
Rockchip Android14 GKI开发指南

文件标识：RK-KF-YF-775

发布版本：V1.1.1

日期：2024-12-13

文件密级：□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按“现状”提供，瑞芯微电子股份有限公司（“本公司”，下同）不对本文档的任何陈述、信息和内

容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本

文档仅作为使用指导的参考。

由于产品版本升级或其他原因，本文档将可能在未经任何通知的情况下，不定期进行更新或修改。

商标声明

“Rockchip”、“瑞芯微”、“瑞芯”均为本公司的注册商标，归本公司所有。

本文档可能提及的其他所有注册商标或商标，由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴，非经本公司书面许可，任何单位和个人不得擅自摘抄、复制本文档内容的部分或全

部，并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址： 福建省福州市铜盘路软件园A区18号

网址： www.rock-chips.com

客户服务电话： +86-4007-700-590

客户服务传真： +86-591-83951833

客户服务邮箱： fae@rock-chips.com

af://n1424
http://www.rock-chips.com/
mailto:fae@rock-chips.com

版本号 作者 修改日期 修改说明

V1.0.0 吴良清 2023-11-15 初始版本

V1.1.0 吴良清 2024-04-15 修改GKI编译方式，不再预编译KO

V1.1.1 吴良清 2024-12-13 增加module.load文件提醒

概述

本文介绍Android14的GKI开发的流程和注意点。

读者对象

本文档（本指南）主要适用于以下工程师：

技术支持工程师

软件开发工程师

修订记录

目录

Rockchip Android14 GKI开发指南
1. GKI介绍

1.1 什么是GKI
1.2 什么产品需要使用GKI
1.3 GKI和非GKI的差别

2. Rockchip Android14 GKI的适配情况

3. Google upstream kernel下载及编译

4. Rockchip SDK中GKI相关目录介绍

5. GKI编译环境要求

6. Rockchip GKI编译

6.1 代码修改

6.2 编译

6.3 固件烧写

7. KO编译及修改

7.1 添加新的模块驱动的方法

8. 开机log确认

8.1 uboot阶段

8.2 Android阶段

8.3 KO加载

8.4 KO加载报错

8.5 bootcmdline解析出错

8.6 Mali KO加载失败

8.7 编译kernel报错

9. 调试技巧

9.1 打印更多KO加载的log
9.2 在RK的kernel打包中编译GKI使用的boot.img
9.3 查看google发布的内核接口

10. 如何提交内核接口到upstream
11. 如何更新AOSP发布的boot.img
12. 如何单独打包vendor_boot.img

12.1 步骤一：在kernel中编译KO
12.2 步骤二：拷贝KO文件到mkcombinedroot目录下

12.3 步骤三：拷贝vendor_boot.img到mkcombinedroot目录下

12.4 步骤四：进到mkcombinedroot目录下执行mkgki4.sh脚本更新ko并编译到vendor_boot.img中
12.5 步骤五： 烧写new_vendor_boot.img到机器中

GKI 非GKI

由google定期发布boot.img，代码不能自己修改 由RK提供内核源码编译，可以自由修改

1. GKI介绍

1.1 什么是GKI

GKI：Generic Kernel Image 通用内核映像。

Android14 GMS和EDLA认证的一个难点是google强制要求要支持GKI。GKI通用内核映像，是google为
了解决内核碎片化的问题，而设计的通过提供统一核心内核并将SoC和板级驱动从核心内核移至可加载

