Rockchip TEE SDK Developer Guide

ID: RK-KF-YF-851

Release Version: V1.12.0

Release Date: 2024-07-30

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface
Overview

This document mainly introduces Rockchip TEE firmware description, TEE environment construction, CA/TA

development test, TA debugging method, TA signature method and precautions.
Intended Audience

This document is mainly applicable to the following engineers:

Technical Support Engineer

Software Development Engineer

Revision History

Version

V1.00

VI1.10

V1.20

V1.30

V1.40

V1.50

V1.60

V1.61

V1.70

V1.71

V1.72

V1.73

V1.74

V1.75

V1.76

VI1.77

VI1.78

VL1.79

V1.80

Author

77)

77)

hisping

hisping

hisping

hisping

hisping

hisping

hisping

WXB

hisping

hisping

WXB

hisping

hisping

hisping

hisping

77)

WXB

Date

2018-
426

2019-
3-18

2019-
6-4

2019-

2019-
7-11

2019-
8-8

2021-
1-27

2021-

2021-
5-13

2021-
5-14

2021-
6-4

2021-
6-4

2021-
6-17

2021-
7-5

2021-

2021-
9-3

2021-
9-6

2021-
9-10

2021-
9-10

Change Description

Initial Version

Add description of TEE in U-Boot; Distinguishing between V1

and V2 versions

Add description of secure storage

Modify description of secure storage

Add description of parameter.txt; Add description of kernel node
which relate to TEE

Add description of error when compile rk_tee user

Add description of changes to optee v1 kernel driver

Add description of unsupported error for rkfs

Add description of SECSTOR TA

Upgrade the CA/TA test program developed by RK, Update the

description of the document

Modify description of TEE Macro in U-Boot

Add description of ENCRYPT TA

Add description of anti rollback for REE FS TA

Add description of TA debug method

Add description of TA view function call stack method

Revise TA signature chapter

Add description of secure storage performance test

Optimize partial format

Add description of TA API

Version Author Date Change Description

2021-
V1.81 hisping 10-12 Modify description of secure storage performance test
2021- . .
V1.82 WXB L0-15 Add more API in TA API section
2021- . .
V1.83 77) Optimize partial format
10-18
2021- Add description of strong and weak security level , Update CA/TA
V1.84 WXB .
11-22 description
2021- Add OTP description chapter, Update OTP API, Adjust CA/TA
V1.85 WXB L
11-26 description
2021- . .
V1.86 WXB 1130 Add reading guide chapter
L 2022- .
V1.87 hisping Add rk_tee_service chapter
06-22
2023 Supplement the details of each chapter, Add Step By Step chapter,
V1.9.0 hisping 0529 Update Memory description, Update Secure Storage, Update OTP
description.
2023- L .
V1.10.0 77) Optimize partial format
06-02
Add description of U-Boot Run User TA,
2024 Add description of print secure memory,
VI1.11.0 hisping 01.23 Add description of Test xtest
Add description of HW Crypto API,
Add description of Derive Key API
2024- Supplement the details of Encrypt TA,

V1.12.0 hisping L .
07-30 Add description of soft ta encryption key.

Contents

Rockchip TEE SDK Developer Guide
1. Reading Guide
2. Introduction to TrustZone
2.1 What is TrustZone
2.2 Architecture
2.2.1 Hardware architecture
2.2.2 Software architecture
2.2.3 TrustZone and TEE
3. TEE Environment
3.1 OP-TEE Version Description
3.2 Parameter.txt
3.3 TEE firmware
3.4 TEE driver in U-Boot
3.4.1 Macro Definition
3.4.2 Shared Memory
3.4.3 Secure Storage Test
3.43.1 Test method
3.4.3.2 Troubleshooting
3.4.4 U-Boot Run User TA
3.5 TEE driver in kernel
3.5.1 OP-TEE VI
3.5.2 OP-TEE V2
3.5.3 Confirm TEE drive is enabled
3.6 TEE Library
4. CA/TA Development And Test
4.1 Environment
4.2 CA/TA demo
4.3 Android
4.3.1 Directory Introduction
4.3.2 Compile
4.3.3 Run
4.3.4 Step By Step
4.3.5 Develop CA/TA
4.4 Linux
4.4.1 Directory Introduction
4.4.2 Compile
4.4.3 Run
4.4.4 Step By Step
4.4.5 Develop CA/TA
4.5 rk _tee service
4.5.1 Introduction
4.5.2 Component
4.5.3 Demo
4.6 Test xtest
5. TA Signature
5.1 Principle
5.2 Replace the public key
6. Built-in TA into secure storage
6.1 Principle
6.2 Reference implementation
7. Encrypt TA
7.1 Method of encrypting TA
7.2 Burn TA encryption key
7.3 Decrypt and run the TA
7.4 Soft TA encryption key

8. REE FS TA anti-rollback
8.1 TA anti-rollback usage
9. TA debugging methods
9.1 OP-TEE vl platforms
9.2 OP-TEE v2 platforms
9.3 Call stack
10. Memory description
10.1 OP-TEE VI
10.2 OP-TEE V2
11. Secure Storage
11.1 Partition
11.2 Performance testing
12. Solution of optional strong or weak security levels
12.1 Scope
12.2 Notes
12.3 Solution description
13. OTP description
14. TA API description
14.1 Overview
142 API return value
14.3 API description
14.3.1 Crypto APL
14.3.1.1 rk_crypto_malloc_ctx
14.3.1.2 rk crypto free ctx
14.3.1.3 rk hash crypto
14.3.1.4 rk_hash begin
14.3.1.5 rk_hash update
14.3.1.6 rk hash finish
14.3.1.7 rk cipher crypto
14.3.1.8 rk_set padding
14.3.1.9 1k cipher begin
14.3.1.10 rk cipher update
14.3.1.11 1k cipher finish
14.3.1.12 rk ae begin
14.3.1.13 rk ae update
14.3.1.14 rk ae_finish
14.3.1.15 rk gen rsa key
14.3.1.16 rk rsa crypto
14.3.1.17 rk rsa_sign
14.3.1.18 rk set sign mode
14.3.1.19 rk rsa_begin
14.3.1.20 rk rsa_finish
14.3.1.21 rk gen ec key
14.3.1.22 rk ecdh genkey
14.3.1.23 rk ecdsa_sign
14.3.1.24 rk ecdsa begin
14.3.1.25 rk ecdsa_finish
14.3.1.26 rk sm2 pke
14.3.1.27 rk sm2 dsa sm3
14.3.1.28 rk sm2 kep genkey
14.3.1.29 rk mac_crypto
14.3.1.30 rk mac_begin
14.3.1.31 rk mac_update
14.3.1.32 rk mac_finish
14.3.1.33 rk hkdf genkey
14.3.1.34 rk pkes5 pbkdf2 hmac
14.3.2 HW Crypto API
14.3.2.1 rk user _ta cipher

14.3.3 TRNG API

14.3.3.1 rk get trng
14.3.4 Derive Key API

14.3.4.1 rk derive ta unique key
14.3.5 OTP API

14.3.5.1 rk otp size

14.3.5.2 rk otp read

14.3.5.3 rk otp write

15. Reference

1. Reading Guide

The following steps describes the document structure and how to use TEE on Rockchip SoCs. It can be used as a

guide for developers.

1. Understand the basics of TEE, See Introduction to TrustZone section.

2. Confirm requirements and config functions

o Confirm OP-TEE version, See OP-TEE Version Description section.

o Strong and weak security level configuration, See Solution of optional strong or weak security levels

section.

o

TA signature key, See TA Signature section.

o

Additional protection mechanism of TA, See Built-in TA into secure storage. Encrypt TA. REE FS

TA anti-rollback sections.
o Secure storage and performance test, See secure storage section.
o OTP description, See OTP description section.

3. TEE environment

o

Configure secure storage file system, See OTP description and Parameter.txt section.

[o]

Enable TEE firmware, See TEE firmware section.
Enable TEE for U-Boot, See TEE driver in U-Boot section.
Enable TEE for kernel, See TEE driver in kernel section.

4. Test CA/TA

o

o

o Confirm the environment and project directory, See TEE library. Environment. Android. Linux

sections.

o Understand the demo provided by RK and compile it, See CA/TA demo. Android. Linux sections.

o Install library and CA TA demo, See Android. Linux sections.
o Test demo, See Android. Linux sections.
5. Develop CA/TA

o Understand TA debugging methods, See TA debugging methods section.
o Refer to demo and TA API to develop CA/TA, See CA/TA demo~ TA API description sections.

af://n188

2. Introduction to TrustZone

2.1 What is TrustZone

ARM TrustZone technology is a system wide security method for a large number of applications on high-
performance computing platforms, including secure payment, digital rights management (DRM), enterprise

services and web-based services.

TrustZone Technology and Cortex ™- A Processor is tightly integrated and expanded in the system through
AMBA-AXI bus and specific TrustZone system IP block. This system approach means that peripherals such as

secure memory, encryption blocks, keyboards, and screens can be protected from software attacks.

The devices developed according to the recommendations of the TrustZone Ready Program and utilizing the
TrustZone technology provide a platform that can support a fully trusted execution environment (TEE) as well as

security aware applications and security services.

The latest devices such as smart phones and tablets provide consumers with a high-value experience based on an
extended service set. Mobile devices have developed into an open software platform that can download various
large-scale applications from the Internet. These applications are usually verified by the device OEM to ensure
quality, but not all functions can be tested, and attackers are constantly creating more and more malicious code

targeting such devices.

At the same time, the demand for mobile devices to handle important services is increasing. From being able to
pay, download and watch the latest Hollywood blockbusters in a specific period of time to being able to pay bills
and manage bank accounts remotely through mobile phones, all these indicate that new business models have

begun to emerge.

These development trends have made mobile phones likely to become the next software attack target of
malware, Trojan horses, rootkits and other viruses. However, by applying advanced security technology based on
ARM TrustZone technology and integrating SecurCore ™ Anti tamper elements can be used to develop devices

that can provide an open operating environment with rich functions and powerful security solutions.

The trusted application adopts the SoC (running trusted execution environment) based on TrustZone technology,
which is separated from the main OS to prevent software/malware attacks. TrustZone can be switched to safe
mode to provide isolation supported by hardware. Trusted applications are usually containable, such as allowing
trusted applications from different payment companies to coexist on one device. The processor supports ARM
TrustZone technology, which is the basic function of all Cortex - A processors, and is introduced through the
security extension of ARM architecture. These extensions provide a consistent programmer model across

vendors, platforms, and applications, while providing a real hardware supported security environment.

2.2 Architecture

2.2.1 Hardware architecture

The TrustZone hardware architecture is designed to provide a security framework that enables devices to
withstand the many specific threats they will encounter. TrustZone technology provides an infrastructure that
allows SoC designers to choose from a large number of components that can implement specific functions in a

secure environment, without providing a fixed and unchanging security solution.

af://n238
af://n239
af://n247
af://n248

The main security goal of the architecture is to support the construction of a programmable environment to
prevent specific attacks on the confidentiality and integrity of assets. Platforms with these features can be used to
build a wide range of security solutions, which are time-consuming and laborious to build using traditional

methods.

Monitor Mode

. Normal World E E Secure World |
i NormalWorld | ! Secure World E
: User Mode : : User Mode :
‘| NormalWorld |! SecureWorld ||
| Privileged Modes | | Privileged Modes |

System security can be ensured by isolating all SoC hardware and software resources so that they are located in
two areas (a secure area for security subsystems and a normal area for storing all other content). AMBA3 AXI
supporting TrustZone ™ | The hardware logic in the bus construction can ensure that normal area components
cannot access security area resources, thus building a strong boundary between the two areas. The design of
placing sensitive resources in a secure area, as well as running software reliably in a secure processor core,
ensures that assets can withstand numerous potential attacks, including those that are often difficult to protect
(for example, entering passwords using a keyboard or touch screen). By isolating security sensitive peripherals
in the hardware, designers can limit the number of subsystems that need to pass the security assessment, thus

saving costs when submitting security certification equipment.

The second aspect of the TrustZone hardware architecture is the extension implemented in some ARM processor
cores. With these additional extensions, a single physical processor core can safely and effectively execute code
from both the normal area and the security area in a time slice manner. In this way, a dedicated security
processor core is not required, which saves chip area and energy, and allows high-performance security software

to run together with the general regional operating environment.

After changing the currently running virtual processor, the two virtual processors perform context switching

through the new processor mode (called monitor mode).

The mechanisms used by the physical processor to enter the monitor mode from the normal area are closely
controlled, and these mechanisms are always regarded as exceptions of the monitor mode software. The items to
be monitored can be triggered by the software executing special instructions (security monitor call (SMC)
instructions), or by a subset of the hardware exception mechanism. IRQ, FIQ, external data abort, and external

prefetch abort exceptions can be configured to switch the processor to monitor mode.

The software executed in the monitor mode is implementation defined, but it usually saves the state of the
current area and restores the state of the area location to which it will switch. It then performs the operation
returned from the exception to restart the processing in the restored area. The last aspect of the TrustZone
hardware architecture is the security aware debugging infrastructure, which can control the access to security

zone debugging without weakening the debugging visualization of common zones.

