
PWM Developer Guide

ID: RK-KF-YF-28

Release Version: V3.2.0

Release Date: 2024-08-13

Security Level: □Top-Secret □Secret □Internal ■Public

af://n0

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT PROVIDE ANY WARRANTY OF
ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO THE ACCURACY, RELIABILITY,
COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY
REPRESENTATION, INFORMATION AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other trademarks or registered trademarks
mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in any form in whole or in part without the
written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website： www.rock-chips.com

Customer service Tel： +86-4007-700-590

Customer service Fax： +86-591-83951833

Customer service e-Mail： fae@rock-chips.com

http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Kernel Version

RK3036 Linux kernel 4.4 and above

RK312X/PX3SE Linux kernel 4.4 and above

RK3288 Linux kernel 4.4 and above

RK322X/RK312XH Linux kernel 4.4 and above

RK3308 Linux kernel 4.4 and above

RK322XH/RK332X Linux kernel 4.4 and above

RK3326/PX30 Linux kernel 4.4 and above

RK3368/PX5 Linux kernel 4.4 and above

RK3399 Linux kernel 4.4 and above

RK1808 Linux kernel 4.4 and above

RV1109/RV1126 Linux kernel 4.19 and above

RK356X Linux kernel 4.19 and above

RK3588 Linux kernel 5.10 and above

RV1103/RV1106 Linux kernel 5.10 and above

RK3528 Linux kernel 4.19 and above

RK3562 Linux kernel 5.10 and above

RK3576 Linux kernel 6.1 and above

RV1103B Linux kernel 5.10 and above

RK3506 Linux kernel 6.1 and above

Preface

The Pulse Width Modulation (PWM) function is very common in embedded systems. It is a very effective technology that uses the digital output of a
microprocessor to control analog circuits. It is widely used in measurement, Communication into many areas of power control and conversion. This
article mainly introduces the basic features, usage and analysis of common problems of Rockchip platform PWM.

Overview

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Hardware development enginees

Version Author Date Change Description

V1.0.0 David Wu 2019-01-28 Initial version

V2.0.0 David Wu 2019-11-14 Support Linux4.19

V2.1.0 Steven Liu 2021-02-24 Add description of Linux4.19

V2.2.0 Steven Liu 2021-12-22 Update version

V2.3.0 Damon Ding 2023-04-03 Add description of Oneshot mode

V3.0.0 Damon Ding 2024-03-26 Optimize the structure of the full text and add a description of PWM v4

V3.1.0 Damon Ding 2024-04-24 Modify the PWM version description of some platforms

V3.2.0 Damon Ding 2024-08-13 Add descriptions for RV1103B and RK3506

Revision History

Content

PWM Developer Guide
1. Driver

1.1 Kernel Driver
1.1.1 Driver Files
1.1.2 DTS Configuration

2. Feature support
3. Application Notes

3.1 Kernel Driver
3.1.1 Continous
3.1.2 Oneshot
3.1.3 Capture
3.1.4 Global control
3.1.5 Output offset
3.1.6 Counter
3.1.7 Frequency meter
3.1.8 IR output
3.1.9 IR input
3.1.10 Wave generator
3.1.11 Biphasic counter

3.2 User space
3.2.1 Continous
3.2.2 Oneshot
3.2.3 Capture

4. FAQ
4.1 Connection of PWM Between U-Boot and Kernel
4.2 PWM Pin PULL State As PWM Regulator
4.3 Oscilloscope Cannot Detect PWM Waveform

1. Driver

1.1 Kernel Driver

1.1.1 Driver Files

Linux-5.10 and below：

Linux-6.1 and above：

Linux-6.1 begins to support the PWM v4 driver. PWM v1-v3 supported by Linux-5.10 and below share the v1 interface, hereinafter collectively
referred to as PWM v1.
Linux-6.1 adds a new test driver for testing functions and locating problems. It is also used as an application example of various PWM functions.
CONFIG_PWM_ROCKCHIP_TEST needs to be turned on to use it.

1.1.2 DTS Configuration

In DTS, PWM nodes are usually referenced by other drivers, where PWM is configured and used through various interfaces provided by the PWM
framework. This section takes a common backlight driver as an example.

