
Rockchip SPI Developer Guide

ID: RK-KF-YF-075

Release Version: V3.6.0

Release Date: 2025-01-13

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2025. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Kernel Version

All chips develop in linux4.4 Linux 4.4

All chips develop in linux4.19 and above Linux 4.19 and above

Preface

Overview

This article introduces the Linux SPI driver principle and basic debugging methods.

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers
Software development engineers

Revision History

Version Author Date Change Description

V1.0.0
Huibin
Hong

2016-
06-29

Initial version

V2.0.0 Jon Lin
2019-
12-09

Support Linux 4.19

V2.1.0 Jon Lin
2020-
02-13

Adjust SPI slave configuration

V2.2.0 Jon Lin
2020-
07-14

Linux 4.19 DTS configuration change, Optimize document layout

V2.3.0 Jon Lin
2020-
11-02

Add comment for supporting spi-bus cs-gpios property

V2.3.1 Jon Lin
2020-
12-11

Update Linux 4.4 SPI slave description

V2.3.2 Jon Lin
2021-
07-06

Add more add configuration description, Add more cs-gpios
description

V2.4.0 Jon Lin
2021-
08-31

Add FAQs and reduce redundant configurations

V2.5.0 Jon Lin
2021-
12-27

Support Linux 5.10

V2.6.0 Jon Lin
2023-
06-22

Added SPI Slave Software In Kernel, rockchip,poll-only support
and explanation of common problems

V2.7.0 Jon Lin
2023-
08-15

Explanation of the optimization direction for increasing SPI
transmission rate and high CPU usage

V2.8.0 Jon Lin
2023-
10-23

Add SPI interface speed description

V2.8.1 Jon Lin
2023-
10-24

Modifying incorrect dts node property

V2.9.0 Jon Lin
2023-
12-03

Support spi-rockchip-slave source code, Add SPI Slave Notice for
customers

V3.0.0 Jon Lin
2023-
12-03

Update SPI Slave instructions, remove sram buffer support.

V3.1.0 Jon Lin
2024-
03-04

Add RK3576.

V3.2.0 Jon Lin
2024-
04-26

Modify SPI clock rate

V3.2.1 Jon Lin
2024-
04-26

Modify SPI slave rockchip object structure diagram

V3.3.0 Jon Lin
2024-
06-20

Update RK3528/RK3576 interface rate

Version Author Date Change Description

V3.4.0
Jon
Lin/Xuhui
Lin

2024-
07-26

Add RV1103B/RK3506

V3.5.0 Jon Lin
2024-
09-05

Add RV1106B

V3.6.0 Jon Lin
2025-
01-13

Explain that the SPI SLAVE MODE Ready signal falling edge of
the valid signal

Contents

Rockchip SPI Developer Guide
1. Feature of Rockchip SPI

1.1 SPI interface rate
2. Kernel Software

2.1 Code Path
2.2 SPI Device Configuration: RK SPI As Master Port
2.3 SPI Device Configuration: RK SPI As Slave Port
2.4 SPI Slave Notice

2.4.1 Suggest Performance Mode
2.4.2 Suggest 16bits Width
2.4.3 Other Notes

2.5 SPI Device Driver
2.6 User mode SPI device Configuration
2.7 Support cs-gpios

2.7.1 Configuration of Linux 4.4
2.7.2 Configuration of Linux 4.19 and above

3. SPI Testing Driver in Kernel
3.1 Code Path
3.2 SPI Testing Device Configuration
3.3 Test Command

4. SPI Slave Software In Kernel
4.1 Introduction
4.2 SPI Slave Testing Device Configuration
4.3 Test Command

5. FAQ
5.1 SPI no signal
5.2 How to design application code in SPI
5.3 Delay sampling clock configuration
5.4 SPI transmission method description
5.5 SPI Transfer Rate and CPU Usage Optimization Directions

SOC
Master Mode Interface maximum
speed

Slave Mode Interface maximum
speed

RK3506 50MHz 50MHz

RV1106B/RV1103B 50MHz 33MHz

RK3576 50MHz 33MHz

RK3562 50MHz 33MHz

RK3528 50MHz 33MHz

RV1106/RV1103 50MHz 33MHz

RK3588 50MHz 33MHz

RV1126/RV1109 50MHz 16MHz

RK3568 50MHz 33MHz

RK1808 50MHz 16MHz

RK3308 50MHz 16MHz

Others 50MHz 16MHz

1. Feature of Rockchip SPI

The serial peripheral interface is called SPI, the following are some of the features supported by the Linux 4.4
SPI driver:

Motorola SPI protocol is used by default

Supports 8-bit and 16-bit

Software programmable clock frequency

Support 4 transfer mode configurations of SPI

One or two chips selects per SPI controller

Only holding SPI slave mode, with and only SPI-CS0N as the CS input pin:

Switching to GPIO function is not allowed during the input process
CS1N substitution not supported

the following are some of the new features supported by the Linux 4.19 SPI driver:

Support both slave and master mode

1.1 SPI interface rate

Note:

af://n158
af://n182

The maximum speed of the interface is the theoretical rate, which is affected by the quality of the device's
PCB wiring. The actual measurement shall prevail
Due to PLL strategy reasons, some platforms are unable to accurately divide the frequency to the upper
limit value. In reality, the maximum frequency division value shall prevail

2. Kernel Software

2.1 Code Path

2.2 SPI Device Configuration: RK SPI As Master Port

Kernel Configuration

DTS Node Configuration

drivers/spi/spi.c /* SPI Driver framework */

drivers/spi/spi-rockchip.c /* RK SPI Slave implement of interface */

drivers/spi/spi-rockchip-slave.c /* RK SPI Slave implement of interface */

drivers/spi/spidev.c /* Create SPI device node for using */

drivers/spi/spi-rockchip-test.c /* SPI test driver, it needs to add to Makefile

compiler manually. */

Documentation/spi/spidev_test.c /* SPI test tool in user state */

Device Drivers --->

 [*] SPI support --->

 <*> Rockchip SPI controller driver

&spi1 { //Quote SPI controller node

 status = "okay";

 //assigned-clocks = <CLK_SPI1>; //Not configured by default, depend on

soc dtsi

 //assigned-clock-rates = <200000000>;//Not configured by default, spi

controller work clock

 //dma-names; //Not configured by default, turn off

DMA support, only supports IRQ transmission

 //rockchip,poll-only; //Not configured by default, turn to

use CPU transmission, only master mode supported

 //rx-sample-delay-ns = <10>; //Not configured by default, Read

sampling delay. Please refer to "FAQ" and "Delay sampling clock configuration"

for details

 //rockchip, autosuspend-delay-ms = <500>; //Not configured by default,

Runtime PM autosuspend delay, refer to "SPI Transfer Rate and CPU Usage

Optimization Directions" for details.

 //rockchip,rt; //Not configured by default,Place SPI

data transfer process into SCHED_FIFO, its priority is 50

 spi_test@10 {

 compatible ="rockchip,spi_test_bus1_cs0"; //The name corresponding to

the driver

 reg = <0>; //Chip select 0 or 1

af://n242
af://n243
af://n245

Configuration instructions for spiclk assigned-clock-rates and spi-max-frequency:

spi-max-frequency is the output clock of SPI. spi-max-frequency is output after internal frequency division
of SPI working clock spiclk in assigned-clock-rates. Since there are at least 2 internal frequency divisions,
the relationship is that SPI assigned clock rates > = 2 * SPI Max frequency;
Assume that we want 50MHz SPI IO rate, the configuration can be set as: spiclk assigned-clock-rates =
<100000000>, spi-max-frequency = <50000000>.
spiclk assigned-clock-rates should not be lower than 24M, otherwise there may be problems.

2.3 SPI Device Configuration: RK SPI As Slave Port

Key Patch

Recommended to use the SPI slave source code spi-rockchip-slave.c, as the SDK version issue, please confirm
that the SDK has the following patch:

Instructions

If no such patch, the customer can directly refer to Redmine FAE Project -> Document -> Development
Configuration -> SPI Path.

Kernel Configuration

DTS Node Configuration

 spi-cpha; //If configure it, cpha is 1

 spi-cpol; //If configure it,cpol is 1, the clk

pin remains high level.

 spi-lsb-first; //IO firstly transfer lsb

 status = "okay"; //Enable device node

 spi-max-frequency = <24000000>; //This is clock frequency of SPI clk

output,witch does not exceed 50M.

 };

};

commit 10cbf3c2c93fca6e5ec6c99b5bdb319ca0494d45

Author: Jon Lin <jon.lin@rock-chips.com>

Date: Tue Nov 21 10:58:57 2023 +0800

 spi: rockchip-slave: Add code

 1.Implement one msg mechanism

 2.Support SRAM extension by dts rockchip,sram property

 Change-Id: I0fccc5d4347294488b5382ad3ba5ae72b35610f2

 Signed-Off-By: Jon Lin <jon.lin@rock-chips.com>

Device Drivers --->

 [*] SPI support --->

 [*] SPI slave protocol handlers

 [*] Rockchip SPI Slave controller driver

&spi1 {

af://n258

Note:

RK SPI enables DMA transmission by default, and slave mode does not recommend turning off DMA
transmission. When a transfer exceeds the controller's cache count, the software will configure it for DMA
transfer to avoid interrupting the corresponding transmission in a timely manner.

