/* * Copyright 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wextra" // #define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "LayerInfo.h" #include #include #include #include #include #include #undef LOG_TAG #define LOG_TAG "LayerInfo" namespace android::scheduler { bool LayerInfo::sTraceEnabled = false; LayerInfo::LayerInfo(const std::string& name, uid_t ownerUid, LayerHistory::LayerVoteType defaultVote) : mName(name), mOwnerUid(ownerUid), mDefaultVote(defaultVote), mLayerVote({defaultVote, Fps()}), mLayerProps(std::make_unique()), mRefreshRateHistory(name) { ; } void LayerInfo::setLastPresentTime(nsecs_t lastPresentTime, nsecs_t now, LayerUpdateType updateType, bool pendingModeChange, const LayerProps& props) { lastPresentTime = std::max(lastPresentTime, static_cast(0)); mLastUpdatedTime = std::max(lastPresentTime, now); *mLayerProps = props; switch (updateType) { case LayerUpdateType::AnimationTX: mLastAnimationTime = std::max(lastPresentTime, now); break; case LayerUpdateType::SetFrameRate: case LayerUpdateType::Buffer: FrameTimeData frameTime = {.presentTime = lastPresentTime, .queueTime = mLastUpdatedTime, .pendingModeChange = pendingModeChange, .isSmallDirty = props.isSmallDirty}; mFrameTimes.push_back(frameTime); if (mFrameTimes.size() > HISTORY_SIZE) { mFrameTimes.pop_front(); } break; } } bool LayerInfo::isFrameTimeValid(const FrameTimeData& frameTime) const { return frameTime.queueTime >= std::chrono::duration_cast( mFrameTimeValidSince.time_since_epoch()) .count(); } LayerInfo::Frequent LayerInfo::isFrequent(nsecs_t now) const { // If we know nothing about this layer (e.g. after touch event), // we consider it as frequent as it might be the start of an animation. if (mFrameTimes.size() < kFrequentLayerWindowSize) { return {/* isFrequent */ true, /* clearHistory */ false, /* isConclusive */ true}; } // Non-active layers are also infrequent if (mLastUpdatedTime < getActiveLayerThreshold(now)) { return {/* isFrequent */ false, /* clearHistory */ false, /* isConclusive */ true}; } // We check whether we can classify this layer as frequent or infrequent: // - frequent: a layer posted kFrequentLayerWindowSize within // kMaxPeriodForFrequentLayerNs of each other. // - infrequent: a layer posted kFrequentLayerWindowSize with longer // gaps than kFrequentLayerWindowSize. // If we can't determine the layer classification yet, we return the last // classification. bool isFrequent = true; bool isInfrequent = true; int32_t smallDirtyCount = 0; const auto n = mFrameTimes.size() - 1; for (size_t i = 0; i < kFrequentLayerWindowSize - 1; i++) { if (mFrameTimes[n - i].queueTime - mFrameTimes[n - i - 1].queueTime < kMaxPeriodForFrequentLayerNs.count()) { isInfrequent = false; if (mFrameTimes[n - i].presentTime == 0 && mFrameTimes[n - i].isSmallDirty) { smallDirtyCount++; } } else { isFrequent = false; } } // Vote the small dirty when a layer contains at least HISTORY_SIZE of small dirty updates. bool isSmallDirty = false; if (smallDirtyCount >= kNumSmallDirtyThreshold) { if (mLastSmallDirtyCount >= HISTORY_SIZE) { isSmallDirty = true; } else { mLastSmallDirtyCount++; } } else { mLastSmallDirtyCount = 0; } if (isFrequent || isInfrequent) { // If the layer was previously inconclusive, we clear // the history as indeterminate layers changed to frequent, // and we should not look at the stale data. return {isFrequent, isFrequent && !mIsFrequencyConclusive, /* isConclusive */ true, isSmallDirty}; } // If we can't determine whether the layer is frequent or not, we return // the last known classification and mark the layer frequency as inconclusive. isFrequent = !mLastRefreshRate.infrequent; // If the layer was previously tagged as animating, we clear // the history as it is likely the layer just changed its behavior, // and we should not look at stale data. return {isFrequent, isFrequent && mLastRefreshRate.animating, /* isConclusive */ false}; } Fps LayerInfo::getFps(nsecs_t now) const { // Find the first active frame auto it = mFrameTimes.begin(); for (; it != mFrameTimes.end(); ++it) { if (it->queueTime >= getActiveLayerThreshold(now)) { break; } } const auto numFrames = std::distance(it, mFrameTimes.end()); if (numFrames < kFrequentLayerWindowSize) { return Fps(); } // Layer is considered frequent if the average frame rate is higher than the threshold const auto totalTime = mFrameTimes.back().queueTime - it->queueTime; return Fps::fromPeriodNsecs(totalTime / (numFrames - 1)); } bool LayerInfo::isAnimating(nsecs_t now) const { return mLastAnimationTime >= getActiveLayerThreshold(now); } bool LayerInfo::hasEnoughDataForHeuristic() const { // The layer had to publish at least HISTORY_SIZE or HISTORY_DURATION of updates if (mFrameTimes.size() < 2) { ALOGV("fewer than 2 frames recorded: %zu", mFrameTimes.size()); return false; } if (!isFrameTimeValid(mFrameTimes.front())) { ALOGV("stale frames still captured"); return false; } const auto totalDuration = mFrameTimes.back().queueTime - mFrameTimes.front().queueTime; if (mFrameTimes.size() < HISTORY_SIZE && totalDuration < HISTORY_DURATION.count()) { ALOGV("not enough frames captured: %zu | %.2f seconds", mFrameTimes.size(), totalDuration / 1e9f); return false; } return true; } std::optional LayerInfo::calculateAverageFrameTime() const { // Ignore frames captured during a mode change const bool isDuringModeChange = std::any_of(mFrameTimes.begin(), mFrameTimes.end(), [](const auto& frame) { return frame.pendingModeChange; }); if (isDuringModeChange) { return std::nullopt; } const bool isMissingPresentTime = std::any_of(mFrameTimes.begin(), mFrameTimes.end(), [](auto frame) { return frame.presentTime == 0; }); if (isMissingPresentTime && !mLastRefreshRate.reported.isValid()) { // If there are no presentation timestamps and we haven't calculated // one in the past then we can't calculate the refresh rate return std::nullopt; } // Calculate the average frame time based on presentation timestamps. If those // doesn't exist, we look at the time the buffer was queued only. We can do that only if // we calculated a refresh rate based on presentation timestamps in the past. The reason // we look at the queue time is to handle cases where hwui attaches presentation timestamps // when implementing render ahead for specific refresh rates. When hwui no longer provides // presentation timestamps we look at the queue time to see if the current refresh rate still // matches the content. auto getFrameTime = isMissingPresentTime ? [](FrameTimeData data) { return data.queueTime; } : [](FrameTimeData data) { return data.presentTime; }; nsecs_t totalDeltas = 0; int numDeltas = 0; int32_t smallDirtyCount = 0; auto prevFrame = mFrameTimes.begin(); for (auto it = mFrameTimes.begin() + 1; it != mFrameTimes.end(); ++it) { const auto currDelta = getFrameTime(*it) - getFrameTime(*prevFrame); if (currDelta < kMinPeriodBetweenFrames) { // Skip this frame, but count the delta into the next frame continue; } // If this is a small area update, we don't want to consider it for calculating the average // frame time. Instead, we let the bigger frame updates to drive the calculation. if (it->isSmallDirty && currDelta < kMinPeriodBetweenSmallDirtyFrames) { smallDirtyCount++; continue; } prevFrame = it; if (currDelta > kMaxPeriodBetweenFrames) { // Skip this frame and the current delta. continue; } totalDeltas += currDelta; numDeltas++; } if (smallDirtyCount > 0) { ATRACE_FORMAT_INSTANT("small dirty = %" PRIu32, smallDirtyCount); } if (numDeltas == 0) { return std::nullopt; } const auto averageFrameTime = static_cast(totalDeltas) / static_cast(numDeltas); return static_cast(averageFrameTime); } std::optional LayerInfo::calculateRefreshRateIfPossible(const RefreshRateSelector& selector, nsecs_t now) { ATRACE_CALL(); static constexpr float MARGIN = 1.0f; // 1Hz if (!hasEnoughDataForHeuristic()) { ALOGV("Not enough data"); return std::nullopt; } if (const auto averageFrameTime = calculateAverageFrameTime()) { const auto refreshRate = Fps::fromPeriodNsecs(*averageFrameTime); const bool refreshRateConsistent = mRefreshRateHistory.add(refreshRate, now); if (refreshRateConsistent) { const auto knownRefreshRate = selector.findClosestKnownFrameRate(refreshRate); using fps_approx_ops::operator!