PWM v1：

PWM v4：

PWM v1 and PWM v4 nodes are named differently:

PWM v1 is pwmX, the actual corresponding controller id is X / 4, and the channel id is X % 4.
PWM v4 is pwmX_Ych_Z, X represents the controller id, Y represents the total number of channels supported by the current controller, and
Z represents the channel id.

The number of parameters supported by PWM nodes in Linux-4.4 and above kernels has been increased from 2 in Linux-3.10 to 3. The specific
number corresponds to the #pwm-cells attribute of the PWM node. Please refer to the document Documentation/devicetree/bindings/pwm There
are detailed instructions in /pwm.txt. Here is only a brief explanation of each parameter:

Parameter 1, represents index (per-chip index of the PWM to request), the value is fixed at 0. Each PWM channel of the Rockchip platform
corresponds to a PWM device, and each device has only one chip.
Parameter 2, represents the period of the PWM output waveform, the unit is ns. The 25000 ns in the example converts to a frequency of
40KHz.
Parameter 3 represents the optional parameter polarity, which defaults to 0. If you want to flip the polarity, set it to
PWM_POLARITY_INVERTED.

2. Feature support

drivers/pwm/pwm-rockchip.c

drivers/pwm/pwm-rockchip.c

drivers/pwm/pwm-rockchip-test.c

backlight: backlight {

 compatible = "pwm-backlight";

 pwms = <&pwm5 0 25000 0>;

};

backlight: backlight {

 compatible = "pwm-backlight";

 pwms = <&pwm1_6ch_1 0 25000 0>;

};

af://n142
af://n143
af://n144
af://n154
af://n177

SOC
PWM
version

PWM feature

continous oneshot capture
global
control

output
offset

counter
freqency
meter

IR
output

IR
input

wave
generator

biph
coun

RK3036 v2 √ √ √ × × × × × × × ×

RK312X/
PX3SE

v2 √ √ √ × × × × × × × ×

RK3288 v2 √ √ √ × × × × × × × ×

RK322X/
RK312XH

v2 √ √ √ × × × × × × × ×

RK3308 v2 √ √ √ × × × × × √ × ×

RK322XH/
RK332X

v2 √ √ √ × × × × × √ × ×

RK3326/
PX30

v2 √ √ √ × × × × × √ × ×

RK3368/
PX5

v2 √ √ √ × × × × × × × ×

RK3399 v2 √ √ √ × × × × × × × ×

RK1808 v2 √ √ √ × × × × × √ × ×

RV1109/
RV1126

v2 √ √ √ × × × × × √ × ×

RK356X v2 √ √ √ × × × × × √ × ×

RK3588 v2 √ √ √ × × × × × √ × ×

RV1103/
RV1106

v3 √ √ √ × √ √ × √ √ × ×

RK3528 v3 √ √ √ × √ √ × √ √ × ×

RK3562 v3 √ √ √ × √ √ × √ √ × ×

RK3576 v4 √ √ √ √ √ √ √ √ √ √ √

RV1103B v4 √ √ √ √ √ √ √ × √ × ×

RK3506 v4 √ √ √ √ √ √ √ √ √ √ √

3. Application Notes

The application method of PWM kernel and user space has been explained in Documentation/devicetree/bindings/pwm/pwm.txt. This section mainly
focuses on further expansion of the PWM features of the Rockchip platform.

3.1 Kernel Driver

If you want to use PWM in the Kernel driver, you can refer to the configuration method of the backlight driver in the "DTS Configuration" chapter, add
the pwms attribute under the driver node, and then get/put the PWM device through the following interface:

For detailed implementation and function description, see include/linux/pwm.h and drivers/pwm/core.c.

