Rockchip Android 14 GKI Developer
Guide

ID: RK-KF-YF-778

Release Version: V1.1.0

Release Date: 2024-04-16

Security Level: oTop-Secret oSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP")DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

Ll =

"Rockchip", "Eaeval", "Hee" shall be Rockchip’s registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2023. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute
this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.
No.18 Building, A District, N0.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

Overview

This document introduces the development process and attention points of Android 14 GKI.
Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

af://n409
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Revision History

Version Author
Wu
V1.0.0))
Liangqing
Wu
V1.1.0))
Liangqing
Contents

Rockchip Android 14 GKI Developer Guide

1 GKI Introduction
1.1 What is GKI

Date

2023-
11-16

2024-
04-15

1.2 What products need GKI
1.3 The difference of GKI and non-GKI

2 Rockchip Android14 GKI Adaptation

Change Description

Initial version

Modify the GKI compilation method to no longer pre-
compile kernel modules

3 Google upstream kernel download and compile
4 Introduction to GKI related directories of Rockchip SDK
5 Requirements for GKI Compilation Environment

6 Rockchip GKI Compile
6.1 Code Modify
6.2 Compile
6.3 Firmware Flash

7 KO Compile and Modify

7.1 Method of adding new module drivers

8 Uboot log verification
8.1 uboot stage
8.2 Android stage
8.3 KO loading
8.4 KO loading error

8.5 bootcmdline parsing error

8.6 Fail to load Mali KO

8.7 kernel compiling error
9 GKI compilation environment requirements

10 Debugging skills

10.1 Print more logs loaded by KO

10.2 Compile GKI boot.img in RK kernel package
10.3 Check the kernel interface published by google
11 How to submit the kernel interface to upstream
12 How to update boot.img published by AOSP

13 How to pack vendor_boot.img solely

Step1: compile ko in kernel
Step2: copy ko file into mkcombinedroot directory

Step3: copy vendor_boot.img into mkcombinedroot directory

Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and
compile it to vendor_boot.img

Stepb5: flash vendor_boot.img to the device

af://n458

1 GKI Introduction

1.1 What is GKI

GKI: Generic Kernel Image

One of the difficulties of Android 14 GMS and EDLA authentication is that google mandates to
support GKI. GKl is designed by google for solving the problem of kernel fragmentation by
providing an unified core kernel and moving SOC and board-level drivers from core kernel into
the loadable modules. The core kernel provides a stable kernel module interface for the driver
module, and the driver and the kernel can be updated independently. The kernel interface can by
extended by upstream. SOC and board-level vendors need use the kernel interfaces defined
when developing, if you want to add core kernel interfaces, you need to submit to google, which
will be a long time, so you need to make preparation in advance.

Android }
Framework <::> HAL Implementation

|
I
KMI || Vendor
- Modules

P L

Generic Kernel (\'_ ~ I GKI Modules

Legend:
|:> Stable Interfaces Vendor Specific
F===== b\
[v’ Unstable Interfaces AOSP

Stable Kernel Module Interface (KMI)
(between Android Platform Releases)

1.2 What products need GKI

The products that use Android14 and require GMS and EDLA certifications

The products that use Android13 and require GMS and EDLA certifications

The products that use Android12 RK3588/RK3588S and require GMS and EDLA certifications
The products without GMS and EDLA certifications are not forced to use GKI

1.3 The difference of GKI and non-GKI

e Generic Kernel boot.img

GKI non-GKI
Google releases boot.img regularly, RK provides the kernel sources to compile,
you can not modify the code you can modify by yourselves freely

e Driver Module

af://n458
af://n459
af://n463
af://n472

GKI non-GKI

Load in the form of KO, and the kernel Embedded in boot, RK provides the kernel
interface invoked must be included in sources to compile, you can modify and
boot.img published by google add the kernel interfaces freely

e kernel code

GKI non-GKI

Kernel sources published
by RK only use for
compiling KO of driver
module

Kernel sources published by RK use for compiling the
whole kernel and driver module, the module is
embedded and compiled in the form of .o

e uboot supports head4

e Partition difference
GKI adds vendor_boot, init_boot, resource partitions

e Enable AB partition
2 Rockchip Android14 GKI Adaptation

The kernel version is 6.1.

Chipset Whether the adaptation is complete
RK3562 Yes
RK3568 Yes
RK3566 Yes
RK3588 Yes
RK3588S Yes
RK3326 Yes
PX30 Yes
RK3399 Yes
RK3576 Yes

3 Google upstream kernel download and compile

The boot.img provided by google publishes regularly, and the time interval is relatively long. We
can download the google upstream kernel to compile boot.img by ourselves to verify and debug.

