PWM Developer Guide

ID: RK-KF-YF-28
Release Version: V3.2.0
Release Date: 2024-08-13

Security Level: oTop-Secret oOSecret oClnternal mPublic

af://n0

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES NOT PROVIDE ANY WARRANTY OF
ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO THE ACCURACY, RELIABILITY,
COMPLETENESS,MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY
REPRESENTATION, INFORMATION AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR
ANY OTHER REASONS.

Trademark Statement

1L gy

"Rockchip", "5 3", "Hfi:ts" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other trademarks or registered trademarks
mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2024. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in any form in whole or in part without the
written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC
Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fac@rock-chips.com

http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface

The Pulse Width Modulation (PWM) function is very common in embedded systems. It is a very effective technology that uses the digital output of a
microprocessor to control analog circuits. It is widely used in measurement, Communication into many areas of power control and conversion. This

article mainly introduces the basic features, usage and analysis of common problems of Rockchip platform PWM.

Overview

Product Version

Chipset Kernel Version

RK3036 Linux kernel 4.4 and above
RK312X/PX3SE Linux kernel 4.4 and above
RK3288 Linux kernel 4.4 and above
RK322X/RK312XH Linux kernel 4.4 and above
RK3308 Linux kernel 4.4 and above
RK322XH/RK332X Linux kernel 4.4 and above
RK3326/PX30 Linux kernel 4.4 and above
RK3368/PX5 Linux kernel 4.4 and above
RK3399 Linux kernel 4.4 and above
RK1808 Linux kernel 4.4 and above
RV1109/RV1126 Linux kernel 4.19 and above
RK356X Linux kernel 4.19 and above
RK3588 Linux kernel 5.10 and above
RV1103/RV1106 Linux kernel 5.10 and above
RK3528 Linux kernel 4.19 and above
RK3562 Linux kernel 5.10 and above
RK3576 Linux kernel 6.1 and above
RV1103B Linux kernel 5.10 and above
RK3506 Linux kernel 6.1 and above

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers
Software development engineers

Hardware development enginees

Revision History

Version
V1.0.0
Vv2.0.0
V2.1.0
V2.2.0
V2.3.0
V3.0.0
V3.1.0

V3.2.0

Content

Author
David Wu
David Wu
Steven Liu
Steven Liu
Damon Ding
Damon Ding
Damon Ding

Damon Ding

Date

2019-01-28

2019-11-14

2021-02-24

2021-12-22

2023-04-03

2024-03-26

2024-04-24

2024-08-13

Change Description

Initial version

Support Linux4.19

Add description of Linux4.19

Update version

Add description of Oneshot mode

Optimize the structure of the full text and add a description of PWM v4
Modify the PWM version description of some platforms

Add descriptions for RV1103B and RK3506

PWM Developer Guide
1. Driver
1.1 Kernel Driver
1.1.1 Driver Files
1.1.2 DTS Configuration
2. Feature support
3. Application Notes
3.1 Kernel Driver
3.1.1 Continous
3.1.2 Oneshot
3.1.3 Capture
3.1.4 Global control
3.1.5 Output offset
3.1.6 Counter
3.1.7 Frequency meter
3.1.8 IR output
3.1.9 IR input
3.1.10 Wave generator
3.1.11 Biphasic counter
3.2 User space
3.2.1 Continous
3.2.2 Oneshot
3.2.3 Capture
4. FAQ
4.1 Connection of PWM Between U-Boot and Kernel
4.2 PWM Pin PULL State As PWM Regulator
4.3 Oscilloscope Cannot Detect PWM Waveform

1. Driver

1.1 Kernel Driver

1.1.1 Driver Files

Linux-5.10 and below:
drivers/pwm/pwm-rockchip.c
Linux-6.1 and above:

drivers/pwm/pwm-rockchip.c

drivers/pwm/pwm-rockchip-test.c

¢ Linux-6.1 begins to support the PWM v4 driver. PWM v1-v3 supported by Linux-5.10 and below share the v1 interface, hereinafter collectively
referred to as PWM v1.