2.4 SPI Slave Notice

2.4.1 Suggest Performance Mode

When the master rate exceeds a certain frequency, it is recommended to set the transfer process in performance
mode to avoid DRAM frequency conversion causing controller cache overflow:

bits_per_word = 8btis, master io rate exceeds 5MHz
bits_per_word = 16btis, master io rate exceeds 10MHz

Reference code:

 compatible = "rockchip,spi-slave"; //priority use SPI slave dedicated

driver

 status = "okay";

 //ready-gpios = <&gpio1 RK_PD2 GPIO_ACTIVE_LOW>;//recommend configuring, SPI

slave complete transmission flag, refer to "kernel SPI Slave Software" chapter

 //rockchip,cs-inactive-disable; //default do not configure,

when SPI master timing tod_cs (Clock Rise To CS Rise Time) is over multiple io

clock cycles, should open config to detect cs release action

 slave { //according to framework

requirement, SPI slave sub node's name should start with "slave"

 compatible ="rockchip,spi_test_bus1_cs0";

 reg = <0>; //only support single chip

select

 spi-cpha; //set CPHA = 1, do not

configure otherwise

 spi-cpol; //set CPOL = 1, do not

configure otherwise

 spi-lsb-first; //IO Input lsb first

 status = "okay"; //enable device node

 };

};

diff --git a/drivers/spi/spi-rockchip-test.c b/drivers/spi/spi-rockchip-test.c

index 544d6038919a..c1037153ff86 100644

--- a/drivers/spi/spi-rockchip-test.c

+++ b/drivers/spi/spi-rockchip-test.c

@@ -36,6 +36,8 @@

 #include <linux/platform_data/spi-rockchip.h>

 #include <linux/uaccess.h>

 #include <linux/syscalls.h>

+#include <soc/rockchip/rockchip-system-status.h>

+#include <dt-bindings/soc/rockchip-system-status.h>

 #define MAX_SPI_DEV_NUM 10

 #define SPI_MAX_SPEED_HZ 12000000

@@ -242,8 +244,10 @@ static ssize_t spi_test_write(struct file *file,

 }

af://n274
af://n275

Notes:

It is recommended that all slave mode transfer behavior be run in performance mode.
The set/clear performance interface has some time overhead, so it is recommended to set it at the business
level to avoid frequent calls.
If there is a cache overflow, the slave cannot complete DMA transmission and will block and exit, which
can be confirmed by printing the SPI->SPI_RISR register.

2.4.2 Suggest 16bits Width

Make full use of slave fifo capacity to accelerate and minimize burst 2, which can accelerate the slave end DMA
transmission rate and avoid fifo being stacked due to insufficient movement.

2.4.3 Other Notes

SPI Slave Test Notes

Spi is a slave, first start the slave read, then start the master write, otherwise the slave will not have read yet and
the master has already written.

Slave write, master read also needs to start the slave write first, because only after the master sends clk, the slave
will work, and the master will immediately send or receive data.

Example: On the basis of Chapter 3:

First slave: echo write 0 1 16 > /dev/spi_misc_test

Then master: echo read 0 1 16 > /dev/spi_misc_test

2.5 SPI Device Driver

Register device driver:

 start_time = ktime_get();

+ rockchip_set_system_status(SYS_STATUS_PERFORMANCE);

 for (i = 0; i < times; i++)

 spi_read_slt(id, rxbuf, size);

+ rockchip_clear_system_status(SYS_STATUS_PERFORMANCE);

 end_time = ktime_get();

 cost_time = ktime_sub(end_time, start_time);

 us = ktime_to_us(cost_time);

#include <linux/init.h>

#include <linux/module.h>

#include <linux/platform_device.h>

#include <linux/of.h>

#include <linux/spi/spi.h>

static int spi_test_probe(struct spi_device *spi)

{

 int ret;

af://n292
af://n294
af://n301

For SPI read and write operations, please refer to include/linux/spi/spi.h .

 if(!spi)

 return -ENOMEM;

 spi->bits_per_word= 8;

 ret= spi_setup(spi);

 if(ret < 0) {

 dev_err(&spi->dev,"ERR: fail to setup spi\n");

 return-1;

