
data buffer;

size, number byte to read.

u32 size)

size: number bytes to write.

User applications access vendor storage via [OCTL interface, here are reference code for reading and writing.

#include <fcntl.h>

#include <sys/ioctl.h>

#define
#define
#define
#define
#define
#define
#define

VENDOR_REQ TAG
VENDOR_READ IO

0x56524551

_IoW ('v', 0x01,
VENDOR WRITE IO IOW 0x02,
VENDOR_SN_ID 1
VENDOR_WIFI MAC ID 2
VENDOR LAN MAC ID 3
VENDOR_BLUETOOTH ID 4

('v',

struct rk vendor req {
u32 tag;
uleo id;
ulo len;

u8 data [1];

unsigned int)

unsigned int)

af://n1995
af://n2001

static void print hex data (uint8 *s, uint32 *buf, uint32 len)

{

uint32 i, j, count;

ERROR ("% s", s);
for (i = 0; i < len; i += 4)

ERROR ("% x $ x $ x % x", buf [i], buf [i + 1], buf [i + 2], buf [i +

int vendor storage read test (void)
{
u32 i;
int ret, sys fd;
u8 p buf [2048];/* malloc req buffer or used extern buffer */

struct rk vendor req *req;

req = (struct rk vendor req *) p buf;
sys_fd = open ("/dev/vendor storage", O RDWR, O0);
if (sys_fd < 0){

ERROR ("vendor storage open fail\n");

return -1;

reg->tag = VENDOR REQ TAG;
reg->id = VENDOR SN ID;
reg->len = 512; /* max read length to read*/
ret = ioctl (sys fd, VENDOR READ IO, req);
print hex data ("vendor read:", (uint32*) req, reqg->len + 8);
/* return reg->len is the real data length stored in the NV-storage */
if (ret) {
ERROR ("vendor read error\n");

return -1;

return 0;

int vendor storage write test (void)

uint32 1i;
int ret, sys fd;
uint8 p buf [2048]; /* malloc req buffer or used extern buffer */

struct rk vendor req *req;

req = (struct rk vendor req *) p_buf;
sys_fd = open ("/dev/vendor storage", O RDWR, 0);
if (sys fd < 0){

ERROR ("vendor storage open fail\n");

return -1;

req->tag = VENDOR REQ TAG;
req->id = VENDOR SN ID;
reg->len = 32; /* data len */
for (i = 0; 1 < 32; i++)

reg->data [i] = 1i;

print hex data ("vendor write:", (uint32*) req, reg->len + 8);
ret = ioctl (sys fd, VENDOR WRITE IO, req);
if (ret) {

ERROR ("vendor write error\n");

return -1;

return 0;

10.2.4 PC Tool API

PC tool has provided reference source code developed by C++, here are two API interfaces for reading and

writing.

int RK ReadProvisioningData (int id, (PBYTE) pbuf, int size)
function: read vendor storage by id
input: id, item id; pbuf, data buffer; size, number byte to read.
return: 0, read data okay.

other: read fail.

int RK WriteProvisioningData (int id, (PBYTE) pbuf, int size)
function: write vendor storage by id
input: id, item id; pbuf: data buffer; size: number bytes to write.
return: 0: write success

other : write fail

10.3 Usage Notes

10.3.1 Maximum Data Size for a Single Vendor Partition Item

The Nand and EMMC Vendor partitions combined have a total of 64KB, while the Nor partition has a size of
4KB. These are stored in the vendor structure:

struct vendor info {
struct vendor hdr *hdr; //32byte
struct vendor item *item; //8byte * item
u8 *data; //size = sum (item 1, item 2, ... item n)
u32 *hash;
u32 *version2;

}i

So if you only write one item:

1. The data size for a single Nand and EMMC item is 65488 bytes (64 * 1024 - 32 - 8 -4 -4)
2. The data size for a single Nor item is 4048 bytes (4 * 1024 - 32 -8 -4 -4)

10.3.2 Dual Backup Support for VENDOR Data

af://n2004
af://n2008
af://n2009
af://n2018

VENDOR data is backed up by default in two copies, so:

e Ifpower is lost while writing the first copy, the old data will be used (unavoidable)

e If power is lost while writing the second copy, the first copy will be used

11. Appendix References

[1] UBI FAQ: http://www.linux-mtd.infradead.org/faq/ubi.html

[2] UBIFS FAQ: http://www.linux-mtd.infradead.org/faq/ubifs.html#L._lebsz_mismatch

[3] MTD FAQ: http://www.linux-mtd.infradead.org/faq/general.html

af://n2026
http://www.linux-mtd.infradead.org/faq/ubi.html
http://www.linux-mtd.infradead.org/faq/ubifs.html#L_lebsz_mismatch
http://www.linux-mtd.infradead.org/faq/general.html

	Rockchip Application Notes Storage
	Naming Conventions
	Flash Introduction
	Flash Storage Types
	Flash Selection
	Simple Comparison of Flash
	Common Flash Packages
	Flash Prices
	Basic Principles of Nand
	Basic Principles of Nor
	Nand Storage ECC Dependency
	Original Bad Blocks in Nand
	Lifespan and ECC Errors in Nand
	Technical Key Points of Nand FTL
	Evolution of RK Nand Storage Solutions (including PP Nand and SPI Nand)
	Flash Host Controller
	SFC Controller
	FSPI Controller
	NandC Controller
	General SPI Interface

	SPI Flash Output Latency Statistics

	Particle Verification
	Overview of SLC Nand/SPI Nand/SPI Nor Verification Content
	RK Flash Sample Submission Requirements
	Verification-related Information
	Verification Process
	Verification Mailing Address
	Customer Patches Distribution

	Device Bootup Process
	RK SOC BOOTROM Boot Support Status
	RK SOC Storage Interface Specifications
	BOOTROM Process
	Pre Loader Process
	Miniloader
	u-boot spl
	loader

	Partition and Data Storage
	Data Storage
	Introduction to Address Conversion
	Partition and Data Logical Address Storage

	Partition Table Partition
	MTD Partition
	GPT
	RK partition
	ENV Partition

	Partition Table Modification Tool
	Partition Write Protection Settings
	Block Device Partition Write Protection Settings
	MTD Device Partition Write Protection Settings

	Firmware Burning
	USB Upgrade
	Flowchart
	WIN Development Tool RKDevTool
	WIN Development Tool SocToolKit
	Linux Development Tool upgrade_tool
	Linux Development Tool SocToolKit
	Mass Production Tool

	SD Card Upgrade
	UART Upgrade
	EMMC Image Burning
	SLC Nand Image Burning
	SPI Nand Image Burning
	SPI Nor Image Burning

	Storage Software Driver Configuration
	u-boot
	kernel
	MLC Nand、TLC Nand rknand scheme
	SLC Nand、SPI Nand 及 SPI Nor rkflash scheme
	SLC Nand、SPI Nand 及 SPI Nor MTD open source scheme

	Configuration of iomux/clk for storage devices at different stages and scanning order
	Expansion of dual storage solution

	Open source OTA solution
	File system support
	UBIFS file system
	JFFS2 file system support

	Vendor Storage usage instructions
	Vendor Storage ID
	Vendor Storage API
	Uboot API
	kernel API
	User API
	PC Tool API

	Usage Notes
	Maximum Data Size for a Single Vendor Partition Item
	Dual Backup Support for VENDOR Data

	Appendix References

