
Rockchip Android 14 GKI Developer
Guide

ID: RK-KF-YF-778

Release Version: V1.1.0

Release Date: 2024-04-16

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT
PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO
THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN
THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED
OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All
the other trademarks or registered trademarks mentioned in this document shall be owned by
their respective owners.

All rights reserved. ©2023. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute
this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

Overview

This document introduces the development process and attention points of Android 14 GKI.

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

af://n409
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Version Author Date Change Description

V1.0.0
Wu
Liangqing

2023-
11-16

Initial version

V1.1.0
Wu
Liangqing

2024-
04-15

Modify the GKI compilation method to no longer pre-
compile kernel modules

Revision History

Contents

Rockchip Android 14 GKI Developer Guide
1 GKI Introduction

1.1 What is GKI
1.2 What products need GKI
1.3 The difference of GKI and non-GKI

2 Rockchip Android14 GKI Adaptation
3 Google upstream kernel download and compile
4 Introduction to GKI related directories of Rockchip SDK
5 Requirements for GKI Compilation Environment
6 Rockchip GKI Compile

6.1 Code Modify
6.2 Compile
6.3 Firmware Flash

7 KO Compile and Modify
7.1 Method of adding new module drivers

8 Uboot log verification
8.1 uboot stage
8.2 Android stage
8.3 KO loading
8.4 KO loading error
8.5 bootcmdline parsing error
8.6 Fail to load Mali KO
8.7 kernel compiling error

9 GKI compilation environment requirements
10 Debugging skills

10.1 Print more logs loaded by KO
10.2 Compile GKI boot.img in RK kernel package
10.3 Check the kernel interface published by google

11 How to submit the kernel interface to upstream
12 How to update boot.img published by AOSP
13 How to pack vendor_boot.img solely

Step1: compile ko in kernel
Step2: copy ko file into mkcombinedroot directory
Step3: copy vendor_boot.img into mkcombinedroot directory
Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and
compile it to vendor_boot.img
Step5: flash vendor_boot.img to the device

af://n458

1 GKI Introduction

1.1 What is GKI

GKI：Generic Kernel Image

One of the difficulties of Android 14 GMS and EDLA authentication is that google mandates to
support GKI. GKI is designed by google for solving the problem of kernel fragmentation by
providing an unified core kernel and moving SOC and board-level drivers from core kernel into
the loadable modules. The core kernel provides a stable kernel module interface for the driver
module, and the driver and the kernel can be updated independently. The kernel interface can by
extended by upstream. SOC and board-level vendors need use the kernel interfaces defined
when developing, if you want to add core kernel interfaces, you need to submit to google, which
will be a long time, so you need to make preparation in advance.

1.2 What products need GKI

The products that use Android14 and require GMS and EDLA certifications
The products that use Android13 and require GMS and EDLA certifications
The products that use Android12 RK3588/RK3588S and require GMS and EDLA certifications
The products without GMS and EDLA certifications are not forced to use GKI

1.3 The difference of GKI and non-GKI

GKI non-GKI

Google releases boot.img regularly,
you can not modify the code

RK provides the kernel sources to compile,
you can modify by yourselves freely

Generic Kernel boot.img

Driver Module

af://n458
af://n459
af://n463
af://n472

Chipset Whether the adaptation is complete

RK3562 Yes

RK3568 Yes

RK3566 Yes

RK3588 Yes

RK3588S Yes

RK3326 Yes

PX30 Yes

RK3399 Yes

RK3576 Yes

GKI non-GKI

Load in the form of KO, and the kernel
interface invoked must be included in
boot.img published by google

Embedded in boot, RK provides the kernel
sources to compile, you can modify and
add the kernel interfaces freely

GKI non-GKI

Kernel sources published
by RK only use for
compiling KO of driver
module

Kernel sources published by RK use for compiling the
whole kernel and driver module, the module is
embedded and compiled in the form of .o

kernel code

uboot supports head4

Partition difference
GKI adds vendor_boot、init_boot、resource partitions

Enable AB partition

2 Rockchip Android14 GKI Adaptation

The kernel version is 6.1.