2.2.2 Software architecture

af://n257

Normal World ¥ Secure World ;
E Applications | | I 2 2 2 ||
! Requiring | | g% gg Eg :
' Secure OS ||| 2% o 3L 1
: Open S - : ! (o= E o ko :
1 | Applications SRR ' § < < < :
: TrustZone APl | : SR :
' TZ Driver | ! :
‘| Embedded OS ‘1| Monitor :
feeeseneaTeTeTO e e e— 3 !

Cortex-A / ARM1176 Precessor with ARM TrustZone Technelogy

=
Secure Element
(SecurCore)

Implementing security zones in SoC hardware requires that certain security software be run in them and that

sensitive assets stored in them be utilized.

There may be many software architectures that can be implemented by the security zone software stack on the
processor core that supports TrustZone. The most advanced software architecture is the dedicated security zone
operating system; The simplest is the synchronized code base placed in the security zone. There are many

intermediate options between these two extreme architectures.

A dedicated security kernel can be a complex but powerful design. It can simulate the concurrent execution of
multiple independent security zone applications, the runtime download of new security applications, and security

zone tasks that are completely independent of the general zone environment.

These designs are very similar to the software stack you will see in the SoC, which uses two separate physical
processors in an asymmetric multiprocessing (AMP) configuration. The software running on each virtual
processor is an independent operating system, and each region uses hardware interrupts to preempt the currently

running region and obtain processor time.

A tightly integrated design using communication protocols that associate secure area tasks with normal area
threats that request them can provide many advantages of symmetric multiprocessing (SMP) designs. For
example, in these designs, a security zone application can inherit the priority of common zone tasks it supports.

This will result in some form of soft real-time response to the media application.

Security extension is an open component of ARM architecture, so any developer can create a customized

security zone software environment to meet its requirements.

2.2.3 TrustZone and TEE

Applications such as payment, online banking, content protection, and enterprise authentication can improve
their integrity, functionality, and user experience by leveraging three key elements provided by TrustZone

technology enhanced devices:

1. Software secure execution environment to prevent malware attacks from rich operating systems
2. The hardware trust root can check the integrity of data and applications in the rich operation field to ensure
that the security environment is not damaged

3. Access security peripherals on demand, such as memory, keyboard/touch screen, and even monitor

af://n265

The device based on ARM TrustZone technology is combined with open APIs to provide a trusted execution
environment (TEE). Developers need a new type of software to achieve its functions and consistency: this
software is a trusted application. A typical trusted application can contain part of the code in both the normal
area and the security area, for example, handling critical storage and manipulation. TEE also provides isolation

from other trusted applications, enabling multiple trusted services to coexist.

The standardization of TEE API (managed by GlobalPlatform) will enable service providers, operators and
OEMs to market interoperable trusted applications and services.

ARM TrustZone technology does not require separate security hardware to verify the integrity of devices or

users. It does this by providing a true hardware trust root in the main handset chipset.

In order to ensure the integrity of the application, TrustZone also provides a secure execution environment (i.e.,
trust execution environment (TEE)), in which only trusted applications can run, so as to prevent attacks in the

form of hackers/viruses/malware.

The TrustZone hardware provides isolation between TEE and software attack media. Hardware isolation can be

extended to protect data input and output from physical peripherals (including keyboard/touch screen, etc.).

With these key functions, the chipset using TrustZone technology provides many opportunities to redefine the
services that users can access (more and better services), how to access services (faster and easier), and where to

access services (anytime, anywhere).

On most Android devices, the Android Boot loader does not verify the authenticity of the device kernel. Users
who want to further control their devices may install the cracked Android kernel to root their devices. The
cracked kernel allows super users to access all data files, applications and resources. Once the kernel is broken,

the service will be rejected. If the kernel contains malware, the security of enterprise data will be compromised.

Secure Boot can effectively prevent the above problems. Secure Boot is a security mechanism that can prevent
unauthorized boot loaders and kernels from being loaded during startup. Firmware images (such as operating
systems and system components) that are encrypted and signed by a trusted, known authority are considered
authorized firmware. The security boot component can form the first line of defense to prevent malicious

software from attacking the device.

3. TEE Environment

3.1 OP-TEE Version Description

Android 7.1 and higher SDKs in Rockchip platform support TEE environment by default, TEE environment is

not supported by default in versions earlier than Android 7.1

Linux SDK does not enable TEE environment by default, But you can refer to the following chapters to

manually configure the TEE environment.

The TEE solution on Rockchip platform is OP-TEE, and the TEE API conforms to the GlobalPlatform standard.
At present, there are two versions of OP-TEE running on the rockchip platform, OP-TEE V1 and OP-TEE V2.
1.0P-TEE V1: RK312x. RK322x. RK3288. RK3328. RK322xh. RK3368. RK3399. RK3399Pro

2.0P-TEE V2: RK3326/PX30. RK3358. RK3308. RK1808. RV1109/RV1126. RK3566/RK3568-
RK3588. RK3528. RK3562. RV1106 and subsequent new platforms

af://n282
af://n283

TEE library files, TA files, and Secure OS firmware is different between the two versions, Select TEE

components according to the specific platform.

Platforms that are not listed in the OP-TEE V1 list can be considered platforms that adopt OP-TEE V2.

3.2 Parameter.txt

The Parameter.txt file records the location and size of each image and partition, Rockchip's OP-TEE currently
supports both security partition and rpmb secure storage file systems, The specific file system used is
determined by setting the storagelD parameter in TA code, TA cannot use security partition secure storage if
security partition is not defined in parameter.txt, security partition can be set by adding
0x00002000@0x000xxxxx(security) in parameter.txt, 0x00002000 indicates the size of 4M, 0x000xxxxx
indicates the starting address, modify according to the actual parameter.txt

3.3 TEE firmware

The source code of TEE Secure OS is not open source by default, binary file locat in directory u-

boot/tools/rk tools/bin or rkbin/bin.

1. The TEE binary of ARMv7 platform is packaged into trust.img by the tool u-

boot/tools/loaderimage ; The name of TEE binary is as follows:

<platform> tee [ta] <version>.bin

The name with [ta] support running user TA application, the name without [ta] do not support running user

TA application.

2. The TEE binary of ARMv8 platform is packaged into trust.img by the tool u-

boot/tools/trust merger , The name of TEE binary is as follows:

<platform> bl32 <version>.bin

3. If [BL32_OPTION] SEC=0 in rkbin/RKTRUST/.ini, It needs to be changed to SEC=1, Otherwise

trust.img will not contain Secure OS and cannot run TEE services.

4. RK3566/RK3568, RK3588, RK3528, RK3562, RV1106, and subsequent new platforms will package the

TEE binary into uboot.img without generating trust.img firmware.

3.4 TEE driver in U-Boot

At present, some safe operations need to be performed at the U-Boot level, For example, OP-TEE must be used
to read some secure data.The OP-TEE Client code is implemented in U-Boot, U-Boot can communicate with
OP-TEE through this interface. OP-TEE Client driver is under lib/optee client, API conforms to GP

specification.

3.4.1 Macro Definition

CONFIG OPTEE CLIENT , OP-TEE function main config.

af://n292
af://n294
af://n308
af://n310

CONFIG OPTEE V1, setby OP-TEE VI platform.
CONFIG OPTEE V2, setby OP-TEE V2 platform.

CONFIG OPTEE ALWAYS USE SECURITY PARTITION, The secure storage area will be selected according
to the hardware if this macro is not enabled, use rpmb if device use EMMC, use security partition if device
use NAND. After the macro is enabled, data is fixed store in the security partition, Not store in rpmb . The

scope of this macro is the U-Boot stage, It do not affect the kernel and UserSpace.

RPMB has higher security and stability than security partition, but less convenience than security partition. If the
device is replaced with another device's EMMC to this device, or if the CPU is replaced, all you need to do is
use the burning tool to erase the flash and reburn the firmware when using security partitions, the burning tool
cannot clear rpmb data and special firmware is needed to clear rpmb data when using rpmb. Please weigh the
convenience and security of whether to enable this macro. Some platforms will default to enabling this macro, If

you have high security requirements, you can remove this macro yourself.

3.4.2 Shared Memory

When U-Boot communicates with OP-TEE, the data must be stored in shared memory, You can use the
TEEC_AllocateSharedMemory () to request shared memory, the shared memory size of each platform is
different, and it is recommended that it should not exceed 1M, If it exceeds, it is recommended to split the data

and transfer it for many times, Release shared memory by call TEEC ReleaseSharedMemory () .

3.4.3 Secure Storage Test

3.4.3.1 Test method

Follow the steps below to perform the secure storage test. This test case will test the read/write function of
secure storage, The test case will automatically check the hardware, the rpmb and security partition will be
tested when the hardware uses emmc, Only security partition will be tested when the hardware uses nand. It is
necessary to confirm that the U-Boot has turned on CONFIG_SUPPORT EMMC RPMB when the hardware

uses emmec.

1. Enter the U-Boot command line: Device serial port connecting to PC, press ctrl+c in PC, Start device,
It will stop at uboot.

2. Run: The following command starts the test.

=> mmc testsecurestorage

3.4.3.2 Troubleshooting

"TEEC: Could not find device"
The emmc or nand device is not found. Please check the driver in the U-Boot or the hardware.
"TEEC: Could not find security partition"

When the security partition is used for secure storage, the encrypted data will be stored in this partition. Please

check whether the security partition is defined in parameter.txt

af://n316
af://n318
af://n319
af://n327

"TEEC: verify [%d] fail, cleanning"

When the security partition is used for secure storage for the first time, or the security partition data is illegally

tampered, the security partition will be completely cleared.

"TEEC: Not enough space available in secure storage !"

There is not enough storage.

INF [0x0] TEE-CORE:storage read obj:201: Warning! head data not find!
ERR [0x0] TEE-CORE:storage read obj:210: cpu or emmc was replaced!

During U-Boot startup, key data will be stored by calling TEE, Key data is encrypted by TEE and stored in
security partition or rpmb, And the encryption key is bound to the CPU; If the CPU is replaced, key data
cannot be decrypted normally, resulting in U-Boot startup failure; If the emmc is replaced and used before,

Old data exists in the security partition or rpmb, This error will also occur which causing U-Boot start fail;

The solution is to clear the old data in the security partition or rpmb, format emmc directly if the security
partition is used, If you use rpmb, you need to contact technical support to provide special firmware to clear the

old data in rpmb.

“optee check api revision fail”

The U-Boot version does not match the TEE version, the U-Boot version is higher than the TEE version, The
solution is as follows (choose one) :

1. Fallback U-Boot versionto c£f13b78438 (tag: android-10.0-mid-rkr9) rockchip: spl: add

rollback index check with otp.
2. Revert the following commit:
396e3049bd rochchip: board: only map op-tee share memory as dcache enabled
7a349fdcbd 1lib: optee client: add optee initialize flag
74eb602743 lib: optee client: update to new optee msg for optee vl platform

102dfafcd4a rochchip: board: map op-tee memory as dcache enabled

Normally, the versions of Uboot and OP-TEE in released SDK are matched.

"optee api revision mismatch with u-boot/kernel, panic"

If it is printed in the U-Boot startup, It mean the U-Boot version does not match the TEE version, U-Boot
version is lower than TEE version, Upgradeable U-Boot version to 396e3049bd (tag: android-10.0-
mid-rkrll, tag: android-10.0-mid-rkrl0) rochchip: board: only map op-tee share memory

as dcache enabled at least.

If it is printed at the startup stage of Android system, Then upgrade android/vendor/rockchip/common
version to 8bc7bf97 (tag: android-10.0-mid-rkr10) vpu: librockit: add Rockit

MetadataRetriever atleast.

If printing in the startup phase of the Linux system, Then upgrade linux/external/security/bin

versionto £59085c optee vl: lib: armé&armé64: update binary and library at least.

Normally, the versions of Uboot and OP-TEE in released SDK are matched.

3.4.4 U-Boot Run User TA

Some developer need to run their TA in the U-Boot, which can be referred to in this chapter.
1. Confirm if the feature is included. If not, please update the U-Boot code.
436fc6d8486 lib: optee clientApi: support load user ta for optee vl
4d4c5043204 lib: optee clientApi: add user ta test demo

bl22eel7db0 lib: optee clientApi: support load user ta
deb4d4879d5 lib: optee clientApi: support pack TA to image

2. Developer copy TA files to u-boot/lib/optee_clientApi/userta, This directory supports storing multiple TA
files, and by default, rktest TA files are already stored for testing.

3. Execute the following command to package the TA file and generate the userta.img firmware.

cd lib/optee clientApi

./tabinary to img.py --tadir ./userta --out ./userta/userta.img

4. Modify parameter.txt to add a new userta partition, with a partition size greater than the userta.img
firmware size.

5. Use the burning tool to burn parameter.txt and userta.img.

6. U-Boot can call trusty_oem user ta transfer and trusty oem user ta storage to test rktest ta. Developer

can refer to these two functions and call their own TA.

3.5 TEE driver in kernel

TEE kernel driver under security/optee linuxdriver/ or drivers/tee/

3.5.1 OP-TEE V1

The driver of the chips using OP-TEE V1 is located at security/optee linuxdriver/ , All are enabled
by default. The method to enable is as follows:

Add the following configurations in config:

CONFIG TEE SUPPORT=y

At present, we will gradually abandon the TEE kernel driver of OP-TEE V1, OP-TEE V1 platform will use the
TEE kernel driver of OP-TEE V2.

If version>=v2.00 in the TEE binary file name in the rkbin/bin directory, you also need to enable the TEE kernel
driver of OP-TEE V2.