模块中。核心内核为驱动模块提供了稳定的内核模块接口，模块驱动和核心内核可以独立进行更新。内

核接口可以通过upstream的方式进行扩展。 Soc和板级厂商在驱动开发时需要使用已经定义的内核接

口，如果要新加核心内核接口需要提交给google，这个周期会比较长，所以要提前做好开发准备。

1.2 什么产品需要使用GKI

使用Android14且需要过GMS认证和EDLA认证的产品

使用Android13且需要过GMS认证和EDLA认证的产品

使用Android12 的RK3588和RK3588S的需要过GMS认证和EDLA认证的产品

不过GMS认证和EDLA认证的产品不强制要求使用GKI

1.3 GKI和非GKI的差别

通用内核boot.img

af://n1478
af://n1479
af://n1482
af://n1492

芯片 是否完成适配

RK3562 已适配

RK3568 已适配

RK3566 已适配

RK3588 已适配

RK3588S 已适配

RK3326 已适配

PX30 已适配

RK3399 已适配

RK3576 已适配

GKI 非GKI

以KO的形式加载，调用的内核接口必需是

google发布的boot.img里面包含的

内嵌在boot中，由RK提供内核源码编译，

可以自由修改和添加内核接口

驱动模块

GKI 非GKI

RK发布的kernel源码仅用于编译

驱动模块的KO
RK发布的kernel源码用于完整的内核和模块驱动的编

译，模块以.o的形式内嵌编译

kernel代码

uboot支持head4

分区差异

GKI增加vendor_boot、init_boot、resource分区

启用AB分区

2. Rockchip Android14 GKI的适配情况

kernel版本是6.1

3. Google upstream kernel下载及编译

Google的boot.img是定期发布，时间间隔比较长。 我们可以下载google的upstream的kernel源码自己编译

boot.img进行验证和debug。

Google Upstream kernel下载链接：

af://n1530
af://n1563

需要链接google服务器下载

编译

生成boot.img

4. Rockchip SDK中GKI相关目录介绍

kernel KO文件路径

Google boot.img路径

Android AOSP 发布的受保护的KO文件路径

Kernel-6.1源码编译的KO文件kernel启动加载的顺序配置文件

Android Init阶段加载的KO文件加载顺序配置文件

5. GKI编译环境要求

Ubuntu版本需要20.04及以上版本

pahole版本需要1.25版本

6. Rockchip GKI编译

repo init -u https://android.googlesource.com/kernel/manifest -b common-

android14-6.1

tools/bazel run //common:kernel_aarch64_dist -- --dist_dir=out

out/boot.img

mkcombinedroot/vendor_ramdisk/lib/modules/

mkcombinedroot/prebuilts/boot-6.1.img

kernel/prebuilts/6.1/arm64/

mkcombinedroot/res/vendor_ramdisk_modules.load

mkcombinedroot/res/vendor_modules.load

af://n1572
af://n1593
af://n1599

6.1 代码修改

Android的device产品目录下配置GKI选项

注：RK3562_UGO的配置已经默认打开GKI的配置，不需要额外配置

如果单独编译uboot代码需要修改config文件打开AB配置，如果是用build.sh脚本完整编译则不需要修

改，编译的时候会自动添加AB的宏配置。

uboot需要打开AB配置

6.2 编译

完整编译方式与非GKI的一样

~/a2_Android14_sdk/device/rockchip/rk3562$ git diff

diff --git a/rk3562_u/BoardConfig.mk b/rk3562_u/BoardConfig.mk

old mode 100644

new mode 100755

index 50da541..06da5f3

--- a/rk3562_u/BoardConfig.mk

+++ b/rk3562_u/BoardConfig.mk

@@ -15,10 +15,21 @@

 #

 include device/rockchip/rk3562/BoardConfig.mk

 BUILD_WITH_GO_OPT := false

-BOARD_BUILD_GKI := fasle

+BOARD_BUILD_GKI := true

~/a2_Android13_sdk/u-boot$ git diff

diff --git a/configs/rk3568_defconfig b/configs/rk3568_defconfig

index fbd9820acc..e23e438792 100644

--- a/configs/rk3588_defconfig

+++ b/configs/rk3588_defconfig

@@ -207,6 +207,7 @@ CONFIG_RSA_N_SIZE=0x200

CONFIG_RSA_E_SIZE=0x10

CONFIG_RSA_C_SIZE=0x20

CONFIG_SHA512=y

CONFIG_LZ4=y

CONFIG_LZMA=y

CONFIG_SPL_GZIP=y

@@ -220,3 +221,4 @@ CONFIG_RK_AVB_LIBAVB_USER=y

CONFIG_OPTEE_CLIENT=y

CONFIG_OPTEE_V2=y

CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y

+CONFIG_ANDROID_AB=y

source build/envsetup.sh

lunch rk3562_ugo-userdebug

./build.sh -ACUKup

af://n1600
af://n1611

注意：这里编译的kernel只是为了编译出resource.img，kernel源码会编译成ko文件打包成
vendor_boot.img。内核部分使用的是google发布的boot.img，具体路径在
mkcombinedroot/prebuilts/boot-6.1.img