3 Google upstream kernel download and compile

The boot.img provided by google publishes regularly, and the time interval is relatively long. We
can download the google upstream kernel to compile boot.img by ourselves to verify and debug.

Google Upstream kernel download link:

Need to link google server to download.

repo init -u https://android.googlesource.com/kernel/manifest -b common-

android14-6.1

af://n508
af://n541

Compile:

Generate boot.img

4 Introduction to GKI related directories of
Rockchip SDK

kernel KO file path

Google boot.img path

The protected KO file path published by Android AOSP

KO loading sequence configuration file compiled by Kernel-6.1 source

KO loading sequence configuration file loaded during Android Init stage
···
mkcombinedroot/res/vendor_modules.load
···

5 Requirements for GKI Compilation Environment

Ubuntu version needs to be 20.04 or higher.
pahole version needs to be 1.25 or higher.

6 Rockchip GKI Compile

6.1 Code Modify

Configure the GKI options in the device products directory of Android.

tools/bazel run //common:kernel_aarch64_dist -- --dist_dir=out

out/boot.img

mkcombinedroot/vendor_ramdisk/lib/modules/

mkcombinedroot/prebuilts/boot-6.1.img

kernel/prebuilts/6.1/arm64/

mkcombinedroot/res/vendor_ramdisk_modules.load

af://n550
af://n569
af://n577
af://n579

NOTE: the configuration of RK3562 UGO is enabling GKI by default, you needn't configure
additionally.

If you compile uboot solely, you need to modify config to open AB configuration. If you compile
fully by build.sh, then no need to modify, which will add AB macro configuration automatically
during compiling.

uboot need open AB configuration

6.2 Compile

Full compilation mode is the same to that of non-GKI.

Note: The kernel compiled here is only for generating the resource.img. The kernel source
code will be compiled into KO files and packaged into vendor_boot.img. The kernel part
uses the boot.img released by Google, and the specific path is in
mkcombinedroot/prebuilts/boot-6.1.img.

Flash directly after compiling: rockdev/Image-rk3562_ugo/update.img

~/a2_Android14_sdk/device/rockchip/rk3562$ git diff

diff --git a/rk3562_u/BoardConfig.mk b/rk3562_u/BoardConfig.mk

old mode 100644

new mode 100755

index 50da541..06da5f3

--- a/rk3562_u/BoardConfig.mk

+++ b/rk3562_u/BoardConfig.mk

@@ -15,10 +15,21 @@

 #

 include device/rockchip/rk3562/BoardConfig.mk

 BUILD_WITH_GO_OPT := false

-BOARD_BUILD_GKI := fasle

+BOARD_BUILD_GKI := true

~/a2_Android13_sdk/u-boot$ git diff

diff --git a/configs/rk3568_defconfig b/configs/rk3568_defconfig

index fbd9820acc..e23e438792 100644

--- a/configs/rk3588_defconfig

+++ b/configs/rk3588_defconfig

@@ -207,6 +207,7 @@ CONFIG_RSA_N_SIZE=0x200

CONFIG_RSA_E_SIZE=0x10

CONFIG_RSA_C_SIZE=0x20

CONFIG_SHA512=y

CONFIG_LZ4=y

CONFIG_LZMA=y

CONFIG_SPL_GZIP=y

@@ -220,3 +221,4 @@ CONFIG_RK_AVB_LIBAVB_USER=y

CONFIG_OPTEE_CLIENT=y

CONFIG_OPTEE_V2=y

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y

+CONFIG_ANDROID_AB=y

source build/envsetup.sh

lunch rk3562_ugo-userdebug

./build.sh -ACUKup

af://n588

Compiling vendor_boot.img solely is also supported during debugging.
Compile command：

Flash directly after compiling:

6.3 Firmware Flash

There are 2 ways to flash the firmware:

Complete package update.img
Firmware path:

You can flash through RK tools.