Android 10 and above and Linux released after August 2020 use the TEE kernel driver of OP-TEE V2 by
default.

3.5.2 OP-TEE V2

af://n355
af://n374
af://n376
af://n383

The driver of the chips using OP-TEE V2 is located at drivers/tee/ , the method to enable is as follows:
Confirm that the following nodes have been added to the platform dtsi file:

firmware {

optee: optee {

compatible = "linaro,optee-tz";
method = "smc";
#status = "disabled";

}i
}:

This node is added to all platforms by default, However, some platforms will set status = "disabled", Just
remove status = "disabled" if you want to enable the optee driver.
Add the following two configurations in config:

CONFIG TEE=y
CONFIG_OPTEE=y

3.5.3 Confirm TEE drive is enabled

Ifthe /dev/opteearmtz00 node appears, it indicates that the TEE kernel driver of optee vl is enabled.
Ifthe /dev/tee0 and /dev/teepriv0 node appears, it indicates that the TEE kernel driver of optee v2 is
enabled.

3.6 TEE Library

¢ Android

TEE environment components are in the Android project directory vendor/rockchip/common/security or
hardware/rockchip/optee (Including OP-TEE V1 and OP-TEE V2) :

1. lib: Includes tee-supplicant. libteec.so and keymaster/gatekeeper library compiled from 32bit and 64bit
platforms.

2. ta: Store the compiled keymaster/gatekeeper TA file.
e Linux

TEE environment components are in the Linux project directory external/security/bin (Including OP-
TEE V1 and OP-TEE V2) :

1. lib: Includes tee-supplicant. libteec.so and other librarys compiled from 32bit and 64bit platforms.
2. ta: Store the compiled TA file.

4. CA/TA Development And Test

4.1 Environment

af://n389
af://n391
af://n410
af://n411

1. If the compilation reports an error: No module named Crypto.Signature, The reason is Python

algorithm library is not installed on the development computer, Execute the following command:

pip uninstall Crypto
pip uninstall pycrypto
pip install pycrypto

2. If the compilation reports an error: ModuleNotFoundError: No module named 'Cryptodome'
Please install python package on the development computer: pip3 install [--user]

pycryptodomex

4.2 CA/TA demo

RK provides a series of CA/TA demo, The purpose is to:

¢ Provide reference for developers

e Directly used to test TEE environment

The source code of CA/TA demo is in the Android project external/rk tee user, Or Linux project

external/security/rk tee user.

CA/TA demo contains “rktest” and “xtest”, “xtest” is only available in Android project
external/rk tee user/v2, "xtest"is the open-source test code of OPTEE, Including more complete test

items. Generally, if it is used to test TEE environment or reference development, "rktest" can basically meet.
The following describes the functions of rktest.

The CA name of the rktest demo is "rktest", TA named “1db57234-dacd-462d-9bblae79de44e2a5.ta” or
“1db57234-dacd-462d-9bb1-ac79ded4e2a5.ta”. When running the CA program, you need to enter parameters to
select the corresponding functions. Enter CA program name-+space+any character, The available parameters

will be prompted. The test functions implemented by rktest are shown in the following table.

Note: The test program only involves some commonly used functions and does not cover all functions
supported by OPTEE.

af://n418

parameters

transfer _data

storage

storage speed

property

crypto_sha

crypto_aes

crypto_rsa

secstor_ta

otp_read

otp_write

otp_size

otp_ns read

otp_ns_write

trng

socket

function

Test the
parameter
transfer
between CA
and TA

Test the secure

storage

Test the secure

storage speed

Test get
property

Test SHA
algorithm

Test AES
algorithm

Test RSA
encryption and
decryption,
signature

verification

Test Built-in
TA into secure

storage

Test read
OEM_S OTP

Test write
OEM_S OTP

Get
OEM_S OTP

size

Test read

OEM_NS_OTP

Test write

OEM_NS_OTP

Get trng data

Test socket

communication

between CA
and TA

notes

Before testing the Secure Storage function, ensure that the corresponding node
of the kernel exists, security partition need /dev/block/by-
name/security; rpmb secure storage

need /dev/block/mmcblk%u, /dev/block/mmcblk$urpmb ,
/sys/class/mmc_host/mmc%u/mmc%u:0001/cid, %u value is any one
of 0, 1 and 2; If the node does not exist, please link to the corresponding
node.

The test program hides the otp test item by default, modify
/host/rk_test/main.c if you want enable it. OTP characteristics are shown

below “OTP Description” chapter.

Execute the test program. The command is as follows:

rktest transfer data

rktest [command]

The successful execution of CA program prompts PASS, and the failure prompts Fail.

4.3 Android

4.3.1 Directory Introduction

TEE CA/TA development environment locate in Android project directory external/rk tee user:

1. Android.mk: Decide the compilation tool and the CA file to be compiled.
2. host: CA source files.
3. ta: TA source files.

4. export*: The environment which TA compilation depends on.

4.3.2 Compile

If there are only v1/ v2/ directories under external/rk tee user , Itindicates that the master branch has
been merged into the develop-next branch, The master branch will be discarded, Merge point is master
branch 492f1cbf testapp: support new OP-TEE MSG, Execute the following command to start

compiling.

#For OP-TEE V1 platform
cd external/rk tee user/vl
#For OP-TEE V2 platform
cd external/rk tee user/v2
rm -rf out/

./build.sh ta

mm

If there are no v1/ v2/ directories under external/rk tee user , Itindicates that two branches are still
used, please switch to the master branch for OP-TEE V1 platform, please switch to the develop-next branch
for OP-TEE V2 platform, Execute the following command to start compiling.

cd external/rk tee user/

rm -rf out/

./build.sh ta (run if git log contain “Android.mk: remove build ta from
android”, otherwise, do not need execute)

mm
The execution program will be obtained after successful compilation, The execution program contains
CA (Client Application, run on normal world) and TA (Trust Application, run on secure world) .

e CA is a Android execution file, which is generated in the Android project out directory after compilation.
e TA is a file with the file name uuid.ta, Generated in one of the directories rk_tee user/ta.

rk_tee user/out/ta. rk tee user/vl/out/ta. rk tee user/v2/out/ta.

4.3.3 Run

af://n498
af://n499
af://n510
af://n521

1. Enter the device by using adb shell

2. Install TEE library files, CA and TA into the device. For Android 7: push libteec.so into /system/1lib
or /system/1ib64 ; push tee-supplicant and CA into /system/bin;
create /system/1lib/optee armtz directory, push TA into /system/lib/optee_armtz’.

For Android 8 and later: push libteec.so into /vendor/1ib or /vendor/1lib64 ; push tee-supplicant
and CA into /vendor/bin; create /vendor/lib/optee armtz directory, push TA into

/vendor/lib/optee_armtz’.

(If tee-supplicant starts automatically after startup, tee-supplicant and libteec.so do not need to push any
more. These two files already exist in the system; libteec.so and tee-supplicant should distinguish OP-
TEE V1 from OP-TEE V2, Distinguish between 32-bit and 64-bit;

After push, check whether the tee-supplicant and CA programs have execution permissions.)

3. If the tee-supplicant is not automatically run when the machine is turned on, you need to manually run tee-

supplicant in the background with root permission:
tee-supplicant &

Ifprint tee supp rk fs init: unsupported, It means security partition is not defined in
parameter.txt, Please refer to Section 2.2 for details, If the developer only uses the rpmb or REE file

system for secure storage, the error print can be ignored.

4. run CA/TA, test TEE functions. rktest can be used to directly test the basic functions of TEE, execute:
rktest [command]

5. If rktest run successfully, Then TEE environment is normal, TEE development is available.
please check the drive and components if error occurs.

It may also be caused by the mismatch between the rk_tee user version and the TEE OS version, The

following are common matching relationships:
OP-TEE V1:
version >= v2.00 of TEE binary name under rkbin/bin directory,
match 492flcbf testapp: support new OP-TEE MSG
version < v2.00 of TEE binary name under rkbin/bin directory,
match e8d7215d Android.mk: support build in android R
or match 466515ec add tools for user to resign TA
OP-TEE V2:

Serial port printing "OP-TEE version: 3.13.0" during TEE startup, 2566557 - v2: update to keep
up with v3.13.0 of optee test

Serial port printing "OP-TEE version: 3.6.0" during TEE startup, 1aa969e2 Android.mk: support
build in android R

Serial port printing "OP-TEE version: 3.3.0" during TEE startup, aa0a0c00 Android.mk: remove

build ta from android

Serial port printing "OP-TEE version: 2.5.0" during TEE startup, 1lec9913a add tools for user

to resign TA

4.3.4 Step By Step

af://n552

Here is an example of the arm64 platform using OP-TEE V2 on Android 12

//Compile CA TA

cd /homel/xxxx/rk_android 12

source build/envsetup.sh

lunch rk3568 s-userdebug

cd /homel/xxxx/rk_android 12/external/rk _tee user/v2
./build.sh ta

mm

//Push TEE library files and CA TA to devices

adb root && adb remount

adb push Y:\rk android 12\hardware\rockchip\optee\v2\armé64\libteec.so
/vendor/1lib64

adb push Y:\rk android 12\hardware\rockchip\optee\v2\arm64\tee-supplicant
/vendor/bin

adb push Y:\rk android 12\out\target\product\rk3568 s\vendor\bin\rktest
/vendor/bin

adb push Y:\rk android 12\externallrk tee user\v2\out\ta\rk test\1db57234-dacd-
462d-9bbl-ae79ded44e2a5.ta /vendor/lib/optee armtz

//Run CA TA
tee-supplicant & //This step can be ignored if tee-supplicant is already
running, Android platform is running by default.

rktest transfer data

4.3.5 Develop CA/TA

Refer to Makefile about CA TA, the UUID of the header file needs to be modified to a new UUID, It can be

generated with the uuidgen command.

head and stack size are defined in user_ta_header defines.h under include directory, head szie is

32KB (TA DATA SIZE) , stack size is 2KB (TA_STACK SIZE) . Generally, it is better not to modify it.
If it cannot meet the needs, it can be appropriately enlarged, The heap size should not exceed 1MB, and the
stack size should not exceed 64KB.

#define TA STACK SIZE (2 * 1024)
#define TA DATA SIZE (32 * 1024)
4.4 Linux

4.4.1 Directory Introduction

TEE CA/TA development environment locate in Linux project directory

external/security/rk tee user:

1. build.sh: Compile script, please refer to the notes in the script for compilation instructions.
2. Makefile: Decide the compilation tool and the CA file to be compiled.

3. host: CA source files.

4. ta: TA source files.

5. export*: The environment which TA compilation depends on.

af://n555
af://n559
af://n560

4.4.2 Compile

If there are only v1/ v2/ directories under external/security/rk tee user , Itindicates that the master
branch has been merged into the develop-next branch, The master branch will be discarded, Merge point is
master branch 492f1cbf testapp: support new OP-TEE MSG, Execute the following command to start

compiling.

#For OP-TEE V1 platform

cd external/security/rk tee user/vl

#For OP-TEE V2 platform

cd external/security/rk tee user/v2

rm -rf out/

./build.sh 3232 (For 32-bit platform, CA 32bits, TA 32bits)
./build.sh 6432 (For 64-bit platform, CA 64bits, TA 32bits)

If there are no v1/ v2/ directories under external/security/rk_tee user , Itindicates thattwo branches
are still used, please switch to the master branch for OP-TEE V1 platform, please switch to the develop-next
branch for OP-TEE V2 platform, Execute the following command to start compiling.

cd external/security/rk tee user/

rm -rf out/

./build.sh 3232 (For 32-bit platform, CA 32bits, TA 32bits)
./build.sh 6432 (For 64-bit platform, CA 64bits, TA 32bits)

The execution program will be obtained after successful compilation, The execution program contains

CA (Client Application, run on normal world) and TA (Trust Application, run on secure world) .

e CA is a Linux execution file, which is generated in one of the directories tk tee_user/out.
rk_tee user/vl/out. rk tee user/v2/out.
e TA is a file with the file name uuid.ta, Generated in one of the directories rk tee user/ta.

rk_tee user/out/ta. rk tee user/vl/out/ta. rk tee user/v2/out/ta.

4.4.3 Run

1. Enter the device by using adb shell.

2. Install TEE library files, CA and TA into the device. push libteec.so* into /lib or /1ib64; push tee-
supplicant and CA into /usr/bin; create /lib/optee_armtz directory, push TA into /lib/optee_armtz.

(If tee-supplicant starts automatically after startup, tee-supplicant and libteec.so do not need to push
again. These two files already exist in the system; libteec.so and tee-supplicant should distinguish OP-
TEE V1 from OP-TEE V2, Distinguish between 32-bit and 64-bit;

After push, check whether the tee-supplicant and CA programs have execution permissions.)