The interfaces provided by the PWM framework (extracted from Linux-5.10, all interfaces related to legacy drivers have been deleted on Linux-6.1):

struct pwm_device *pwm_get(struct device *dev, const char *con_id);

void pwm_put(struct pwm_device *pwm);

struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);

struct pwm_device *devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode, const char *con_id);

/**

 * struct pwm_ops - PWM controller operations

 * @request: optional hook for requesting a PWM

 * @free: optional hook for freeing a PWM

 * @capture: capture and report PWM signal

 * @apply: atomically apply a new PWM config

af://n179
af://n181

Linux-4.4 and above kernels no longer implement interfaces such as config, enable and disable, but implement apply instead.

The purpose is to use the int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state) function to
atomically change multiple parameters of the PWM device through struct pwm_state .

The basic functions of PWM, including continous, oneshot and caputure, can be applied through the interface provided by the PWM framework. The
functions such as frequency meter, counter and wave generator supported by Rockchip platform PWM v4 need to include the header file
include/linux/pwm-rockchip.h to use. The following is a detailed introduction to each function and its application. You can also refer to the demo driver
drivers/pwm/pwm-rockchip-test.c.

3.1.1 Continous

Continuous output mode supports continuous output of PWM waveform with specified duty cycle.

 * @get_state: get the current PWM state. This function is only

 * called once per PWM device when the PWM chip is

 * registered.

 * @get_output_type_supported: get the supported output type of this PWM

 * @owner: helps prevent removal of modules exporting active PWMs

 * @config: configure duty cycles and period length for this PWM

 * @set_polarity: configure the polarity of this PWM

 * @enable: enable PWM output toggling

 * @disable: disable PWM output toggling

 */

struct pwm_ops {

 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);

 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);

 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,

 struct pwm_capture *result, unsigned long timeout);

 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,

 const struct pwm_state *state);

 void (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,

 struct pwm_state *state);

 int (*get_output_type_supported)(struct pwm_chip *chip,

 struct pwm_device *pwm);

 struct module *owner;

 /* Only used by legacy drivers */

 int (*config)(struct pwm_chip *chip, struct pwm_device *pwm,

 int duty_ns, int period_ns);

 int (*set_polarity)(struct pwm_chip *chip, struct pwm_device *pwm,

 enum pwm_polarity polarity);

 int (*enable)(struct pwm_chip *chip, struct pwm_device *pwm);

 void (*disable)(struct pwm_chip *chip, struct pwm_device *pwm);

 ANDROID_KABI_RESERVE(1);

};

/*

 * struct pwm_state - state of a PWM channel

 * @period: PWM period (in nanoseconds)

 * @duty_cycle: PWM duty cycle (in nanoseconds)

 * @polarity: PWM polarity

 * @enabled: PWM enabled status

 * @usage_power: If set, the PWM driver is only required to maintain the power

 * output but has more freedom regarding signal form.

 * If supported, the signal can be optimized, for example to

 * improve EMI by phase shifting individual channels.

 */

struct pwm_state {

 u64 period;

 u64 duty_cycle;

 enum pwm_polarity polarity;

#ifdef CONFIG_PWM_ROCKCHIP_ONESHOT

 u64 oneshot_count;

 u32 oneshot_repeat;

 u64 duty_offset;

#endif /* CONFIG_PWM_ROCKCHIP_ONESHOT */

 bool enabled;

 bool usage_power;

};

af://n195

3.1.2 Oneshot

Single output mode supports outputting a specified number of PWM waveforms. The CONFIG_PWM_ROCKCHIP_ONESHOT configuration needs to
be turned on in the Kernel.

oneshot_count represents the number of waveforms output with a specified duty cycle. The upper limit of the number of waveforms has been
extended on PWM v4. The actual number of output waveforms is oneshot_repeat * oneshot_count.

Oneshot mode will generate an interrupt after the output is completed. Users can add corresponding logic to the drivers/pwm/pwm-rockchip-irq-
callbacks.h interrupt processing function as needed:

3.1.3 Capture

Input capture mode supports calculating the duration of high and low levels of the input waveform.