编译完可以直接烧写 rockdev/Image-rk3562_ugo/update.img

在调试阶段也支持单独编译vendor_boot.img
编译命令：

编译完可以直接烧写

6.3 固件烧写

固件烧写分2中方式：

完整包update.img

固件路径

可以通过瑞芯微开发工具烧写

散包烧写

make installclean;make vendorbootimage -j12

out/target/product/rk3562_ugo/vendor_boot.img

rockdev/Image-rk3562_ugo/update.img

af://n1620

首先导入配置文件，方法是在工具 空白处右键-导入配置-选择导入txt文件-选择parameter.txt

然后依次选择rockdev/Image-rk3588_t/下对应的img文件进行烧写，分区A和B导入的固件是同一个

7. KO编译及修改

7.1 添加新的模块驱动的方法

rockdev/Image-rk3562_ugo

├── baseparameter.img

├── boot.img

├── dtbo.img

├── init_boot.img

├── MiniLoaderAll.bin

├── misc.img

├── parameter.txt

├── resource.img

├── super.img

├── uboot.img

├── update.img

├── vbmeta.img

└── vendor_boot.img

af://n1635
af://n1636

.load文件名称 对应分区 makefile解析 加载时间

vendor_ramdisk_modules.load vendor_boot vendor_ramdisk_gki.mk ramdisk init阶段

vendor_modules.load vendor vendor_gki.mk android启动时

recovery_modules.load recovery recovery_gki.mk recovery阶段

1. 将驱动代码放到kernel-6.1对应的目录下，这里以新加触摸屏驱动gt1x为例进行说明。

将gt1x的驱动放在 drivers/input/touchscreen/下面，并添加对应的 Makefile和 Kconfig，这里按

kernel的标准方式进行操作；

2. 增加一个自己的config文件， 在 arch/arm64/configs/下新建一个 xxx_gki.config，并将

CONFIG_TOUCHSCREEN_GT1X=m (m表示编译为ko)添加到 xxx_gki.config中；

3. 将ko文件名添加到mkcombinedroot/res/vendor_ramdisk_modules.load或者

mkcombinedroot/res/vendor_modules.load

如果驱动对加载时间没有要求的话可以放在Android阶段去加载，比如触摸屏的驱动、sensor驱动等等，

具体修改如下：

进到mkcombinedroot目录

在res/vendor_modules.load中添加需要编译到vendor的ko名字，如xxx_tp.ko

添加完成后编译烧写super.img即可。

添加到res/vendor_modules.load中的ko编译的时候会编译到vendor_dlkm/lib/modules/目录下，所以在调试

的时候可以直接将编译好的ko文件push到机器的vendor_dlkm/lib/modules/目录下，然后重启机器即可在

开机的时候自动加载。

注意 ：mkcombinedroot/res/vendor_ramdisk_modules.load文件关乎驱动的加载顺序，请不要修改原
有顺序，否则可能会导致系统无法启动！！！新加的ko文件非必要不建议放在这里面，
vendor_ramdisk_modules.load加载ko越多系统启动的速度越慢。 建议新加的ko文件都放在
mkcombinedroot/res/vendor_modules.load中，这个是在android启动阶段加载的，对开机时间影响
比较小。

4. 编译

kernel的修改建议使用build.sh -K脚本进行编译，因为build.sh -K 中编译kernel的时候会自动将ko文件拷贝

到mkcombinedroot/vendor_ramdisk/lib/modules临时目录下，在完整编译的会从这个目录打包ko文件到

vendor_boot.img或者super.img中。

如果是在kernel目录下单独编译kernel，编译生产的ko文件不会自动拷贝到

mkcombinedroot/vendor_ramdisk/lib/modules，需要手动进入mkcombinedroot目录执行./copy_modules.sh脚
本进行拷贝。

cd mkcombinedroot

diff --git a/res/vendor_modules.load b/res/vendor_modules.load

index e69de29..a53449f 100644

--- a/res/vendor_modules.load

+++ b/res/vendor_modules.load

@@ -0,0 +1,4 @@

pcie-dw-rockchip.ko

cfg80211.ko

+xxx_tp.ko

Boot
mode

Storage Display Keypad Battery PMIC TP
NFC/Wi-
Fi/BT

Sensors Camera

Recovery Y Y Y Y Y N N N N

Charger Y Y Y Y Y N N N N

Android Y Y Y Y Y Y Y Y Y

内容 header版本

vendor_ramdisk(v-ramdisk) V3+

bootconfig V4+

5. 编译vendor_boot.img

在工程根目录下编译vendor_boot.img，命令如下。 这一步是将KO文件打包到vendor_boot.img，在将

vendor_boot.img烧写到机器中。

单独烧写vendor_boot.img，编译完的vendor_boot.img路径如下：

注意：如果是编译到vendor的ko需要完整编译super.img并烧写super.img

5. 验证

烧写 out/target/product/rk3562_ugo/vendor_boot.img文件到机器中开机验证

如果是放在vendor分区的ko可以在系统起来后直接push到机器内的vendor分区中，手动挂载进行验

证

如果有涉及到dts的修改，需要烧写kernel-6.1下的 resource.img

附：AOSP定义的各类ko加载阶段

8. 开机log确认

8.1 uboot阶段

8.2 Android阶段

GKI版本： Linux version 5.10.117-android13-9-00037-gbc08447eb7bd

make installclean;make vendorbootimage -j12

out/target/product/rk3562_ugo/vendor_boot.img

Booting Android Image at 0x003ff000 ...