 }

 return ret;

}

static int spi_test_remove(struct spi_device *spi)

{

 printk("%s\n",__func__);

 return 0;

}

static const struct of_device_id spi_test_dt_match[]= {

 {.compatible = "rockchip,spi_test_bus1_cs0", },

 {.compatible = "rockchip,spi_test_bus1_cs1", },

 {},

};

MODULE_DEVICE_TABLE(of, spi_test_dt_match);

static struct spi_driver spi_test_driver = {

 .driver = {

 .name = "spi_test",

 .owner = THIS_MODULE,

 .of_match_table = of_match_ptr(spi_test_dt_match),

 },

 .probe = spi_test_probe,

 .remove = spi_test_remove,

};

static int __init spi_test_init(void)

{

 int ret = 0;

 ret = spi_register_driver(&spi_test_driver);

 return ret;

}

module_init(spi_test_init);

static void __exit spi_test_exit(void)

{

 return spi_unregister_driver(&spi_test_driver);

}

module_exit(spi_test_exit);

2.6 User mode SPI device Configuration

User mode SPI device means operating the SPI interface in user space directly, which makes it convenient for
many SPI peripheral drivers run in user space.

There is no need to change the kernel to facilitate driver development.

Kernel Configuration

DTS Configuration

Using Instruction

After the driver device is successfully registered, a device like this name will be displayed: /dev/spidev1.1

For the demo of spidev operation, please refer to:

Kernel 4.4 Documentation/spi/spidev_test.c
Kernel 4.19 and later tools/spi/spidev_test.c
After the kernel project is compiled, enter the corresponding path and enter the following command to
directly compile the standard SPI app program:

It supports the configuration of SPI slave devices. Refer to "SPI Device Configuration: RK SPI As Slave
Port", in which the DTS configuration sub node should remain "rockchip, spidev"

2.7 Support cs-gpios

static inline int

spi_write(struct spi_device *spi,const void *buf, size_t len)

static inline int

spi_read(struct spi_device *spi,void *buf, size_t len)

static inline int

spi_write_and_read(structspi_device *spi, const void *tx_buf, void *rx_buf,

size_t len)

Device Drivers --->

 [*] SPI support --->

 [*] User mode SPI device driver support

&spi0 {

 status = "okay";

 max-freq = <50000000>;

 spi_test@0 {

 compatible = "rockchip,spidev";

 reg = <0>;

 spi-max-frequency = <5000000>;

 };

};

make CROSS_COMPILE=~/path-to-toolchain/gcc-xxxxx-toolchain/bin/xxxx-linux-gnu-

 # Choose kernel toolchain

af://n306
af://n327

Users can use the cs-gpios attribute of spi-bus to implement gpio simulation cs to extend SPI chip selection
signal. Users can refer to the kernel document Documentation/devicetree/bindings/spi/spi-

bus.txt to learn more about cs-gpios.

2.7.1 Configuration of Linux 4.4

 This support needs more support patches. Please contact RK Engineer for the corresponding patches.

2.7.2 Configuration of Linux 4.19 and above

Take spi1_cs2n in GPIO0_C4 for example:

Set the cs-gpio pin and reference it in the SPI node

diff --git a/arch/arm/boot/dts/rv1126-evb-v10.dtsi b/arch/arm/boot/dts/rv1126-

evb-v10.dtsi

index 144e9edf1831..c17ac362289e 100644

--- a/arch/arm/boot/dts/rv1126-evb-v10.dtsi

+++ b/arch/arm/boot/dts/rv1126-evb-v10.dtsi

&pinctrl {

 ...

+

+ spi1 {

+ spi1_cs0n: spi1-cs1n {

+ rockchip,pins =

+ <0 RK_PC2 RK_FUNC_GPIO

&pcfg_pull_up_drv_level_0>;

+ };

+ spi1_cs1n: spi1-cs1n {

+ rockchip,pins =

+ <0 RK_PC3 RK_FUNC_GPIO

&pcfg_pull_up_drv_level_0>;

+ };

+ spi1_cs2n: spi1-cs2n {

+ rockchip,pins =

+ <0 RK_PC4 RK_FUNC_GPIO

&pcfg_pull_up_drv_level_0>;

+ };

+ };

};

diff --git a/arch/arm/boot/dts/rv1126.dtsi b/arch/arm/boot/dts/rv1126.dtsi

index 351bc668ea42..986a85f13832 100644

--- a/arch/arm/boot/dts/rv1126.dtsi

+++ b/arch/arm/boot/dts/rv1126.dtsi

spi1: spi@ff5b0000 {

 compatible = "rockchip,rv1126-spi", "rockchip,rk3066-spi";

 reg = <0xff5b0000 0x1000>;

 interrupts = <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>;

 #address-cells = <1>;

 #size-cells = <0>;

 clocks = <&cru CLK_SPI1>, <&cru PCLK_SPI1>;

af://n329
af://n331

SPI node reassigns CS pin

Note:

If you want to extend cs with gpio, all cs should be converted to gpio function and supported by cs-gpios
property.

