Rockchip SPI Developer Guide

ID: RK-KF-YF-075

Release Version: V3.6.0

Release Date: 2025-01-13

Security Level: oTop-Secret nOSecret olnternal mPublic
DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "5t 4", "Hi " shall be Rockchip’s registered trademarks and owned by Rockchip. All the other

trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.
All rights reserved. ©2025. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in

any form in whole or in part without the written approval of Rockchip.
Rockchip Electronics Co., Ltd.
No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590
Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Preface
Overview
This article introduces the Linux SPI driver principle and basic debugging methods.

Product Version

Chipset Kernel Version
All chips develop in linux4.4 Linux 4.4
All chips develop in linux4.19 and above Linux 4.19 and above

Intended Audience
This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Version

V1.0.0

V2.0.0

V2.1.0

V220

Vv23.0

V23.1

V232

V2.4.0

V2.5.0

V2.6.0

V2.7.0

V2.8.0

V2.8.1

V29.0

Vv3.0.0

V3.1.0

V3.2.0

V321

V3.3.0

Author

Huibin
Hong

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Jon Lin

Date

2016-
06-29

2019-
12-09

2020-
02-13

2020-
07-14

2020-
11-02

2020-
12-11

2021-
07-06

2021-
08-31

2021-
12-27

2023-
06-22

2023-
08-15

2023-
10-23

2023-
10-24

2023-
12-03

2023-
12-03

2024-
03-04

2024-
04-26

2024-
04-26

2024-
06-20

Change Description

Initial version

Support Linux 4.19

Adjust SPI slave configuration

Linux 4.19 DTS configuration change, Optimize document layout

Add comment for supporting spi-bus cs-gpios property

Update Linux 4.4 SPI slave description

Add more add configuration description, Add more cs-gpios

description

Add FAQs and reduce redundant configurations

Support Linux 5.10

Added SPI Slave Software In Kernel, rockchip,poll-only support

and explanation of common problems

Explanation of the optimization direction for increasing SPI

transmission rate and high CPU usage

Add SPI interface speed description

Modifying incorrect dts node property

Support spi-rockchip-slave source code, Add SPI Slave Notice for

customers

Update SPI Slave instructions, remove sram buffer support.

Add RK3576.

Modify SPI clock rate

Modify SPI slave rockchip object structure diagram

Update RK3528/RK3576 interface rate

Version

V3.4.0

V3.5.0

V3.6.0

Author

Jon
Lin/Xuhui
Lin

Jon Lin

Jon Lin

Date

2024-
07-26

2024-
09-05

2025-
01-13

Change Description

Add RV1103B/RK3506

Add RV1106B

Explain that the SPI SLAVE MODE Ready signal falling edge of
the valid signal

Contents

Rockehip SPI Developer Guide
1. Feature of Rockchip SPI
1.1 SPIinterface rate
2. Kernel Software
2.1 Code Path
2.2 SPI Device Configuration: RK SPI As Master Port
2.3 SPI Device Configuration: RK SPI As Slave Port
2.4 SPI Slave Notice
2.4.1 Suggest Performance Mode
2.4.2 Suggest 16bits Width
2.4.3 Other Notes
2.5 SPI Device Driver
2.6 User mode SPI device Configuration
2.7 Support cs-gpios
2.7.1 Configuration of Linux 4.4
2.7.2 Configuration of Linux 4.19 and above
3. SPI Testing Driver in Kernel
3.1 Code Path
3.2 SPI Testing Device Configuration
3.3 Test Command
4. SPI Slave Software In Kernel
4.1 Introduction
4.2 SPI Slave Testing Device Configuration
4.3 Test Command
5. FAQ
5.1 SPIno signal
5.2 How to design application code in SPI
5.3 Delay sampling clock configuration
5.4 SPI transmission method description
5.5 SPI Transfer Rate and CPU Usage Optimization Directions

1. Feature of Rockchip SPI

The serial peripheral interface is called SPI, the following are some of the features supported by the Linux 4.4
SPI driver:

e Motorola SPI protocol is used by default

e Supports 8-bit and 16-bit

¢ Software programmable clock frequency

¢ Support 4 transfer mode configurations of SPI

¢ One or two chips selects per SPI controller

¢ Only holding SPI slave mode, with and only SPI-CSON as the CS input pin:

o Switching to GPIO function is not allowed during the input process
o CSIN substitution not supported

the following are some of the new features supported by the Linux 4.19 SPI driver:

e Support both slave and master mode

1.1 SPI interface rate

SOC Master Mode Interface maximum Slave Mode Interface maximum
speed speed
RK3506 50MHz 50MHz
RV1106B/RV1103B 50MHz 33MHz
RK3576 50MHz 33MHz
RK3562 50MHz 33MHz
RK3528 50MHz 33MHz
RV1106/RV1103 50MHz 33MHz
RK3588 50MHz 33MHz
RV1126/RV1109 50MHz 16MHz
RK3568 50MHz 33MHz
RK1808 50MHz 16MHz
RK3308 50MHz 16MHz
Others 50MHz 16MHz