=; // To avoid oscillation, use the last calculated refresh rate if it is close enough. if (std::abs(mLastRefreshRate.calculated.getValue() - refreshRate.getValue()) > MARGIN && mLastRefreshRate.reported != knownRefreshRate) { mLastRefreshRate.calculated = refreshRate; mLastRefreshRate.reported = knownRefreshRate; } ALOGV("%s %s rounded to nearest known frame rate %s", mName.c_str(), to_string(refreshRate).c_str(), to_string(mLastRefreshRate.reported).c_str()); } else { ALOGV("%s Not stable (%s) returning last known frame rate %s", mName.c_str(), to_string(refreshRate).c_str(), to_string(mLastRefreshRate.reported).c_str()); } } return mLastRefreshRate.reported.isValid() ? std::make_optional(mLastRefreshRate.reported) : std::nullopt; } LayerInfo::LayerVote LayerInfo::getRefreshRateVote(const RefreshRateSelector& selector, nsecs_t now) { ATRACE_CALL(); if (mLayerVote.type != LayerHistory::LayerVoteType::Heuristic) { ALOGV("%s voted %d ", mName.c_str(), static_cast(mLayerVote.type)); return mLayerVote; } if (isAnimating(now)) { ATRACE_FORMAT_INSTANT("animating"); ALOGV("%s is animating", mName.c_str()); mLastRefreshRate.animating = true; return {LayerHistory::LayerVoteType::Max, Fps()}; } const LayerInfo::Frequent frequent = isFrequent(now); mIsFrequencyConclusive = frequent.isConclusive; if (!frequent.isFrequent) { ATRACE_FORMAT_INSTANT("infrequent"); ALOGV("%s is infrequent", mName.c_str()); mLastRefreshRate.infrequent = true; mLastSmallDirtyCount = 0; // Infrequent layers vote for minimal refresh rate for // battery saving purposes and also to prevent b/135718869. return {LayerHistory::LayerVoteType::Min, Fps()}; } if (frequent.clearHistory) { clearHistory(now); } // Return no vote if the recent frames are small dirty. if (frequent.isSmallDirty && !mLastRefreshRate.reported.isValid()) { ATRACE_FORMAT_INSTANT("NoVote (small dirty)"); ALOGV("%s is small dirty", mName.c_str()); return {LayerHistory::LayerVoteType::NoVote, Fps()}; } auto refreshRate = calculateRefreshRateIfPossible(selector, now); if (refreshRate.has_value()) { ALOGV("%s calculated refresh rate: %s", mName.c_str(), to_string(*refreshRate).c_str()); return {LayerHistory::LayerVoteType::Heuristic, refreshRate.value()}; } ALOGV("%s Max (can't resolve refresh rate)", mName.c_str()); return {LayerHistory::LayerVoteType::Max, Fps()}; } const char* LayerInfo::getTraceTag(LayerHistory::LayerVoteType type) const { if (mTraceTags.count(type) == 0) { auto tag = "LFPS " + mName + " " + ftl::enum_string(type); mTraceTags.emplace(type, std::move(tag)); } return mTraceTags.at(type).c_str(); } LayerInfo::FrameRate LayerInfo::getSetFrameRateVote() const { return mLayerProps->setFrameRateVote; } bool LayerInfo::isVisible() const { return mLayerProps->visible; } int32_t LayerInfo::getFrameRateSelectionPriority() const { return mLayerProps->frameRateSelectionPriority; } FloatRect LayerInfo::getBounds() const { return mLayerProps->bounds; } ui::Transform LayerInfo::getTransform() const { return mLayerProps->transform; } LayerInfo::RefreshRateHistory::HeuristicTraceTagData LayerInfo::RefreshRateHistory::makeHeuristicTraceTagData() const { const std::string prefix = "LFPS "; const std::string suffix = "Heuristic "; return {.min = prefix + mName + suffix + "min", .max = prefix + mName + suffix + "max", .consistent = prefix + mName + suffix + "consistent", .average = prefix + mName + suffix + "average"}; } void LayerInfo::RefreshRateHistory::clear() { mRefreshRates.clear(); } bool LayerInfo::RefreshRateHistory::add(Fps refreshRate, nsecs_t now) { mRefreshRates.push_back({refreshRate, now}); while (mRefreshRates.size() >= HISTORY_SIZE || now - mRefreshRates.front().timestamp > HISTORY_DURATION.count()) { mRefreshRates.pop_front(); } if (CC_UNLIKELY(sTraceEnabled)) { if (!mHeuristicTraceTagData.has_value()) { mHeuristicTraceTagData = makeHeuristicTraceTagData(); } ATRACE_INT(mHeuristicTraceTagData->average.c_str(), refreshRate.getIntValue()); } return isConsistent(); } bool LayerInfo::RefreshRateHistory::isConsistent() const { if (mRefreshRates.empty()) return true; const auto [min, max] = std::minmax_element(mRefreshRates.begin(), mRefreshRates.end(), [](const auto& lhs, const auto& rhs) { return isStrictlyLess(lhs.refreshRate, rhs.refreshRate); }); const bool consistent = max->refreshRate.getValue() - min->refreshRate.getValue() < MARGIN_CONSISTENT_FPS; if (CC_UNLIKELY(sTraceEnabled)) { if (!mHeuristicTraceTagData.has_value()) { mHeuristicTraceTagData = makeHeuristicTraceTagData(); } ATRACE_INT(mHeuristicTraceTagData->max.c_str(), max->refreshRate.getIntValue()); ATRACE_INT(mHeuristicTraceTagData->min.c_str(), min->refreshRate.getIntValue()); ATRACE_INT(mHeuristicTraceTagData->consistent.c_str(), consistent); } return consistent; } } // namespace android::scheduler // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wextra"