Dispersive package to flash

First, import the configuration files, method: right click on the space of the tool-import
configuration-select to import txt file-select parameter.txt.

make installclean;make vendorbootimage -j12

out/target/product/rk3562_ugo/vendor_boot.img

rockdev/Image-rk3562_ugo/update.img

af://n597

Then select the img files corresponded to rockdev/Image-rk3588_t/ one by one to flash, the
firmwares imported by partition A and B are the same.

7 KO Compile and Modify

7.1 Method of adding new module drivers

7.1.1 Put the driver codes into the corresponding directory of kernel-6.1, take adding touchscreen
driver gt1x as an example:
Put gtlx driver into drivers/input/touchscreen/ , and add corresponding Makefile and
Kconfig .Here we follow kernel standard method to do.

7.1.2 Add an own config file, and new-create a xxx_gki.config under arch/arm64/configs/ ,
and add CONFIG_TOUCHSCREEN_GT1X=m (m means being compiled into ko)to xxx_gki.config .

7.1.3 Add the KO file names to mkcombinedroot/res/vendor_ramdisk_modules.load or
mkcombinedroot/res/vendor_modules.load.

rockdev/Image-rk3562_ugo

├── baseparameter.img

├── boot.img

├── dtbo.img

├── init_boot.img

├── MiniLoaderAll.bin

├── misc.img

├── parameter.txt

├── resource.img

├── super.img

├── uboot.img

├── update.img

├── vbmeta.img

└── vendor_boot.img

af://n613
af://n614

.load file name
Corresponding
partition

makefile analysis
Load
time

vendor_ramdisk_modules.load vendor_boot vendor_ramdisk_gki.mk
ramdisk
init
stage

vendor_modules.load vendor vendor_gki.mk
android
startup

recovery_modules.load recovery recovery_gki.mk
recovery
stage

If the driver has no requirement for load time, it can be loaded in android stage, such as
touchscreen driver, sensor driver and so on, detailed modification is followed:

Enter mkcombinedroot directory

Add the ko name which needs to be compiled into vendor to res/vendor_modules.load, such
as xxx_tp.ko

Compile and flash super.img after finishing addition.

When adding KO files to res/vendor_modules.load , they will be compiled into the
vendor_dlkm/lib/modules/ directory. Therefore, during debugging, you can directly push
the compiled KO files to the vendor_dlkm/lib/modules/ directory on the device. Afterward,
reboot the device, and the KO files will be automatically loaded during boot.

Note : The mkcombinedroot/res/vendor_ramdisk_modules.load file is crucial for the
loading order of drivers. Please do not modify the original order, as it may cause the
system to fail to boot!!! New KO files are not recommended to be placed here unless
absolutely necessary, as loading more KO files through vendor_ramdisk_modules.load will
slow down the system startup. It is recommended to add new KO files to
mkcombinedroot/res/vendor_modules.load, which is loaded during the Android boot stage
and has a relatively minor impact on boot time.

7.1.4 Compile

For kernel modifications, it's advisable to use the build.sh -K script for compilation. When using
build.sh -K, the script automatically copies KO files to the temporary directory
mkcombinedroot/vendor_ramdisk/lib/modules during kernel compilation. In a complete
compilation, the KO files from this directory will be packaged into vendor_boot.img or super.img.
If you compile the kernel separately in the kernel directory, the generated KO files will not be
automatically copied to mkcombinedroot/vendor_ramdisk/lib/modules. In this case, you will need

cd mkcombinedroot

diff --git a/res/vendor_modules.load b/res/vendor_modules.load

index e69de29..a53449f 100644

--- a/res/vendor_modules.load

+++ b/res/vendor_modules.load

@@ -0,0 +1,4 @@

pcie-dw-rockchip.ko

cfg80211.ko

+xxx_tp.ko

Boot
mode

Storage Display Keypad Battery PMIC TP
NFC/Wi-
Fi/BT

Sensors Camera

Recovery Y Y Y Y Y N N N N

Charger Y Y Y Y Y N N N N

Android Y Y Y Y Y Y Y Y Y

Content header version

vendor_ramdisk(v-ramdisk) V3+

bootconfig V4+

to manually navigate to the mkcombinedroot directory and execute the ./copy_modules.sh script
to copy the KO files.