Note:

af://n158
af://n182

¢ The maximum speed of the interface is the theoretical rate, which is affected by the quality of the device's
PCB wiring. The actual measurement shall prevail
¢ Due to PLL strategy reasons, some platforms are unable to accurately divide the frequency to the upper

limit value. In reality, the maximum frequency division value shall prevail

2. Kernel Software

2.1 Code Path

/*
/*

drivers/spi/spi.c
drivers/spi/spi-rockchip.c
drivers/spi/spi-rockchip-slave.c
/*
drivers/spi/spi-rockchip-test.c /*
=4

Documentation/spi/spidev_test.c /*

drivers/spi/spidev.c

compiler manually.

SPI Driver framework */
RK SPI Slave implement of interface */
/* RK SPI Slave implement of interface */
Create SPI device node for using */
SPI test driver, it needs to add to Makefile

SPI test tool in user state */

2.2 SPI Device Configuration: RK SPI As Master Port

Kernel Configuration

Device Drivers --->

[*] SPI support --->

<F>

DTS Node Configuration

&spil {
status = "okay";
//assigned-clocks =
soc dtsi
//assigned-clock-rates =
controller work clock
//dma-names;
DMA support, only supports
//rockchip,poll-only;
use CPU transmission, only
//rx-sample-delay-ns =
sampling delay.
for details
//rockchip,
Runtime PM autosuspend delay,
Optimization Directions"

//rockchip, rt;

data transfer process into SCHED FIFO,

spi test@1l0 {

compatible ="rockchip,spi test busl cs0";

the driver

reg = <0>;

Please refer to "FAQ" and "Delay sampling

autosuspend-delay-ms =

refer to

Rockchip SPI controller driver

//Quote SPI controller node

<CLK_SPI1>; //Not configured by default, depend on
<200000000>; //Not configured by default, spi
//Not configured by default, turn off
IRQ transmission
//Not configured by default, turn to
master mode supported
<10>; //Not configured by default, Read

clock configuration"

<500>;
"SPI Transfer Rate and CPU Usage

//Not configured by default,

for details.

//Not configured by default,Place SPI

its priority is 50

//The name corresponding to

//Chip select 0 or 1

af://n242
af://n243
af://n245

spi-cpha; //1f configure it, cpha is 1

spi-cpol; //If configure it,cpol is 1, the clk
pin remains high level.

spi-lsb-first; //I0 firstly transfer 1lsb

status = "okay"; //Enable device node

spi-max-frequency = <24000000>; //This is clock frequency of SPI clk
output,witch does not exceed 50M.
i
}i

Configuration instructions for spiclk assigned-clock-rates and spi-max-frequency:

¢ spi-max-frequency is the output clock of SPI. spi-max-frequency is output after internal frequency division
of SPI working clock spiclk in assigned-clock-rates. Since there are at least 2 internal frequency divisions,
the relationship is that SPI assigned clock rates > =2 * SPI Max frequency;

¢ Assume that we want S0MHz SPI 10 rate, the configuration can be set as: spiclk assigned-clock-rates =
<100000000>, spi-max-frequency = <50000000>.

¢ spiclk assigned-clock-rates should not be lower than 24M, otherwise there may be problems.

2.3 SPI Device Configuration: RK SPI As Slave Port

Key Patch
Recommended to use the SPI slave source code spi-rockchip-slave.c, as the SDK version issue, please confirm

that the SDK has the following patch:

commit 10cbf3c2c93fcabe5ec6c99b5bdb319ca0494d45
Author: Jon Lin <jon.lin@rock-chips.com>
Date: Tue Nov 21 10:58:57 2023 +0800

spi: rockchip-slave: Add code

1.Implement one msg mechanism

2.Support SRAM extension by dts rockchip,sram property

Change-Id: I0fccc5d4347294488b5382ad3bab5ae72b35610£2
Signed-0Off-By: Jon Lin <jon.lin@rock-chips.com>
Instructions

¢ Ifno such patch, the customer can directly refer to Redmine FAE Project -> Document -> Development

Configuration -> SPI Path.