Google Upstream kernel download link:

repo init -u https://android.googlesource.com/kernel/manifest -b common-
androidl4-6.1

Need to link google server to download.

af://n508
af://n541

Compile:
tools/bazel run //common:kernel_aarch64_dist -- --dist_dir=out
Generate boot.img

out/boot.img

4 Introduction to GKI related directories of
Rockchip SDK

e kernel KO file path

mkcombinedroot/vendor_ramdisk/1ib/modules/

e Google boot.img path

mkcombinedroot/prebuilts/boot-6.1.1img

e The protected KO file path published by Android AOSP
kernel/prebuilts/6.1/arm64/

e KO loading sequence configuration file compiled by Kernel-6.1 source
mkcombinedroot/res/vendor_ramdisk_modules. load

e KO loading sequence configuration file loaded during Android Init stage

mkcombinedroot/res/vendor_modules.load

5 Requirements for GKI Compilation Environment

e Ubuntu version needs to be 20.04 or higher.
e pahole version needs to be 1.25 or higher.

6 Rockchip GKI Compile

6.1 Code Modify

Configure the GKI options in the device products directory of Android.

af://n550
af://n569
af://n577
af://n579

~/a2_Androidl4_sdk/device/rockchip/rk3562% git diff
diff --git a/rk3562_u/BoardcConfig.mk b/rk3562_u/BoardConfig.mk
old mode 100644
new mode 100755
index 50da541..06da5f3
--- a/rk3562_u/Boardconfig.mk
+++ b/rk3562_u/BoardcConfig.mk
@@ -15,10 +15,21 @@
#
include device/rockchip/rk3562/Boardconfig.mk
BUILD_WITH_GO_OPT := false
-BOARD_BUILD_GKI := fasle
+BOARD_BUILD_GKI := true

NOTE: the configuration of RK3562 UGO is enabling GKI by default, you needn't configure
additionally.

If you compile uboot solely, you need to modify config to open AB configuration. If you compile
fully by build.sh, then no need to modify, which will add AB macro configuration automatically
during compiling.

e uboot need open AB configuration

~/a2_Android13_sdk/u-boot$ git diff

diff --git a/configs/rk3568_defconfig b/configs/rk3568_defconfig
index fbd9820acc..e23e438792 100644

--- a/configs/rk3588_defconfig

+++ b/configs/rk3588_defconfig

@@ -207,6 +207,7 @@ CONFIG_RSA_N_SIZE=0x200
CONFIG_RSA_E_SIZE=0x10

CONFIG_RSA_C_SIZE=0x20

CONFIG_SHA512=y

CONFIG_LZ4=y

CONFIG_LZMA=y

CONFIG_SPL_GZIP=y

@@ -220,3 +221,4 @@ CONFIG_RK_AVB_LIBAVB_USER=y
CONFIG_OPTEE_CLIENT=Y

CONFIG_OPTEE_V2=y
CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=Y
+CONFIG_ANDROID_AB=Yy

6.2 Compile

Full compilation mode is the same to that of non-GKI.

source build/envsetup.sh
Tunch rk3562_ugo-userdebug
./build.sh -ACUKup

Note: The kernel compiled here is only for generating the resource.img. The kernel source
code will be compiled into KO files and packaged into vendor_boot.img. The kernel part
uses the boot.img released by Google, and the specific path is in
mkcombinedroot/prebuilts/boot-6.1.img.

Flash directly after compiling: rockdev/Image-rk3562_ugo/update.img

af://n588

Compiling vendor_boot.img solely is also supported during debugging.
Compile command:

make installclean;make vendorbootimage -j12
Flash directly after compiling:
out/target/product/rk3562_ugo/vendor_boot.img

6.3 Firmware Flash

There are 2 ways to flash the firmware:

e Complete package update.img
Firmware path:

rockdev/Image-rk3562_ugo/update.img

o BOBEITAE TR V3.1 — X
1
THiER | HEEMN | Z@m6
E 11tk
2 3
EftA: 12.0.00 Loaderffi&E: 1.0b HHE{EE: RK3ses
i T:\a2_Androidl3_29_sdk'rockder\Image—rk3585_t\update. img
| B RB - |

You can flash through RK tools.

e Dispersive package to flash

First, import the configuration files, method: right click on the space of the tool-import
configuration-select to import txt file-select parameter.txt.

