You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
12 KiB
365 lines
12 KiB
/* Standard C headers */
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Configuration header */
|
|
#include "threadpool-common.h"
|
|
|
|
/* Windows headers */
|
|
#include <windows.h>
|
|
|
|
/* Public library header */
|
|
#include <pthreadpool.h>
|
|
|
|
/* Internal library headers */
|
|
#include "threadpool-atomics.h"
|
|
#include "threadpool-object.h"
|
|
#include "threadpool-utils.h"
|
|
|
|
|
|
static void checkin_worker_thread(struct pthreadpool* threadpool, uint32_t event_index) {
|
|
if (pthreadpool_decrement_fetch_release_size_t(&threadpool->active_threads) == 0) {
|
|
SetEvent(threadpool->completion_event[event_index]);
|
|
}
|
|
}
|
|
|
|
static void wait_worker_threads(struct pthreadpool* threadpool, uint32_t event_index) {
|
|
/* Initial check */
|
|
size_t active_threads = pthreadpool_load_acquire_size_t(&threadpool->active_threads);
|
|
if (active_threads == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Spin-wait */
|
|
for (uint32_t i = PTHREADPOOL_SPIN_WAIT_ITERATIONS; i != 0; i--) {
|
|
pthreadpool_yield();
|
|
|
|
active_threads = pthreadpool_load_acquire_size_t(&threadpool->active_threads);
|
|
if (active_threads == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Fall-back to event wait */
|
|
const DWORD wait_status = WaitForSingleObject(threadpool->completion_event[event_index], INFINITE);
|
|
assert(wait_status == WAIT_OBJECT_0);
|
|
assert(pthreadpool_load_relaxed_size_t(&threadpool->active_threads) == 0);
|
|
}
|
|
|
|
static uint32_t wait_for_new_command(
|
|
struct pthreadpool* threadpool,
|
|
uint32_t last_command,
|
|
uint32_t last_flags)
|
|
{
|
|
uint32_t command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
|
|
if (command != last_command) {
|
|
return command;
|
|
}
|
|
|
|
if ((last_flags & PTHREADPOOL_FLAG_YIELD_WORKERS) == 0) {
|
|
/* Spin-wait loop */
|
|
for (uint32_t i = PTHREADPOOL_SPIN_WAIT_ITERATIONS; i != 0; i--) {
|
|
pthreadpool_yield();
|
|
|
|
command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
|
|
if (command != last_command) {
|
|
return command;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Spin-wait disabled or timed out, fall back to event wait */
|
|
const uint32_t event_index = (last_command >> 31);
|
|
const DWORD wait_status = WaitForSingleObject(threadpool->command_event[event_index], INFINITE);
|
|
assert(wait_status == WAIT_OBJECT_0);
|
|
|
|
command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
|
|
assert(command != last_command);
|
|
return command;
|
|
}
|
|
|
|
static DWORD WINAPI thread_main(LPVOID arg) {
|
|
struct thread_info* thread = (struct thread_info*) arg;
|
|
struct pthreadpool* threadpool = thread->threadpool;
|
|
uint32_t last_command = threadpool_command_init;
|
|
struct fpu_state saved_fpu_state = { 0 };
|
|
uint32_t flags = 0;
|
|
|
|
/* Check in */
|
|
checkin_worker_thread(threadpool, 0);
|
|
|
|
/* Monitor new commands and act accordingly */
|
|
for (;;) {
|
|
uint32_t command = wait_for_new_command(threadpool, last_command, flags);
|
|
pthreadpool_fence_acquire();
|
|
|
|
flags = pthreadpool_load_relaxed_uint32_t(&threadpool->flags);
|
|
|
|
/* Process command */
|
|
switch (command & THREADPOOL_COMMAND_MASK) {
|
|
case threadpool_command_parallelize:
|
|
{
|
|
const thread_function_t thread_function =
|
|
(thread_function_t) pthreadpool_load_relaxed_void_p(&threadpool->thread_function);
|
|
if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
|
|
saved_fpu_state = get_fpu_state();
|
|
disable_fpu_denormals();
|
|
}
|
|
|
|
thread_function(threadpool, thread);
|
|
if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
|
|
set_fpu_state(saved_fpu_state);
|
|
}
|
|
break;
|
|
}
|
|
case threadpool_command_shutdown:
|
|
/* Exit immediately: the master thread is waiting on pthread_join */
|
|
return 0;
|
|
case threadpool_command_init:
|
|
/* To inhibit compiler warning */
|
|
break;
|
|
}
|
|
/* Notify the master thread that we finished processing */
|
|
const uint32_t event_index = command >> 31;
|
|
checkin_worker_thread(threadpool, event_index);
|
|
/* Update last command */
|
|
last_command = command;
|
|
};
|
|
return 0;
|
|
}
|
|
|
|
struct pthreadpool* pthreadpool_create(size_t threads_count) {
|
|
if (threads_count == 0) {
|
|
SYSTEM_INFO system_info;
|
|