Kernel Configuration

Device Drivers --->
[*] SPI support --->
[*] SPI slave protocol handlers
L] Rockchip SPI Slave controller driver
DTS Node Configuration

&spil {

af://n258

compatible = "rockchip, spi-slave"; //priority use SPI slave dedicated
driver

status = "okay";

//ready-gpios = <&gpiol RK_PD2 GPIO ACTIVE LOW>;//recommend configuring, SPI
slave complete transmission flag, refer to "kernel SPI Slave Software" chapter

//rockchip, cs-inactive-disable; //default do not configure,
when SPI master timing tod cs (Clock Rise To CS Rise Time) is over multiple io
clock cycles, should open config to detect cs release action

slave { //according to framework
requirement, SPI slave sub node's name should start with "slave"

compatible ="rockchip,spi test busl cs0";

reg = <0>; //only support single chip
select

spi-cpha; //set CPHA = 1, do not
configure otherwise

spi-cpol; //set CPOL = 1, do not
configure otherwise

spi-lsb-first; //I0 Input 1lsb first

status = "okay"; //enable device node

}i

Note:

e RK SPI enables DMA transmission by default, and slave mode does not recommend turning off DMA
transmission. When a transfer exceeds the controller's cache count, the software will configure it for DMA

transfer to avoid interrupting the corresponding transmission in a timely manner.

2.4 SPI Slave Notice

2.4.1 Suggest Performance Mode

When the master rate exceeds a certain frequency, it is recommended to set the transfer process in performance

mode to avoid DRAM frequency conversion causing controller cache overflow:

e Dbits per word = 8btis, master io rate exceeds SMHz

e Dbits_per_word = 16btis, master io rate exceeds 10MHz

Reference code:

diff --git a/drivers/spi/spi-rockchip-test.c b/drivers/spi/spi-rockchip-test.c
index 544d6038919a..c1037153££86 100644

--- a/drivers/spi/spi-rockchip-test.c

+++ b/drivers/spi/spi-rockchip-test.c

@@ -36,6 +36,8 @@

#include <linux/platform data/spi-rockchip.h>

#include <linux/uaccess.h>

#include <linux/syscalls.h>

+#include <soc/rockchip/rockchip-system-status.h>

+#include <dt-bindings/soc/rockchip-system-status.h>

#define MAX_SPI_DEV_NUM 10

#define SPI MAX SPEED HZ 12000000

@@ -242,8 +244,10 @R static ssize t spi test write(struct file *file,
}

af://n274
af://n275

start time = ktime get();
+ rockchipisetisystemistatus(SYSisTATUsiPERFORMANCE);
for (i = 0; 1 < times; i++)

spi read slt(id, rxbuf, size);

+ rockchip_clear_system_status(SYS_STATUS_PERFORMANCE);
end time = ktime get();
cost time = ktime sub(end time, start time);
us = ktime to us(cost time);

Notes:

¢ [t is recommended that all slave mode transfer behavior be run in performance mode.

e The set/clear performance interface has some time overhead, so it is recommended to set it at the business
level to avoid frequent calls.

e Ifthere is a cache overflow, the slave cannot complete DMA transmission and will block and exit, which

can be confirmed by printing the SPI->SPI_RISR register.

2.4.2 Suggest 16bits Width

Make full use of slave fifo capacity to accelerate and minimize burst 2, which can accelerate the slave end DMA

transmission rate and avoid fifo being stacked due to insufficient movement.

2.4.3 Other Notes

SPI Slave Test Notes

Spi is a slave, first start the slave read, then start the master write, otherwise the slave will not have read yet and

the master has already written.

Slave write, master read also needs to start the slave write first, because only after the master sends clk, the slave

will work, and the master will immediately send or receive data.
Example: On the basis of Chapter 3:
First slave: echo write 0 1 16 > /dev/spi misc test

Then master: echo read 0 1 16 > /dev/spi misc test

2.5 SPI Device Driver

Register device driver:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/platform device.h>
#include <linux/of.h>

#include <linux/spi/spi.h>

static int spi test probe(struct spi device *spi)
{

int ret;

af://n292
af://n294
af://n301

if (!'spi)
return -ENOMEM;
spi->bits per word= 8;
ret= spi setup(spi);
if(ret < 0) {
dev_err(&spi—>dev,"ERR: fail to setup spi\n");

return-1;

return ret;

static int spi test remove (struct spi device *spi)
{
printk ("$s\n", func);

return 0;

static const struct of device id spi test dt match[]= {
{.compatible = "rockchip,spi test busl cs0", },
{.compatible = "rockchip,spi test busl csl", 1},