3. Other steps are the same as Android platform. See the "Android" chapter above.

4.4.4 Step By Step

Here is an example of the arm64 platform using OP-TEE V2 on Linux

//Compile CA TA

cd /homel/xxxx/rk px30 linux/external/security/rk tee user/v2

af://n573
af://n584
af://n594

rm -rf out/

./build.sh 6432

//Create optee armtz directory, it is used to store TA files

mkdir -p /lib/optee armtz

//Push TEE library files and CA TA to devices

adb push Y:\rk px30 linux\externallsecurity\bin\optee v2\lib\arm64\libteec.so
/1lib64

adb push Y:\rk px30_ linux\externallsecurity\bin\optee v2\lib\armé4\libteec.so.l
/1libo64

adb push Y:\rk px30 linux\externallsecurity\bin\optee v2\lib\arm64\tee-
supplicant /usr/bin

adb push Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\rk test\rktest
/usr/bin

adb push

Y:\rk px30 linux\external\security\rk tee user\v2\out\ta\rk test\1db57234-dacd-
462d-9bbl-ae79ded4e2a5.ta /lib/optee armtz

//Add executable permissions
chmod +x /usr/bin/tee-supplicant
chmod +x /usr/bin/rktest

//Run CA TA
tee-supplicant & //this step can be ignored if tee-supplicant is already
running

rktest transfer_data

4.4.5 Develop CA/TA

Refer to Makefile about CA TA, the UUID of the header file needs to be modified to a new UUID, It can be

generated with the uuidgen command.

head and stack size defined in user _ta_header defines.h under include directory, head szie is

32KB (TA DATA SIZE) , stack size is 2KB (TA_STACK SIZE) . Generally, it is better not to modify it.
If it cannot meet the needs, it can be appropriately enlarged, The heap size should not exceed 1MB, and the
stack size should not exceed 64KB.

#define TA STACK SIZE (2 * 1024)
#define TA DATA SIZE (32 * 1024)

4.5 rk tee service

4.5.1 Introduction

rk_tee service is a security service developed based on TEE, which provides common security functions for
developers. The simple and clear external interface greatly facilitates developers' use. rk_tee service is

essentially a CA TA application, Therefore, test the TEE environment is normal before using rtk tee_service.

af://n597
af://n601
af://n602

Developers can directly call rk_tee service to encrypts and decrypts sensitive data. The encryption/decryption
key is derived by TEE using the unique key HUK inside the device hardware, Therefore, the encryption and
decryption keys of each device are different, Copying the sensitive data of device A to device B cannot be
decrypted normally to ensure that the sensitive data will not be stolen. Due to the size of shared memory, it is
recommended that the size of data encrypted and decrypted at a single time should not exceed 1M. It is

recommended to encrypt and decrypt big data in multiple times.

At present, the OP-TEE V2 platform supports this function, while the OP-TEE V1 platform does not.

4.5.2 Component

Currently, it supports Linux platform and Android platform (Android 12 and higher).

Component Android directory Linux directory

. . hardware/rockchip/optee/v2/arm external/security/bin/optee_v2/lib/arm

librk tee service.so) T -
hardware/rockchip/optee/v2/arm64 external/security/bin/optee_v2/lib/arm64

rk_tee service.h hardware/rockchip/optee/v2/include external/security/bin/optee_v2/include

4367fd45-4469-42a6-925d- . oo
hardware/rockchip/optee/v2/ta external/security/bin/optee_v2/ta

3857b952704a.ta

The Userspace application can directly call librk tee service.so, Parameter of function please refer to
rk_tee service.h, Push 4367fd45-4469-42a6-925d-3857b952704a.ta into /lib/optee_armtz for Linux platform
, Push 4367fd45-4469-42a6-925d-3857b952704a.ta into /vendor/lib/optee _armtz for Android platform.

4.5.3 Demo

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "rk tee service.h"

int main(int argc, char *argv[])
{
unsigned char plain[256];
unsigned int plain len;
unsigned char cipher[256];
unsigned int cipher len;

int res;

memset ((void *)plain, Oxab, sizeof(plain));
cipher len = 256;
res = rk encrypt data(plain, sizeof(plain), cipher, &cipher len);

printf ("res=0x%x cipher_len=%d\n", res, cipher len);

memset ((void *)plain, 0, sizeof(plain));
plain len = 256;
res = rk decrypt data(cipher, cipher len, plain, é&plain len);

printf ("res=0x%x plain len=%d\n", res, plain len);

return O;

af://n606
af://n626

4.6 Test xtest

Xtest is an open-source testing code for OPTEE, which includes relatively complete testing items. Customers

can refer to this chapter to test xtest.

Here is an example of the arm64 platform using OP-TEE V2 on Android 13:

//build CA TA

cd /homel/xxxx/rk _android 13

source build/envsetup.sh

lunch rk3568 t-userdebug

cd /homel/xxxx/rk_android 13/external/rk tee user/v2
./build.sh ta

mm

//create plugins directory on device

mkdir -p /vendor/lib64/tee-supplicant/plugins/

//push TEE library and CA TA to device

adb root && adb remount

adb push Y:\rk android 13\hardware\rockchip\optee\v2\armé64\libteec.so
/vendor/lib64

adb push Y:\rk android 13\hardware\rockchip\optee\v2\armé4\tee-supplicant
/vendor/bin

adb push Y:\rk android 13\out\target\product\rk3568 t\vendor\bin\xtest
/vendor/bin

adb push Y:\rk android 13\externallrk tee user\v2\out\ta\crypt\cb3eSbal-adfl-
11e0-998b-0002a5d5c51b.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\ta\concurrent\el3010e0-
2ael-11e5-896a-0002a5d5c51b.ta /vendor/lib/optee armtz

adb push

Y:\rk_android 13\externallrk tee user\v2\out\ta\create_ fail test\c3f6e2c0-3548-
11e1-b86c-0800200c%a66.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\ta\rpc test\d17f£73a0-36ef-
11e1-984a-0002a5d5c51b.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\ta\sims\e6a33ed4-562b-
463a-bb7e-ff5el5a493c8.ta /vendor/lib/optee armtz

adb push

Y:\rk android 13\externall\rk tee user\v2\out\talconcurrent large\5ce0c432-0ab0-
40e5-a056-782calebaba2.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\ta\miss\528938ce-fc59-
11e8-8eb2-£2801f1b9fdl.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\talsocket\873bcd08-c2c3-
11e6-a937-d0bf9c45c6lc.ta /vendor/lib/optee armtz

adb push

Y:\rk android 13\externallrk tee user\v2\out\ta\sims keepalive\a4c04d50-£180-
11e8-8eb2-£f2801f1b9fdl.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\talos test\5b9%e0e40-2636-
llel-ad9%e-0002a5d5c51b.ta /vendor/lib/optee armtz

adb push Y:\rk_android_13\external\rk_tee user\v2\out\talos_test lib\ffd2bded-
ab7d-4988-95ee-e4962fff7154.ta /vendor/lib/optee armtz

adb push

Y:\rk android 13\externallrk tee user\v2\out\talos test lib dl\b3091a65-9751-
4784-abf7-0298a7cc35ba.ta /vendor/lib/optee armtz

af://n628

//Test storage, The security partition space is limited, which can lead to test
failures.

//So delete security partition from parameter.txt, uboot do not define
CONFIG_OPTEE ALWAYS USE SECURITY PARTITION.

//Using the Android file system can pass the test.

adb push Y:\rk android 13\externallrk tee user\v2\out\ta\storage\b689f2a7-8adf-
477a-9£99-32e90c0ad0a2.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externall\rk tee user\v2\out\ta\storage2\731le279%e-aafb-
4575-a771-38caa6f0cca6.ta /vendor/lib/optee armtz

adb push

Y:\rk_android 13\externallrk tee user\v2\out\ta\storage benchmark\f157cda0-550c-
lle5-a6fa-0002a5d5c51lb.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\externallrk tee user\v2\out\tal\supp plugin\38023lac-
fb99-47ad-a689-9e017eb6e78a.ta /vendor/lib/optee armtz

adb push Y:\rk android 13\out\target\product\rk3568 t\vendor\lib64\tee-
supplicant\plugins\f07bfc66-958c-4a15-99c0-260ed4e7375dd.plugin.so
/vendor/1lib64/tee-supplicant/plugins/

adb push Y:\rk android 13\hardware\rockchip\optee\v2\armé4\libckteec.so
/vendor/1lib64

adb push Y:\rk android 13\externallrk tee user\v2\export-ta arm32\ta\fd02c9da-
306c-48c7-a49c-bbd827ae86ee.ta /vendor/lib/optee armtz

//Run xtest
tee-supplicant & //this step can be ignored if tee-supplicant is already
running

xtest

Here is an example of the arm64 platform using OP-TEE V2 on Linux:

//build CA TA

cd /homel/xxxx/rk px30 linux/external/security/rk tee user/v2
rm -rf out/

./build.sh 6432

//create optee armtz directory on device
mkdir -p /lib/optee armtz
//create plugins directory on device

mkdir -p /usr/lib/tee-supplicant/plugins/

//push TEE library and CA TA to device

adb push Y:\rk px30 linux\externallsecurity\bin\optee v2\lib\armé64\libteec.so
/1libo64

adb push Y:\rk px30 linux\externallsecurity\bin\optee v2\lib\armé64\libteec.so.1l
/1ib64

adb push Y:\rk px30 linux\externallsecurity\bin\optee v2\lib\armé64\tee-
supplicant /usr/bin

adb push Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\xtest\xtest
/usr/bin

adb push

Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\ta\crypt\cb3eS5bal-adfl-
11e0-998b-0002a5d5c51b.ta /lib/optee armtz

adb push

Y:\rk px30 linux\external\security\rk tee user\v2\out\ta\concurrent\el3010e0-
2ael-11e5-896a-0002a5d5c51b.ta /lib/optee armtz

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\ta\create fail test\c3f6e2
c0-3548-11e1-b86c-0800200c9%a66.ta /lib/optee armtz

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\ta\rpc test\dl17£73a0-36ef-
11e1-984a-0002a5d5c51b.ta /lib/optee armtz

adb push Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\ta\sims\e6a33ed4-
562b-463a-bb7e-ff5el5a493c8.ta /lib/optee armtz

adb push

Y:\rk px30 linux\external\security\rk tee user\v2\out\ta\concurrent large\5ce0Oc4
32-0ab0-40e5-a056-782calebaba2.ta /lib/optee armtz

adb push Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\ta\miss\528938ce-
fc59-11e8-8eb2-£2801f1b9fdl.ta /lib/optee armtz

adb push

Y:\rk px30 linux\external\security\rk tee user\v2\out\ta\socket\873bcd08-c2c3-
11e6-a937-d0bf9cd45c6lc.ta /lib/optee armtz

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\ta\sims keepalivel\a4c04d50
-f180-11e8-8eb2-£f2801f1b9fdl.ta /lib/optee armtz

adb push

Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\ta\os test\5b9e0e40-2636-
llel-ad9e-0002a5d5c51b.ta /lib/optee armtz

adb push

Y:\rk px30 linux\external\security\rk tee user\v2\out\talos test lib\ffd2bded-
ab7d-4988-95ee-e4962f£f£f7154.ta /lib/optee armtz

adb push

Y:\rk px30 linux\external\security\rk tee user\v2\out\talos test 1lib dl1\b3091a65
-9751-4784-abf7-0298a7cc35ba.ta /lib/optee armtz

//Test storage, The security partition space is limited, which can lead to test
failures.

//So delete security partition from parameter.txt, uboot do not define
CONFIG_OPTEE ALWAYS USE SECURITY PARTITION.

//Using the Android file system can pass the test.

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\ta\storage\b689f2a7-8adf-
477a-9£99-32e90c0adl0a2.ta /lib/optee armtz

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\ta\storage2\731le279%e-aafb-
4575-a771-38caa6flcca6.ta /lib/optee_armtz

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\talstorage benchmark\fl57c
da0-550c-11e5-a6fa-0002a5d5c51b.ta /lib/optee_armtz

adb push

Y:\rk px30 linux\externallsecurity\rk tee user\v2\out\ta\supp plugin\38023lac-
fb99-47ad-a689-9e017ebbe78a.ta /lib/optee armtz

adb push

Y:\rk px30 linux\externall\security\rk tee user\v2\out\supp plugin\f07bfc66-958c-
4a15-99c0-260e4e7375dd.plugin /usr/lib/tee-supplicant/plugins/

adb push

Y:\rk px30 linux\externallsecurity\bin\optee v2\lib\arm64\libckteec.so.0 /1lib64
adb push Y:\rk px30 linux\externall\security\rk tee user\v2\export-

ta arm32\ta\fd02c9da-306c-48c7-a49c-bbd827ae86ee.ta /lib/optee armtz

//Add executable permissions
chmod +x /usr/bin/tee-supplicant

chmod +x /usr/bin/xtest

//Run CA TA
tee-supplicant & //this step can be ignored if tee-supplicant is already
running

xtest

5. TA Signature

5.1 Principle

When compiling TA, the compile script will automatically use the key in the export-user ta/keys directory
or export-ta arm32/keys directory of the rk_tee user project to sign TA application. The key is 2048 bits
RSA key in pem format. Finally, the TA file in .ta format is generated.

There is an RSA public key stored in the TEE binary. When the TA is loaded and run, the TEE OS will use the
public key to verify the validity of the TA. Only after the verification is passed, the TA application can run

normally.

5.2 Replace the public key

To prevent developer A's TA application from running on developer B's board, it is recommended to replace the

public key.
Developers can replace public keys in TEE binary with tools in the rk_tee user project tools/ directory.

e Linux:
./change puk --teebin <TEE binary>

This command automatically generates a 2048 bits RSA key oemkey.pem in the current directory, and

replaces the original public key in the TEE binary with the public key in this key.
./change puk --teebin <TEE binary> --key oemkey.pem

Replace the original public key in the TEE binary with the public key specified by the developer. The key
length must be 2048 bits.

e Windows:
Open Windows_change puk.exe and click "Generate oemkey.pem" to generate and save keys.
Select the key and TEE binary you just generated, and click "Modify Public Key".

