You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
8.6 KiB
178 lines
8.6 KiB
//
|
|
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreateLogicalBinaryTfLiteModel(tflite::BuiltinOperator logicalOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
const std::vector <int32_t>& input0TensorShape,
|
|
const std::vector <int32_t>& input1TensorShape,
|
|
const std::vector <int32_t>& outputTensorShape,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
|
|
auto quantizationParameters =
|
|
CreateQuantizationParameters(flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({ quantScale }),
|
|
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
|
|
|
|
|
|
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
|
|
tensors[0] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
|
|
input0TensorShape.size()),
|
|
tensorType,
|
|
1,
|
|
flatBufferBuilder.CreateString("input_0"),
|
|
quantizationParameters);
|
|
tensors[1] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(input1TensorShape.data(),
|
|
input1TensorShape.size()),
|
|
tensorType,
|
|
2,
|
|
flatBufferBuilder.CreateString("input_1"),
|
|
quantizationParameters);
|
|
tensors[2] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
|
|
outputTensorShape.size()),
|
|
tensorType,
|
|
3,
|
|
flatBufferBuilder.CreateString("output"),
|
|
quantizationParameters);
|
|
|
|
// create operator
|
|
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
|
|
flatbuffers::Offset<void> operatorBuiltinOptions = 0;
|
|
switch (logicalOperatorCode)
|
|
{
|
|
case BuiltinOperator_LOGICAL_AND:
|
|
{
|
|
operatorBuiltinOptionsType = BuiltinOptions_LogicalAndOptions;
|
|
operatorBuiltinOptions = CreateLogicalAndOptions(flatBufferBuilder).Union();
|
|
break;
|
|
}
|
|
case BuiltinOperator_LOGICAL_OR:
|
|
{
|
|
operatorBuiltinOptionsType = BuiltinOptions_LogicalOrOptions;
|
|
operatorBuiltinOptions = CreateLogicalOrOptions(flatBufferBuilder).Union();
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
const std::vector<int32_t> operatorInputs{ {0, 1} };
|
|
const std::vector<int32_t> operatorOutputs{ 2 };
|
|
flatbuffers::Offset <Operator> logicalBinaryOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
|
|
operatorBuiltinOptionsType,
|
|
operatorBuiltinOptions);
|
|
|
|
const std::vector<int> subgraphInputs{ {0, 1} };
|
|
const std::vector<int> subgraphOutputs{ 2 };
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&logicalBinaryOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Logical Binary Operator Model");
|
|
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, logicalOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&operatorCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
void LogicalBinaryTest(tflite::BuiltinOperator logicalOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<int32_t>& input0Shape,
|
|
std::vector<int32_t>& input1Shape,
|
|
std::vector<int32_t>& expectedOutputShape,
|
|
std::vector<bool>& input0Values,
|
|
std::vector<bool>& input1Values,
|
|
std::vector<bool>& expectedOutputValues,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<char> modelBuffer = CreateLogicalBinaryTfLiteModel(logicalOperatorCode,
|
|
tensorType,
|
|
input0Shape,
|
|
input1Shape,
|
|
expectedOutputShape,
|
|
quantScale,
|
|
quantOffset);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor(input0Values, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor(input1Values, 1) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<bool> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor(input0Values, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor(input1Values, 1) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<bool> armnnOutputValues = armnnInterpreter.GetOutputResult(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
|
|
|
|
armnnDelegate::CompareData(expectedOutputValues, armnnOutputValues, expectedOutputValues.size());
|
|
armnnDelegate::CompareData(expectedOutputValues, tfLiteOutputValues, expectedOutputValues.size());
|
|
armnnDelegate::CompareData(tfLiteOutputValues, armnnOutputValues, expectedOutputValues.size());
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|