P

X
™ _ « roc.. > Image... v C O & Image-rk3588 t mEE [

[|y R =~ @ @
+ | M| 75k | Hht | &% ~
IR > R = e
2 | 0x00000000 | Paramet = o
s 000002000 | secwrd| > o 30 e 2023/3/3 21:52
4 |I¥ 0x00004000 | uboot _
5 v 0x00006000 | wboot] > k TE
6 v 0x00008000 trust,
st =
TV 000000 | trust, O EF
& |[v 0x0000C000 mise
s @ 00000000 | resowre O SE
10 | Ox00016000 | resowsl o yindows (C)
1 | v 0x0001E000 vendor_ba
12 |[v 0x00032000 vendor b & pata (D)
13 | |v 0<00046000 | init_bod
14 |[v e 0x0004A000 | init boq = wlg (\110.10.10.206) (T:)
Loader: AT tﬂ,ﬁ* vl AVATA A& 44 22 4) AALY
CIEHHEMIE SR (N): v| ParameterFile(*x) v
BeAT R B i
o e

af://n597

Then select the img files corresponded to rockdev/Image-rk3588_t/ one by one to flash, the

firmwares imported by partition A and B are the same.

rockdev/Image-rk3562_ugo
baseparameter.img
boot.img

dtbo.img
init_boot.img
MiniLoaderAll.bin
misc.img
parameter.txt
resource.img
super.img
uboot.img
update.img
vbmeta.img
vendor_boot.img

[TTTTTTTTTTTT

o T ELR v3.1

THER HEEE SR

4 M| 7FfE | ittt | &% e ..
¥ 0x00000000 Loader |

2 |Iv 000000000 Parameter | T:\a0_Androidl3_gki\IMAGE\RK3SS. ..

3 v 000004000 uboot_a T:\a2_Androidl3_29_sdk\rockdev\. .

4 |[v 000006000 uboot_b T:\a2_Androidl3_29_sdk\rockdev). ..

5 |[v 0x0000C000 mize T:\a0_Androi d13_gki \IMAGE\RK358. .

6 |Iv 0x0000E000 resource_a | T:\al_Androidl3_gki\kernel5.10...

7 v 0x00016000 resource_b | T:%a0_Androidi3_gki‘kernel—5.10. ..

g8 |[v 0x0001E000 vendor_boot_a T:'\a0_Androidl3_gki‘out\target). ..

5 v 0x00032000 vender_boot_b T:\al_Androidl3_gki\eut\targeth. .

0 |v 0x00046000 init_boot_a | T:\al_Androidl3_gki\rockdeviIma. ..

1 v 0x0004A000 init_boot_b | T:\a_Androidi3_gkitrockdevilna. ..

12 v 0x0004E000 dtbo_a T:\al_Androidl3_gki‘rockdeviIma. ..

13 v 0x00050000 dtbo_b | T:\aD_Androidl3_gkitrockdeviIna. .. SN
Loader Ver:1.0b thiT N WERTER A

Cigmpzitits
|8 /LY UL
BAT R

eSonremgiEw

7 KO Compile and Modify

7.1 Method of adding new module drivers

7.1.1 Put the driver codes into the corresponding directory of kernel-6.1, take adding touchscreen

driver gt1x as an example:

Put gtIx driver into drivers/input/touchscreen/, and add corresponding makefile and

Kconfig .Here we follow kernel standard method to do.

7.1.2 Add an own config file, and new-create a xxx_gki.config under arch/armé64/configs/,

and add CONFIG_TOUCHSCREEN_GT1x=m (m means being compiled into ko)to xxx_gki.config.

7.1.3 Add the KO file names to mkcombinedroot/res/vendor_ramdisk_modules.load or

mkcombinedroot/res/vendor_modules.load.

af://n613
af://n614

Corresponding Load

.load file name makefile analysis

partition time
ramdisk
vendor_ramdisk_modules.load vendor_boot vendor_ramdisk_gki.mk init
stage
. android
vendor_modules.load vendor vendor_gki.mk
startup
) recover
recovery_modules.load recovery recovery_gki.mk ; y
stage

If the driver has no requirement for load time, it can be loaded in android stage, such as
touchscreen driver, sensor driver and so on, detailed modification is followed:

e Enter mkcombinedroot directory
cd mkcombinedroot

e Add the ko name which needs to be compiled into vendor to res/vendor_modules.load, such
as xxx_tp.ko

diff --git a/res/vendor_modules.load b/res/vendor_modules.Toad
index e69de29..a53449f 100644

--- a/res/vendor_modules. load

+++ b/res/vendor_modules.load

@@ -0,0 +1,4 @@

pcie-dw-rockchip.ko

cfg80211.ko

+xxx_tp.ko

e Compile and flash super.img after finishing addition.