(Since Windows_change puk.exe invokes the BouncyCastle.Crypto.dll third-party library, make sure
BouncyCastle.Crypto.dll is in the same directory as Windows_change puk.exe)

After the public key is replaced, the developer needs to use the new TEE binary to replace the original TEE
binary in the rkbin/ directory, recompile the U-Boot, and burn the new trust.img firmware. Part of the
platforms have no trust.img because trust.img is packaged into uboot.img, so uboot.img is burned

instead.

The developer needs to rename the key generated or specified by the previous tool to oem_privkey.pem and
replace the key in the export-user ta/keys or export-ta arm32/keys directory of the rk tee user
project. Recompile the CA and TA so that the resulting TA application can be properly loaded and run by the
TEE binary (new public key). Any TA that is not signed with the correct private key is considered invalid and

cannot be run.

af://n634
af://n635
af://n638

6. Built-in TA into secure storage

In normal cases, TA files are stored in plaintext in an non-secure file system after TA development. Some OEM
that have high security requirements do not want TA files to be exposed in plaintext. To meet the OEM'
requirements, OP-TEE V2 supports built-in TA files to secure storage (OP-TEE V1 does not support this).

6.1 Principle

The CA side reads TA files in the non-secure file system and sends TA data to the OP-TEE OS. After receiving
TA data, the OP-TEE OS verifies the validity of TA. If TA is legal, it randomly generates TA encryption key and
encrypts TA data with TA encryption key. Then the ciphertext TA data and TA encryption key are securely
stored. The key used for secure storage is derived from the unique key of the hardware, which is different for
each device. Finally, the developer needs to delete TA files in the non-secure file system to prevent the plaintext

TA from being exposed.

After the appeal step is complete, the CA can call the TA application normally. When the CA calls the TA in the
secure storage, the OP-TEE OS searches for the TA in the secure storage according to the incoming uuid. If the
TA is found, the OP-TEE OS decrypts and loads the TA; if the TA is not found in secure storage, the TA will be

searched in the non-secure file system.

6.2 Reference implementation

Here is the CA-side code that lets you read the TA file and send the TA data to the OP-TEE OS using the

install ta function.

static void install ta(void *buf, size t blen)
{
TEEC Result res = TEEC ERROR GENERIC;
uint32 t err origin = 0;
TEEC_UUID uuid = PTA SECSTOR_TA MGMT UUID;
TEEC Operation op;
TEEC Context ctx = { };
TEEC Session sess = { };

int i = 0;

res = TEEC InitializeContext (NULL, &ctx);
if (res != TEEC SUCCESS) {
printf ("TEEC InitializeContext failed with code 0x%x\n", res);

goto exit;

res = TEEC OpenSession(&ctx, &sess, &uuid,
TEEC_LOGIN PUBLIC, NULL, NULL, &err_origin);
if (res != TEEC SUCCESS) {
printf ("TEEC Opensession failed with code 0Ox%x origin Ox%x\n",
res, err origin);

goto exit;

memset (&op, 0, sizeof (op)):;
op.paramTypes = TEEC_PARAM TYPES (TEEC MEMREF TEMP INPUT, TEEC_ NONE,

af://n655
af://n657
af://n660

TEEC NONE, TEEC NONE) ;
op.params[0] .tmpref.buffer = buf;

op.params[0] .tmpref.size = blen;

res = TEEC InvokeCommand (&sess, PTA SECSTOR TA MGMT BOOTSTRAP, &op,
&err origin);
if (res != TEEC SUCCESS) {
printf ("TEEC InvokeCommand failed with code 0x%x origin 0x%$x\n",
res, err origin);
goto exit;
}
printf ("Installing TAs done\n");

exit:
TEEC CloseSession (&sess);

TEEC FinalizeContext (&ctx);

return;

7. Encrypt TA

Section in the previous chapter Built-in TA to secure storage introduce one way to avoid exposing clear TA file,

but the built-in TA will take up secure storage space, and TA's secret key is randomly generated, not the
developers own encryption key, this chapter introduces another kind of encryption method of TA (OP - TEE V2
support, OP-TEE V1 is not currently supported).

7.1 Method of encrypting TA

If the developer has TA source code, the developer needs to enable the CFG_ENCRYPT TA macro in export-
ta_arm32/mk/link.mk and change TA ENC KEY to developer's own encryption key. After this macro is

enabled, the script will automatically sign and encrypt TA when the developer compiles TA application.

If the developer does not have TA source code and only has TA binary files, they can use tools to encrypt the TA
binary files. The required tools can be found in the rk_tee user project tools/ directory.

Command to encrypt plaintext TA:

python3 ta encrypt tool.py --key oem privkey.pem --in 1db57234-dacd-462d-9bbl-
ae79ded4de2a5.ta --enc key
'64d239b1£3c7d3b06506229cd8ff7c8af2bb4db2168621ac62c84948468c4£4"

Command to re-encrypt ciphertext TA:

python3 ta encrypt tool.py --key oem privkey.pem --in 1db57234-dacd-462d-9bbl-
ae79dedde2a5.ta --ori enc_ key
'b64d239%b1£3c7d3b06506229cd8ff7c8af2bb4db2168621ac62c84948468c4f4' --enc_key
'c74d23901£3c7d3b06506229cd8ff7c8af2bb4db2168621ac62c84948468c4f4"

af://n663
http://built-in%20ta%20to%20secure%20storage/
af://n665

Tool parameter description:

--key Point to the user's private asymmetric key file used for signing TA.
--in Point to TA file.

--enc_key The user's private symmetric key used to encrypt TA.

--ori_enc_key The original symmetric key used to encrypt TA.

7.2 Burn TA encryption key

The developer uses the RKDevInfoWriteTool tool (version no less than 1.2.8) in the RKTools directory of the

SDK project to write TA encryption key.

Before use, the developer needs to create a new key file, open the file in hexadecimal format, edit the developer's
32-byte encryption key in the file, open the RKDevInfoWriteTool tool, select "TA encryption key", and click the
button to select the key file created by the developer. After the device enters the LOADER mode, click the
"Write" ("5 A") button to write the key. The key will be written to the device OTP (the OTP area cannot be

changed once written, so the key can only be written once on device).

To prevent TA encryption key disclosure, the tool does not support reading TA encryption key.

[0] RKDevInfoWriteTool V1.2.8

SN:
WIFIL:
LAM:

BT:

IMEIL:
BEXL
BEX:

HDCP 1, 4HDMI: g

HDCP1.40P: g
HDCP2.XWFD: = =20
Attention Key

WideVine Key

PlayReady CERT

PlayReady SL2000

PlayReady SL3000

TA encryption key C:\Users’™ i’ 7

LOADER: C:\DesktopMiniLoaderAll.bin o

S I—{-LOADERIG &

7.3 Decrypt and run the TA

The use of encrypted TA and plaintext TA is exactly the same. OP-TEE OS will automatically recognize that TA
is encrypted when loading TA, and OP-TEE OS will automatically read TA encryption key in OTP and decrypt
and run TA. This process is automatically completed by OP-TEE OS.

7.4 Soft TA encryption key

af://n677
af://n682
af://n684

If developers do not want to add extra steps to burn the TA encryption key to the device OTP, they can use the
Soft TA encryption key, which is a symmetric key built into the TEE binary.

If the developer has burned the TA encryption key to the device OTP, the OP-TEE OS will prioritize using the
TA encryption key in the OTP to decrypt and run the TA, ensuring high security.

If the developer does not burn the TA encryption key to the device OTP, the OP-TEE OS will use the Soft TA

encryption key to decrypt and run the TA, resulting in lower security.

Developers need to use tools to replace the Soft TA encryption key in the TEE binary. The required tools can be
found in the rk_tee user project tools/ directory.

Command to replace the default Soft TA encryption key in TEE binary:

./change ta enc key --teebin <TEE binary> --takey
'64d239b1£3c7d3b06506229cd8ff7c8af2bbddb2168621ac62c84948468c4f4!

Tool parameter description:
--teebin Provide the TEE binary firmware path.

--takey 32 bytes private key for developers, which must be consistent with the key used to encrypt TA.

8. REE FS TA anti-rollback

As shown in Built-in TA to secure storage , OP-TEE V2 supports storing TA in both REE FS and Secure storage

in plain text. OP-TEE V2 supports TA rollback prevention if TA is stored in plain text in REE FS, preventing TA

version rollback in an REE non-secure environment.

8.1 TA anti-rollback usage

The TA anti-rollback function of REE FS is always enabled. Developers can use the anti-rollback function by

defining the TA version number in the Makefile.

If cCFG_TA VERSION is never defined in TA's Makefile, the system recognizes TA's version number as 0 and

allows TA with the same version number to run.

If the Makefile of TA defines that the current CFG TA VERSION is greater than 0, as shown in the following

example, the rollback of TA version is prevented.

unsigned integer format

CFG_TA VERSION=1

9. TA debugging methods

9.1 OP-TEE vl platforms

When TA encounters a serious error condition, it prints diagnostic information as follows.

af://n694
http://built-in%20ta%20to%20secure%20storage/
af://n696
af://n701
af://n702

user TA data-abort at address 0x2a

esr 0x92000021 ttbr0 0x400000852£fc00 ttbrl 0x00000000 cidr 0x0
cpu #4 cpsr 0x20000130

#For 32-bit platforms, print r0-rl2, sp, lr, pc(402000a0)

#For 64-bit platforms, print x0-x30, sp el0, elr(00000000402000a0)

Status of TA 8cccf200-2450-11led4-abe20002a5d5c52c
0x40200000
0x9200000 2097152
0x9400000 stack:2048

- load addr
- code area

- stack:

(0x85109b0) (active)

ctx-idr: 4

TEEC InvokeCommand failed with code 0xffff3024 origin 0x3

The pc or elr in the error condition is the virtual address that caused the exception. The 1oad addr isthe

virtual address of the TA running in memory. We can konw the offset of the exception code in the TA is, elr -
load addr = 0x402000a0 - 0x40200000 = 0xa0.

In the compiled directory, there is a file named by uuid.dmp in the same directory as the TA. The uuid.dmp
is a disassembly file of the TA, which identifies the offset address of each function in the TA. Search for a0 in

the uuid.dmp, as follows, where testapp ta.c:97 indicates that the exception code is on line 97 of

testapp ta.c.

/home/xxx/android/vendor/optee test/ta/testapp/testapp ta.c:97

98: 6823 1dr r3, [r4, #0]

9a: 2202 movs r2, #2

9¢: 2161 movs rl, #97 ; 0xo6l

9e: 4820 ldr r0, [pc, #128] ; (120
<TA InvokeCommandEntryPoint+0xa0>)

al: 681b 1dr r3, [r3, #0]

az: 4478 add r0, pc

ad: 3033 adds r0, #51 ; 0x33

a6: 9301 str r3, [sp, #4]

asg: ible 1dr r3, [pc, #120] ; (124
<TA InvokeCommandEntryPoint+0xad>)

aa: 447b add r3, pc

ac: 9300 str r3, [sp, #0]

ae: 2301 movs r3, #1

b0: £002 fbcO bl 2834 <trace printf>

9.2 OP-TEE v2

platforms

When TA encounters a serious error condition, it prints diagnostic information as follows.

E/TC
E/TC
E/TC

:2 0
:?2 0 cpu #1
#For
#For

E/LD:
E/LD:

esr 0x92000005

32-bit platforms,

64-bit platforms,

region O:

region 1:

:? 0 User mode data-abort at address 0x2a
ttbr0 0x20000084a7020

(translation fault)

ttbrl 0x00000000 cidr 0x0

cpsr 0x20000130

print r0-rl2,
print x0-x30,

va 0xc0004000 pa 0x08600000 size 0x002000 flags rw-s
va 0xc0006000 pa 0x08602000 size 0x008000 flags r-xs

lr, pc(c00870a4)

elr (00000000c00870a4)

Sp,
sp_el0,

(ldelf)
(ldelf)

af://n708

E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:
E/LD:

region
region
region
region

region

~N o O W N

region
region 8:
[01]
Call stack:
0xc00870a4
0xc0088b21
0xc008d507
0xc008716c

va

va

va

va

va

va

va

0xc000e000
0xc000£000
0xc0013000
0xc0014000
0xc0015000
0xc0087000
0xc0090000

Pra
pa
pa
Pra
Pra
pa
pa

0x0860a000
0x0860b000
0x0860£000
0x08625000
0x09201000
0x00001000
0x0000a000

size
size
size
size
size
size

size

8cccf200-2450-11ed4-abe2-0002a5d5c52¢c @

0x001000
0x004000
0x001000
0x001000
0x002000
0x009000
0x00c000

flags
flags
flags
flags
flags
flags
flags

0xc0087000

(ldelf)
(ldelf)

stack)

param)

o O

The pc or elr in the error condition is the virtual address that caused the exception. The region 0 -

region § are the virtual address of the TA code running in memory. The exception code address

0xc00870a4 isin region 7. We can calculate the offset of the exception code as following, elr - region 7 :

va = 0xc00870a4 - 0xc0087000 = Oxa4.