{},
}i
MODULE DEVICE TABLE (of, spi_test_dt_match);

static struct spi driver spi test driver = {
.driver = {
.name = "spi test",

.owner = THIS MODULE,
.of match table = of match ptr(spi test dt match),
b

.probe = spi test probe,
.remove = spi test remove,

}i

static int _ init spi_test_init(void)

{
int ret = 0;
ret = spi_register driver (&spi_test driver);
return ret;

}

module init(spi test init);

static void exit spi test exit(void)
{

return spi unregister driver (&spi test driver);

}

module exit (spi test exit);

For SPI read and write operations, please refer to include/linux/spi/spi.h.

static inline int

spi write(struct spi device *spi,const void *buf, size t len)

static inline int

spi_read(struct spi device *spi,void *buf, size t len)

static inline int

spi write and read(structspi device *spi, const void *tx buf, void *rx buf,

size t len)

2.6 User mode SPI device Configuration

User mode SPI device means operating the SPI interface in user space directly, which makes it convenient for

many SPI peripheral drivers run in user space.
There is no need to change the kernel to facilitate driver development.

Kernel Configuration

Device Drivers --->
[*] SPI support --->
[*] User mode SPI device driver support

DTS Configuration

&spil {
status = "okay";
max-freqg = <50000000>;
spi test@O0 {
compatible = "rockchip, spidev";
reg = <0>;
spi-max-frequency = <5000000>;

}i

Using Instruction
After the driver device is successfully registered, a device like this name will be displayed: /dev/spidevl.1
For the demo of spidev operation, please refer to:

¢ Kernel 4.4 Documentation/spi/spidev_test.c
e Kernel 4.19 and later tools/spi/spidev_test.c
¢ After the kernel project is compiled, enter the corresponding path and enter the following command to

directly compile the standard SPI app program:

make CROSS COMPILE=~/path-to-toolchain/gcc-xxxxx-toolchain/bin/xxxx-linux-gnu-

Choose kernel toolchain

¢ [t supports the configuration of SPI slave devices. Refer to "SPI Device Configuration: RK SPI As Slave
Port", in which the DTS configuration sub node should remain "rockchip, spidev"

2.7 Support cs-gpios

af://n306
af://n327

Users can use the cs-gpios attribute of spi-bus to implement gpio simulation cs to extend SPI chip selection
signal. Users can refer to the kernel document Documentation/devicetree/bindings/spi/spi-

bus.txt to learn more about cs-gpios.

2.7.1 Configuration of Linux 4.4

This support needs more support patches. Please contact RK Engineer for the corresponding patches.

2.7.2 Configuration of Linux 4.19 and above

Take spil_cs2n in GPIOO _C4 for example:

Set the cs-gpio pin and reference it in the SPI node

diff --git a/arch/arm/boot/dts/rv1126-evb-v10.dtsi b/arch/arm/boot/dts/rv1126-
evb-v10.dtsi

index 144e9edf1831..cl7ac362289% 100644

--- a/arch/arm/boot/dts/rvl1l26-evb-v10.dtsi

+++ b/arch/arm/boot/dts/rv1126-evb-v10.dtsi

&pinctrl {

+

+ spil {

+ spil csOn: spil-csln {

+ rockchip,pins =

+ <0 RK_PC2 RK_FUNC_GPIO

&pcfg pull up drv_level 0>;

+ }i

+ spil csln: spil-csln {

i rockchip, pins =

+ <0 RK_PC3 RK FUNC GPIO

&pcfg pull up drv _level 0>;

+ }i

“r spil cs2n: spil-cs2n {

+ rockchip,pins =

+ <0 RK_PC4 RK_FUNC_GPIO

&épcfg pull up drv level 0>;
+ }i

+ }i

}i

diff --git a/arch/arm/boot/dts/rv1126.dtsi b/arch/arm/boot/dts/rv1126.dtsi
index 351bc668ea4d2..986a85f13832 100644