When adding KO files to res/vendor_modules.load, they will be compiled into the
vendor_d1km/Tib/modules/ directory. Therefore, during debugging, you can directly push
the compiled KO files to the vendor_d1km/1ib/modules/ directory on the device. Afterward,
reboot the device, and the KO files will be automatically loaded during boot.

Note : The mkcombinedroot/res/vendor_ramdisk_modules.load file is crucial for the
loading order of drivers. Please do not modify the original order, as it may cause the
system to fail to boot!!! New KO files are not recommended to be placed here unless
absolutely necessary, as loading more KO files through vendor_ramdisk_modules.load will
slow down the system startup. It is recommended to add new KO files to
mkcombinedroot/res/vendor_modules.load, which is loaded during the Android boot stage
and has a relatively minor impact on boot time.

7.1.4 Compile

For kernel modifications, it's advisable to use the build.sh -K script for compilation. When using
build.sh -K, the script automatically copies KO files to the temporary directory
mkcombinedroot/vendor_ramdisk/lib/modules during kernel compilation. In a complete
compilation, the KO files from this directory will be packaged into vendor_boot.img or super.img.
If you compile the kernel separately in the kernel directory, the generated KO files will not be
automatically copied to mkcombinedroot/vendor_ramdisk/lib/modules. In this case, you will need

to manually navigate to the mkcombinedroot directory and execute the ./copy_modules.sh script
to copy the KO files.

7.1.5 Compile vendor_boot.img in the project root directory, the command is as followed. This
step is to pack KO file to vendor_boot.img, then flash it into the device.

make installclean;make vendorbootimage -3j12

Flash vendor_boot.img solely, and the vendor_boot.img path after finishing
compiling is followed:

"~ “bash

out/target/product/rk3562_ugo/vendor_boot.img

NOTE: If the ko is compiled to vendor, then you need to compile super.img completely and
flash super.img.

7.1.6 Verify

e Flash out/target/product/rk3562_ugo/vendor_boot.img file to the device for boot
verifying.

e |fthe ko is put in vendor partition, then it can be push into the vendor partition of device
directly after system boot, and mount manually to verify.

e [fit's related to the modification of dts, then you need flash resource.img under kernel-6.1.

Attach: Various ko loading stages defined by AOSP

Boot Storage Display Keypad Battery PMIC TP N,FC/Wi- Sensors Camera
mode Fi/BT

Recovery Y Y Y Y Y N N N N
Charger Y Y Y Y Y N N N N
Android Y Y Y Y Y Y Y Y Y

8 Uboot log verification

8.1 uboot stage

Content header version
vendor_ramdisk(v-ramdisk) V3+
bootconfig V4+

Booting Android Image at 0x003ff000 ...
Kernel: 0x00400000 - 0x03088ffc (45604 KiB)
v-ramdisk: 0x0a200000 - 0x0a6944c8 (4690 KiB)
ramdisk: 0x0a6944c8 0x0a7e54df (1349 KiB)
bootconfig: 0x0a7e54df - 0x0a7e559c (1 KiB)
bootparams: 0x0a7e559c - 0x0a7e759c

8.2 Android stage

GKl version: Linux version 5.10.117-android13-9-00037-gbc08447eb7bd

https://source.android.google.cn/docs/core/architecture/kernel/loadable-kernel-modules#file-locations
af://n713
af://n714
af://n726

[0.000000] [TO] Booting Linux on physical CPU 0x0000000000 [0x412fd050]

L 0.000000] [TO] Linux version 5.10.117-android12-9-00037-gbc08447eb7hd
(build-user@build-host) (Android (7284624, based on r416183b) clang version
12.0.5 (https://android.googlesource.com/toolchain/11lvm-project
c935d99d7cf2016289302412d708641d52d2f7ee), LLD 12.0.5
(/buildbot/src/android/11vm-toolchai

n/out/1Tvm-project/11d c935d99d7cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT
Thu Aug 25 15:24:20 UTC 2022

Kernel command line: Command line parameter such as androidboot.xxx can not exist in
Header V4, this kind of parameters should be in bootconfig, which can be verified by cat

/proc/bootconfig.