7.1.5 Compile vendor_boot.img in the project root directory, the command is as followed. This
step is to pack KO file to vendor_boot.img, then flash it into the device.

NOTE: If the ko is compiled to vendor, then you need to compile super.img completely and
flash super.img.

7.1.6 Verify

Flash out/target/product/rk3562_ugo/vendor_boot.img file to the device for boot
verifying.
If the ko is put in vendor partition, then it can be push into the vendor partition of device
directly after system boot, and mount manually to verify.
If it's related to the modification of dts, then you need flash resource.img under kernel-6.1.

Attach：Various ko loading stages defined by AOSP

8 Uboot log verification

8.1 uboot stage

8.2 Android stage

GKI version： Linux version 5.10.117-android13-9-00037-gbc08447eb7bd

make installclean;make vendorbootimage -j12

Flash vendor_boot.img solely, and the vendor_boot.img path after finishing

compiling is followed:

```bash

out/target/product/rk3562_ugo/vendor_boot.img

## Booting Android Image at 0x003ff000 ...

Kernel: 0x00400000 - 0x03088ffc (45604 KiB)

v-ramdisk:  0x0a200000 - 0x0a6944c8 (4690 KiB)

ramdisk:    0x0a6944c8 - 0x0a7e54df (1349 KiB)

bootconfig: 0x0a7e54df - 0x0a7e559c (1 KiB)

bootparams: 0x0a7e559c - 0x0a7e759c

https://source.android.google.cn/docs/core/architecture/kernel/loadable-kernel-modules#file-locations
af://n713
af://n714
af://n726


Kernel command line：Command line parameter such as androidboot.xxx can not exist in 
Header V4, this kind of parameters should be in bootconfig, which can be verified by cat 
/proc/bootconfig .

8.3 KO loading  

When starting to load ko, you can see the log:

8.4 KO loading error  

Use an unexported symbol, and restart with errors:

NOTE: Normally, this problem doesn't occur, please refer to   Noun explanation phase - ABI  .

8.5 bootcmdline parsing error  

Error log

Phenomenon: unable to boot or boot into recovery.
Reason: The fields in cmdline are duplicated, resulting in a parsing cmdline error. You can press 
crtl+p in the serial port when booting to uboot, and all cmdline information will be printed, and 
check which field is duplicated from the printed cmdline information. Then find the 

[    0.000000][    T0] Booting Linux on physical CPU 0x0000000000 [0x412fd050]

[    0.000000][    T0] Linux version 5.10.117-android12-9-00037-gbc08447eb7bd 

(build-user@build-host) (Android (7284624, based on r416183b) clang version 

12.0.5 (https://android.googlesource.com/toolchain/llvm-project 

c935d99d7cf2016289302412d708641d52d2f7ee), LLD 12.0.5 

(/buildbot/src/android/llvm-toolchai

n/out/llvm-project/lld c935d99d7cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT 

Thu Aug 25 15:24:20 UTC 2022

[    0.000000][    T0] Kernel command line: stack_depot_disable=on 

kasan.stacktrace=off kvm-arm.mode=protected cgroup_disable=pressure 

cgroup.memory=nokme

m storagemedia=emmc console=ttyFIQ0 firmware_class.path=/vendor/etc/firmware 

init=/init rootwait ro loop.max_part=7 bootconfig buildvariant=userdebug earl

ycon=uart8250,mmio32,0xfeb50000 irqchip.gicv3_pseudo_nmi=0 

[    1.034730][    T1] Run /init as init process

[    1.036190][    T1] init: init first stage started!

[    1.040534][    T1] init: Loading module /lib/modules/io-domain.ko with args 

''

[    1.042038][    T1] init: Loaded kernel module /lib/modules/io-domain.ko