--- a/arch/arm/boot/dts/rv1126.dtsi

+++ b/arch/arm/boot/dts/rv1126.dtsi

spil: spi@f£f5b0000 {
compatible = "rockchip,rvll26-spi", "rockchip,rk3066-spi";
reg = <0xff5b0000 0x1000>;
interrupts = <GIC SPI 11 IRQ TYPE LEVEL HIGH>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&cru CLK SPI1>, <&cru PCLK SPI1>;

af://n329
af://n331

clock-names = "spiclk", "apb pclk";
dmas = <&dmac 3>, <&dmac 2>;
dma-names = "tx", "rx";
pinctrl-names = "default", "high speed";
= pinctrl-0 = <&spilm0 clk &spilm0 csOn &spilm0 _csln &spilm0 miso

&spilm0 mosi>;

= pinctrl-1 <&spilm0 clk hs &spilm0 csOn &spilm0 csln &spilm0 miso hs
&spilm0 mosi hs>;
+ pinctrl-0 = <&spilm0 clk &spil csOn &spil csln &spil cs2n &spilmO _miso

&spilm0 mosi>;

i pinctrl-1 <&spilm0 clk hs &spil csOn &spil csln &spil cs2n
&spilm0 miso hs &spilm0 mosi hs>
status = "disabled";

}i

SPI node reassigns CS pin

+&spil |

I status = "okay";

+ max-freqg = <48000000>;

+ cs-gpios = <&gpioO RK PC2 GPIO ACTIVE LOW>, <&gpioO RK PC3

GPIO ACTIVE LOW>, <&gpio0 RK_PC4 GPIO ACTIVE LOW>;
spi test@O0 {

compatible = "rockchip,spi test busl cs0";

spil test@2 {
compatible = "rockchip,spi test busl cs2";
id = <2>;
reg = <0x2>;
spi-cpha;
spi-cpol;
spi-lsb-first;
spi-max-frequency = <16000000>;

+ 4+ o+ o+ o+ o+ o+

H_l
~.

Note:

¢ [fyou want to extend cs with gpio, all cs should be converted to gpio function and supported by cs-gpios

property.

3. SPI Testing Driver in Kernel

3.1 Code Path

drivers/spi/spi-rockchip-test.c

3.2 SPI Testing Device Configuration

Kernel Path

af://n341
af://n342
af://n344

drivers/spi/Makefile
tobj-y += spi-rockchip-test.o

DTS Configuraion

&spil {
status = "okay";
spi test@O0 {
compatible = "rockchip,spi test bus0 cs0";
id = <0>; //This attribute is used to distinguish different SPI
slave devices in "spi-rockchip-test.c".
reg = <0>; //chip select 0:cs0 1:csl
spi-max-frequency = <24000000>; //spil output clock

}i
spi test@l {
compatible = "rockchip,spi test bus0 csl";
id = <1>;
reg = <1>;
spi-max-frequency = <24000000>;

}i
Driver log

[0.457137]

rockchip spi test probe:name=spi test bus0 cs0,bus num=0,cs=0,mode=11, speed=1600
0000

[0.457308]

rockchip spi test probe:name=spi test bus0 csl,bus num=0,cs=1,mode=11, speed=1600
0000

3.3 Test Command

echo write 0 10 255 > /dev/spi misc_test
echo write 0 10 255 init.rc > /dev/spi misc_ test
echo read 0 10 255 > /dev/spi misc test
echo loop 0 10 255 > /dev/spi misc test
echo setspeed 0 1000000 > /dev/spi misc test
The above means:
Echo type id number of loops transfer length > /dev/spi_misc_test

Echo setspeed id frequency (in Hz) > /dev/spi_misc_test

You can modify the test case by yourself if you want.

4. SPI Slave Software In Kernel

4.1 Introduction

af://n351
af://n357
af://n358

Background

The transmission between SPI masters and slaves usually follows specific protocols, such as SPI No compatible
with JEDEC SDFP protocol, and RK SPI slave, as a device side transmission, should also follow specific
protocols. As the protocol has no paradigm, RK provides customized transmission protocols and device drivers

for customer reference.
Linux SPI slave driver framework limitations:

¢ Using a transmission queue, although the thread priority after queue wake-up is higher, real-time

performance cannot be fully guaranteed due to scheduling constraints
RK SPI slave mode restrictions:

e Each transmission requires a restart of the SPI controller configuration. Therefore, to ensure that the SPI
master can know that the RK SPI slave has completed the transmission configuration and initiated data
transmission, the RK SPI slave end needs to add a side band signal as a ready status bit, SPI master
recommends setting the Ready signal to GPIO IRQ input, and triggers to the falling edge along the signal
edge