[0.000000] [TO0] Kernel command Tine: stack_depot_disable=on
kasan.stacktrace=off kvm-arm.mode=protected cgroup_disable=pressure
cgroup.memory=nokme

m storagemedia=emmc console=ttyFIQ0 firmware_class.path=/vendor/etc/firmware
init=/init rootwait ro loop.max_part=7 bootconfig buildvariant=userdebug earl
ycon=uart8250,mmio32,0xfeb50000 1irqchip.gicv3_pseudo_nmi=0

8.3 KO loading

When starting to load ko, you can see the log:

1.034730][T1] Run /init as 1init process
1.036190] [T1] init: init first stage started!
1.040534][T1] init: Loading module /Tib/modules/io-domain.ko with args

= rm rmoe

[1.042038][T1] init: Loaded kernel module /1lib/modules/io-domain.ko

8.4 KO loading error

Use an unexported symbol, and restart with errors:

0.805736][T1] cryptodev: Unknown symbol crypto_ahash_final (err -2)
0.806383][T1] cryptodev: Unknown symbol sg_nents (err -2)

0.806972]1[T1] cryptodev: Unknown symbol crypto_alloc_akcipher (err -2)
0.819768][T1] Kernel panic - not syncing: Attempted to kill init!
exitcode=0x00007f00

L B e B s N e |

NOTE: Normally, this problem doesn't occur, please refer to Noun explanation phase - ABI .

8.5 bootcmdline parsing error

Error log

Failed to parse bootconfig: value is redefined at 416.

Phenomenon: unable to boot or boot into recovery.

Reason: The fields in cmdline are duplicated, resulting in a parsing cmdline error. You can press
crtl+p in the serial port when booting to uboot, and all cmdline information will be printed, and
check which field is duplicated from the printed cmdline information. Then find the

af://n731
af://n734
af://n738

corresponding definition in the codes and delete the corresponding field. cmdline is defined in
the dts of device and kernel, so you can search for the duplicated field in both directories.

8.6 Fail to load Mali KO

The performance of Mali KO loading failure is unable to boot and the boot screen locking in the
logo of 'Rockchip kernel'. You can fine the surfaceflinger crash in logcat.

04_27 22:45:27_653 366 366 F DEBUG roodeded dedede dedtde oededt Gbdedt s et st e

ekl fedd %

edede Nedede dedeh Nkde dedhek

04-27 22:45:27.653 366 366 F DEBUG : Build fingerprint:

'rockchip/rk3562_t/rk3562_t:13/TQ2A.230305.008.F1/eng.wlq.20230427.101925:userde
bug/release-keys'

04-27 22:45:27.653 366 366 F DEBUG : Revision: '0'

04-27 22:45:27.653 366 366 F DEBUG : ABI: 'arm64'

04-27 22:45:27.653 366 366 F DEBUG : Timestamp: 2023-04-27
22:45:27.509738048+0000

04-27 22:45:27.653 366 366 F DEBUG : Process uptime: 2s

04-27 22:45:27.653 366 366 F DEBUG : ¢mdTine: /system/bin/surfaceflinger
04-27 22:45:27.653 366 366 F DEBUG : pid: 335, tid: 360, name:
surfaceflinger >>> /system/bin/surfaceflinger <<<

04-27 22:45:27.653 366 366 F DEBUG : uid: 1000

04-27 22:45:27.653 366 366 F DEBUG : tagged_addr_ctrl: 0000000000000001
(PR_TAGGED_ADDR_ENABLE)

04-27 22:45:27.653 366 366 F DEBUG : signal 6 (SIGABRT), code -1
(SI_QUEUE), fault addr --------

04-27 22:45:27.653 366 366 F DEBUG : Abort message: 'no suitable EGLConfig
found, giving up'

04-27 22:45:27.653 366 366 F DEBUG : x0 0000000000000000 x1
0000000000000168 x2 0000000000000006 x3 000000710899d340

04-27 22:45:27.654 366 366 F DEBUG : x4 7568661f2b636d74 x5
7568661f2b636d74 x6 7568661f2b636d74 x7 7f7f7f7f7f7f7f7f

04-27 22:45:27.654 366 366 F DEBUG : x8 00000000000000f0 x9
000000739bcbda00 x10 0000000000000001 x11 000000739bcff6a0

04-27 22:45:27.654 366 366 F DEBUG : x12 000000710899d310 x13
0000000000000027 x14 000000710899d4e0 x15 00000000197bla4f

04-27 22:45:27.654 366 366 F DEBUG : x16 000000739bd6dd58 x17
000000739bd48770 x18 0000007108812000 x19 00000000000000ac

04-27 22:45:27.654 366 366 F DEBUG : x20 00000000000000b2 x21
000000000000014f x22 0000000000000168 x23 00000000ffFffffff

04-27 22:45:27.654 366 366 F DEBUG : x24 b4000071bbcab0b0 x25
000000710899dcb0 x26 000000710899dff8 x27 00000000000fe000