Return the calculated result cap_res after timeout_ms:

3.1.4 Global control

Global control mode supports synchronous update of multi-channel configurations. Combined with continous/oneshot mode, it can realize output
synchronization, complementary output and other functions.

pwm_get_state(pdev, &state);

state.period = period;

state.duty_cycle = duty;

state.polarity = polarity;

state.enabled = enable;

pwm_apply_state(pdev, &state);

pwm_get_state(pdev, &state);

state.period = period;

state.duty_cycle = duty;

state.duty_offset = duty_offset;

state.polarity = polarity;

state.oneshot_count = rpt_first;

state.oneshot_repeat = rpt_second;

pwm_apply_state(pdev, &state);

static void rockchip_pwm_oneshot_callback(struct pwm_device *pwm, struct pwm_state *state)

{

 /*

 * If you want to enable oneshot mode again, config and call

 * pwm_apply_state().

 *

 * struct pwm_state new_state;

 *

 * pwm_get_state(pwm, &new_state);

 * new_state.enabled = true;

 *

 * pwm_apply_state(pwm, &new_state);

 *

 */

}

pwm_capture(pdev, &cap_res, timeout_ms);

/**

 * struct pwm_capture - PWM capture data

 * @period: period of the PWM signal (in nanoseconds)

 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)

 */

struct pwm_capture {

 unsigned int period;

 unsigned int duty_cycle;

};

// join the global control group

rockchip_pwm_global_ctrl(pdev0, PWM_GLOBAL_CTRL_JOIN);

rockchip_pwm_global_ctrl(pdev1, PWM_GLOBAL_CTRL_JOIN);

rockchip_pwm_global_ctrl(pdev2, PWM_GLOBAL_CTRL_JOIN);

// assign one channel to obtain the permission of global control

af://n198
af://n207
af://n214

Description of each command in global control mode:

3.1.5 Output offset

Output offset mode supports PWM output waveform offset for a specified time. It is usually used in oneshot mode in combination with global control. It
corresponds to the duty offset parameter in struct pwm_state . You can refer to oneshot mode description.

3.1.6 Counter

Input counting mode supports counting the number of input waveforms.

Close counter after timeout_ms and get the count result counter_res.

3.1.7 Frequency meter

Frequency counter mode supports calculating the frequency of the input waveform.

Returns the calculated result freq_hz after timeout_ms.

3.1.8 IR output

The driver is not supported yet.

3.1.9 IR input

For details, please refer to the document "Rockchip_Developer_Guide_PWM_IR_CN". The corresponding kernel driver is
driver/input/remotectl/rockchip_pwm_remotectl.c.

rockchip_pwm_global_ctrl(pdev0, PWM_GLOBAL_CTRL_GRANT);

// use pwm_apply_state() to update configurations for each channel

......

// update the configs for all channels in group

rockchip_pwm_global_ctrl(pdev0, PWM_GLOBAL_CTRL_UPDATE);

// enable all channels in group

rockchip_pwm_global_ctrl(pdev0, PWM_GLOBAL_CTRL_ENABLE);

// reclaim the permission of global control

rockchip_pwm_global_ctrl(pdev0, PWM_GLOBAL_CTRL_RECLAIM);

// exit the global control group

rockchip_pwm_global_ctrl(pdev0, PWM_GLOBAL_CTRL_EXIT);

rockchip_pwm_global_ctrl(pdev1, PWM_GLOBAL_CTRL_EXIT);

rockchip_pwm_global_ctrl(pdev2, PWM_GLOBAL_CTRL_EXIT);

/**

 * enum rockchip_pwm_global_ctrl_cmd - commands for pwm global ctrl

 * @PWM_GLOBAL_CTRL_JOIN: join the global control group

 * @PWM_GLOBAL_CTRL_EXIT: exit the global control group

 * @PWM_GLOBAL_CTRL_GRANT: obtian the permission of global control

 * @PWM_GLOBAL_CTRL_RECLAIM: reclaim the permission of global control

 * @PWM_GLOBAL_CTRL_UPDATE: update the configs for all channels in group

 * @PWM_GLOBAL_CTRL_ENABLE: enable all channels in group

 * @PWM_GLOBAL_CTRL_DISABLE: disable all channels in group

 */

enum rockchip_pwm_global_ctrl_cmd {

 PWM_GLOBAL_CTRL_JOIN,

 PWM_GLOBAL_CTRL_EXIT,

 PWM_GLOBAL_CTRL_GRANT,

 PWM_GLOBAL_CTRL_RECLAIM,

 PWM_GLOBAL_CTRL_UPDATE,

 PWM_GLOBAL_CTRL_ENABLE,

 PWM_GLOBAL_CTRL_DISABLE,

};