Transport Protocol
RK SPI slave transmission protocol:

e The RK SPI slave transmission requires specifying ready-gpios to notify the SPI master. The basic process

is as follows:

stepl: slave start spi_sync

step2: slave ready, output GPIO_SLV_READY signal

step3: master confirm slave ready, then begin to transfer

step4: The slave receives sufficient clks from the master to complete the transmission

i 2 3 4 5 6 7 8 9 10 1 12 13 14
CLK f f 4 $ b 4 £ { {
CcS o\

GPIO_SLV_READY) 9 s

e Define two types of packages:
Ctrl packet: 2B cmd, 2B addr (application buffer offset address defined by RK slave), 4B data (usually

used to specify the transmission length of subsequent data packets)
data packet

¢ Define two types of transmission:

Ctrl transmission, only containing 1 ctrl packet
Data transfer, including two SPI transfers of 1 ctrl packet and 1 data packet

e spidev_rkslv support SPI_ OBJ _APP RAM SIZE Bytes application buffer for transmission buffer, The
data transmission 1 ctrl packet 2B addr initiated by the SPI master points to the cache offset address

Device Driver
Key Patch:
commit d2fef34977cla7aab3837d29%9ac8dc3b5378a2754 (HEAD -> develop-4.19)

Author: Jon Lin <jon.lin@rock-chips.com>
Date: Wed Dec 20 12:02:14 2023 +0800

spi: spidev rkslv: Support dynamic adjustment of system performance

If the DRAM frequency conversion jitters during the transmission process,
it will cause the DMA to be unable to transport SPI FIFO data in a timely

manner, resulting in FIFO overflow/underflow.

Clear performance status for short cmd packet and Set the performance

status for data packet.

Change-Id: I65532ba309677a8d98c8277875a3bd358cadde44
Signed-off-by: Jon Lin <jon.lin@rock-chips.com>

Note:

¢ If no such patch, the customer can directly refer to Redmine FAE Project -> Document -> Development
Configuration -> SPI Path.

Driver source code:

drivers/spi/spidev-rkslv.c

drivers/spi/spidev-rkmst.c

Source code introduction:

drivers/spi/spidev-rkslv.c:

static int spidev rkslv ctrl receiver thread(void *p)
//Establish a thread and repeatedly initiate transfers within the thread
{

while (1)

spidev rkslv xfer (spidev);

static int spidev rkslv xfer(struct spidev rkslv data *spidev)
//Transmission entrance
{
spidev_slv read(spidev, spidev->ctrlbuf, SPI OBJ CTRL MSG SIZE); //1 ctrl
packet to obtain and parse the transmission type
switch (ctrl->cmd) { //1 data
packet, define data packets based on the transmission type and complete sending
and receiving
case SPI_OBJ CTRL CMD INIT:
/* to-do */
case SPI_OBJ CTRL CMD READ:
/* to-do */
case SPI_OBJ_CTRL CMD WRITE:
/* to-do */
case SPI_OBJ CTRL CMD DUPLEX:
/* to-do */

static const struct file operations spidev rkslv misc fops = {}

//Register misc device test interface

drivers/spi/spidev-rkmst.c:

static int spidev rkmst xfer(struct spidev rkmst data *spidev, void *tx, void
*rx, ul6 addr, u32 len) //Transmission entrance
{
spidev rkmst ctrl(spidev, cmd, addr, len); //1
ctrl packet, defining the transmission type
switch (cmd) { //1
data packet, define data packets based on the transmission type and complete
sending and receiving
case SPI_OBJ CTRL CMD READ:
/* to-do */
case SPI_OBJ CTRL CMD WRITE:
/* to-do */
case SPI_OBJ CTRL CMD DUPLEX:
/* to-do */

static const struct file operations spidev rkmst misc fops = {}

//Register misc device test interface

Implement business

spi dev driver

(kemel layer: spidev_rkmst.c)

e
L o
H o

spi master driver
(kermel layer)

spi master driver
(kernel layer)

spi master ! spi slave

The purpose of providing "SPI Slave Software In Kernel" is to provide reference for protocol and device drivers,
and the end customer should also define their product requirements on the application buffer of the slave end to

achieve business.