Kernel: 0x00400000 - 0x03088ffc (45604 KiB)

v-ramdisk: 0x0a200000 - 0x0a6944c8 (4690 KiB)

ramdisk: 0x0a6944c8 - 0x0a7e54df (1349 KiB)

bootconfig: 0x0a7e54df - 0x0a7e559c (1 KiB)

bootparams: 0x0a7e559c - 0x0a7e759c

https://source.android.google.cn/docs/core/architecture/kernel/loadable-kernel-modules#file-locations
af://n1748
af://n1749
af://n1761

Kernel command line： Header V4中不能存在androidboot.xxx这一类的命令行参数，这类参数全部在

bootconfig中。此类参数可以通过 cat /proc/bootconfig确认。

8.3 KO加载

开始加载ko，可以看到log：

8.4 KO加载报错

使用了未导出的符号，报错重启：

这个log表示crypto_ahash_final、sg_nents、crypto_alloc_akcipher这些符号在boot中没有导出，无法使用。

解决方法：

更换其它接口，boot里面有导出的接口可以在kernel-6.1/android目录下搜索

一定要使用该接口的，需要添加对应的接口并提交给google，具体方法可以参考本文中的“如何提

交内核接口到upstream”章节。

[0.000000][T0] Booting Linux on physical CPU 0x0000000000 [0x412fd050]

[0.000000][T0] Linux version 5.10.117-android12-9-00037-gbc08447eb7bd

(build-user@build-host) (Android (7284624, based on r416183b) clang version

12.0.5 (https://android.googlesource.com/toolchain/llvm-project

c935d99d7cf2016289302412d708641d52d2f7ee), LLD 12.0.5

(/buildbot/src/android/llvm-toolchai

n/out/llvm-project/lld c935d99d7cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT

Thu Aug 25 15:24:20 UTC 2022

[0.000000][T0] Kernel command line: stack_depot_disable=on

kasan.stacktrace=off kvm-arm.mode=protected cgroup_disable=pressure

cgroup.memory=nokme

m storagemedia=emmc console=ttyFIQ0 firmware_class.path=/vendor/etc/firmware

init=/init rootwait ro loop.max_part=7 bootconfig buildvariant=userdebug earl

ycon=uart8250,mmio32,0xfeb50000 irqchip.gicv3_pseudo_nmi=0

[1.034730][T1] Run /init as init process

[1.036190][T1] init: init first stage started!

[1.040534][T1] init: Loading module /lib/modules/io-domain.ko with args

''

[1.042038][T1] init: Loaded kernel module /lib/modules/io-domain.ko

[0.805736][T1] cryptodev: Unknown symbol crypto_ahash_final (err -2)

[0.806383][T1] cryptodev: Unknown symbol sg_nents (err -2)

[0.806972][T1] cryptodev: Unknown symbol crypto_alloc_akcipher (err -2)

[0.819768][T1] Kernel panic - not syncing: Attempted to kill init!

exitcode=0x00007f00

[1.825070][T1] init: Failed to insmod '/lib/modules/gc05a2.ko' with args

'': Exec format error

[1.825094][T1] init: LoadWithAliases was unable to load gc05a2

[1.826118][T1] init: Failed to load kernel modules

af://n1766
af://n1769

init: Failed to insmod '/lib/modules/gc05a2.ko' with args '': Exec format error 这个错误是编译ko的环境不匹

配导致，一般是pahole的版本不对的原因，要求pahole的版本是V1.25，可以通过如下命令查询：

可以按下面步骤更新pahole版本

下载最新版本pahole

编译pahole

安装编译依赖库

如果之前有安装过pahole，需要先卸载

[1.827032][T1] init: InitFatalReboot: signal 6

[1.836535][T1] init: #00 pc 000000000031fe7c /init

(unwindstack::AndroidLocalUnwinder::InternalUnwind(std::__1::optional<int>,

unwindstack::AndroidUnwinderData&)+92) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836603][T1] init: #01 pc 000000000031444c /init