rockchip_pwm_set_counter(pdev, PWM_COUNTER_INPUT_FROM_IO, true);

msleep(timeout_ms);

rockchip_pwm_set_counter(pdev, 0, false);

rockchip_pwm_get_counter_result(pdev, &counter_res, true);

rockchip_pwm_set_freq_meter(pdev, timeout_ms, PWM_COUNTER_INPUT_FROM_IO, &freq_hz);

af://n221
af://n223
af://n229
af://n235
af://n237

3.1.10 Wave generator

Waveform generator mode supports outputting specified waveforms according to the configuration in the wave table.

The configuration and description related to wave mode are as follows:

// setup the duty table

for (i = 0; i < PWM_TABLE_MAX; i++)

 table[i] = i * PWM_WAVE_STEP;

duty_table.table = table;

duty_table.offset = (channel_id % 3) * PWM_TABLE_MAX;

duty_table.len = PWM_TABLE_MAX;

// setup the repeat time for each parameter in table

wave_config.rpt = PWM_WAVE_RPT;

// setup the clk rate

wave_config.clk_rate = 400000;

// If duty_en is true, the wave will get duty config from table each PWM_WAVE_RPT period, and the same to

period_en

wave_config.duty_table = &duty_table;

wave_config.period_table = NULL;

wave_config.enable = enable;

wave_config.duty_en = true;

wave_config.period_en = false;

// setup the width_mode and update_mode

wave_config.width_mode = PWM_WIDTH_MODE;

wave_config.update_mode = PWM_WAVE_INCREASING_THEN_DECREASING;

// setup the start and end index in duty/period table

wave_config.duty_max = (channel_id % 3 + 1) * PWM_TABLE_MAX - 1;

wave_config.duty_min = (channel_id % 3) * PWM_TABLE_MAX;

wave_config.period_max = 0;

wave_config.period_min = 0;

wave_config.offset = 0;

// setup the middle index to change table config in interrupt if needed.

wave_config.middle = PWM_TABLE_MAX / 2;

rockchip_pwm_set_wave(pdev, &wave_config);

// enable the continous mode

pwm_get_state(pdev, &state);

state.period = period;

state.duty_cycle = duty;

state.polarity = polarity;

state.enabled = enable;

pwm_apply_state(pdev, &state);

/**

 * enum rockchip_pwm_wave_table_width_mode - element width of pwm wave table

 * @PWM_WAVE_TABLE_8BITS_WIDTH: each element in table is 8bits

 * @PWM_WAVE_TABLE_16BITS_WIDTH: each element in table is 16bits

 */

enum rockchip_pwm_wave_table_width_mode {

 PWM_WAVE_TABLE_8BITS_WIDTH,

 PWM_WAVE_TABLE_16BITS_WIDTH,

};

/**

 * enum rockchip_pwm_wave_update_mode - update mode of wave generator

 * @PWM_WAVE_INCREASING:

 * The wave table address will wrap back to minimum address when increase to

 * maximum and then increase again.

 * @PWM_WAVE_INCREASING_THEN_DECREASING:

 * The wave table address will change to decreasing when increasing to the maximum

 * address. it will return to increasing when decrease to the minimum value.

 */

enum rockchip_pwm_wave_update_mode {

 PWM_WAVE_INCREASING,

 PWM_WAVE_INCREASING_THEN_DECREASING,

};

/**

 * struct rockchip_pwm_wave_config - wave generator config object

 * @duty_table: the wave table config of duty

 * @period_table: the wave table config of period

af://n239

PWM v4 has 768 * 8bit space in wave generator mode for storing duty/period configuration. After turning on duty_en/period_en, new data
will be fetched from the duty_min + offset/period_min + offset index in duty_table/period_table every rpt cycle. Configuration value (unit:
ns) until duty_max/period_max. Then it will re-enter the next cycle according to update_mode. If it is oneshot mode, it will stop after
oneshot_repeat cycles, while continous mode will continue to output until manually stopped.