¢ Linux-6.1 adds a new test driver for testing functions and locating problems. It is also used as an application example of various PWM functions.
CONFIG_PWM_ROCKCHIP_TEST needs to be turned on to use it.

1.1.2 DTS Configuration

In DTS, PWM nodes are usually referenced by other drivers, where PWM is configured and used through various interfaces provided by the PWM

framework. This section takes a common backlight driver as an example.

PWMvl:

backlight: backlight {
compatible = "pwm-backlight";
pwms = <gpwm5 0 25000 0>;

PWM v4:

backlight: backlight {
compatible = "pwm-backlight";
pwms = <&pwml_6ch_1 0 25000 0>;

¢ PWM vl and PWM v4 nodes are named differently:

o PWM vl is pwmX, the actual corresponding controller id is X / 4, and the channel id is X % 4.
o PWM v4 is pwmX_Ych Z, X represents the controller id, Y represents the total number of channels supported by the current controller, and
Z represents the channel id.
¢ The number of parameters supported by PWM nodes in Linux-4.4 and above kernels has been increased from 2 in Linux-3.10 to 3. The specific
number corresponds to the #pwm-cells attribute of the PWM node. Please refer to the document Documentation/devicetree/bindings/pwm There

are detailed instructions in /pwm.txt. Here is only a brief explanation of each parameter:

o Parameter 1, represents index (per-chip index of the PWM to request), the value is fixed at 0. Each PWM channel of the Rockchip platform
corresponds to a PWM device, and each device has only one chip.

o Parameter 2, represents the period of the PWM output waveform, the unit is ns. The 25000 ns in the example converts to a frequency of
40KHz.

o Parameter 3 represents the optional parameter polarity, which defaults to 0. If you want to flip the polarity, set it to
PWM_POLARITY_INVERTED.

2. Feature support

af://n142
af://n143
af://n144
af://n154
af://n177

3. Application Notes

The application method of PWM kernel and user space has been explained in Documentation/devicetree/bindings/pwm/pwm.txt. This section mainly
focuses on further expansion of the PWM features of the Rockchip platform.

3.1 Kernel Driver

If you want to use PWM in the Kernel driver, you can refer to the configuration method of the backlight driver in the "DTS Configuration” chapter, add

the pwms attribute under the driver node, and then get/put the PWM device through the following interface:

struct pwm_device *pwm_get (struct device *dev, const char *con_id);

void pwm_put (struct pwm device *pwm);

struct pwm_device *devm pwm_get (struct device *dev, const char *con_id);

struct pwm_device *devm fwnode pwm get (struct device *dev, struct fwnode_handle *fwnode, const char *con_id);

¢ For detailed implementation and function description, see include/linux/pwm.h and drivers/pwm/core.c.

The interfaces provided by the PWM framework (extracted from Linux-5.10, all interfaces related to legacy drivers have been deleted on Linux-6.1):

/*‘k

* struct pwm _ops - PWM controller operations

* @request: optional hook for requesting a PWM
* @free: optional hook for freeing a PWM

* @capture: capture and report PWM signal

* @apply: atomically apply a new PWM config

af://n179
af://n181

* @get_state: get the current PWM state. This function is only
o called once per PWM device when the PWM chip is
& registered.
* @get_output_ type supported: get the supported output type of this PWM
* Qowner: helps prevent removal of modules exporting active PWMs
* @config: configure duty cycles and period length for this PWM
* @set_polarity: configure the polarity of this PWM
* @enable: enable PWM output toggling
* @disable: disable PWM output toggling
=/
struct pwm_ops {
int (*request) (struct pwm_chip *chip, struct pwm _device *pwm);
void (*free) (struct pwm _chip *chip, struct pwm_device *pwm);
int (*capture) (struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm capture *result, unsigned long timeout);
int (*apply) (struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm state *state);
void (*get_state) (struct pwm chip *chip, struct pwm device *pwm,
struct pwm_state *state);
int (*get_output_type supported) (struct pwm chip *chip,
struct pwm device *pwm);

struct module *owner;

/* Only used by legacy drivers */
int (*config) (struct pwm chip *chip, struct pwm device *pwm,
int duty ns, int period_ns);
int (*set_polarity) (struct pwm_chip *chip, struct pwm_device *pwm,
enum pwm_polarity polarity);
int (*enable) (struct pwm chip *chip, struct pwm device *pwm);

void (*disable) (struct pwm_chip *chip, struct pwm_device *pwm);

ANDROID_KABI RESERVE (1) ;

¢ Linux-4.4 and above kernels no longer implement interfaces such as config, enable and disable, but implement apply instead.