(android::init::InitFatalReboot(int)+204) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836638][T1] init: #02 pc 0000000000314b00 /init

(android::init::InstallRebootSignalHandlers()::$_0::__invoke(int)+32) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836658][T1] init: #03 pc 0000000000000860 [vdso]

[1.836685][T1] init: #04 pc 00000000004ddfb0 /init (abort+176)

(BuildId: aec5ebfd90cec4000c74ac83c809ae14)

[1.836719][T1] init: #05 pc 0000000000319dac /init

(android::init::InitAborter(char const*)+44) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836760][T1] init: #06 pc 000000000049eed0 /init

(android::base::SetAborter(std::__1::function<void (char

const*)>&&)::$_0::__invoke(char const*)+80) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836793][T1] init: #07 pc 000000000049e664 /init

(android::base::LogMessage::~LogMessage()+356) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836824][T1] init: #08 pc 000000000030adc8 /init

(android::init::FirstStageMain(int, char**)+8696) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836870][T1] init: #09 pc 00000000004dbd9c /init

(__real_libc_init(void*, void (*)(), int (*)(int, char**, char**),

structors_array_t const*, bionic_tcb*)+716) (BuildId:

aec5ebfd90cec4000c74ac83c809ae14)

[1.836887][T1] init: Reboot ending, jumping to kernel

@sys2206:~/pahole$ pahole --version

v1.25

git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.git

sudo apt-get install cmake

sudo apt-get install libdw-dev

sudo apt-get --purge remove dwarves

开始编译

ahole目录下执行

pahole --version 查看版本确认是否安装成功

如果以上安装编译失败可以直接下载我们编译好的pahole，并替换到 /usr/local/bin/pahole
链接：https://pan.baidu.com/s/1JP1F0EjzSn25ZVUsbO89Zg
提取码：zy6z

8.5 bootcmdline解析出错

错误log

现象：无法开机或者开机进到recovery
原因：cmdline中的字段重复了，导致解析cmdline出错，可以在开机到uboot的时候在串口按住crtl+p就会

打印所有的cmdline信息，从打印的cmdline信息中检查哪个字段重复了，然后去代码里面找对应的定义

的位置删除对应的字段即可。cmdline是在device和kernel的dts中定义，可以在这两个目录下搜索该重复

的字段即可。

8.6 Mali KO加载失败

Mali KO加载失败表现为无法开机界面显示卡在'Rockchip kernel'的logo，logcat可以看到surfaceflinger
crash。

mkdir build

cd build/

cmake -D__LIB=lib -DBUILD_SHARED_LIBS=OFF ..

sudo make install

Failed to parse bootconfig: Value is redefined at 416.

04-27 22:45:27.653 366 366 F DEBUG : *** *** *** *** *** *** *** *** ***

*** *** *** *** *** *** ***

04-27 22:45:27.653 366 366 F DEBUG : Build fingerprint:

'rockchip/rk3562_t/rk3562_t:13/TQ2A.230305.008.F1/eng.wlq.20230427.101925:userde

bug/release-keys'

04-27 22:45:27.653 366 366 F DEBUG : Revision: '0'

04-27 22:45:27.653 366 366 F DEBUG : ABI: 'arm64'

04-27 22:45:27.653 366 366 F DEBUG : Timestamp: 2023-04-27

22:45:27.509738048+0000

04-27 22:45:27.653 366 366 F DEBUG : Process uptime: 2s

04-27 22:45:27.653 366 366 F DEBUG : Cmdline: /system/bin/surfaceflinger

04-27 22:45:27.653 366 366 F DEBUG : pid: 335, tid: 360, name:

surfaceflinger >>> /system/bin/surfaceflinger <<<

04-27 22:45:27.653 366 366 F DEBUG : uid: 1000

04-27 22:45:27.653 366 366 F DEBUG : tagged_addr_ctrl: 0000000000000001

(PR_TAGGED_ADDR_ENABLE)

04-27 22:45:27.653 366 366 F DEBUG : signal 6 (SIGABRT), code -1

(SI_QUEUE), fault addr --------

04-27 22:45:27.653 366 366 F DEBUG : Abort message: 'no suitable EGLConfig

found, giving up'

https://pan.baidu.com/s/1JP1F0EjzSn25ZVUsbO89Zg
af://n1800
af://n1804

这个是因为GPU的ko不匹配，需要重新编译GPU的ko文件，并拷贝到vendor/rockchip/common/gpu下面对

应的目录中，具体编译方法如下：

修改device下面的产品目录中kernel config配置：PRODUCT_KERNEL_CONFIG := gki_defconfig
rockchip_gki.config增加对应芯片的gpu配置，具体如下