In the compiled directory, there is a file named by uuid.dmp in the same directory as the TA. The uuid.dmp is
a disassembly file of the TA, which identifies the offset address of each function in the TA. Search for a4 in the

uuid.dmp, as follows, where testapp ta.c:101 indicates that the exception code is on line 101 of

testapp ta.c.

/home/xxx/rk px30 linux/external/optee test/ta/testapp/testapp ta.c:101

Ok 6823 1dr r3, [r4, #0]

9e: 2202 movs r2, #2

al: 4d28 ldr r5, [pc, #160] ; (144
<TA InvokeCommandEntryPoint+0xc4>)

a2: 4e29 ldr r6, [pc, #164] ; (148
<TA InvokeCommandEntryPoint+0xc8>)

ad: 681b 1dr r3, [r3, #0]

a6: 447d add r5, pc

ag: 447e add r6, pc

aa: 3533 adds r5, #51 ; 0x33

ac: 4628 mov r0, r5

ae: 9600 str r6, [sp, #0]

bO0: 9301 str r3, [sp, #4]

b2: 2301 movs r3, #1

b4: £000 f912 bl 2dc <trace printf>

9.3 Call stack

If the exception code address is not enough for you and also need functions call stack, the script export-

ta arm32\scripts\symbolize.py in OP-TEE v2 provides to show call stack. Note that the OP-TEE vl

platform does not support the script.

Step 1, set the compiler path you are using.

af://n714

#For 32-bit platforms, execute:

export PATH=/homel/hisping/rk px30_ linux/prebuilts/gcc/linux-x86/arm/gcc-linaro-
6.3.1-2017.05-x86_64 arm-linux-gnueabihf/bin:S$PATH

export CROSS COMPILE=arm-linux-gnueabihf-

#For 64-bit platforms, execute:

export PATH=/homel/hisping/rk px30 linux/prebuilts/gcc/linux-x86/aarch64/gcc—
linaro-6.3.1-2017.05-x86 64 aarch64-linux-gnu/bin:SPATH

export CROSS COMPILE=aarché64-linux-gnu-

Step 2, execute the script and -d parameter points to the TA compiled directory.

./export-ta arm32/scripts/symbolize.py -d out/ta/testapp/

Step 3, the script will wait for the exception log, after input, you can get the following result including call

stack.

I/TA: Hello Test App!

E/TC:? 0O

E/TC:? 0 User mode data-abort at address 0x2a (translation fault)

E/TC:? 0 esr 0x92000005 ttbr0 0x20000084a7020 ttbrl 0x00000000 cidr 0x0

E/TC:? 0 cpu #1 cpsr 0x20000130

E/TC:? 0 x0 00000000000069%9ee x1 0000000000000062

E/TC:? 0 x2 0000000000000002 x3 000000000000002a

E/TC:? 0 x4 00000000c0014£30 x5 00000000c0014£40

E/TC:? 0 x6 00000000c0074080 x7 00000000c0074308

E/TC:? 0 x8 00000000c00742e8 x9 00000000c0014£30

E/TC:? 0 x10 0000000000000065 x11 00000000c007£2d8

E/TC:? 0 x12 0000000000000773 x13 00000000c0014£f00

E/TC:? 0 x14 00000000c006cb0d x15 0000000000000000

E/TC:? 0 x16 0000000000000000 x17 0000000000000000

E/TC:? 0 x18 0000000000000000 %19 0000000000000000

E/TC:? 0 x20 0000000000000000 %21 0000000000000000

E/TC:? 0 x22 0000000000000000 %23 0000000000000000

E/TC:? 0 x24 0000000000000000 x25 0000000000000000

E/TC:? 0 x26 0000000000000000 %27 0000000000000000

E/TC:? 0 x28 0000000000000000 %29 0000000000000000

E/TC:? 0 x30 0000000000000000 elr 00000000c006b0a4d

E/TC:? 0 sp_el0 00000000c0014£80

E/LD: Status of TA 8cccf200-2450-11led-abe2-0002a5d5c52¢c

E/LD: arch: arm

E/LD: region va 0xc0004000 pa 0x08600000 size 0x002000 flags rw-s (ldelf)

E/LD: region va 0xc0006000 pa 0x08602000 size 0x008000 flags r-xs (ldelf)

E/LD: region va 0xc000e000 pa 0x0860a000 size 0x001000 flags rw-s (ldelf)
(ldelf)

E/LD: region va 0xc0013000 pa 0x0860f000 size 0x001000 flags r--s

va 0xc0014000 pa 0x08625000 size 0x001000 flags rw-s (stack)
va 0xc0015000 pa 0x09201000 size 0x002000 flags rw—-- (param)
E/LD: region va 0xc006b000 pa 0x00001000 size 0x009000 flags r-xs [0]
.ta_head .text .rodata .ARM.extab .ARM.exidx .dynsym .dynstr .hash

E/LD: region 8: va 0xc0074000 pa 0x0000a000 size 0x00c000 flags rw-s [0]
.dynamic .got .rel.got .data .bss .rel.dyn

E/LD: [0] 8cccf200-2450-11ed4-abe2-0002a5d5c52c @ 0xc006b000
(out/ta/testapp/8cccf200-2450-11ed-abe2-0002a5d5¢c52c.elf)

E/LD: Call stack:

E/LD: 0xc006b0a4 TA InvokeCommandEntryPoint at ta/testapp/testapp ta.c:98

E/LD: region

0

1

2
E/LD: region 3: va 0xc000f000 pa 0x0860b000 size 0x004000 flags rw-s

4

5

E/LD: region 6

7

E/LD: 0xc006cb0d entry invoke command at
/home/zhangzj/secure/optee 3.6.0/optee os/lib/libutee/arch/arm/user ta entry.c:3
57

E/LD: 0xc00714f3 ta entry c at export-ta arm32/src/user ta header.c:48

E/LD: 0xc006b158 ta entry at export-ta arm32/src/ta entry a32.5:20

10. Memory description

10.1 OP-TEE V1

platform TEE_RAM TA_RAM SHMEM
RK312x IM 12M IM
RK322x IM 12M M
RK3288 IM 12M M
RK3368 M 24M 4M
RK3328/RK322xH M 24M 4M
RK3399/RK3399Pro M 24M 4M

Note: The secure OS runs in TEE_RAM. The TA runs in TA_ RAM. SHMEM is the shared memory.

10.2 OP-TEE V2

platform TEE_RAM TA_RAM SHMEM
RK3326/PX30 2M 4M M
RK3358 2M 4M M
RK3308 2M IM IM
RK1808 2M IM M
RVI1109/RV1126 760K IM 512K
RK3566/RK3568 M 12M 2M
RK3588 2M 12M M
RK3528 2M 4M M
RK3562 2M 4M M
RV1106 IM IM 512K

Note: The secure OS runs in TEE_RAM. The TA runs in TA_ RAM. SHMEM is the shared memory.

af://n722
af://n723
af://n761

OP-TEE OS supports printing secure memory info, and developers can view the following information in the

startup log.

I/TC: OP-TEE memory: TEEOS 0x200000 TA 0xc00000 SHM 0x200000
I/TC: Primary CPU initializing
I/TC: Primary CPU switching to normal world boot

If the size of the startup log printing does not match the above list, the printing shall prevail.

11. Secure Storage

11.1 Partition

1. Secure storage is one of the important functions of OP-TEE OS. It generally used to store private user data.
Data is encrypted by OP-TEE OS and then stored in the security partition or rpmb partition or
Android/Linux file system.

There are three types of TEE secure storage:

The first, set storage] D=TEE_STORAGE PRIVATE RPMB in TA code, then emmc rpmb is used for

secure storage. The rpmb size varies for each emmc model, typically 4M.

The second, define security partition in parameter.txt and set storage]l D=TEE_STORAGE PRIVATE REE

in TA code, then secure storage is stored in the security partition, which is currently available at 512k.

The third, there is no security partition defined in parameter.txt and set
storageID=TEE_STORAGE PRIVATE REE in TA code, then secure storage is stored in the
Android/Linux file system /metadata/tee or /data/vendor/tee or /data/tee directory (please confirm that tee-
supplicant has permission to access this directory), and the total space is not limited. The disadvantage is
that the device needs to use emmc and uboot cannot define
CONFIG_OPTEE ALWAYS USE SECURITY_ PARTITION, The security data in the uboot stage should
be stored in the EMMC rpmb by default.

2. Secure storage on the Uboot side, please refer to the "TEE Driver in U-Boot" section.

3. Make sure that the device does not power down when writing data for secure storage. The reason is that
although we have done power loss protection but do not ensure the integrity of file system. Therefore, it is
recommended that developers reduce the number of writes to ensure data security. In theory, RPMB

provides better power off protection than security and Android/Linux file systems.

11.2 Performance testing

Test environment: OP-TEE V1, RK3399 in Linux platform, CPU fixed frequency to 1200000, DDR fixed
frequency to 200000000.

af://n822
af://n823
af://n835

Storage area Data size Create an empty file Write Read Delete the file

Linux file system 30K 16ms 67ms 61ms 19ms
Linux file system 4K 17ms 23ms 13ms 7Tms
Linux file system 1K 18ms 16ms 7ms 6ms
Linux file system 32 23ms 16ms 7ms 7Tms
security partition 30K 97ms 181ms 54ms 277ms
security partition 4K 101ms 74ms 14ms 101ms
security partition IK 104ms 56ms 7ms 64ms
security partition 32 103ms 55ms Tms 73ms
rpmb partition 30K 20ms 233ms 10ms Tms
rpmb partition 4K 20ms 36ms 3ms 6ms
rpmb partition 1K 22ms 14ms 2ms 6ms
rpmb partition 32 27ms 8ms 2ms 6ms

Test environment: OP-TEE V2, RK356x in Linux platform, CPU fixed frequency to 1416000, DDR fixed
frequency to 324000000.

Storage area Data size Create an empty file Write Read Delete the file
Linux file system 30K 17ms 28ms 3ms 8ms
Linux file system 4K 17ms 11ms Ims 8ms
Linux file system 1K 18ms 9ms Ims 8ms
Linux file system 32 19ms 8ms Ims 7ms
security partition 30K 12ms 12ms 4ms 12ms
security partition 4K 12ms 3ms Ims 11ms
security partition IK 13ms 2ms Ims 11ms
security partition 32 15ms 3ms Ims 14ms

rpmb partition 30K 23ms 287ms 16ms Sms
rpmb partition 4K 24ms 50ms 7ms 6ms

rpmb partition IK 23ms 22ms Sms 6ms

rpmb partition 32 3ums
Storage area Data size Create an empty file

12ms Sms Sms
Write Read Delete the file

12. Solution of optional strong or weak security levels

12.1 Scope

Solution applies to: RK3588. RK3528. RK3562 and subsequent new platforms.

12.2 Notes

Before using this solution, you should be aware of the following.

e Before downloading the firmware for the first time, confirm that the configuration items of uboot

CONFIG_OPTEE SECURITY LEVEL configured as required. It only supports configuration once and

cannot be modified later.
e Ifyou select "Strong Security Solution 2", download the OEM HUK using the tool

RKDevInfoWriteTool (V1.3.5 and above) before using.

12.3 Solution description

The solution supports the configuration of the security level of OP-TEE by the developer, and the protection

strength of eMMC/Secure Storage is different for each security levels.

Security
level

Strong
Security

Solution 1

Strong
Security

Solution 2

Weak
Security

Solution

Description

CPU chip and eMMC/secure storage data
are strongly bound,

if the CPU chip is replaced, you should
replace a new eMMC chip and erase

securely stored data.

CPU chip and eMMC/secure storage data
are weakly bound,

the OEM HUK which derives for
protecting eMMC/secure storage is
defined by developer,

if you download the same OEM HUK after
replacing the CPU chip, then you can use
the original eMMC/secure storage data.

CPU chip and eMMC/secure storage data
are not bound,
you can use the original eMMC/secure

storage data after replacing the CPU chip.

CONFIG_OPTEE_SECURITY_LEVEL
(uboot's configuration item)

0 or none

af://n1022
af://n1023
af://n1025
af://n1032

The difference between the above security levels is due to the difference between eMMC and Secure Storage

related keys. The keys related to this solution are described below.

e HUK: for deriving RPMB Key, Secure Storage Key and other keys. Different HUK for different security
levels. See figures below for details.
Hard HUK is derived from the Device Root Key. Unique key in chips. Device Root Key was burned into
secure OTP when chip is manufactured.
OEM HUK is defined by developer and burned into secure OTP by developer.
Soft HUK is defined by Rockchip and all chips have the same soft HUK. It is stored in firmware.

e RPMB Key: the storage protection key of the eMMC chip.

e Secure Storage Key: the key for secure storage.

e Other Key: other keys used in OP-TEE.

Strong Security Solution 1

[=== > RPMB Key
Device Root Key ---> Hard HUK ------ > Secure Storage Key
\==o=== > Other Key
Strong Security Solution 2
Device Root Key ---> Hard HUK ------ > Other Key
J—————= > RPMB Key
OEM HUK ---------—--—-—-
\—————- > Secure Storage Key
Weak Security Solution
Device Root Key ---> Hard HUK ------ > Other Key
[ommmm= > RPMB Key
Soft HUK —-—-—-—-—-—-—-
=== > Secure Storage Key

13. OTP description

OTP is One Time Programmable Memory. The OTP region supports multiple reads but only written once.