The purpose is to use the int pwm apply state (struct pwm device *pwm, const struct pwm state *state) function to

atomically change multiple parameters of the PWM device through struct pwm state.

/*

* struct pwm_state - state of a PWM channel

* @period: PWM period (in nanoseconds)

* @duty cycle: PWM duty cycle (in nanoseconds)
* @polarity: PWM polarity

* @enabled: PWM enabled status

* @usage_power: If set, the PWM driver is only required to maintain the power

& output but has more freedom regarding signal form.

2 If supported, the signal can be optimized, for example to
& improve EMI by phase shifting individual channels.

*/

struct pwm_state {
u64 period;
u64 duty_cycle;
enum pwm_polarity polarity;
#ifdef CONFIG_PWM ROCKCHIP_ONESHOT
u64 oneshot_count;
u32 oneshot_repeat;
u64 duty offset;
#endif /* CONFIG_PWM ROCKCHIP_ONESHOT */
bool enabled;
bool usage_power;

}i
The basic functions of PWM, including continous, oneshot and caputure, can be applied through the interface provided by the PWM framework. The
functions such as frequency meter, counter and wave generator supported by Rockchip platform PWM v4 need to include the header file

include/linux/pwm-rockchip.h to use. The following is a detailed introduction to each function and its application. You can also refer to the demo driver

drivers/pwm/pwm-rockchip-test.c.

3.1.1 Continous

Continuous output mode supports continuous output of PWM waveform with specified duty cycle.

af://n195

pwm_get state(pdev, &state);
state.period = period;
state.duty cycle = duty;
state.polarity = polarity;
state.enabled = enable;

pwm_apply state(pdev, &state);

3.1.2 Oneshot

Single output mode supports outputting a specified number of PWM waveforms. The CONFIG_ PWM_ROCKCHIP_ONESHOT configuration needs to
be turned on in the Kernel.

pwm_get_state (pdev, &state);
state.period = period;

state.duty cycle = duty;
state.duty_offset = duty offset;
state.polarity = polarity;
state.oneshot_count = rpt_first;
state.oneshot_repeat = rpt_second;

pwm_apply state(pdev, é&state);

¢ oneshot_count represents the number of waveforms output with a specified duty cycle. The upper limit of the number of waveforms has been
extended on PWM v4. The actual number of output waveforms is oneshot_repeat * oneshot_count.

¢ Oneshot mode will generate an interrupt after the output is completed. Users can add corresponding logic to the drivers/pwm/pwm-rockchip-irg-
callbacks.h interrupt processing function as needed:

static void rockchip pwm oneshot_callback(struct pwm_device *pwm, struct pwm_state *state)

* If you want to enable oneshot mode again, config and call

pwm_apply state().
struct pwm_state new_state;

pwm_get state(pwm, &new_state);
* new_state.enabled = true;

* pwm_apply state(pwm, &new_state);

3.1.3 Capture

Input capture mode supports calculating the duration of high and low levels of the input waveform.
pwm_capture (pdev, &cap_res, timeout_ms);
¢ Return the calculated result cap_res after timeout_ms:

/**
* struct pwm _capture - PWM capture data
* @period: period of the PWM signal (in nanoseconds)
* @duty_cycle: duty cycle of the PWM signal (in nanoseconds
*/
struct pwm_ capture {
unsigned int period;
unsigned int duty_cycle;
I

3.1.4 Global control

Global control mode supports synchronous update of multi-channel configurations. Combined with continous/oneshot mode, it can realize output
synchronization, complementary output and other functions.