04-27 22:45:27.654 366 366 F DEBUG : x28 000000710899daf0 x29
000000710899d3c0

04-27 22:45:27.654 366 366 F DEBUG : Tr 000000739bcef3f4 sp

00000071089ndroid.runtime/1ib64/bionic/Tibc.so (__pthread_start(void*)+208)
(BuildId: e2429c64ab29f2d0ffc5a8f42c0c1b80)

04-27 22:45:27.655 366 366 F DEBUG : #09 pc 0000000000054c50
/apex/com.android.runtime/1ib64/bionic/libc.so (__start_thread+64) (Buildid:
e2429c64ab29f2d0ffc5a8f42c0c1b80)

This is because the ko of GPU is not match, you need recompile the ko file of GPU, and copy to
the corresponding directory under vendor/rockchip/common/gpu, the detail is as followed:

Modify kernel config in the product directory of device: PRODUCT_KERNEL_CONFIG :=
gki_defconfig rockchip_gki.config. And add the GPU configuration corresponding to the chip:

af://n742

RK3588:
PRODUCT_KERNEL_CONFIG :
RK356X/RK3562:
PRODUCT_KERNEL_CONFIG :
RK3326/RK3326-S:
PX30/PX30-S:
PRODUCT_KERNEL_CONFIG :
RK3399:
PRODUCT_KERNEL_CONFIG :

gki_defconfig rockchip_gki.config

gki_defconfig rockchip_gki.config rk356x.config

gki_defconfig rockchip_gki.config rk3326.config

gki_defconfig rockchip_gki.config rk3399.config

rk3399.config should be modified as followed:
wlq@sys2_206:~/a0_Androidl3_gki/mkcombinedroot$ git diff configs/
diff --git a/configs/rk3399.config b/configs/rk3399.config
old mode 100644

new mode 100755

index 0d66674..a003ba5

--- a/configs/rk3399.config

+++ b/configs/rk3399.config

@ -1,4 +1,11 @@

-~CONFIG_MALI_MIDGARD=Yy

+CONFIG_MALI_MIDGARD=m
+CONFIG_MALI_PLATFORM_THIRDPARTY_NAME="rk"
+CONFIG_MALI_PLATFORM_THIRDPARTY=Y

+CONFIG_MALI_DEBUG=Y

+CONFIG_MALI_DEVFREQ=Yy

+CONFIG_MALI_DT=y

+CONFIG_MALI_EXPERT=Y

+CONFIG_MALI_SHARED_INTERRUPTS=y

Then execute./build.sh -CK to compile kernel.

After finishing compiling, copy the corresponding mali ko to the vendor, please refer to above
sections for specific path.

8.7 kernel compiling error

Compiling error log:

BTF .btf.vmlinux.bin.o
Segmentation fault (core dumped)
LD .tmp_vmTinux.kalTsymsl
KSYMS .tmp_vmlinux.kalTsyms1l.S
AS .tmp_vmTlinux.kallsymsl.sS
LD .tmp_vmTinux.kallsyms2
KSYMS .tmp_vmTinux.kallsyms2.s
AS .tmp_vmlinux.kallsyms2.S
LD vm1inux

BTFIDS vmlinux
FAILED: Toad BTF from vmlinux: Unknown error -22Makefile:1293: recipe for target
'vmlinux' failed

make[1]: *** [vmlinux] Error 255
arch/arm64/mMakefile:214: recipe for target 'rk3588-evbl-Tp4-v10.img' failed
make: *** [rk3588-evbl-Tp4-v10.img] Error 2

failed to build some targets (21 seconds)

Resolution:

af://n750

e Update latest pahole
git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.qgit
e Compile pahole

Install and compile dependency librariy.
sudo apt-get install cmake
sudo apt-get install Tibdw-dev

If you have installed pahole before, you need to uninstall it first.

sudo apt-get --purge remove dwarves
e Begin to compile

Execute in the ahole directory.

mkdir build

cd build/

cmake -D__LIB=11ib -DBUILD_SHARED_LIBS=0FF .. configure static compilation

sudo make install

pahole --version to check the version to make sure that it is installed sucessfully.
9 GKI compilation environment requirements

e Ubuntu version requires 20.04 and above
e pahole version requires 1.25

10 Debugging skills

10.1 Print more logs loaded by KO

Modify the value of ratelimit to print more logs of init, in order to debug the problems. If init
informations are few, the error informations loaded by ko will be hided.