4.2 SPI Slave Testing Device Configuration

Defconfig configuration:
CONFIG_SPI SLAVE ROCKCHIP OBJ=y
RK SPI slave end dts reference configuration:

&spil {
status = "okay";

spi-slave;

af://n405

rockchip,cs-inactive-disable; //RK internal

interconnection using RK Linux SPI master driver, and the tod cs takes a long

time
ready-gpios = <&gpiol RK PD3 GPIO ACTIVE LOW>; //Please set to
the actual GPIO used
slave {
compatible = "rockchip,spi-obj-slave";

reg = <0x0>;

spi-cpha;

spi-cpol;

spi-lsb-first;
spi-max-frequency = <50000000>;

}i
RK SPI master dts reference configuration:

&spi0 {

status = "okay";

spi test@00 {
compatible = "rockchip, spi-obj-master";
reg = <0x0>;
spi-cpha;
spi-cpol;
spi-lsb-first;
spi-max-frequency = <16000000>;
ready-gpios = <&gpiol RK _PD2 GPIO ACTIVE LOW>;

4.3 Test Command

SPI master initiates single packet data transmission testing

echo cmd addr length > /dev/spidev rkmst misc

Note:

e cmd: Support read/write/duplex

e addr: Refers to the offset of the peer slave application buffer, in Bytes, which only supports decimal input
¢ length: The length of the data packet, in Bytes, only supports decimal input

e The example is as follows:

echo write 128 128 > /dev/spidev rkmst misc
echo read 128 128 > /dev/spidev rkmst misc
echo duplex 128 128 > /dev/spidev_rkmst misc

SPI master initiates Test automation

echo autotest length loops compare > /dev/spidev rkmst misc

Note:

af://n412

¢ autotest: Fixed input, test full duplex data transmission first, then test read and write data transmission, and
output rate results

¢ The test defaults to using the opposite slave application buffer offset address 0

¢ length: The length of the data packet, in Bytes, only supports decimal input

¢ loops: Set the number of pressure testing cycles

e compare: | - enable verification, 0 - disable verification(support specific scenarios, such as continuous
output data for signal testing)

e The strength is as follows:
echo autotest 1024 64 1 > /dev/spidev rkmst misc
SPI slave testing

echo appmem 0 256 > ./dev/spidev rkslv misc #Print application buffer data
echo verbose 1 > ./dev/spidev rkslv misc #Enable the transmission

process debug log, echo verbose 0, and close printing

5. FAQ

5.1 SPI no signal

¢ Confirm that the driver is running before debugging
¢ Ensure that the IOMUX configuration of the SPI 4 pins is correct .

¢ Confirm that during the TX sending, the TX pin has a normal waveform, CLK has a normal CLOCK
signal, and the CS signal is pulled low.

e Ifthe clock frequency is high, considering increasing the drive strength to improve the signal.

e How to simply judge whether SPI DMA is enabled or not? If the serial port printing does not have the
following keywords, DMA is enabled successfully:

[0.457137] Failed to request TX DMA channel
[0.457237] Failed to request RX DMA channel

5.2 How to design application code in SPI

Please select the appropriate object function interface before writing the driver.
Custom SPI device driver

Refer to "SPI Device Driver", for example: drivers/spi/spi-rockchip-test.c.
Application program based on spidev standard device node

Refer to "User mode SPI device Configuration"

5.3 Delay sampling clock configuration

af://n445
af://n446
af://n459
af://n465

In the case of high SPI 10 rate, the normal SPI mode may still not match the output delay of external devices,
and RK SPI master read may not be able to sample valid data. SPI RSD logic needs to be enabled to delay the

sampling clock.
RK SPI RSD (read sample delay) control logic has the following characteristics:

e The assignable values are 0, 1, 2, 3
e The delay unit is 1 spi_clk cycle, i.e. the working clock of the controller, see "SPI Device Configuration"

for details

rx-sample-delay actual delay is the RSD effective value closest to the DTS set value, subject to spi_clk 200MHz,

cycle 5ns, for example:

The actual configurable delay of RSD is 0, Sns, 10ns and 15ns. RX sample delay is set to 12ns, which is close to
the effective value of 10ns, so the final delay is 10ns.

5.4 SPI transmission method description

Default Transfer Mode

Master mode supports IRQ, DMA, and CPU transfers, while slave mode supports IRQ and DMA transfers, with
the default combination of IRQ/DMA transfer modes:

e When the transfer length is less than the FIFO depth, IRQ transfer is used. By default, for SOCs using
kernel versions 4.19 and above, the FIFO depth is 64.
e When the transfer length is greater than or equal to the FIFO depth, DMA transfer is used.

Modifying Transfer Mode
Master mode supports:

¢ The default combination of IRQ/DMA transfer mode.

e Refer to the instructions "Disable DMA support, only support IRQ transfer" to disable DMA, after which
only IRQ transfer is supported.

e Refer to the instructions for "rockchip,poll-only" to configure it to only support CPU transfer.