// join the global control group

rockchip_pwm global ctrl (pdev0, PWM_GLOBAL_CTRL_JOIN) ;
rockchip_pwm global ctrl (pdevl, PWM_GLOBAL_CTRL_JOIN) ;
rockchip pwm global_ctrl (pdev2, PWM_GLOBAL_CTRL_JOIN) ;

// assign one channel to obtain the permission of global control

af://n198
af://n207
af://n214

rockchip_pwm global ctrl (pdev0, PWM GLOBAL_CTRL_GRANT) ;

// use pwm_apply

[0}

e() to update configurations for each channel
// update the configs for all channels in group
rockchip_pwm_global ctrl (pdev0, PWM GLOBAL_CTRL_UPDATE) ;
// enable all channels in group
rockchip_pwm global ctrl (pdev0, PWM GLOBAL_CTRL_ENABLE) ;
// reclaim the permission of global control
rockchip pwm global ctrl (pdev0, PWM GLOBAL_ CTRL_RECLAIM) ;
// exit the global control group
rockchip pwm global_ ctrl(pdev0, PWM_GLOBAL_CTRL_EXIT) ;
rockchip_pwm _global ctrl (pdevl, PWM_GLOBAL_CTRL_EXIT);
rockchip pwm global_ ctrl(pdev2, PWM_GLOBAL_CTRL_EXIT);

¢ Description of each command in global control mode:

/x*

* enum rockchip pwm global ctrl cmd - commands for pwm global ctrl

*

@PWM_GLOBAL_CTRL_JOIN: join the global control group

@PWM_GLOBAL CTRL_EXIT: exit the global control group

* @PWM GLOBAL CTRL GRANT: obtian the permission of global control
@PWM_GLOBAL_CTRL_RECLAIM: reclaim the permission of global control

* @PWM_GLOBAL CTRL _UPDATE: update the configs for all channels in group
* @PWM_GLOBAL_CTRL_ENABLE: enable all channels in group

* @PWM_GLOBAL_CTRL_DISABLE: disable all channels in group

*

*

&y
enum rockchip pwm global ctrl cmd {
PWM_GLOBAL_CTRL_JOIN,
PWM_ GLOBAL CTRL EXIT,
PWM_GLOBAL_CTRL_GRANT,
PWM_GLOBAL_CTRL_RECLAIM,
PWM GLOBAL CTRL_UPDATE,
PWM_GLOBAL_CTRL_ENABLE,
PWM_GLOBAL_CTRL_DISABLE,

3.1.5 Output offset

Output offset mode supports PWM output waveform offset for a specified time. It is usually used in oneshot mode in combination with global control. It

corresponds to the duty offset parameter in struct pwm_state . You can refer to oneshot mode description.

3.1.6 Counter

Input counting mode supports counting the number of input waveforms.

rockchip_pwm_set_ counter (pdev, PWM_COUNTER_INPUT FROM IO, true);
msleep (timeout ms);
rockchip_pwm set_counter(pdev, 0, false);

rockchip_pwm get counter_ result(pdev, &counter_res, true);

¢ Close counter after timeout_ms and get the count result counter_res.

3.1.7 Frequency meter

Frequency counter mode supports calculating the frequency of the input waveform.
rockchip_pwm_set_ freq meter (pdev, timeout_ms, PWM_COUNTER_INPUT_FROM_IO, &freqg_hz);

e Returns the calculated result freq_hz after timeout_ms.

3.1.8 IR output

The driver is not supported yet.

3.1.9 IR input

For details, please refer to the document "Rockchip_Developer Guide PWM_IR_CN". The corresponding kernel driver is

driver/input/remotectl/rockchip_pwm_remotectl.c.

af://n221
af://n223
af://n229
af://n235
af://n237

3.1.10 Wave generator

Waveform generator mode supports outputting specified waveforms according to the configuration in the wave table.