[    0.805736][    T1] cryptodev: Unknown symbol crypto_ahash_final (err -2)

[    0.806383][    T1] cryptodev: Unknown symbol sg_nents (err -2)

[    0.806972][    T1] cryptodev: Unknown symbol crypto_alloc_akcipher (err -2)

[    0.819768][    T1] Kernel panic - not syncing: Attempted to kill init! 

exitcode=0x00007f00

Failed to parse bootconfig: Value is redefined at 416.

af://n731
af://n734
af://n738


corresponding definition in the codes and delete the corresponding field. cmdline is defined in 
the dts of device and kernel, so you can search for the duplicated field in both directories.

8.6 Fail to load Mali KO  

The performance of Mali KO loading failure is unable to boot and the boot screen locking in the 
logo of  'Rockchip kernel'. You can fine the surfaceflinger crash in  logcat.

This is because the ko of GPU is not match, you need recompile the ko file of GPU, and copy to 
the corresponding directory under vendor/rockchip/common/gpu, the detail is as followed:

Modify kernel config in the product directory of device: PRODUCT_KERNEL_CONFIG := 
gki_defconfig rockchip_gki.config. And add the GPU configuration corresponding to the chip:

04-27 22:45:27.653   366   366 F DEBUG   : *** *** *** *** *** *** *** *** *** 

*** *** *** *** *** *** ***

04-27 22:45:27.653   366   366 F DEBUG   : Build fingerprint: 

'rockchip/rk3562_t/rk3562_t:13/TQ2A.230305.008.F1/eng.wlq.20230427.101925:userde

bug/release-keys'

04-27 22:45:27.653   366   366 F DEBUG   : Revision: '0'

04-27 22:45:27.653   366   366 F DEBUG   : ABI: 'arm64'

04-27 22:45:27.653   366   366 F DEBUG   : Timestamp: 2023-04-27 

22:45:27.509738048+0000

04-27 22:45:27.653   366   366 F DEBUG   : Process uptime: 2s

04-27 22:45:27.653   366   366 F DEBUG   : Cmdline: /system/bin/surfaceflinger

04-27 22:45:27.653   366   366 F DEBUG   : pid: 335, tid: 360, name: 

surfaceflinger  >>> /system/bin/surfaceflinger <<<

04-27 22:45:27.653   366   366 F DEBUG   : uid: 1000

04-27 22:45:27.653   366   366 F DEBUG   : tagged_addr_ctrl: 0000000000000001 

(PR_TAGGED_ADDR_ENABLE)

04-27 22:45:27.653   366   366 F DEBUG   : signal 6 (SIGABRT), code -1 

(SI_QUEUE), fault addr --------

04-27 22:45:27.653   366   366 F DEBUG   : Abort message: 'no suitable EGLConfig 

found, giving up'

04-27 22:45:27.653   366   366 F DEBUG   :     x0  0000000000000000  x1  

0000000000000168  x2  0000000000000006  x3  000000710899d340

04-27 22:45:27.654   366   366 F DEBUG   :     x4  7568661f2b636d74  x5  

7568661f2b636d74  x6  7568661f2b636d74  x7  7f7f7f7f7f7f7f7f

04-27 22:45:27.654   366   366 F DEBUG   :     x8  00000000000000f0  x9  

000000739bcbda00  x10 0000000000000001  x11 000000739bcff6a0

04-27 22:45:27.654   366   366 F DEBUG   :     x12 000000710899d310  x13 

0000000000000027  x14 000000710899d4e0  x15 00000000197b1a4f

04-27 22:45:27.654   366   366 F DEBUG   :     x16 000000739bd6dd58  x17 

000000739bd48770  x18 0000007108812000  x19 00000000000000ac

04-27 22:45:27.654   366   366 F DEBUG   :     x20 00000000000000b2  x21 

000000000000014f  x22 0000000000000168  x23 00000000ffffffff

04-27 22:45:27.654   366   366 F DEBUG   :     x24 b4000071bbca60b0  x25 

000000710899dcb0  x26 000000710899dff8  x27 00000000000fe000

04-27 22:45:27.654   366   366 F DEBUG   :     x28 000000710899daf0  x29 

000000710899d3c0

04-27 22:45:27.654   366   366 F DEBUG   :     lr  000000739bcef3f4  sp  

00000071089ndroid.runtime/lib64/bionic/libc.so (__pthread_start(void*)+208) 