ZeroMemory(&system_info, sizeof(system_info));
|
|
GetSystemInfo(&system_info);
|
|
threads_count = (size_t) system_info.dwNumberOfProcessors;
|
|
}
|
|
|
|
struct pthreadpool* threadpool = pthreadpool_allocate(threads_count);
|
|
if (threadpool == NULL) {
|
|
return NULL;
|
|
}
|
|
threadpool->threads_count = fxdiv_init_size_t(threads_count);
|
|
for (size_t tid = 0; tid < threads_count; tid++) {
|
|
threadpool->threads[tid].thread_number = tid;
|
|
threadpool->threads[tid].threadpool = threadpool;
|
|
}
|
|
|
|
/* Thread pool with a single thread computes everything on the caller thread. */
|
|
if (threads_count > 1) {
|
|
threadpool->execution_mutex = CreateMutexW(
|
|
NULL /* mutex attributes */,
|
|
FALSE /* initially owned */,
|
|
NULL /* name */);
|
|
for (size_t i = 0; i < 2; i++) {
|
|
threadpool->completion_event[i] = CreateEventW(
|
|
NULL /* event attributes */,
|
|
TRUE /* manual-reset event: yes */,
|
|
FALSE /* initial state: nonsignaled */,
|
|
NULL /* name */);
|
|
threadpool->command_event[i] = CreateEventW(
|
|
NULL /* event attributes */,
|
|
TRUE /* manual-reset event: yes */,
|
|
FALSE /* initial state: nonsignaled */,
|
|
NULL /* name */);
|
|
}
|
|
|
|
pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);
|
|
|
|
/* Caller thread serves as worker #0. Thus, we create system threads starting with worker #1. */
|
|
for (size_t tid = 1; tid < threads_count; tid++) {
|
|
threadpool->threads[tid].thread_handle = CreateThread(
|
|
NULL /* thread attributes */,
|
|
0 /* stack size: default */,
|
|
&thread_main,
|
|
&threadpool->threads[tid],
|
|
0 /* creation flags */,
|
|
NULL /* thread id */);
|
|
}
|
|
|
|
/* Wait until all threads initialize */
|
|
wait_worker_threads(threadpool, 0);
|
|
}
|
|
return threadpool;
|
|
}
|
|
|
|
PTHREADPOOL_INTERNAL void pthreadpool_parallelize(
|
|
struct pthreadpool* threadpool,
|
|
thread_function_t thread_function,
|
|
const void* params,
|
|
size_t params_size,
|
|
void* task,
|
|
void* context,
|
|
size_t linear_range,
|
|
uint32_t flags)
|
|
{
|
|
assert(threadpool != NULL);
|
|
assert(thread_function != NULL);
|
|
assert(task != NULL);
|
|
assert(linear_range > 1);
|
|
|
|
/* Protect the global threadpool structures */
|
|
const DWORD wait_status = WaitForSingleObject(threadpool->execution_mutex, INFINITE);
|
|
assert(wait_status == WAIT_OBJECT_0);
|
|
|
|
/* Setup global arguments */
|
|
pthreadpool_store_relaxed_void_p(&threadpool->thread_function, (void*) thread_function);
|
|
pthreadpool_store_relaxed_void_p(&threadpool->task, task);
|
|
pthreadpool_store_relaxed_void_p(&threadpool->argument, context);
|
|
pthreadpool_store_relaxed_uint32_t(&threadpool->flags, flags);
|
|
|
|
const struct fxdiv_divisor_size_t threads_count = threadpool->threads_count;
|
|
pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count.value - 1 /* caller thread */);
|
|
|
|
if (params_size != 0) {
|
|
CopyMemory(&threadpool->params, params, params_size);
|
|
pthreadpool_fence_release();
|
|
}
|
|
|
|
/* Spread the work between threads */
|
|
const struct fxdiv_result_size_t range_params = fxdiv_divide_size_t(linear_range, threads_count);
|
|
size_t range_start = 0;
|
|
for (size_t tid = 0; tid < threads_count.value; tid++) {
|
|
struct thread_info* thread = &threadpool->threads[tid];
|
|
const size_t range_length = range_params.quotient + (size_t) (tid < range_params.remainder);
|
|
const size_t range_end = range_start + range_length;
|
|
pthreadpool_store_relaxed_size_t(&thread->range_start, range_start);
|
|
pthreadpool_store_relaxed_size_t(&thread->range_end, range_end);
|
|
pthreadpool_store_relaxed_size_t(&thread->range_length, range_length);
|
|
|
|
/* The next subrange starts where the previous ended */
|
|
range_start = range_end;
|
|
}
|
|
|
|
/*
|
|
* Update the threadpool command.
|
|
* Imporantly, do it after initializing command parameters (range, task, argument, flags)
|
|
* ~(threadpool->command | THREADPOOL_COMMAND_MASK) flips the bits not in command mask
|
|
* to ensure the unmasked command is different then the last command, because worker threads
|
|
* monitor for change in the unmasked command.
|
|
*/
|
|
const uint32_t old_command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
|
|
const uint32_t new_command = ~(old_command | THREADPOOL_COMMAND_MASK) | threadpool_command_parallelize;
|
|
|
|
/*
|
|
* Reset the command event for the next command.