04-27 22:45:27.653 366 366 F DEBUG : x0 0000000000000000 x1

0000000000000168 x2 0000000000000006 x3 000000710899d340

04-27 22:45:27.654 366 366 F DEBUG : x4 7568661f2b636d74 x5

7568661f2b636d74 x6 7568661f2b636d74 x7 7f7f7f7f7f7f7f7f

04-27 22:45:27.654 366 366 F DEBUG : x8 00000000000000f0 x9

000000739bcbda00 x10 0000000000000001 x11 000000739bcff6a0

04-27 22:45:27.654 366 366 F DEBUG : x12 000000710899d310 x13

0000000000000027 x14 000000710899d4e0 x15 00000000197b1a4f

04-27 22:45:27.654 366 366 F DEBUG : x16 000000739bd6dd58 x17

000000739bd48770 x18 0000007108812000 x19 00000000000000ac

04-27 22:45:27.654 366 366 F DEBUG : x20 00000000000000b2 x21

000000000000014f x22 0000000000000168 x23 00000000ffffffff

04-27 22:45:27.654 366 366 F DEBUG : x24 b4000071bbca60b0 x25

000000710899dcb0 x26 000000710899dff8 x27 00000000000fe000

04-27 22:45:27.654 366 366 F DEBUG : x28 000000710899daf0 x29

000000710899d3c0

04-27 22:45:27.654 366 366 F DEBUG : lr 000000739bcef3f4 sp

00000071089ndroid.runtime/lib64/bionic/libc.so (__pthread_start(void*)+208)

(BuildId: e2429c64ab29f2d0ffc5a8f42c0c1b80)

04-27 22:45:27.655 366 366 F DEBUG : #09 pc 0000000000054c50

/apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64) (BuildId:

e2429c64ab29f2d0ffc5a8f42c0c1b80)

RK3588：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config

RK356X/RK3562：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk356x.config

RK3326/RK3326-S：

PX30/PX30-S：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk3326.config

RK3399：

PRODUCT_KERNEL_CONFIG := gki_defconfig rockchip_gki.config rk3399.config

rk3399.config需要按如下修改：

wlq@sys2_206:~/a0_Android13_gki/mkcombinedroot$ git diff configs/

diff --git a/configs/rk3399.config b/configs/rk3399.config

old mode 100644

new mode 100755

index 0d66674..a003ba5

--- a/configs/rk3399.config

+++ b/configs/rk3399.config

@@ -1,4 +1,11 @@

-CONFIG_MALI_MIDGARD=y

+CONFIG_MALI_MIDGARD=m

+CONFIG_MALI_PLATFORM_THIRDPARTY_NAME="rk"

+CONFIG_MALI_PLATFORM_THIRDPARTY=y

+CONFIG_MALI_DEBUG=y

+CONFIG_MALI_DEVFREQ=y

+CONFIG_MALI_DT=y

+CONFIG_MALI_EXPERT=y

+CONFIG_MALI_SHARED_INTERRUPTS=y

然后执行./build.sh -CK 编译kernel
编译完成后拷贝对应的mali ko到vendor下面，具体路径可以看上面的章节。

8.7 编译kernel报错

编译错误log：

可以按下面步骤更新pahole版本

下载最新版本pahole

编译pahole

安装编译依赖库

如果之前有安装过pahole，需要先卸载

开始编译

ahole目录下执行

pahole --version 查看版本确认是否安装成功

BTF .btf.vmlinux.bin.o

Segmentation fault (core dumped)

LD .tmp_vmlinux.kallsyms1

KSYMS .tmp_vmlinux.kallsyms1.S

AS .tmp_vmlinux.kallsyms1.S

LD .tmp_vmlinux.kallsyms2

KSYMS .tmp_vmlinux.kallsyms2.S

AS .tmp_vmlinux.kallsyms2.S

LD vmlinux

BTFIDS vmlinux

FAILED: load BTF from vmlinux: Unknown error -22Makefile:1293: recipe for target

'vmlinux' failed

make[1]: *** [vmlinux] Error 255

arch/arm64/Makefile:214: recipe for target 'rk3588-evb1-lp4-v10.img' failed

make: *** [rk3588-evb1-lp4-v10.img] Error 2

failed to build some targets (21 seconds)

git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.git

sudo apt-get install cmake

sudo apt-get install libdw-dev

sudo apt-get --purge remove dwarves

mkdir build

cd build/

cmake -D__LIB=lib -DBUILD_SHARED_LIBS=OFF ..