Wave supports width_mode switching (768 * 8bit and 384 * 16bit). Under the same working clock dclk, 16bit mode will support larger
duty/period configuration.

Interrupts will be generated at the configured middle and max indexes. Users can add corresponding logic to the drivers/pwm/pwm-
rockchip-irq-callbacks.h interrupt handling function as needed:

 * @enable: enable or disable wave generator

 * @duty_en: to update duty by duty table or not

 * @period_en: to update period by period table or not

 * @clk_rate: the dclk rate in wave generator mode

 * @rpt: the number of repeated effective periods

 * @width_mode: the width mode of wave table

 * @update_mode: the update mode of wave generator

 * @duty_max: the maximum address of duty table

 * @duty_min: the minimum address of duty table

 * @period_max: the maximum address of period table

 * @period_min: the minimum address of period table

 * @offset: the initial offset address of duty and period

 * @middle: the middle address of duty and period

 * @max_hold: the time to stop at maximum address

 * @min_hold: the time to stop at minimum address

 * @middle_hold: the time to stop at middle address

 */

struct rockchip_pwm_wave_config {

 struct rockchip_pwm_wave_table *duty_table;

 struct rockchip_pwm_wave_table *period_table;

 bool enable;

 bool duty_en;

 bool period_en;

 unsigned long clk_rate;

 u16 rpt;

 u32 width_mode;

 u32 update_mode;

 u32 duty_max;

 u32 duty_min;

 u32 period_max;

 u32 period_min;

 u32 offset;

 u32 middle;

 u32 max_hold;

 u32 min_hold;

 u32 middle_hold;

};

static void rockchip_pwm_wave_middle_callback(struct pwm_device *pwm)

{

 /*

 * If you want to update the configuration of wave table, set

 * struct rockchip_pwm_wave_table and call rockchip_pwm_set_wave().

 *

 * struct rockchip_pwm_wave_config wave_config;

 * struct rockchip_pwm_wave_table duty_table;

 *

 * //fill the duty table

 *

 * wave_config.duty_table = &duty_table;

 * wave_config.enable = true;

 * rockchip_pwm_set_wave(pwm, &wave_config);

 *

 */

}

static void rockchip_pwm_wave_max_callback(struct pwm_device *pwm)

{

 /*

 * If you want to update the configuration of wave table, set

 * struct rockchip_pwm_wave_table and call rockchip_pwm_set_wave().

 *

 * struct rockchip_pwm_wave_config wave_config;

 * struct rockchip_pwm_wave_table duty_table;

 *

 * //fill the duty table

 *

 * wave_config.duty_table = &duty_table;

 * wave_config.enable = true;

3.1.11 Biphasic counter

Bidirectional counter mode supports five counting modes mode0-mode4 (see the description of the PWM chapter in TRM for details). Mode0 can be
used as the above counter and freqency meter.

The parameters of biphasic_config are described as follows:

In non-continous mode, the count result biphasic_res is returned after timeout_ms.
In continous mode, counting will continue until manual shutdown, and the counting results can be obtained in real time through int
rockchip_pwm_get_biphasic_result(struct pwm_device *pwm, unsigned long *biphasic_res) .

biphasic counter mode description:

PWM_BIPHASIC_COUNTER_MODE0 is equivalent to the counter function, and PWM_BIPHASIC_COUNTER_MODE0_FREQ is
equivalent to the freqency meter function.

3.2 User space

The PWM framework provides a user layer interface in the /sys/class/pwm/ directory. For details, see drivers/pwm/sysfs.c. After the PWM driver is
successfully loaded, the pwmchipX directory will be generated under it, such as pwmchip0, pwmchip1, etc., here The X has nothing to do with the
controller or channel ID of the PWM, but is only related to the probe sequence of the PWM device.

Writing Y to the export node will generate a pwmY directory in the current directory. Since each PWM device on the Rockchip platform has only one
chip, the Y value can only be 0. Conversely, writing Y to the unexport node will delete the pwmY directory.