Xxx@sys2_206:~/a0_Androidl3_gki/device/rockchip/common$ vim BoardConfig.mk
Xxx@sys2_206:~/a0_Androidl3_gki/device/rockchip/common$ git diff
diff --git a/BoardConfig.mk b/Boardconfig.mk
index 0d1c886..1761ed0 100755
--- a/Boardconfig.mk
+++ b/BoardcConfig.mk
@@ -392,3 +392,5 @@ ifeq ($(strip $(BOARD_BASEPARAMETER_SUPPORT)), true)
endif
BOARD_WITH_SPECIAL_PARTITIONS := baseparameter:1lMm
endif
+
+BOARD_KERNEL_CMDLINE += printk.devkmsg=on

10.2 Compile GKI boot.img in RK kernel package

Compile kernel according to normal steps first, then generate arch/armé4/boot/Image.
Pack boot.img by following commands:

mkbootimg --kernel arch/armé4/boot/Image --header_version 4 --output
../mkcombinedroot/prebuilts/boot-6.1.img

10.3 Check the kernel interface published by google

af://n767
af://n773
af://n774
af://n777
af://n779

The standard kernel interface definition is in the android directory:

:~/a5_google_kenrel/common$ tree a
android/ arch/
wlq@sys2_206:~/a5_google_kenrel/common$ tree android/
android/

— abi_gki_aarch64

— abi_gki_aarch64_core

— abi_gki_aarch64_db845c

— abi_gki_aarch64_exynos

— abi_gki_aarch64_fips140

— abi_gki_aarch64_galaxy

— abi_gki_aarch64_generic

— abi_gki_aarch64_hikey960

— abi_gki_aarch64_rockchip

— abi_gki_aarch64_type_visibility
— abi_gki_aarch64_virtual_device
— abi_gki_aarch64.xml

— abi_gki_modules_exports

— abi_gki_modules_protected

— gki_aarch64_fipsl40_modules
— gki_aarch64_modules

L— gki_system_dlkm_modules

11 How to submit the kernel interface to upstream

If you need to add a new kernel interface, you can generate the corresponding patch, and submit
the patch to rockchip redmine to be examined and then submit it to google uniformly.

diff --git a/android/abi_gki_aarch64_rockchip b/android/abi_gki_aarch64_rockchip
index 85bd8bcl134cf..3344cf064e06 100644
--- a/android/abi_gki_aarch64_rockchip
+++ b/android/abi_gki_aarch64_rockchip
@@ -2144,6 +2144,15 @@
mmc_pwrseq_register
mmc_pwrseq_unregister

+
E: 3

required by r8168.ko
pci_set_mwi
pci_clear_mwi
proc_get_parent_data
skb_checksum_help
__skb_gso_segment
remove_proc_subtree
pci_choose_state

+ o+ + 4+ + + + o+

required by reboot-mode.ko
devres_release
kernel_kobj

12 How to update boot.img published by AOSP

Android AOSP updates boot.img and corresponding protected KO file regularly, the Android
release link is as followed:

af://n782
af://n785

https://source.android.com/docs/core/architecture/kernel/gki-android14-6 1-release-builds

After openning the link, find the latest release version of Android14-6.1, and then click
corresponding boot-6.1.img to download, as the picture shows:

Release build Debug build
Kernel
Release Tag / Source / . .
.g artifacts Certified GKI
date Licenses
0
2023-10- android14-6.1-2023-10_r1 kernel boot-6.1.1img
31 SHA: 835b6458fa548d62264f boot-6.1-gz.img
LICENSES boot-6.1-1z4.img
2023-10- android14-6.1-2823-10_r2 kernel I boot-6.1.img|
31 SHA1: fffe3966fa735fa5b94b boot-6.1-gz.img
LICENSES boot-6.1-1z4.img

After downloading the boot-6.1.img, copy it to:

mkcombinedroot/prebuilts/boot-6.1.1img

From Android14, AOSP publishes protected ko module synchronously, which needs to be
download together, and this ko file need to match with boot.img to load correctly.

Click the kernel link in the following picture to download system_dlkm_staging_archive.tar.gz.

Release build Debug build
Kernel
Release Tag / Source / . e
.g artifacts Certified GKI
date Licenses
o
2023-10- android14-6.1-2023-16_r1 kernel boot-6.1.img
31 SHA1: 835b6458fa548d62264f . boot-6.1-gz.img
LICENSES 1 boot-6.1-1z4.1img
2023-10- android14-6.1-2023-16_r2 kernel boot-6.1.img
31 SHA1: fffe3966fa735fa5b94b boot-6.1-gz.img
LICENSES boot-6.1-1z4.img

Download and unzip system_dlkm_staging_archive.tar.gz, and copy the unzipped ko file in
flatten\lib\modules\ to:

kernel/prebuilts/6.1/arm64/

13 How to pack vendor_boot.img solely

e Step1: compile the corresponding ko file in kernel.

e Step2: copy ko file into mkcombinedroot directory.

https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds
af://n794

e Step3: copy vendor_boot.img into mkcombinedroot directory.

e Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko
and compile it to vendor_boot.img.

e Stepb: flash vendor_boot.img to the device.