Multiple different OEM Zone areas are reserved in Secure OTP to meet users' different usage needs.

af://n1062

oTP
type

OEM
Cipher
Key

Protected
OEM

Zone

Non-
Protected
OEM

Zone

Description

This OEM Zone area is used to store user keys. Once the key
is written, it cannot be changed. After the user burns the key,
they can use the specified key for encryption and decryption

operations.

This OEM Zone area is only available for Trust Application
(TA application) calls running on OP-TEE OS, and cannot be
directly read or written to in non secure world. Please refer to

rktest demo.

This OEM Zone area can be called by U-Boot and
UserSpace, and the data will be exposed in non secure world

memory.

supported platforms

rv1126, rv1109, k3566,
k3568, rk3588, rk3528,
k3562, rv1106

k3308, rk3326, rk3358,

k3566, rk3568, rk3588,

rv1126, rv1109, rk3528,
k3562, rv1106

k3308, k3326, rk3358,
k3566, 1k3568, rk3588,
rv1106, k3528, rk3562

For more details, please refer to the document {Rockchip Developer Guide OTP_EN.pdf)

14. TA API description

14.1 Overview

RK provides the following TA APIs for two purposes:

¢ For developers to refer to how to use the GlobalPlatform TEE Internal Core APIs

e For developers to use the APIs directly

14.2 API return value

The return value of APIs are:

e TEE SUCCESS: if the function executes successfully
e TEE ERROR BAD PARAMETERS: if the parameter is wrong

e Others: see tee api_defines.h

14.3 API description

14.3.1 Crypto API

14.3.1.1 rk_crypto_malloc_ctx

crypto ctx t *rk crypto malloc ctx(void);

Description

af://n1083
af://n1084
af://n1091
af://n1100
af://n1101
af://n1102

Request a crypto operation handle resource.
Parameters

e None.

14.3.1.2 rk_crypto_free_ctx

void rk crypto free ctx(crypto ctx t **ctx);

Description
Release the crypto operation handle. It should be executed to release resources after algorithm is done.
Parameters

* ctx: crypto context

14.3.1.3 rk_hash_crypto

TEE Result rk hash crypto(uint8 t *in, uint8 t *out, uint32 t in len,
uint32 t out len, uint32 t algo);
Description

The hash digest algorithm. If you need to input message multiple times, you can use the

rk_hash begin/update/finish interface.
Parameters

e in: input data

e in_len: the length of input

e out: output data

e out_len: the length of output

e algo: algorithm type, supports TEE ALG MD5, TEE ALG SHAl, TEE ALG SHA224,
TEE ALG SHA256, TEE ALG SHA384, TEE ALG SHA512

14.3.1.4 rk_hash_begin

TEE Result rk hash begin(crypto ctx t *ctx, uint32 t algo);

Description
The hash digest algorithm for multiple, initialization operation.
Parameters

* ctx: crypto context
e algo: algorithm type, supports TEE ALG MD5, TEE ALG SHAl, TEE ALG_SHA224,
TEE ALG SHA256, TEE ALG SHA384, TEE ALG SHA512

14.3.1.5 rk_hash_update

af://n1110
af://n1118
af://n1134
af://n1144

TEE Result rk hash update (crypto ctx t *ctx, uint8 t *in, uint32 t in len);

Description
The hash digest algorithm for multiple, calculates digest of the data inputed.
Parameters

* ctx: crypto context
e in: input data

¢ in_len: the length of input

14.3.1.6 rk_hash_finish

TEE Result rk hash finish(crypto ctx t *ctx, uint8 t *in, uint8 t *out,

uint32 t in len, uint32 t *out len);

Description

The hash digest algorithm for multiple, calculates the digest of the last part and output the digest.
Parameters

* ctx: crypto context

e in: input data

e in_len: the length of input
e out: output data

e out_len: the length of output

14.3.1.7 rk_cipher_crypto

TEE Result rk cipher crypto(uint8 t *in, uint8 t *out, uint32 t len,
uint8 t *key, uint32 t key len, uint8 t *iv,
uint32 t algo, TEE OperationMode mode) ;

Description

Symmetric encryption/decryption algorithm interface. If you need to input data multiple times, you can use the

rk cipher begin/update/finish interface.
Parameters
e in: input data
¢ len: the length of input
e out: output data
¢ key: the key used for cipher
¢ key len: the length of key, different algo may supports different key lengths
e iv: initialization vector

¢ algo: algorithm type, support the following(OP-TEE V1 dose not support the SM algorithm)

af://n1156
af://n1172

TEE ALG AES ECB NOPAD
TEE ALG_AES_CBC_NOPAD
TEE_ALG_AES CTR
TEE_ALG_AES_CTS
TEE ALG AES XTS
TEE ALG_SM4 ECB_NOPAD
TEE_ALG_SM4 CBC_NOPAD
TEE_ALG_SM4 CTR
TEE ALG DES_ECB NOPAD
TEE_ALG_DES_CBC_NOPAD
TEE_ALG_DES3 ECB_NOPAD
TEE ALG DES3 CBC_NOPAD

¢ mode: the mode of cipher

14.3.1.8 rk_set_padding

TEE Result rk set padding(crypto ctx t *ctx, int padding);

Description
Sets the padding mode for encrypted/decrypted data.
Parameters

* ctx: crypto context

e padding: see rk padding t for supported modes

14.3.1.9 rk_cipher_begin

TEE Result rk cipher begin(crypto ctx t *ctx, uint8 t *key, uint32 t key len,
uint8 t *iv, uint32 t algo, TEE_OperationMode mode) ;

Description
The initialization operation of the symmetric encryption/decryption algorithm for multiple.

Parameters

* ctx: crypto context

¢ key: the key used for cipher

¢ key len: the length of key, different algo may supports different key lengths
e iv: initialization vector

¢ algo: algorithm type, support the following(OP-TEE V1 dose not support the SM algorithm)

af://n1195
af://n1205

TEE ALG AES ECB NOPAD
TEE ALG_AES_CBC_NOPAD
TEE_ALG_AES CTR
TEE_ALG_AES_CTS
TEE ALG AES XTS
TEE ALG_SM4 ECB_NOPAD
TEE_ALG_SM4 CBC_ NOPAD
TEE_ALG_SM4 CTR
TEE ALG DES_ECB NOPAD
TEE_ALG_DES_CBC_NOPAD
TEE_ALG_DES3 ECB_NOPAD
TEE ALG DES3 CBC_NOPAD

¢ mode: the mode of cipher

14.3.1.10 rk_cipher_update

TEE Result rk cipher update(crypto ctx t *ctx, uint8 t *in, uint8 t *out,
uint32 t in len, uint32 t *out len);
Description
Encrypt/decrypt the input data of symmetric encryption/decryption algorithm for multiple.
Parameters

e ctx: crypto context

e in: input data

¢ in_len: the length of input
e out: output data

e out_len: the length of output

14.3.1.11 rk_cipher_finish

TEE Result rk cipher finish(crypto ctx t *ctx, uint8 t *out, uint32 t *out len);

Description
Finish the encryption/decryption operation of symmetric encryption/decryption algorithm for multiple.
Parameters

* ctx: crypto context
e out: output data

e out len: the length of output

14.3.1.12 rk_ae_begin

af://n1224
af://n1240
af://n1252

TEE Result rk ae begin(crypto ctx t *ctx, uint8 t *key, uint32 t key len,
uint8 t *iv, uint32 t iv len,
uint32 t add len, uint32 t tag len,
uint32 t payload len, uint32 t algo, TEE OperationMode

mode) ;

Description
Initialization operations of AES-CCM or AES-GCM algorithms.
Parameters

* ctx: crypto context

¢ key: the key for calculation

¢ key len: the length of key, supports 16, 24, 32

e iv: initialization vector

e iv_len: the length of iv

e add len: the ADD length of the AES-CCM

e tag len: the tag length(bit), AES-GCM supports 128, 120, 112, 104, 96, and AES-CCM supports 128, 112,
96, 80, 64, 48, 32

e payload len: the payload length of the AES-CCM

e algo: algorithm type, support TEE ALG AES GCM, TEE ALG AES CCM

e mode: encryption or decryption mode

14.3.1.13 rk_ae_update

TEE_Result rk_ae update(crypto ctx t *ctx, uint8 t *in, uint8 t *out,
uint32 t in len, uint32 t *out len,

rk ae update type t is aad);
Description
Encrypts/decrypts the input data for AES-CCM or AES-GCM algorithms.

Parameters

* ctx: crypto context

e in: input data

¢ in_len: the length of input

e out: output data

e out_len: the length of output

e is add: identifies whether there is AAD(Additional Authentication Data)

14.3.1.14 rk_ae_finish

TEE Result rk ae finish(crypto ctx t *ctx, uint8 t *in, uint8 t *out,
uint8 t *tag, uint32 t in len,
uint32 t *out len, uint32 t *tag len);

Description

Complete the encryption/decryption operation for AES-CCM or AES-GCM algorithms.

af://n1278
af://n1296

Parameters

* ctx: crypto context

e in: the last input data

e in_len: the length of the last input data
e out: output data

e out_len: the length of output

e tag: output tag

e tag len: the length of tag

14.3.1.15 rk_gen_rsa_key

TEE Result rk gen rsa key(rsa key t *rsa key, uint32 t key len,
uint64 t public_exponent) ;

Description
Randomly generate RSA key pairs.

Parameters

e r1sa key: the output RSA key pairs
¢ key len: the length of RSA keys (byte), supports 32, 64, 96, 128, 192, 256, 384, 512
e public_exponent: public exponent, supports 3, 65537

14.3.1.16 rk_rsa_crypto

TEE Result rk rsa crypto(uint8 t *in, uint8 t *out, uint32 t len,
rsa_key t *key, uint32 t algo, TEE OperationMode mode) ;

Description
RSA encryption/decryption algorithms. You can also use the rk_rsa begin/finish interface.
Parameters

e in: input data

¢ len: the length of input
e out: output data

¢ key: the RSA key

e algo: the padding mode of RSA, supports:

TEE_ALG_RSAES PKCS1 V1 5

TEE ALG RSAES PKCS1 OAEP MGF1 SHAL
TEE ALG RSAES PKCS1 OAEP MGF1 SHA224
TEE_ALG _RSAES PKCS1 OAEP MGF1 SHA256
TEE_ALG_RSAES PKCS1 OAEP MGF1 SHA384
TEE ALG RSAES PKCS1 OAEP MGF1 SHA512
TEE ALG_RSA_NOPAD

¢ mode: the mode of RSA, supports TEE MODE ENCRYPT and TEE MODE DECRYPT

af://n1316
af://n1328

14.3.1.17 rk_rsa_sign

TEE Result rk rsa sign(uint8 t *digest, uint8 t *signature, uint32 t digest len,
uint32 t *signature len, rsa key t *key,
uint32 t salt len, uint32 t algo, TEE_OperationMode

mode) ;
Description
RSA sign/verify algorithm. You can also use the rk_rsa begin/finish interface.

Parameters

o digest: digest value

e signature: the output value of sign, or the input value to be verified

e digest len: the length of digest

e signature len: the length of signature

e key: RSA key

e salt len: the length of salt, it is optional, if it is O then the salt length is equal to the digest length

e algo: algorithm, see GPD TEE Internal Core API Specification, Table 6-4 for details
* mode: the mode of RSA, supports TEE MODE SIGN and TEE MODE VERIFY

14.3.1.18 rk_set_sign_mode

TEE_Result rk _set sign mode(crypto ctx t *ctx, unsigned int mode);

Description
Set the RSA sign mode, sign data or sign digest.
Parameters

* ctx: crypto context
e mode: SIGN DATA for signing data and SIGN DIGEST for signing digest

14.3.1.19 rk_rsa_begin

TEE Result rk rsa begin(crypto ctx t *ctx, rsa key t *key,
uint32 t algo, TEE OperationMode mode) ;

Description
Initialization of RSA encryption/decryption/sign/verify.
Parameters

e ctx: crypto context

¢ key: RSA key

e algo: the padding mode of RSA, see GPD_TEE Internal Core API Specification, Table 6-4
for details

e mode: algorithm type, support TEE MODE ENCRYPT, TEE MODE DECRYPT, TEE MODE SIGN,
TEE MODE VERIFY

af://n1347
af://n1369
af://n1379

14.3.1.20 rk_rsa_finish

TEE Result rk rsa finish(crypto ctx t *ctx, uint8 t *in, uint8 t *out,
uint32 t in len, uint32 t *out len, uint32 t salt len);

Description
RSA algorithm executed after rk _rsa begin.
Parameters

* ctx: crypto context

e in: input data

e in_len: the length of input

e out: output data

e out len: the length of output

¢ salt len: the length of salt, it is optional

14.3.1.21 rk_gen_ec_key

TEE Result rk gen ec key(ec key t *ec key, uint32 t key len, uint32 t curve);

Description
Randomly generate ECC key pairs.
Parameters

e cc_key: the output ECC key pairs
e key len: the length of key (bit), supports 192, 224, 256, 384, 521

e curve: ECC curve, see tee api defines.h for details

14.3.1.22 rk_ecdh_genkey

TEE Result rk ecdh genkey(uint8 t *private, uint8 t *publicx, uint32 t *publicy,
uint32 t algo, uint32 t curve,

uint32 t keysize, uint8 t *out);

Description
Perform ECDH to negotiate symmetric key.
Parameters

e private: ECC private key

e publicx: X-coordinate of ECC public key

e publicy: Y-coordinate of ECC public key

e algo: algorithm, supports TEE ALG ECDH P192, TEE ALG ECDH P224, TEE ALG ECDH P256,
TEE ALG ECDH P384, TEE ALG ECDH P521

e curve: ECC curve, supports TEE ECC_CURVE NIST P192, TEE ECC CURVE NIST P224,
TEE ECC_CURVE NIST P256, TEE ECC_CURVE NIST P384, TEE ECC CURVE NIST P521

e keysize: the length of key (bit), supports 192, 224, 256, 384, 521

e out: output symmetric key

af://n1393
af://n1411
af://n1423

14.3.1.23 rk_ecdsa_sign

TEE Result rk ecdsa sign(uint8 t *digest, uint8 t *signature,
uint32 t digest len, uint32 t *signature len,

ec_key t *key, uint32 t algo, TEE OperationMode mode) ;
Description
ECDSA sign/verify algorithm. You can also use the rk ecdsa begin/finish interface.