3. SPI Testing Driver in Kernel

3.1 Code Path

drivers/spi/spi-rockchip-test.c

3.2 SPI Testing Device Configuration

Kernel Path

 clock-names = "spiclk", "apb_pclk";

 dmas = <&dmac 3>, <&dmac 2>;

 dma-names = "tx", "rx";

 pinctrl-names = "default", "high_speed";

- pinctrl-0 = <&spi1m0_clk &spi1m0_cs0n &spi1m0_cs1n &spi1m0_miso

&spi1m0_mosi>;

- pinctrl-1 = <&spi1m0_clk_hs &spi1m0_cs0n &spi1m0_cs1n &spi1m0_miso_hs

&spi1m0_mosi_hs>;

+ pinctrl-0 = <&spi1m0_clk &spi1_cs0n &spi1_cs1n &spi1_cs2n &spi1m0_miso

&spi1m0_mosi>;

+ pinctrl-1 = <&spi1m0_clk_hs &spi1_cs0n &spi1_cs1n &spi1_cs2n

&spi1m0_miso_hs &spi1m0_mosi_hs>

 status = "disabled";

};

+&spi1 {

+ status = "okay";

+ max-freq = <48000000>;

+ cs-gpios = <&gpio0 RK_PC2 GPIO_ACTIVE_LOW>, <&gpio0 RK_PC3

GPIO_ACTIVE_LOW>, <&gpio0 RK_PC4 GPIO_ACTIVE_LOW>;

 spi_test@0 {

 compatible = "rockchip,spi_test_bus1_cs0";

...

+ spi_test@2 {

+ compatible = "rockchip,spi_test_bus1_cs2";

+ id = <2>;

+ reg = <0x2>;

+ spi-cpha;

+ spi-cpol;

+ spi-lsb-first;

+ spi-max-frequency = <16000000>;

+ };

};

af://n341
af://n342
af://n344

DTS Configuraion

Driver log

3.3 Test Command

The above means:

Echo type id number of loops transfer length > /dev/spi_misc_test

Echo setspeed id frequency (in Hz) > /dev/spi_misc_test

You can modify the test case by yourself if you want.

4. SPI Slave Software In Kernel

4.1 Introduction

drivers/spi/Makefile

+obj-y += spi-rockchip-test.o

&spi0 {

 status = "okay";

 spi_test@0 {

 compatible = "rockchip,spi_test_bus0_cs0";

 id = <0>; //This attribute is used to distinguish different SPI

slave devices in "spi-rockchip-test.c".

 reg = <0>; //chip select 0:cs0 1:cs1

 spi-max-frequency = <24000000>; //spi output clock

 };

 spi_test@1 {

 compatible = "rockchip,spi_test_bus0_cs1";

 id = <1>;

 reg = <1>;

 spi-max-frequency = <24000000>;

 };

};

[0.457137]

rockchip_spi_test_probe:name=spi_test_bus0_cs0,bus_num=0,cs=0,mode=11,speed=1600

0000

[0.457308]

rockchip_spi_test_probe:name=spi_test_bus0_cs1,bus_num=0,cs=1,mode=11,speed=1600

0000

echo write 0 10 255 > /dev/spi_misc_test

echo write 0 10 255 init.rc > /dev/spi_misc_test

echo read 0 10 255 > /dev/spi_misc_test

echo loop 0 10 255 > /dev/spi_misc_test

echo setspeed 0 1000000 > /dev/spi_misc_test

af://n351
af://n357
af://n358

Background

The transmission between SPI masters and slaves usually follows specific protocols, such as SPI No compatible
with JEDEC SDFP protocol, and RK SPI slave, as a device side transmission, should also follow specific
protocols. As the protocol has no paradigm, RK provides customized transmission protocols and device drivers
for customer reference.