Now we introduce each steps in the following:

Step1: compile ko in kernel

e Enter kernel directory
Android14 + kernel6.1

cd kernel-6.1

e Export clang to the environment

export PATH=../prebuilts/clang/host/Tinux-x86/clang-r487747c/bin:$PATH
e Compile KO

make CROSS_COMPILE=aarch64-Tinux-gnu- LLVM=1 LLVM_IAS=1 ARCH=arm64 gki_defconfig
rockchip_gki.config && make CROSS_COMPILE=aarch64-1inux-gnu- LLVM=1 LLVM_IAS=1
ARCH=armé64 rk3562-rk817-tablet-v10.img -j32

Step2: copy ko file into mkcombinedroot directory

TTvm-objcopy --strip-debug drivers/xxx.ko
.. /mkcombinedroot/vendor_ramdisk/1ib/modules/xxx.ko

Step3: copy vendor_boot.img into mkcombinedroot
directory

Compiling vendor_boot.img solely needs to copy a vendor_boot.img base pack, just like that
compiling boot.img solely needs a boot_sample.img. This vendor_boot.img needs to be the same
with the vendor_boot.img in the device you prepare to update, which can be copied from GKI
firmware.

Step4: enter the mkcombinedroot directory and execute
mkgkid.sh script, then update ko and compile it to
vendor_boot.img

cd ../mkcombinedroot/

Compile vendor_boot.img, thereinto:

e DTS=board-level dts name, dts needs to use the load name defined in res/board/.

./mkgki4.sh DTS=rk3568-evbl-ddr4-v10

af://n805
af://n820
af://n822
af://n824

After compiling, there will be new_vendor_boot.img generated in the mkcombinedroot root
directory.

Stepb5: flash vendor_boot.img to the device

e Flash mkcombinedroot/new_vendor_boot.img file to the device and boot to verify.
Generally, GKI firmware is AB firmware, so when flashing new_vendor_boot.img, you need
update vendor_boot_a and vendor_boot_b partitions at the same time. If the device has
been in fastboot mode due to multiple abnormal restarts before flashing, you need to flash
misc.img at the same time. Only the mark in misc partition is cleaned, can the device boot,
the reference commands of flash tools in ubuntu are as followed:

sudo ./upgrade_tool di -vendor_boot_a
mkcombinedroot/new_vendor_boot.img/vendor_boot.img
sudo ./upgrade_tool di -vendor_boot_b
mkcombinedroot/new_vendor_boot.img/vendor_boot.img;
sudo ./upgrade_tool rd

e |fthe ko is put in vendor partition, then it can be pushed to the vendor partition of device
directly after system enabled, and mount manually to verify.
e Ifit's related to dts modification, you need to flash resource.img in kernel-6.1.

af://n832

	Rockchip Android 14 GKI Developer Guide
	1 GKI Introduction
	1.1 What is GKI
	1.2 What products need GKI
	1.3 The difference of GKI and non-GKI

	2 Rockchip Android14 GKI Adaptation
	3 Google upstream kernel download and compile
	4 Introduction to GKI related directories of Rockchip SDK
	5 Requirements for GKI Compilation Environment
	6 Rockchip GKI Compile
	6.1 Code Modify
	6.2 Compile
	6.3 Firmware Flash

	7 KO Compile and Modify
	7.1 Method of adding new module drivers

	8 Uboot log verification
	8.1 uboot stage
	8.2 Android stage
	8.3 KO loading
	8.4 KO loading error
	8.5 bootcmdline parsing error
	8.6 Fail to load Mali KO
	8.7 kernel compiling error

	9 GKI compilation environment requirements
	10 Debugging skills
	10.1 Print more logs loaded by KO
	10.2 Compile GKI boot.img in RK kernel package
	10.3 Check the kernel interface published by google

	11 How to submit the kernel interface to upstream
	12 How to update boot.img published by AOSP
	13 How to pack vendor_boot.img solely
	Step1: compile ko in kernel
	Step2: copy ko file into mkcombinedroot directory
	Step3: copy vendor_boot.img into mkcombinedroot directory
	Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to vendor_boot.img
	Step5: flash vendor_boot.img to the device