(BuildId: e2429c64ab29f2d0ffc5a8f42c0c1b80)

04-27 22:45:27.655   366   366 F DEBUG   :       #09 pc 0000000000054c50  

/apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64) (BuildId: 

e2429c64ab29f2d0ffc5a8f42c0c1b80)

af://n742


Then execute./build.sh -CK  to compile kernel.

After finishing compiling, copy the corresponding mali ko to the vendor, please refer to above 
sections for specific path.

8.7 kernel compiling error  

Compiling error log：

Resolution:

RK3588：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config

RK356X/RK3562：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk356x.config

RK3326/RK3326-S：

PX30/PX30-S：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk3326.config

RK3399：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk3399.config

rk3399.config should be modified as followed:

wlq@sys2_206:~/a0_Android13_gki/mkcombinedroot$ git diff configs/

diff --git a/configs/rk3399.config b/configs/rk3399.config

old mode 100644

new mode 100755

index 0d66674..a003ba5

--- a/configs/rk3399.config

+++ b/configs/rk3399.config

@@ -1,4 +1,11 @@

-CONFIG_MALI_MIDGARD=y

+CONFIG_MALI_MIDGARD=m

+CONFIG_MALI_PLATFORM_THIRDPARTY_NAME="rk"

+CONFIG_MALI_PLATFORM_THIRDPARTY=y

+CONFIG_MALI_DEBUG=y

+CONFIG_MALI_DEVFREQ=y

+CONFIG_MALI_DT=y

+CONFIG_MALI_EXPERT=y

+CONFIG_MALI_SHARED_INTERRUPTS=y

BTF     .btf.vmlinux.bin.o

Segmentation fault (core dumped)

LD      .tmp_vmlinux.kallsyms1

KSYMS   .tmp_vmlinux.kallsyms1.S

AS      .tmp_vmlinux.kallsyms1.S

LD      .tmp_vmlinux.kallsyms2

KSYMS   .tmp_vmlinux.kallsyms2.S

AS      .tmp_vmlinux.kallsyms2.S

LD      vmlinux

BTFIDS  vmlinux

FAILED: load BTF from vmlinux: Unknown error -22Makefile:1293: recipe for target 

'vmlinux' failed

make[1]: *** [vmlinux] Error 255

arch/arm64/Makefile:214: recipe for target 'rk3588-evb1-lp4-v10.img' failed

make: *** [rk3588-evb1-lp4-v10.img] Error 2

failed to build some targets (21 seconds)

af://n750


Update latest pahole
git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.git

Compile pahole

Install and compile dependency librariy.
sudo apt-get install cmake

sudo apt-get install libdw-dev

If you have installed pahole before, you need to uninstall it first.
sudo apt-get --purge remove dwarves

Begin to compile

Execute in the ahole directory.
mkdir build

cd build/

cmake -D__LIB=lib -DBUILD_SHARED_LIBS=OFF ..    Configure static compilation

sudo make install

pahole --version  to check the version to make sure that it is installed sucessfully.

9 GKI compilation environment requirements  

Ubuntu version requires 20.04 and above
pahole version requires 1.25

10 Debugging skills  

10.1 Print more logs loaded by KO  

Modify the value of ratelimit to print more logs of init, in order to debug the problems. If init 
informations are few, the error informations loaded by ko will be hided.

10.2 Compile GKI boot.img in RK kernel package  

Compile kernel  according to normal steps first, then generate arch/arm64/boot/Image.
Pack boot.img by following commands:
mkbootimg --kernel arch/arm64/boot/Image --header_version 4 --output 
../mkcombinedroot/prebuilts/boot-6.1.img

10.3 Check the kernel interface published by google  

xxx@sys2_206:~/a0_Android13_gki/device/rockchip/common$ vim BoardConfig.mk

xxx@sys2_206:~/a0_Android13_gki/device/rockchip/common$ git diff

diff --git a/BoardConfig.mk b/BoardConfig.mk