Linux SPI slave driver framework limitations:

Using a transmission queue, although the thread priority after queue wake-up is higher, real-time
performance cannot be fully guaranteed due to scheduling constraints

RK SPI slave mode restrictions:

Each transmission requires a restart of the SPI controller configuration. Therefore, to ensure that the SPI
master can know that the RK SPI slave has completed the transmission configuration and initiated data
transmission, the RK SPI slave end needs to add a side band signal as a ready status bit, SPI master
recommends setting the Ready signal to GPIO IRQ input, and triggers to the falling edge along the signal
edge

Transport Protocol

RK SPI slave transmission protocol:

The RK SPI slave transmission requires specifying ready-gpios to notify the SPI master. The basic process
is as follows:

step1: slave start spi_sync

step2: slave ready, output GPIO_SLV_READY signal

step3: master confirm slave ready, then begin to transfer

step4: The slave receives sufficient clks from the master to complete the transmission

Define two types of packages:
Ctrl packet: 2B cmd, 2B addr (application buffer offset address defined by RK slave), 4B data (usually
used to specify the transmission length of subsequent data packets)

data packet

Define two types of transmission:
Ctrl transmission, only containing 1 ctrl packet

Data transfer, including two SPI transfers of 1 ctrl packet and 1 data packet

spidev_rkslv support SPI_OBJ_APP_RAM_SIZE Bytes application buffer for transmission buffer, The
data transmission 1 ctrl packet 2B addr initiated by the SPI master points to the cache offset address

Device Driver

Key Patch:

commit d2fef34977c1a7aab3837d29ac8dc3b5378a2754 (HEAD -> develop-4.19)

Author: Jon Lin <jon.lin@rock-chips.com>

Date: Wed Dec 20 12:02:14 2023 +0800

Note:

If no such patch, the customer can directly refer to Redmine FAE Project -> Document -> Development
Configuration -> SPI Path.

Driver source code:

Source code introduction:

drivers/spi/spidev-rkslv.c:

drivers/spi/spidev-rkmst.c:

 spi: spidev_rkslv: Support dynamic adjustment of system performance

 If the DRAM frequency conversion jitters during the transmission process,

 it will cause the DMA to be unable to transport SPI FIFO data in a timely

 manner, resulting in FIFO overflow/underflow.

 Clear performance status for short cmd packet and Set the performance

 status for data packet.

 Change-Id: I65532ba309677a8d98c8277875a3bd358ca44e44

 Signed-off-by: Jon Lin <jon.lin@rock-chips.com>

drivers/spi/spidev-rkslv.c

drivers/spi/spidev-rkmst.c

static int spidev_rkslv_ctrl_receiver_thread(void *p)

//Establish a thread and repeatedly initiate transfers within the thread

{

 while (1)

 spidev_rkslv_xfer(spidev);

}

static int spidev_rkslv_xfer(struct spidev_rkslv_data *spidev)

 //Transmission entrance

{

 spidev_slv_read(spidev, spidev->ctrlbuf, SPI_OBJ_CTRL_MSG_SIZE); //1 ctrl

packet to obtain and parse the transmission type

 switch (ctrl->cmd) { //1 data

packet, define data packets based on the transmission type and complete sending

and receiving

 case SPI_OBJ_CTRL_CMD_INIT:

 /* to-do */

 case SPI_OBJ_CTRL_CMD_READ:

 /* to-do */

 case SPI_OBJ_CTRL_CMD_WRITE:

 /* to-do */

 case SPI_OBJ_CTRL_CMD_DUPLEX:

 /* to-do */

 }

}

static const struct file_operations spidev_rkslv_misc_fops = {}

 //Register misc device test interface

Implement business

The purpose of providing "SPI Slave Software In Kernel" is to provide reference for protocol and device drivers,
and the end customer should also define their product requirements on the application buffer of the slave end to
achieve business.

4.2 SPI Slave Testing Device Configuration

Defconfig configuration:

RK SPI slave end dts reference configuration:

static int spidev_rkmst_xfer(struct spidev_rkmst_data *spidev, void *tx, void

*rx, u16 addr, u32 len) //Transmission entrance

{

 spidev_rkmst_ctrl(spidev, cmd, addr, len); //1

ctrl packet, defining the transmission type

 switch (cmd) { //1

data packet, define data packets based on the transmission type and complete

sending and receiving

 case SPI_OBJ_CTRL_CMD_READ:

 /* to-do */

 case SPI_OBJ_CTRL_CMD_WRITE:

 /* to-do */

 case SPI_OBJ_CTRL_CMD_DUPLEX:

 /* to-do */

 }

}

static const struct file_operations spidev_rkmst_misc_fops = {}

 //Register misc device test interface

CONFIG_SPI_SLAVE_ROCKCHIP_OBJ=y

&spi1 {

 status = "okay";

 spi-slave;

af://n405

RK SPI master dts reference configuration:

4.3 Test Command

SPI master initiates single packet data transmission testing

Note:

cmd: Support read/write/duplex
addr: Refers to the offset of the peer slave application buffer, in Bytes, which only supports decimal input
length: The length of the data packet, in Bytes, only supports decimal input
The example is as follows:

SPI master initiates Test automation

Note:

 rockchip,cs-inactive-disable; //RK internal

interconnection using RK Linux SPI master driver, and the tod_cs takes a long

time

 ready-gpios = <&gpio1 RK_PD3 GPIO_ACTIVE_LOW>; //Please set to

the actual GPIO used

 slave {

 compatible = "rockchip,spi-obj-slave";

 reg = <0x0>;

 spi-cpha;

 spi-cpol;

 spi-lsb-first;

 spi-max-frequency = <50000000>;

 };

};

&spi0 {

 status = "okay";

 spi_test@00 {

 compatible = "rockchip,spi-obj-master";

 reg = <0x0>;

 spi-cpha;

 spi-cpol;

 spi-lsb-first;

 spi-max-frequency = <16000000>;

 ready-gpios = <&gpio1 RK_PD2 GPIO_ACTIVE_LOW>;

 };

};

echo cmd addr length > /dev/spidev_rkmst_misc

echo write 128 128 > /dev/spidev_rkmst_misc

echo read 128 128 > /dev/spidev_rkmst_misc

echo duplex 128 128 > /dev/spidev_rkmst_misc

echo autotest length loops compare > /dev/spidev_rkmst_misc

af://n412

autotest: Fixed input, test full duplex data transmission first, then test read and write data transmission, and
output rate results
The test defaults to using the opposite slave application buffer offset address 0
length: The length of the data packet, in Bytes, only supports decimal input
loops: Set the number of pressure testing cycles
compare: 1 - enable verification, 0 - disable verification(support specific scenarios, such as continuous
output data for signal testing)
The strength is as follows:

SPI slave testing

5. FAQ

5.1 SPI no signal

Confirm that the driver is running before debugging

Ensure that the IOMUX configuration of the SPI 4 pins is correct .

Confirm that during the TX sending, the TX pin has a normal waveform, CLK has a normal CLOCK
signal, and the CS signal is pulled low.

If the clock frequency is high, considering increasing the drive strength to improve the signal.

How to simply judge whether SPI DMA is enabled or not? If the serial port printing does not have the
following keywords, DMA is enabled successfully:

5.2 How to design application code in SPI

Please select the appropriate object function interface before writing the driver.

Custom SPI device driver

Refer to "SPI Device Driver", for example: drivers/spi/spi-rockchip-test.c.

Application program based on spidev standard device node

Refer to "User mode SPI device Configuration"

5.3 Delay sampling clock configuration

echo autotest 1024 64 1 > /dev/spidev_rkmst_misc

echo appmem 0 256 > ./dev/spidev_rkslv_misc #Print application buffer data

echo verbose 1 > ./dev/spidev_rkslv_misc #Enable the transmission

process debug log, echo verbose 0, and close printing

[0.457137] Failed to request TX DMA channel

[0.457237] Failed to request RX DMA channel

af://n445
af://n446
af://n459
af://n465

In the case of high SPI IO rate, the normal SPI mode may still not match the output delay of external devices,
and RK SPI master read may not be able to sample valid data. SPI RSD logic needs to be enabled to delay the
sampling clock.

RK SPI RSD (read sample delay) control logic has the following characteristics:

The assignable values are 0, 1, 2, 3
The delay unit is 1 spi_clk cycle, i.e. the working clock of the controller, see "SPI Device Configuration"
for details

rx-sample-delay actual delay is the RSD effective value closest to the DTS set value, subject to spi_clk 200MHz,
cycle 5ns, for example:

The actual configurable delay of RSD is 0, 5ns, 10ns and 15ns. RX sample delay is set to 12ns, which is close to
the effective value of 10ns, so the final delay is 10ns.

5.4 SPI transmission method description

Default Transfer Mode

Master mode supports IRQ, DMA, and CPU transfers, while slave mode supports IRQ and DMA transfers, with
the default combination of IRQ/DMA transfer modes:

When the transfer length is less than the FIFO depth, IRQ transfer is used. By default, for SOCs using
kernel versions 4.19 and above, the FIFO depth is 64.
When the transfer length is greater than or equal to the FIFO depth, DMA transfer is used.