sudo make install

af://n1810

如果以上安装编译失败可以直接下载我们编译好的pahole，并替换到 /usr/local/bin/pahole
链接：https://pan.baidu.com/s/1JP1F0EjzSn25ZVUsbO89Zg
提取码：zy6z

9. 调试技巧

9.1 打印更多KO加载的log

修改ratelimit的值，可以打印更多init的log，方便查问题，init信息太少会把ko加载的报错信息隐藏掉。

9.2 在RK的kernel打包中编译GKI使用的boot.img

先按正常编译步骤编译kernel，生成arch/arm64/boot/Image
用如下命令打包boot.img
mkbootimg --kernel arch/arm64/boot/Image --header_version 4 --output ../mkcombinedroot/prebuilts/boot-
6.1.img

9.3 查看google发布的内核接口

标准的内核接口定义在android目录下：

xxx@sys2_206:~/a0_Android13_gki/device/rockchip/common$ vim BoardConfig.mk

xxx@sys2_206:~/a0_Android13_gki/device/rockchip/common$ git diff

diff --git a/BoardConfig.mk b/BoardConfig.mk

index 0d1c886..1761ed0 100755

--- a/BoardConfig.mk

+++ b/BoardConfig.mk

@@ -392,3 +392,5 @@ ifeq ($(strip $(BOARD_BASEPARAMETER_SUPPORT)), true)

 endif

 BOARD_WITH_SPECIAL_PARTITIONS := baseparameter:1M

 endif

+

+BOARD_KERNEL_CMDLINE += printk.devkmsg=on

:~/a5_google_kenrel/common$ tree a

android/ arch/

wlq@sys2_206:~/a5_google_kenrel/common$ tree android/

android/

├── abi_gki_aarch64

├── abi_gki_aarch64_core

├── abi_gki_aarch64_db845c

├── abi_gki_aarch64_exynos

├── abi_gki_aarch64_fips140

├── abi_gki_aarch64_galaxy

├── abi_gki_aarch64_generic

├── abi_gki_aarch64_hikey960

├── abi_gki_aarch64_rockchip

https://pan.baidu.com/s/1JP1F0EjzSn25ZVUsbO89Zg
af://n1832
af://n1833
af://n1836
af://n1838

10. 如何提交内核接口到upstream

如果需要添加新的内核接口，可以生成对应的patch，再将patch通过瑞芯微的redmine系统提交给瑞芯微

审核然后再统一提交给google

11. 如何更新AOSP发布的boot.img

Android AOSP会定期更新最新的boot.img及对应的受保护的KO文件，Android release的链接如下：

├── abi_gki_aarch64_type_visibility

├── abi_gki_aarch64_virtual_device

├── abi_gki_aarch64.xml

├── abi_gki_modules_exports

├── abi_gki_modules_protected

├── gki_aarch64_fips140_modules

├── gki_aarch64_modules

└── gki_system_dlkm_modules

diff --git a/android/abi_gki_aarch64_rockchip b/android/abi_gki_aarch64_rockchip

index 85bd8bc134cf..3344cf064e06 100644

--- a/android/abi_gki_aarch64_rockchip

+++ b/android/abi_gki_aarch64_rockchip

@@ -2144,6 +2144,15 @@

 mmc_pwrseq_register

 mmc_pwrseq_unregister

+# required by r8168.ko

+ pci_set_mwi

+ pci_clear_mwi

+ proc_get_parent_data

+ skb_checksum_help

+ __skb_gso_segment

+ remove_proc_subtree

+ pci_choose_state

+

 # required by reboot-mode.ko

 devres_release

 kernel_kobj

https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-

release-builds

af://n1841
af://n1844

打开链接后找到Android14-6.1的最新release版本，然后点对应版本的boot-6.1.img下载，如图

boot-6.1.img下载后拷贝到

Android14开始AOSP会同步发布受保护的ko模块，需要一起下载，这个ko文件需要核boot.img匹配才能

正确加载。点击如下图的kernel链接下载system_dlkm_staging_archive.tar.gz

下载后解压system_dlkm_staging_archive.tar.gz，并将解压后的flatten\lib\modules\下的ko文件拷贝到

注意：kernel/prebuilts/6.1/arm64/modules.load文件不要更新，否则会导致ko加载失败。上面解压替
换ko的时候modules.load可能会被覆盖，替换完后务必要检查。