|
|
* It is important to reset the event before writing out the new command, because as soon as the worker threads
|
|
* observe the new command, they may process it and switch to waiting on the next command event.
|
|
*
|
|
* Note: the event is different from the command event signalled in this update.
|
|
*/
|
|
const uint32_t event_index = (old_command >> 31);
|
|
BOOL reset_event_status = ResetEvent(threadpool->command_event[event_index ^ 1]);
|
|
assert(reset_event_status != FALSE);
|
|
|
|
/*
|
|
* Store the command with release semantics to guarantee that if a worker thread observes
|
|
* the new command value, it also observes the updated command parameters.
|
|
*
|
|
* Note: release semantics is necessary, because the workers might be waiting in a spin-loop
|
|
* rather than on the event object.
|
|
*/
|
|
pthreadpool_store_release_uint32_t(&threadpool->command, new_command);
|
|
|
|
/*
|
|
* Signal the event to wake up the threads.
|
|
* Event in use must be switched after every submitted command to avoid race conditions.
|
|
* Choose the event based on the high bit of the command, which is flipped on every update.
|
|
*/
|
|
const BOOL set_event_status = SetEvent(threadpool->command_event[event_index]);
|
|
assert(set_event_status != FALSE);
|
|
|
|
/* Save and modify FPU denormals control, if needed */
|
|
struct fpu_state saved_fpu_state = { 0 };
|
|
if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
|
|
saved_fpu_state = get_fpu_state();
|
|
disable_fpu_denormals();
|
|
}
|
|
|
|
/* Do computations as worker #0 */
|
|
thread_function(threadpool, &threadpool->threads[0]);
|
|
|
|
/* Restore FPU denormals control, if needed */
|
|
if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
|
|
set_fpu_state(saved_fpu_state);
|
|
}
|
|
|
|
/*
|
|
* Wait until the threads finish computation
|
|
* Use the complementary event because it corresponds to the new command.
|
|
*/
|
|
wait_worker_threads(threadpool, event_index ^ 1);
|
|
|
|
/*
|
|
* Reset the completion event for the next command.
|
|
* Note: the event is different from the one used for waiting in this update.
|
|
*/
|
|
reset_event_status = ResetEvent(threadpool->completion_event[event_index]);
|
|
assert(reset_event_status != FALSE);
|
|
|
|
/* Make changes by other threads visible to this thread */
|
|
pthreadpool_fence_acquire();
|
|
|
|
/* Unprotect the global threadpool structures */
|
|
const BOOL release_mutex_status = ReleaseMutex(threadpool->execution_mutex);
|
|
assert(release_mutex_status != FALSE);
|
|
}
|
|
|
|
void pthreadpool_destroy(struct pthreadpool* threadpool) {
|
|
if (threadpool != NULL) {
|
|
const size_t threads_count = threadpool->threads_count.value;
|
|
if (threads_count > 1) {
|
|
pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);
|
|
|
|
/*
|
|
* Store the command with release semantics to guarantee that if a worker thread observes
|
|
* the new command value, it also observes the updated active_threads values.
|
|
*/
|
|
const uint32_t old_command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
|
|
pthreadpool_store_release_uint32_t(&threadpool->command, threadpool_command_shutdown);
|
|
|
|
/*
|
|
* Signal the event to wake up the threads.
|
|
* Event in use must be switched after every submitted command to avoid race conditions.
|
|
* Choose the event based on the high bit of the command, which is flipped on every update.
|
|
*/
|
|
const uint32_t event_index = (old_command >> 31);
|
|
const BOOL set_event_status = SetEvent(threadpool->command_event[event_index]);
|
|
assert(set_event_status != FALSE);
|
|
|
|
/* Wait until all threads return */
|
|
for (size_t tid = 1; tid < threads_count; tid++) {
|
|
const HANDLE thread_handle = threadpool->threads[tid].thread_handle;
|
|
if (thread_handle != NULL) {
|
|
const DWORD wait_status = WaitForSingleObject(thread_handle, INFINITE);
|
|
assert(wait_status == WAIT_OBJECT_0);
|
|
|
|
const BOOL close_status = CloseHandle(thread_handle);
|
|
assert(close_status != FALSE);
|
|
}
|
|
}
|
|
|
|
/* Release resources */
|
|
if (threadpool->execution_mutex != NULL) {
|
|
const BOOL close_status = CloseHandle(threadpool->execution_mutex);
|
|
assert(close_status != FALSE);
|
|
}
|
|
for (size_t i = 0; i < 2; i++) {
|
|
if (threadpool->command_event[i] != NULL) {
|
|
const BOOL close_status = CloseHandle(threadpool->command_event[i]);
|
|
assert(close_status != FALSE);
|
|
}
|
|
if (threadpool->completion_event[i] != NULL) {
|
|
const BOOL close_status = CloseHandle(threadpool->completion_event[i]);
|
|
assert(close_status != FALSE);
|
|
}
|
|
}
|
|
}
|
|
pthreadpool_deallocate(threadpool);
|
|
}
|
|
}
|