Slave mode does not support modifying the transfer mode.

IRQ Transfer Characteristics

e When the data is less than the FIFO depth, a single transfer triggers 1 interrupt.
e When the data is greater than or equal to the FIFO depth and using IRQ transfer, the FIFO watermark is set
to half the FIFO, typically 32 items, and a transfer roughly triggers items / 32 interrupts.

DMA Transfer Characteristics

¢ Does not trigger an interrupt for the SPI controller, using DMA transfer finished call back callback.

5.5 SPI Transfer Rate and CPU Usage Optimization Directions

The reasons for slow SPI transfer rates and high CPU usage under heavy 10 load are usually related to small

transfer granularity and frequent transfer requests, which involve the following:

e SPI thread scheduling
¢ Interrupt scheduling (refer to the "SPI Transfer Mode Explanation" section to confirm if interrupt transfers

are used)

af://n475
af://n503

e CPU idle scheduling
Recommended optimization directions:

1. Enable auto runtime suspend with a delay of 500ms (specific value may vary based on actual testing).
Modify the DTS node by adding the rockchip, autosuspend-delay-ms property.

2. Reduce CPU load: Switch to IRQ-based transfers, which may have advantages over DMA. Refer to the
"Switch to IRQ Transfers" subsection for patch reference.

3. Reduce CPU load: If using DMA transfers, modify the TX DMA waterline to reduce the time CPU spends
waiting for FIFO transfers to complete in the DMA callback function. Refer to the "Modify SPI Waterline"
patch.

Patch references:

Switch to IRQ Transfers

diff --git a/arch/arm/boot/dts/rv1126-evb-v10.dtsi b/arch/arm/boot/dts/rv1126-
evb-v10.dtsi
index 86dd23482d97..2cea93d2423f 100644
--- a/arch/arm/boot/dts/rv1l26-evb-v10.dtsi
+++ b/arch/arm/boot/dts/rv1126-evb-v10.dtsi
@@ -1367,6 +1367,7 @@
status = "okay";
max-freq = <48000000>;
cs-gpios = <0>, <0>, <&gpioO RK PC4 GPIO ACTIVE LOW>;
+ dma-names;

spi test@O0 {

Modify SPI Waterline

diff --git a/drivers/spi/spi-rockchip.c b/drivers/spi/spi-rockchip.c
index 27fd6£f671bl2..bd0fa8c5£8c3 100644
-—-- a/drivers/spi/spi-rockchip.c
+++ b/drivers/spi/spi-rockchip.c
@@ -616,7 +616,8 @Q@ static void rockchip spi config(struct rockchip spi *rs,
else
writel relaxed(rs->fifo len / 2 - 1, rs->regs +
ROCKCHIP SPI RXFTLR) ;

= writel relaxed(rs->fifo len / 2 - 1, rs->regs + ROCKCHIP SPI DMATDLR) ;
+ // writel relaxed(rs->fifo len / 2 - 1, rs->regs +
ROCKCHIP_ SPI DMATDLR) ;
+ writel relaxed(ll, rs->regs + ROCKCHIP SPI DMATDLR) ;

writel relaxed(rockchip spi calc burst size(xfer->len / rs->n bytes) -
1,

rs->regs + ROCKCHIP SPI DMARDLR) ;
writel relaxed(dmacr, rs->regs + ROCKCHIP SPI DMACR) ;

Note: The provided patch references are specific to the Rockchip SPI driver and RV1126-EVB-V10 DTS file.
Adjustments may be needed based on your specific hardware and software configurations.

	Rockchip SPI Developer Guide
	Feature of Rockchip SPI
	SPI interface rate

	Kernel Software
	Code Path
	SPI Device Configuration: RK SPI As Master Port
	SPI Device Configuration: RK SPI As Slave Port
	SPI Slave Notice
	Suggest Performance Mode
	Suggest 16bits Width
	Other Notes

	SPI Device Driver
	User mode SPI device Configuration
	Support cs-gpios
	Configuration of Linux 4.4
	Configuration of Linux 4.19 and above

	SPI Testing Driver in Kernel
	Code Path
	SPI Testing Device Configuration
	Test Command

	SPI Slave Software In Kernel
	Introduction
	SPI Slave Testing Device Configuration
	Test Command

	FAQ
	SPI no signal
	How to design application code in SPI
	Delay sampling clock configuration
	SPI transmission method description
	SPI Transfer Rate and CPU Usage Optimization Directions