12. 如何单独打包vendor_boot.img

步骤一：在kernel下面编译对应的ko文件

步骤二：拷贝KO文件到mkcombinedroot目录下

mkcombinedroot/prebuilts/boot-6.1.img

 kernel/prebuilts/6.1/arm64/

af://n1852

步骤三：拷贝vendor_boot.img到mkcombinedroot目录下

步骤四：进到mkcombinedroot目录下执行mkgki4.sh脚本更新ko并编译到vendor_boot.img中
步骤五： 烧写vendor_boot.img到机器中

下面详细介绍各个步骤

12.1 步骤一：在kernel中编译KO

进入kernel目录

Android14 + kernel6.1

导clang到环境

编译KO

12.2 步骤二：拷贝KO文件到mkcombinedroot目录下

12.3 步骤三：拷贝vendor_boot.img到mkcombinedroot目录下

单独编译vendor_boot.img需要拷贝一个vendor_boot.img的基础包，类似单独编译boot.img需要一个

boot_sample.img, 这个vendor_boot.img需要和你准备更新的机器里面的vendor_boot.img一样，可以从GKI
的固件里面拷贝。

12.4 步骤四：进到mkcombinedroot目录下执行mkgki4.sh脚本更新ko
并编译到vendor_boot.img中

编译vendor_boot.img，其中：

DTS=板级dts名称，dts需要使用res/board/下有定义的load名

cd kernel-6.1

export PATH=../prebuilts/clang/host/linux-x86/clang-r487747c/bin:$PATH

make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1 ARCH=arm64 gki_defconfig

rockchip_gki.config && make CROSS_COMPILE=aarch64-linux-gnu- LLVM=1 LLVM_IAS=1

ARCH=arm64 rk3562-rk817-tablet-v10.img -j32

llvm-objcopy --strip-debug drivers/xxx.ko

../mkcombinedroot/vendor_ramdisk/lib/modules/xxx.ko

cd ../mkcombinedroot/

./mkgki4.sh DTS=rk3568-evb1-ddr4-v10

af://n1865
af://n1879
af://n1881
af://n1883

编译后会在mkcombinedroot根目录下生成new_vendor_boot.img

12.5 步骤五： 烧写new_vendor_boot.img到机器中

烧写 mkcombinedroot/new_vendor_boot.img文件到机器中开机验证

一般GKI的固件都是AB固件，所以烧写new_vendor_boot.img的时候需要同时更新vendor_boot_a和
vendor_boot_b分区，如果机器烧写之前由于异常重启多次导致进入fastboot模式，此时需要一起烧写

misc.img，清除misc分区中的标记才能正常启动， ubuntu下面的烧写工具的参考命令如下：

如果是放在vendor分区的ko可以在系统起来后直接push到机器内的vendor分区中，手动挂载进行验

证

如果有涉及到dts的修改，需要烧写kernel-6.1下的 resource.img

sudo ./upgrade_tool di -vendor_boot_a

mkcombinedroot/new_vendor_boot.img/vendor_boot.img

sudo ./upgrade_tool di -vendor_boot_b

mkcombinedroot/new_vendor_boot.img/vendor_boot.img;

sudo ./upgrade_tool rd

af://n1891

	Rockchip Android14 GKI开发指南
	GKI介绍
	什么是GKI
	什么产品需要使用GKI
	GKI和非GKI的差别

	Rockchip Android14 GKI的适配情况
	Google upstream kernel下载及编译
	Rockchip SDK中GKI相关目录介绍
	GKI编译环境要求
	Rockchip GKI编译
	代码修改
	编译
	固件烧写

	KO编译及修改
	添加新的模块驱动的方法

	开机log确认
	uboot阶段
	Android阶段
	KO加载
	KO加载报错
	bootcmdline解析出错
	Mali KO加载失败
	编译kernel报错

	调试技巧
	打印更多KO加载的log
	在RK的kernel打包中编译GKI使用的boot.img
	查看google发布的内核接口

	如何提交内核接口到upstream
	如何更新AOSP发布的boot.img
	如何单独打包vendor_boot.img
	步骤一：在kernel中编译KO
	步骤二：拷贝KO文件到mkcombinedroot目录下
	步骤三：拷贝vendor_boot.img到mkcombinedroot目录下
	步骤四：进到mkcombinedroot目录下执行mkgki4.sh脚本更新ko并编译到vendor_boot.img中
	步骤五： 烧写new_vendor_boot.img到机器中