Modifying Transfer Mode

Master mode supports:

The default combination of IRQ/DMA transfer mode.
Refer to the instructions "Disable DMA support, only support IRQ transfer" to disable DMA, after which
only IRQ transfer is supported.
Refer to the instructions for "rockchip,poll-only" to configure it to only support CPU transfer.

Slave mode does not support modifying the transfer mode.

IRQ Transfer Characteristics

When the data is less than the FIFO depth, a single transfer triggers 1 interrupt.
When the data is greater than or equal to the FIFO depth and using IRQ transfer, the FIFO watermark is set
to half the FIFO, typically 32 items, and a transfer roughly triggers items / 32 interrupts.

DMA Transfer Characteristics

Does not trigger an interrupt for the SPI controller, using DMA transfer finished call back callback.

5.5 SPI Transfer Rate and CPU Usage Optimization Directions

The reasons for slow SPI transfer rates and high CPU usage under heavy IO load are usually related to small
transfer granularity and frequent transfer requests, which involve the following:

SPI thread scheduling
Interrupt scheduling (refer to the "SPI Transfer Mode Explanation" section to confirm if interrupt transfers
are used)

af://n475
af://n503

CPU idle scheduling

Recommended optimization directions:

1. Enable auto runtime suspend with a delay of 500ms (specific value may vary based on actual testing).
Modify the DTS node by adding the rockchip,autosuspend-delay-ms property.

2. Reduce CPU load: Switch to IRQ-based transfers, which may have advantages over DMA. Refer to the
"Switch to IRQ Transfers" subsection for patch reference.

3. Reduce CPU load: If using DMA transfers, modify the TX DMA waterline to reduce the time CPU spends
waiting for FIFO transfers to complete in the DMA callback function. Refer to the "Modify SPI Waterline"
patch.

Patch references:

Switch to IRQ Transfers

Modify SPI Waterline

Note: The provided patch references are specific to the Rockchip SPI driver and RV1126-EVB-V10 DTS file.
Adjustments may be needed based on your specific hardware and software configurations.

diff --git a/arch/arm/boot/dts/rv1126-evb-v10.dtsi b/arch/arm/boot/dts/rv1126-

evb-v10.dtsi

index 86dd23482d97..2cea93d2423f 100644

--- a/arch/arm/boot/dts/rv1126-evb-v10.dtsi

+++ b/arch/arm/boot/dts/rv1126-evb-v10.dtsi

@@ -1367,6 +1367,7 @@

 status = "okay";

 max-freq = <48000000>;

 cs-gpios = <0>, <0>, <&gpio0 RK_PC4 GPIO_ACTIVE_LOW>;

+ dma-names;

 spi_test@00 {

diff --git a/drivers/spi/spi-rockchip.c b/drivers/spi/spi-rockchip.c

index 27fd6f671b12..bd0fa8c5f8c3 100644

--- a/drivers/spi/spi-rockchip.c

+++ b/drivers/spi/spi-rockchip.c

@@ -616,7 +616,8 @@ static void rockchip_spi_config(struct rockchip_spi *rs,

 else

 writel_relaxed(rs->fifo_len / 2 - 1, rs->regs +

ROCKCHIP_SPI_RXFTLR);

- writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);

+ // writel_relaxed(rs->fifo_len / 2 - 1, rs->regs +

ROCKCHIP_SPI_DMATDLR);

+ writel_relaxed(11, rs->regs + ROCKCHIP_SPI_DMATDLR);

 writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) -

1,

 rs->regs + ROCKCHIP_SPI_DMARDLR);

 writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);

	Rockchip SPI Developer Guide
	Feature of Rockchip SPI
	SPI interface rate

	Kernel Software
	Code Path
	SPI Device Configuration: RK SPI As Master Port
	SPI Device Configuration: RK SPI As Slave Port
	SPI Slave Notice
	Suggest Performance Mode
	Suggest 16bits Width
	Other Notes

	SPI Device Driver
	User mode SPI device Configuration
	Support cs-gpios
	Configuration of Linux 4.4
	Configuration of Linux 4.19 and above

	SPI Testing Driver in Kernel
	Code Path
	SPI Testing Device Configuration
	Test Command

	SPI Slave Software In Kernel
	Introduction
	SPI Slave Testing Device Configuration
	Test Command

	FAQ
	SPI no signal
	How to design application code in SPI
	Delay sampling clock configuration
	SPI transmission method description
	SPI Transfer Rate and CPU Usage Optimization Directions