// setup the duty table
for (i = 0; i < PWM TABLE MAX; i++)

table[i] = i * PWM_WAVE_STEP;
duty table.table = table;
duty_table.offset = (channel_id % 3) * PWM_TABLE_MAX;

duty_table.len = PWM TABLE_ MAX;

// setup the repeat time for each parameter in table

wave_config.rpt = PWM WAVE RPT;

// setup the clk rate
wave_config.clk_rate = 400000;

// If duty en is true, the wave will get duty config from table each PWM WAVE RPT period, and the same to
period_en

wave_config.duty table = &duty table;

wave_config.period_table = NULL;

wave_config.enable = enable;

wave_config.duty_en = true;

wave_config.period_en = false;
// setup the width _mode and update_mode
wave_config.width mode = PWM_WIDTH_MODE;

wave_config.update mode = PWM_WAVE_INCREASING_THEN_ DECREASING;

// setup the start and end index in duty/period table

wave_config.duty max = (channel_id % 3 + 1) * PWM_TABLE_MAX - 1;
wave_config.duty min = (channel_id % 3) * PWM_TABLE_MAX;

wave_config.period max = 0;
wave_config.period min = 0;

wave_config.offset = 0;

// setup the middle index to change table config in interrupt if needed.
wave_config.middle = PWM TABLE_MAX / 2;
rockchip_pwm_set wave (pdev, &wave config);

// enable the continous mode
pwm_get_state(pdev, &state);
state.period = period;
state.duty_cycle = duty;
state.polarity = polarity;
state.enabled = enable;
pwm_apply state(pdev, &state);

¢ The configuration and description related to wave mode are as follows:

/ * ok
* enum rockchip_ pwm wave_table width_mode - element width of pwm wave table
* @PWM_WAVE TABLE 8BITS WIDTH: each element in table is 8bits
* @PWM_WAVE_TABLE_16BITS_WIDTH: each element in table is 1l6bits
*/
enum rockchip pwm wave table width mode {
PWM WAVE TABLE 8BITS WIDTH,
PWM_WAVE_TABLE_16BITS_WIDTH,
bi

/x*
* enum rockchip pwm wave update mode - update mode of wave generator

* @PWM WAVE INCREASING:

& The wave table address will wrap back to minimum address when increase to
& maximum and then increase again.

* @PWM_WAVE_INCREASING_THEN_ DECREASING:

bt The wave table address will change to decreasing when increasing to the maximum
& address. it will return to increasing when decrease to the minimum value.
*/

enum rockchip pwm wave_ update_mode {
PWM_WAVE_INCREASING,
PWM_WAVE_INCREASING_THEN_DECREASING,
bi

/**
* struct rockchip pwm wave config - wave generator config object
* @duty_table: the wave table config of duty

* @period table: the wave table config of period

af://n239

* @enable:

enable or disable wave generator

* @duty_en: to update duty by duty table or not

* @period en: to update period by period table or not

* @clk_rate: the dclk rate in wave generator mode

* @Qrpt: the number of repeated effective periods
* @width mode: the width mode of wave table

* @update mode: the update mode of wave generator

* @duty max: the maximum address of duty table

* @Qduty min: the minimum address of duty table

* @period_max: the maximum address of period table

* @period min: the minimum address of period table

* Q@offset:
* @middle:

the initial offset address of duty and period
the middle address of duty and period

* @max_hold: the time to stop at maximum address

* @min_hold: the time to stop at minimum address
* @middle hold: the time to stop at middle address

*/

struct rockchip pwm wave config {

struct rockchip_pwm_wave_table *duty table;

struct rockchip pwm wave_table *period_table;

bool enable;

bool duty_en;

bool period_en;
unsigned long clk rate;
ul6 rpt;

u32 width_mode;

u32 update_mode;

u32 duty max;

u32 duty min;

u32 period_max;

u32 period _min;

u32 offset;

u32 middle;

u32 max_hold;
u32 min_hold;
u32 middle_hold;