Parameters

e digest: input digest

e signature: output signature, or input signature for verified

e digest len: the length of digest

e signature len: the length of signature

¢ key: ECC key

e algo: algorithm, supports TEE ALG ECDSA P224, TEE ALG ECDSA P256, TEE ALG ECDSA P384,
TEE_ALG ECDSA P521

¢ mode: the mode of ECC, supports TEE MODE SIGN, TEE MODE VERIFY

14.3.1.24 rk_ecdsa_begin

TEE Result rk ecdsa begin(crypto ctx t *ctx, ec key t *key,
uint32 t algo,TEE OperationMode mode) ;
Description
Initialization operations of ECDSA.
Parameters

* ctx: crypto context

¢ key: ECC key

e algo: algorithm, supports TEE ALG ECDSA P224, TEE ALG ECDSA P256, TEE ALG ECDSA P384,
TEE_ALG_ECDSA P521

e mode: mode, supports TEE MODE SIGN, TEE MODE VERIFY

14.3.1.25 rk_ecdsa_finish

TEE Result rk ecdsa finish(crypto ctx t *ctx, uint8 t *in, uint8 t *out,
uint32 t in len, uint32 t *out len);
Description
ECDSA signs the input digest, or verifys the input digest and signature.
Parameters

* ctx: crypto context
e in: input digest
e out: output signature, or input signature for verified

¢ in_len: the length of input

af://n1443
af://n1463
af://n1477

e out len: the length of output

14.3.1.26 rk_sm2_pke

TEE Result rk sm2 pke(uint8 t *in, uint32 t in len, uint8 t *out,
uint32 t *out len, ec _key t *key,
uint32 t algo, TEE OperationMode mode) ;

Description
SM2 encryption/decryption. OP-TEE V1 does not support this interface.
Parameters

e in: input data

e in_len: the length of input

e out: output data

e out_len: the length of output

e key: SM2 key

e algo: algorithm, supports TEE ALG SM2 PKE

e mode: mode, supports TEE MODE ENCRYPT and TEE MODE DECRYPT

14.3.1.27 rk_sm2_dsa_sm3

TEE Result rk sm2 dsa sm3(uint8 t *digest, uint32 t digest len,
uint8 t *signature, uint32 t *signature len,

ec_key t *key, uint32 t algo, TEE OperationMode mode) ;
Description
SM2 sign/verify. OP-TEE V1 does not support this interface.

Parameters

e digest: SM3 digest

e digest len: the length of SM3 digest, fixed to 32

e signature: output signature, or input signature for verified

e signature len: the length of signature

o key: SM2 key

e algo: algorithm, supports TEE ALG SM2 DSA SM3

e mode: mode, supports TEE MODE SIGN and TEE MODE VERIFY

14.3.1.28 rk_sm2_kep_genkey

TEE Result rk smZ2 kep genkey(rk sm2 kep parms *kep parms, uint8 t *share key,

uint32 t share key len, uint8 t *conf out);

Description
ECDH algorithm based on SM2. OP-TEE V1 does not support this interface.

Parameters

af://n1493
af://n1513
af://n1533

e kep parms: SM2 key infomation, contains the private key of A and the public key of B
e share key: output symmetric key
e share key len: the length of share key

e conf out: information for validation

14.3.1.29 rk_mac_crypto

TEE Result rk mac crypto(uint8 t *in, uint8 t *out, uint32 t in len,
uint32 t *out len, uint8 t *key, uint32 t key len,
uint8 t *iv, uint32 t algo);

Description
MAC calculation. You can use the rk mac begin/update/finish interface for multiple calculations.
Parameters

e in: input data

¢ in_len: the length of input

e out: output data

e out_len: the length of output

e key: MAC key

¢ key len: the length of key

e iv: initialization vector

e algo: MAC algorithm type, support the following(OP-TEE V1 dose not support the SM algorithm),
TEE ALG HMAC MD5, TEE ALG HMAC SHAl, TEE ALG HMAC SHA256, TEE ALG AES CMAC,
TEE_ALG_HMAC SM3

14.3.1.30 rk_mac_begin

TEE Result rk mac begin(crypto ctx t *ctx, uint8 t *key, uint32 t key len,
uint8 t *iv, uint32 t algo);

Description
Initialization operation for MAC multiple calculation.

Parameters

* ctx: crypto context

¢ key: MAC key

e key len: the length of key

e iv: initialization vector

e algo: MA Calgorithm type, support the following(OP-TEE V1 dose not support the SM algorithm),
TEE ALG HMAC MD5, TEE ALG HMAC SHAl, TEE ALG HMAC SHA256, TEE ALG AES CMAC,
TEE ALG HMAC_ SM3

14.3.1.31 rk_mac_update

TEE Result rk mac update(crypto ctx t *ctx, uint8 t *in, uint32 t in len);

af://n1547
af://n1569
af://n1585

Description
Input data for MAC multiple calculation.
Parameters

* ctx: crypto context
e in: input data

e in_len: the length of input

14.3.1.32 rk_mac_finish

TEE Result rk mac finish(crypto ctx t *ctx, uint8 t *in, uint8 t *mac,
uint32 t in len, uint32 t *mac_len, rk mac mode t
mode) ;

Description

Input the last part of data and calculate the MAC or Verify the MAC.

Parameters

e ctx: crypto context

¢ in: the last part of input data

e in_len: the length of in

e mac: mode=RK_MAC SIGN - output calculate MAC value; mode=RK_MAC VERIFY - input MAC value
that is verified

¢ mac_len: the length of mac

e mode: see mac

14.3.1.33 rk_hkdf _genkey

TEE Result rk hkdf genkey(uint8 t *ikm, uint32 t ikm len,
uint8 t *salt, uint32 t salt len,
uint32 t *info, uint32 t info len,

uint32 t algo, uint32 t okm len, uint8 t *okm);

Description
HKDF key derivation.
Parameters

e ikm: input password

e ikm_len: the length of ikm

e salt: input salt

e salt len: the length of salt

e info: input info

¢ info len: the length of info

* algo: algorithm, supports TEE ALG HKDF MD5 DERIVE KEY, TEE ALG HKDF SHAl DERIVE KEY,
TEE_ALG _HKDF SHA224 DERIVE KEY, TEE ALG HKDF SHA256 DERIVE KEY,
TEE_ALG HKDF SHA384 DERIVE KEY, TEE ALG HKDF SHA512 DERIVE KEY

e okm_len: the length of okm

e okm: output key

af://n1597
af://n1615

14.3.1.34 rk_pkes5_pbkdf2 _hmac

TEE Result rk pkcs5 pbkdf2 hmac(uint8 t *password, uint32 t password len,
uint8 t *salt, uint32 t salt len,
uint32 t iterations, uint32 t algo,
uint32 t key len, uint8 t *out key);

Description
Key derivation by specifying the salt, iteration count and the password.

Parameters

¢ password: input password

e password len: the length of password

e salt: input salt

e salt_len: the length of salt

e iterations: input iteration count

e algo: algorithm, supports TEE ALG PBKDF2 HMAC SHA1l DERIVE KEY
e key len: the length of key

e out_key: output key

14.3.2 HW Crypto API

14.3.2.1 rk_user_ta_cipher

TEE Result rk user ta cipher(rk cipher config *config, uint8 t *src, uint32 t
len)

Description

Use hardware Crypto for encryption and decryption.

Parameters

e config: Algorithm parameters, used to configure algorithm type, algorithm mode, key, etc
e src: Input and output data

e len: Data length

14.3.3 TRNG API

14.3.3.1 rk_get_trng

TEE Result rk get trng(uint8 t *buffer, uint32 t size);

Description

Get the hardware random number.

Only supported by some platforms, if the interface is not supported, TEE ERROR NOT SUPPORTED is returned.

Parameters

af://n1639
af://n1661
af://n1662
af://n1674
af://n1675

¢ Dbuffer: output random number

e size: the length of buffer

14.3.4 Derive Key API

14.3.4.1 rk_derive_ta_unique_key

TEE Result rk derive ta unique key(uint8 t *extra, uintl6é t extra size, uint8 t

*key, uintlé t key size)

Ihhe
Obtain the key derived from the hardware unique key.

During the production of each chip, a hardware unique key is burned, and the key derived from this hardware

unique key is unique.
ZH

e extra: Input data for derive different keys
e extra_size: Input data length

e key: Derived key

e key size: Key length

14.3.5 OTP API

14.3.5.1 rk_otp_size

TEE Result rk otp size(uint32 t *otp size);

Description
Gets the total size of the Protected OEM Zone in secure OTP.
Parameters

e otp_size: return OTP size

14.3.5.2 rk_otp_read

TEE Result rk otp read(uint32 t offset, uint8 t *data, uint32 t len);

Description
Read data from Protected OEM Zone in secure OTP.
Parameters

o offset: the position offset of the OTP region to be read
e data: output data
e len: the length of data

af://n1685
af://n1686
af://n1701
af://n1702
af://n1710

14.3.5.3 rk_otp_write

TEE Result rk otp write(uint32 t offset, uint8 t *data, uint32 t len);

Description
Write data to Protected OEM Zone in secure OTP.
Parameters

¢ offset: the position offset of the OTP region to be write
e data: input data
¢ len: the length of data

15. Reference

ARM TrustZone:

https://developer.arm.com/ip-products/security-ip/trustzone

GlobalPlatform:

https://globalplatform.org/

This website can download CA development API reference documents: TEE Client API Specification
TA development API reference document: TEE Internal Core API Specification

And other architecture reference documents.

af://n1722
af://n1734
https://developer.arm.com/ip-products/security-ip/trustzone
https://globalplatform.org/

	Rockchip TEE SDK Developer Guide
	Reading Guide
	Introduction to TrustZone
	What is TrustZone
	Architecture
	Hardware architecture
	Software architecture
	TrustZone and TEE

	TEE Environment
	OP-TEE Version Description
	Parameter.txt
	TEE firmware
	TEE driver in U-Boot
	Macro Definition
	Shared Memory
	Secure Storage Test
	Test method
	Troubleshooting

	U-Boot Run User TA

	TEE driver in kernel
	OP-TEE V1
	OP-TEE V2
	Confirm TEE drive is enabled

	TEE Library

	CA/TA Development And Test
	Environment
	CA/TA demo
	Android
	Directory Introduction
	Compile
	Run
	Step By Step
	Develop CA/TA

	Linux
	Directory Introduction
	Compile
	Run
	Step By Step
	Develop CA/TA

	rk_tee_service
	Introduction
	Component
	Demo

	Test xtest

	TA Signature
	Principle
	Replace the public key

	Built-in TA into secure storage
	Principle
	Reference implementation

	Encrypt TA
	Method of encrypting TA
	Burn TA encryption key
	Decrypt and run the TA
	Soft TA encryption key

	REE FS TA anti-rollback
	TA anti-rollback usage

	TA debugging methods
	OP-TEE v1 platforms
	OP-TEE v2 platforms
	Call stack

	Memory description
	OP-TEE V1
	OP-TEE V2

	Secure Storage
	Partition
	Performance testing

	Solution of optional strong or weak security levels
	Scope
	Notes
	Solution description

	OTP description
	TA API description
	Overview
	API return value
	API description
	Crypto API
	rk_crypto_malloc_ctx
	rk_crypto_free_ctx
	rk_hash_crypto
	rk_hash_begin
	rk_hash_update
	rk_hash_finish
	rk_cipher_crypto
	rk_set_padding
	rk_cipher_begin
	rk_cipher_update
	rk_cipher_finish
	rk_ae_begin
	rk_ae_update
	rk_ae_finish
	rk_gen_rsa_key
	rk_rsa_crypto
	rk_rsa_sign
	rk_set_sign_mode
	rk_rsa_begin
	rk_rsa_finish
	rk_gen_ec_key
	rk_ecdh_genkey
	rk_ecdsa_sign
	rk_ecdsa_begin
	rk_ecdsa_finish
	rk_sm2_pke
	rk_sm2_dsa_sm3
	rk_sm2_kep_genkey
	rk_mac_crypto
	rk_mac_begin
	rk_mac_update
	rk_mac_finish
	rk_hkdf_genkey
	rk_pkcs5_pbkdf2_hmac

	HW Crypto API
	rk_user_ta_cipher

	TRNG API
	rk_get_trng

	Derive Key API
	rk_derive_ta_unique_key

	OTP API
	rk_otp_size
	rk_otp_read
	rk_otp_write

	Reference