index 0d1c886..1761ed0 100755

--- a/BoardConfig.mk

+++ b/BoardConfig.mk

@@ -392,3 +392,5 @@ ifeq ($(strip $(BOARD_BASEPARAMETER_SUPPORT)), true)

     endif

         BOARD_WITH_SPECIAL_PARTITIONS := baseparameter:1M

 endif

+

+BOARD_KERNEL_CMDLINE += printk.devkmsg=on

af://n767
af://n773
af://n774
af://n777
af://n779


The standard kernel interface definition is in the android directory:

11 How to submit the kernel interface to upstream  

If you need to add a new kernel interface, you can generate the corresponding patch, and submit 
the patch to rockchip redmine to be examined and then submit it to google uniformly.

12 How to update boot.img published by AOSP  

Android AOSP updates boot.img and corresponding protected KO file regularly, the Android 
release link is as followed:

:~/a5_google_kenrel/common$ tree a

android/ arch/

wlq@sys2_206:~/a5_google_kenrel/common$ tree android/

android/

├── abi_gki_aarch64

├── abi_gki_aarch64_core

├── abi_gki_aarch64_db845c

├── abi_gki_aarch64_exynos

├── abi_gki_aarch64_fips140

├── abi_gki_aarch64_galaxy

├── abi_gki_aarch64_generic

├── abi_gki_aarch64_hikey960

├── abi_gki_aarch64_rockchip

├── abi_gki_aarch64_type_visibility

├── abi_gki_aarch64_virtual_device

├── abi_gki_aarch64.xml

├── abi_gki_modules_exports

├── abi_gki_modules_protected

├── gki_aarch64_fips140_modules

├── gki_aarch64_modules

└── gki_system_dlkm_modules

diff --git a/android/abi_gki_aarch64_rockchip b/android/abi_gki_aarch64_rockchip

index 85bd8bc134cf..3344cf064e06 100644

--- a/android/abi_gki_aarch64_rockchip

+++ b/android/abi_gki_aarch64_rockchip

@@ -2144,6 +2144,15 @@

   mmc_pwrseq_register

   mmc_pwrseq_unregister

+# required by r8168.ko

+  pci_set_mwi

+  pci_clear_mwi

+  proc_get_parent_data

+  skb_checksum_help

+  __skb_gso_segment

+  remove_proc_subtree

+  pci_choose_state

+

 # required by reboot-mode.ko

   devres_release

   kernel_kobj

af://n782
af://n785


https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds

After openning the link, find the latest release version of Android14-6.1, and then click 
corresponding boot-6.1.img to download, as the picture shows:

After downloading the boot-6.1.img, copy it to:

From Android14, AOSP publishes protected ko module synchronously, which needs to be 
download together, and this ko file need to match with boot.img to load correctly.

Click the kernel link in the following picture to download system_dlkm_staging_archive.tar.gz.

Download and unzip system_dlkm_staging_archive.tar.gz, and copy the unzipped ko file in 
flatten\lib\modules\ to:

13 How to pack vendor_boot.img solely  

Step1: compile the corresponding ko file in kernel.

Step2: copy ko file into mkcombinedroot directory.

mkcombinedroot/prebuilts/boot-6.1.img

 kernel/prebuilts/6.1/arm64/

https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds
af://n794


Step3: copy vendor_boot.img into mkcombinedroot directory.

Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko 
and compile it to vendor_boot.img.

Step5: flash vendor_boot.img to the device.

Now we introduce each steps in the following:

Step1: compile ko in kernel  

Enter kernel directory
Android14 + kernel6.1

Export clang to the environment

Compile KO

Step2: copy ko file into mkcombinedroot directory  

Step3: copy vendor_boot.img into mkcombinedroot
directory

 