There are the following operable nodes in the pwmY directory:

enable: Writing 1 enables PWM, writing 0 disables PWM;

 * rockchip_pwm_set_wave(pwm, &wave_config);

 *

 */

}

biphasic_config.enable = true;

biphasic_config.is_continuous = false;

biphasic_config.mode = biphasic_mode;

biphasic_config.delay_ms = timeout_ms;

rockchip_pwm_set_biphasic(pdev, &biphasic_config, &biphasic_res);

/**

 * struct rockchip_pwm_biphasic_config - biphasic counter config object

 * @enable: enable: enable or disable biphasic counter

 * @is_continuous: biphascic counter will not stop at the end of timer in continuous mode

 * @mode: the mode of biphasic counter

 * @delay_ms: time to wait, in milliseconds, before getting biphasic counter result

 */

struct rockchip_pwm_biphasic_config {

 bool enable;

 bool is_continuous;

 u8 mode;

 u32 delay_ms;

};

/**

 * enum rockchip_pwm_biphasic_mode - mode of biphasic counter

 * @PWM_BIPHASIC_COUNTER_MODE0: single phase increase mode with A-phase

 * @PWM_BIPHASIC_COUNTER_MODE1: single phase increase/decrease mode with A-phase

 * @PWM_BIPHASIC_COUNTER_MODE2: dual phase with A/B-phase mode

 * @PWM_BIPHASIC_COUNTER_MODE3: dual phase with A/B-phase 2 times frequency mode

 * @PWM_BIPHASIC_COUNTER_MODE4: dual phase with A/B-phase 4 times frequency mode

 */

enum rockchip_pwm_biphasic_mode {

 PWM_BIPHASIC_COUNTER_MODE0,

 PWM_BIPHASIC_COUNTER_MODE1,

 PWM_BIPHASIC_COUNTER_MODE2,

 PWM_BIPHASIC_COUNTER_MODE3,

 PWM_BIPHASIC_COUNTER_MODE4,

 PWM_BIPHASIC_COUNTER_MODE0_FREQ,

};

root@linaro-alip:/# cat /sys/class/pwm/pwmchip0/

device/ export npwm power/ subsystem/ uevent unexport

af://n254
af://n272

polarity: There are two parameter options: normal or inversed, corresponding to the PWM polarity configuration
PWM_POLARITY_NORMAL/PWM_POLARITY_INVERSED;
duty_cycle: In normal mode, it represents the duration of high level in one cycle (unit: ns). In reversed mode, it represents the duration of low level
in one cycle (unit: ns);
period: represents the period of the PWM waveform (unit: ns);
oneshot_count: CONFIG_PWM_ROCKCHIP_ONESHOT needs to be turned on, indicating the number of PWM waveforms in oneshot mode;
oneshot_repeat: CONFIG_PWM_ROCKCHIP_ONESHOT needs to be turned on and is only supported by PWM v4. It indicates the number of
times the oneshot mode is repeated. The final number of output waveforms is oneshot_repeat * oneshot_count;
duty_offset: CONFIG_PWM_ROCKCHIP_ONESHOT needs to be turned on, indicating the offset time of the PWM output waveform (unit: ns);
capture: Enable capture mode to obtain the duration of the high and low levels of the input waveform (unit: ns).

3.2.1 Continous

3.2.2 Oneshot

3.2.3 Capture

4. FAQ

4.1 Connection of PWM Between U-Boot and Kernel

If U-Boot has the function of PWM voltage regulation, the PWM is still working at the kernel stage, the PWM clock gating count needs to be
adjusted to be consistent with the current PWM state according to the current hardware status of the PWM. Otherwise, the clock driver may find
that the unused PWM clock, turn off it, which causing the PWM failed to work. The above patch has been modified to ensure the PWM driver:
drivers/pwm/pwm-rockchip.c , updated to the following submission points:

1. kernel-4.4: commit e6f2796ef5b660a70102c02d6c15f65ff8701d76
2. kernel-3.10: commit 5a3d9257d5e379391eb02457ccd70f28a8fb188b

The frequency of the clock source used by U-Boot and kernel PWM is different, which will also cause switching in the middle, which may cause
the PWM duty cycle to change, and similar crashes caused by insufficient PWM voltage regulation will occur. Consistent with the clock source or
clock source of the kernel. Make sure that the PWM source clock and source clock frequency of U-Boot PWM is consistent with the kernel.