}i

o PWM v4 has 768 * 8bit space in wave generator mode for storing duty/period configuration. After turning on duty en/period_en, new data
will be fetched from the duty_min + offset/period_min + offset index in duty_table/period_table every rpt cycle. Configuration value (unit:

ns) until duty _max/period_max. Then it will re-enter the next cycle according to update_mode. If it is oneshot mode, it will stop after

oneshot_repeat cycles, while continous mode will continue to output until manually stopped.

o Wave supports width_mode switching (768 * 8bit and 384 * 16bit). Under the same working clock dclk, 16bit mode will support larger

duty/period configuration.

o Interrupts will be generated at the configured middle and max indexes. Users can add corresponding logic to the drivers/pwm/pwm-

rockchip-irq-callbacks.h interrupt handling function as needed:

static

{
/*

*

*

*

*

*

*

*

*/

static
{
/*

*

*

*

*

*

void rockchip_pwm wave middle_ callback(struct pwm_device *pwm)

If you want to update the configuration of wave table, set

struct rockchip pwm wave table and call rockchip pwm set wave ().

struct rockchip_ pwm wave config wave config;

struct rockchip_pwm_wave_table duty table;

//fill the duty table
wave_config.duty_table = &duty table;
wave_config.enable = true;

rockchip pwm set wave (pwm, &wave config);

void rockchip_pwm wave _max callback(struct pwm_device *pwm)

If you want to update the configuration of wave table, set

struct rockchip pwm wave table and call rockchip pwm_set wave() .

struct rockchip pwm wave config wave config;

struct rockchip_pwm_wave_table duty table;

//£fill the duty table
wave_config.duty table = &duty table;

wave_config.enable = true;

* rockchip pwm_set wave (pwm, &wave_config);

*

=Y

3.1.11 Biphasic counter

Bidirectional counter mode supports five counting modes mode0-mode4 (see the description of the PWM chapter in TRM for details). Mode0 can be

used as the above counter and freqency meter.

biphasic_config.enable = true;

biphasic_config.is_continuous = false;
biphasic_config.mode = biphasic_mode;
biphasic_config.delay ms = timeout_ms;

rockchip_pwm_set biphasic(pdev, &biphasic_config, &biphasic_res);
o The parameters of biphasic_config are described as follows:

/**

* struct rockchip pwm biphasic_config - biphasic counter config object

* @enable: enable: enable or disable biphasic counter

* @is_continuous: biphascic counter will not stop at the end of timer in continuous mode

* @mode: the mode of biphasic counter

* @delay ms: time to wait, in milliseconds, before getting biphasic counter result

*/

struct rockchip_pwm_biphasic_config {
bool enable;
bool is_continuous;
u8 mode;
u32 delay ms;

I

o In non-continous mode, the count result biphasic_res is returned after timeout_ms.
o In continous mode, counting will continue until manual shutdown, and the counting results can be obtained in real time through int
rockchip_pwm get biphasic_result(struct pwm_device *pwm, unsigned long *biphasic_res) .

¢ biphasic counter mode description:

/x*x

* enum rockchip_pwm_biphasic_mode - mode of biphasic counter

*

@PWM_BIPHASIC_ COUNTER MODEO: single phase increase mode with A-phase

* @PWM_BIPHAS single phase increase/decrease mode with A-phase

* @PWM_BIPHASIC_COUNTER MODE2: dual phase with A/B-phase mode
* @PWM BIPHASIC COUNTER MODE3: dual phase with A/B-phase 2 times frequency mode
* @PWM_BIPHASIC_COUNTER MODE4: dual phase with A/B-phase 4 times frequency mode
*/
enum rockchip pwm biphasic_mode {
PWM_BIPHASIC COUNTER_MODEO,
PWM_BIPHASIC_COUNTER_MODEL,
PWM BIPHASIC COUNTER MODE2,
PWM_BIPHASIC COUNTER_MODE3,
PWM BIPHASIC COUNTER MODE4,
PWM_BIPHASIC COUNTER_MODEQO_FREQ,

}i

o PWM_BIPHASIC_COUNTER_MODEQO is equivalent to the counter function, and PWM_BIPHASIC_COUNTER_MODEO_FREQ is

equivalent to the freqency meter function.