Compiling vendor_boot.img solely needs to copy a vendor_boot.img base pack, just like that 
compiling boot.img solely needs a boot_sample.img. This vendor_boot.img needs to be the same 
with the vendor_boot.img in the device you prepare to update, which can be copied from GKI 
firmware.

Step4: enter the mkcombinedroot directory and execute
mkgki4.sh script, then update ko and compile it to
vendor_boot.img

 

Compile vendor_boot.img, thereinto:

DTS=board-level dts name, dts needs to use the load name defined in res/board/.

cd kernel-6.1

export PATH=../prebuilts/clang/host/linux-x86/clang-r487747c/bin:$PATH

make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1 ARCH=arm64 gki_defconfig 

rockchip_gki.config && make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1 

ARCH=arm64 rk3562-rk817-tablet-v10.img -j32

llvm-objcopy --strip-debug  drivers/xxx.ko 

../mkcombinedroot/vendor_ramdisk/lib/modules/xxx.ko

cd ../mkcombinedroot/

  ./mkgki4.sh DTS=rk3568-evb1-ddr4-v10

af://n805
af://n820
af://n822
af://n824


After compiling, there will be new_vendor_boot.img generated in the mkcombinedroot root 
directory.

Step5: flash vendor_boot.img to the device  

Flash mkcombinedroot/new_vendor_boot.img file to the device and boot to verify.
Generally, GKI firmware is AB firmware, so when flashing new_vendor_boot.img, you need 
update vendor_boot_a and vendor_boot_b partitions at the same time. If the device has 
been in fastboot mode due to multiple abnormal restarts before flashing, you need to flash 
misc.img at the same time. Only the mark in misc partition is cleaned, can the device boot, 
the reference commands of flash tools in ubuntu are as followed:

If the ko is put in vendor partition, then it can be pushed to the vendor partition of device 
directly after system enabled, and mount manually to verify.
If it's related to dts modification, you need to flash resource.img  in kernel-6.1.

sudo ./upgrade_tool di -vendor_boot_a 

mkcombinedroot/new_vendor_boot.img/vendor_boot.img

sudo ./upgrade_tool di -vendor_boot_b 

mkcombinedroot/new_vendor_boot.img/vendor_boot.img;

sudo ./upgrade_tool rd

af://n832

	Rockchip Android 14 GKI Developer Guide
	1 GKI Introduction
	1.1 What is GKI 
	1.2 What products need GKI
	1.3 The difference of GKI and non-GKI

	2 Rockchip Android14 GKI Adaptation
	3 Google upstream kernel download and compile
	4 Introduction to GKI related directories of Rockchip SDK
	5 Requirements for GKI Compilation Environment
	6 Rockchip GKI Compile
	6.1 Code Modify
	6.2 Compile
	6.3 Firmware Flash

	7 KO Compile and Modify
	7.1 Method of adding new module drivers

	8 Uboot log verification
	8.1 uboot stage 
	8.2 Android stage
	8.3 KO loading
	8.4 KO loading error
	8.5 bootcmdline parsing error
	8.6 Fail to load Mali KO 
	8.7 kernel compiling error

	9 GKI compilation environment requirements
	10 Debugging skills
	10.1 Print more logs loaded by KO
	10.2 Compile GKI boot.img in RK kernel package
	10.3 Check the kernel interface published by google

	11 How to submit the kernel interface to upstream
	12 How to update boot.img published by AOSP
	13 How to pack vendor_boot.img solely
	Step1: compile ko in kernel
	Step2: copy ko file into mkcombinedroot directory
	Step3: copy vendor_boot.img into mkcombinedroot directory
	Step4: enter the mkcombinedroot directory and execute mkgki4.sh script, then update ko and compile it to vendor_boot.img
	Step5: flash vendor_boot.img to the device