Inconsistencies in the polarity and cycle configured by U-Boot and kernel can also lead to middle-state switching, which can lmake the changes
for PWM duty cycle, and dead-machine problems such as a lack of PWM voltage control, so keep the U-Boot consistent with kernel's polarity and
cycle.

4.2 PWM Pin PULL State As PWM Regulator

cd /sys/class/pwm/pwmchip0/

echo 0 > export

cd pwm0

echo 10000 > period

echo 5000 > duty_cycle

echo normal > polarity

echo 1 > enable

cd /sys/class/pwm/pwmchip0/

echo 0 > export

cd pwm0

echo 10000 > period

echo 5000 > duty_cycle

echo 1000 > duty_offset

echo normal > polarity

echo 100 > oneshot_count

echo 10 > oneshot_repeat

echo 1 > enable

cd /sys/class/pwm/pwmchip0/

echo 0 > export

cd pwm0

cat capture

af://n294
af://n296
af://n298
af://n300
af://n301
af://n314

When the device rebooting, the registers in the GRF may not reset(second global reset), but the PWM controller reset, which make the PWM pin to be a
input state. This will change the default voltage of the PWM Regulator after rebooting by reseting the PWM pin pull state . Therefore, the PWM pin
must be configured the same as the default state(pull-up or pull-down) in the kernel, which cannot be configured as "none". This configuration only
needs to be modified when the PWM is used as a voltage regulator, as the other functions can be ignored.

Confirm the default pull-up and pull-down of this PWM pin through the hardware schematic diagram. For example, the RK3399 excavator board
PWM2 is used as a voltage regulation function, and the PWM2 pin is found on the schematic diagram: GPIO1_C3/PWM2_d , where "d" means
down for the default pull-down; if "u" means up for the default pull-up.

Define the PWM pull down pinctrl in dtsi:

Overwrite pinctrl config at dts:

4.3 Oscilloscope Cannot Detect PWM Waveform

If the oscilloscope cannot get the waveform, confirm the following method:

First check whether the value of the PWM Counter Register register is changing. If there is a change, it indicates that the PWM is working.
(Note that if you use the io command to read the PWM registers, it need to turn off gating of pclk for RK3328 and the chips later, you can find
them in the table of the product documentation , because these chips PWM pclk and the working clock are separated); if the value of this register
has not changed, it means that the PWM is irregular. Generally, these exceptions are divided into the following cases:

1. Clock error
2. The register configuration problem of the PWM itself, the PWM is not enabled or the value of the duty count is greater than period, etc .;
3. RK3368 needs to additionally configure bit12 of the register GRF_SOC_CON15 in GRF to 1.

If the read-out value of the PWM Counter Register is changing, it means that the PWM is working, but the signal still cannot be measured. It
should be a problem with the pinctrl:

1. iomux error.
2. io-domain configuration is incorrect;
3. Interfered by the hardware;

 pwm2_pin_pull_down: pwm2-pin-pull-down {

 rockchip,pins =

 <1 19 RK_FUNC_1 &pcfg_pull_down>;

 };

&pwm2 {

 status = "okay";

 pinctrl-names = "active";

 pinctrl-0 = <&pwm2_pin_pull_down>;

};

af://n328

	PWM Developer Guide
	Driver
	Kernel Driver
	Driver Files
	DTS Configuration

	Feature support
	Application Notes
	Kernel Driver
	Continous
	Oneshot
	Capture
	Global control
	Output offset
	Counter
	Frequency meter
	IR output
	IR input
	Wave generator
	Biphasic counter

	User space
	Continous
	Oneshot
	Capture

	FAQ
	Connection of PWM Between U-Boot and Kernel
	PWM Pin PULL State As PWM Regulator
	Oscilloscope Cannot Detect PWM Waveform