3.2 User space

The PWM framework provides a user layer interface in the /sys/class/pwm/ directory. For details, see drivers/pwm/sysfs.c. After the PWM driver is
successfully loaded, the pwmchipX directory will be generated under it, such as pwmchip0, pwmchipl, etc., here The X has nothing to do with the
controller or channel ID of the PWM, but is only related to the probe sequence of the PWM device.

root@linaro-alip:/# cat /sys/class/pwm/pwmchip0/

device/ export npwm power/ subsystem/ uevent unexport
Writing Y to the export node will generate a pwmY directory in the current directory. Since each PWM device on the Rockchip platform has only one
chip, the Y value can only be 0. Conversely, writing Y to the unexport node will delete the pwmY directory.
There are the following operable nodes in the pwmY directory:

e enable: Writing 1 enables PWM, writing 0 disables PWM;

af://n254
af://n272

¢ polarity: There are two parameter options: normal or inversed, corresponding to the PWM polarity configuration
PWM_POLARITY_NORMAL/PWM_POLARITY_INVERSED;

e duty cycle: In normal mode, it represents the duration of high level in one cycle (unit: ns). In reversed mode, it represents the duration of low level
in one cycle (unit: ns);

o period: represents the period of the PWM waveform (unit: ns);

¢ oneshot count: CONFIG_ PWM_ROCKCHIP_ONESHOT needs to be turned on, indicating the number of PWM waveforms in oneshot mode;

o oneshot repeat: CONFIG_ PWM_ROCKCHIP_ONESHOT needs to be turned on and is only supported by PWM v4. It indicates the number of
times the oneshot mode is repeated. The final number of output waveforms is oneshot_repeat * oneshot_count;

e duty offset: CONFIG_PWM_ROCKCHIP_ONESHOT needs to be turned on, indicating the offset time of the PWM output waveform (unit: ns);

¢ capture: Enable capture mode to obtain the duration of the high and low levels of the input waveform (unit: ns).

3.2.1 Continous

cd /sys/class/pwm/pwmchip0/
echo 0 > export

cd pwmQ

echo 10000 > period

echo 5000 > duty cycle

echo normal > polarity

echo 1 > enable

3.2.2 Oneshot

cd /sys/class/pwm/pwmchip0/
echo 0 > export

cd pwmQ

echo 10000 > period

echo 5000 > duty_cycle

echo 1000 > duty offset
echo normal > polarity

echo 100 > oneshot_count
echo 10 > oneshot_repeat

echo 1 > enable

3.2.3 Capture

cd /sys/class/pwm/pwmchip0/
echo 0 > export
cd pwmO

cat capture

4. FAQ

4.1 Connection of PWM Between U-Boot and Kernel

¢ If U-Boot has the function of PWM voltage regulation, the PWM is still working at the kernel stage, the PWM clock gating count needs to be
adjusted to be consistent with the current PWM state according to the current hardware status of the PWM. Otherwise, the clock driver may find
that the unused PWM clock, turn off it, which causing the PWM failed to work. The above patch has been modified to ensure the PWM driver:

drivers/pwm/pwm-rockchip.c, updated to the following submission points:

1. kernel-4.4: commit e6f2796ef5b660a70102c¢02d6c15f65ff8701d76
2. kernel-3.10: commit 5a3d9257d5¢379391eb02457ccd70f28a8fb188b
o The frequency of the clock source used by U-Boot and kernel PWM is different, which will also cause switching in the middle, which may cause
the PWM duty cycle to change, and similar crashes caused by insufficient PWM voltage regulation will occur. Consistent with the clock source or

clock source of the kernel. Make sure that the PWM source clock and source clock frequency of U-Boot PWM is consistent with the kernel.

¢ Inconsistencies in the polarity and cycle configured by U-Boot and kernel can also lead to middle-state switching, which can Imake the changes
for PWM duty cycle, and dead-machine problems such as a lack of PWM voltage control, so keep the U-Boot consistent with kernel's polarity and

cycle.

4.2 PWM Pin PULL State As PWM Regulator

af://n294
af://n296
af://n298
af://n300
af://n301
af://n314

‘When the device rebooting, the registers in the GRF may not reset(second global reset), but the PWM controller reset, which make the PWM pin to be a

input state. This will change the default voltage of the PWM Regulator after rebooting by reseting the PWM pin pull state . Therefore, the PWM pin

must be configured the same as the default state(pull-up or pull-down) in the kernel, which cannot be configured as "none". This configuration only

needs to be modified when the PWM is used as a voltage regulator, as the other functions can be ignored.

¢ Confirm the default pull-up and pull-down of this

PWM pin through the hardware schematic diagram. For example, the RK3399 excavator board

PWM2 is used as a voltage regulation function, and the PWM?2 pin is found on the schematic diagram: Gp101_C3/PWM2_d, where "d" means

down for the default pull-down; if "u" means up for the default pull-up.

GPIO1_CO/SPI3_TXD/N2C0_SCL _u |

N30

GPIO1_C1/SPI3_CLK_d

GPIPJ:CZJS.EIS:CS.DD:LL'
GPIC1 C3/PWM2 d

GPIO1_C4/12C8_SDA_u
GPIO1_C5/12C8_SCL_u |

GPIO1_C8/TCPD_VBUS_SOURCEOD d

GPIO1_C7/TCPD_VBUS_SOURCE1_d

GPIO1_DO/TCPD_VBUS_SOURCEZ_d
DFTJTAG_TMS_u
DFTJTAG_TRSTn_d
PMUIOZ2_VDDPST |

PMUIO2_VDD |

"M27 CPU_B_SLEEP)'2C_SCL_PMIC 5
B PU_B_SLEEP
ug; Motor_FWk > Motor PWR
0G_DVS_PiNiM
M2g S . SyouchINT L
M MIC_INT_L
= =—=C0GSENSOR_INT_L
C_DET_H
L26 GYR_INT_L >>GYR_INT_L
| AA24
AB24
L N23 ovec 1vs

LOVCC_SVG

¢ Define the PWM pull down pinctrl in dtsi:

pwm2_pin_pull down: pwm2-pin-pu

rockchip,pins
<1 19 RK_FUNC_1 &pcfg p
}i

¢ Overwrite pinctrl config at dts:

&pwm2 |

status "okay";

pinctrl-names = "active";

pinctrl-0 = <&pwm2_pin_pull_down>;

1l-down {

ull down>;

4.3 Oscilloscope Cannot Detect PWM Waveform

If the oscilloscope cannot get the waveform, confirm the following method:

o First check whether the value of the PWM Count

er Register register is changing. If there is a change, it indicates that the PWM is working.

(Note that if you use the io command to read the PWM registers, it need to turn off gating of pclk for RK3328 and the chips later, you can find

them in the table of the product documentation , because these chips PWM pclk and the working clock are separated); if the value of this register

has not changed, it means that the PWM is irregu

1. Clock error
2. The register configuration problem of the P
3. RK3368 needs to additionally configure b

should be a problem with the pinctrl:

1. iomux error.
2. io-domain configuration is incorrect;
3. Interfered by the hardware;

lar. Generally, these exceptions are divided into the following cases:

WM itself, the PWM is not enabled or the value of the duty count is greater than period, etc .;
it12 of the register GRF_soc CON15 in GRF to 1.

If the read-out value of the PWM Counter Register is changing, it means that the PWM is working, but the signal still cannot be measured. It

af://n328

	PWM Developer Guide
	Driver
	Kernel Driver
	Driver Files
	DTS Configuration

	Feature support
	Application Notes
	Kernel Driver
	Continous
	Oneshot
	Capture
	Global control
	Output offset
	Counter
	Frequency meter
	IR output
	IR input
	Wave generator
	Biphasic counter

	User space
	Continous
	Oneshot
	Capture

	FAQ
	Connection of PWM Between U-Boot and Kernel
	PWM Pin PULL State As PWM Regulator
	Oscilloscope Cannot Detect PWM Waveform

