You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
8.0 KiB
189 lines
8.0 KiB
//
|
|
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#include "LstmTestHelper.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <schema_generated.h>
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace armnnDelegate
|
|
{
|
|
|
|
void LstmTest(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
int32_t batchSize = 2;
|
|
int32_t inputSize = 2;
|
|
int32_t outputSize = 4;
|
|
// cellSize and outputSize have the same size when there is no projection.
|
|
int32_t numUnits = outputSize;
|
|
|
|
std::vector<int32_t> inputShape {batchSize , inputSize};
|
|
std::vector<int32_t> cellStateInTensorInfo {batchSize , numUnits};
|
|
std::vector<int32_t> outputStateInTensorInfo {batchSize , outputSize};
|
|
|
|
std::vector<int32_t> scratchBufferTensorInfo {batchSize, numUnits * 4};
|
|
std::vector<int32_t> cellStateOutTensorInfo {batchSize, numUnits};
|
|
std::vector<int32_t> outputStateOutTensorInfo {batchSize, outputSize};
|
|
std::vector<int32_t> outputTensorInfo {batchSize, outputSize};
|
|
|
|
std::vector<int32_t> tensorInfo4 {numUnits};
|
|
std::vector<int32_t> tensorInfo8 {numUnits, 2};
|
|
std::vector<int32_t> tensorInfo16 {numUnits, 4};
|
|
|
|
//tensorInfo8,
|
|
bool hasInputToInputWeights = true;
|
|
std::vector<float> inputToInputWeights {-0.45018822f, -0.02338299f, -0.0870589f,
|
|
-0.34550029f, 0.04266912f, -0.15680569f,
|
|
-0.34856534f, 0.43890524f};
|
|
|
|
std::vector<float> inputToForgetWeights {0.09701663f, 0.20334584f, -0.50592935f,
|
|
-0.31343272f, -0.40032279f, 0.44781327f,
|
|
0.01387155f, -0.35593212f};
|
|
|
|
std::vector<float> inputToCellWeights {-0.50013041f, 0.1370284f, 0.11810488f, 0.2013163f,
|
|
-0.20583314f, 0.44344562f, 0.22077113f,
|
|
-0.29909778f};
|
|
|
|
std::vector<float> inputToOutputWeights {-0.25065863f, -0.28290087f, 0.04613829f,
|
|
0.40525138f, 0.44272184f, 0.03897077f,
|
|
-0.1556896f, 0.19487578f};
|
|
|
|
//tensorInfo16,
|
|
bool hasRecurrentToInputWeights = true;
|
|
std::vector<float> recurrentToInputWeights {-0.0063535f, -0.2042388f, 0.31454784f,
|
|
-0.35746509f, 0.28902304f, 0.08183324f,
|
|
-0.16555229f, 0.02286911f, -0.13566875f,
|
|
0.03034258f, 0.48091322f, -0.12528998f,
|
|
0.24077177f, -0.51332325f, -0.33502164f,
|
|
0.10629296f};
|
|
|
|
std::vector<float> recurrentToForgetWeights {-0.48684245f, -0.06655136f, 0.42224967f,
|
|
0.2112639f, 0.27654213f, 0.20864892f,
|
|
-0.07646349f, 0.45877004f, 0.00141793f,
|
|
-0.14609534f, 0.36447752f, 0.09196436f,
|
|
0.28053468f, 0.01560611f, -0.20127171f,
|
|
-0.01140004f};
|
|
|
|
std::vector<float> recurrentToCellWeights {-0.3407414f, 0.24443203f, -0.2078532f,
|
|
0.26320225f, 0.05695659f, -0.00123841f,
|
|
-0.4744786f, -0.35869038f, -0.06418842f,
|
|
-0.13502428f, -0.501764f, 0.22830659f,
|
|
-0.46367589f, 0.26016325f, -0.03894562f,
|
|
-0.16368064f};
|
|
|
|
std::vector<float> recurrentToOutputWeights {0.43385774f, -0.17194885f, 0.2718237f,
|
|
0.09215671f, 0.24107647f, -0.39835793f,
|
|
0.18212086f, 0.01301402f, 0.48572797f,
|
|
-0.50656658f, 0.20047462f, -0.20607421f,
|
|
-0.51818722f, -0.15390486f, 0.0468148f,
|
|
0.39922136f};
|
|
// tensorInfo4
|
|
bool hasCellToInputWeights = false;
|
|
std::vector<float> cellToInputWeights {};
|
|
bool hasCellToForgetWeights = false;
|
|
std::vector<float> cellToForgetWeights {};
|
|
bool hasCellToOutputWeights = false;
|
|
std::vector<float> cellToOutputWeights {};
|
|
|
|
bool hasInputGateBias = true;
|
|
std::vector<float> inputGateBias {0., 0., 0., 0.};
|
|
std::vector<float> forgetGateBias {1., 1., 1., 1.};
|
|
std::vector<float> cellBias {0., 0., 0., 0.};
|
|
std::vector<float> outputGateBias {0., 0., 0., 0.};
|
|
|
|
bool hasProjectionWeights = false;
|
|
std::vector<float> projectionWeights;
|
|
bool hasProjectionBias = false;
|
|
std::vector<float> projectionBias;
|
|
|
|
bool hasInputLayerNormWeights = false;
|
|
std::vector<float> inputLayerNormWeights;
|
|
bool hasForgetLayerNormWeights = false;
|
|
std::vector<float> forgetLayerNormWeights;
|
|
bool hasCellLayerNormWeights = false;
|
|
std::vector<float> cellLayerNormWeights;
|
|
bool hasOutputLayerNormWeights = false;
|
|
std::vector<float> outputLayerNormWeights;
|
|
|
|
std::vector<float> inputValues {2., 3., 3., 4.};
|
|
std::vector<float> expectedOutputValues {-0.02973187f, 0.1229473f, 0.20885126f, -0.15358765f,
|
|
-0.0185422f, 0.11281417f, 0.24466537f, -0.1826292f};
|
|
|
|
tflite::ActivationFunctionType activationFunction = tflite::ActivationFunctionType_TANH;
|
|
float clippingThresCell = 0.f;
|
|
float clippingThresProj = 0.f;
|
|
|
|
LstmTestImpl<float>(backends,
|
|
::tflite::TensorType_FLOAT32,
|
|
batchSize,
|
|
inputSize,
|
|
outputSize,
|
|
numUnits,
|
|
hasInputToInputWeights,
|
|
inputToInputWeights,
|
|
inputToForgetWeights,
|
|
inputToCellWeights,
|
|
inputToOutputWeights,
|
|
hasRecurrentToInputWeights,
|
|
recurrentToInputWeights,
|
|
recurrentToForgetWeights,
|
|
recurrentToCellWeights,
|
|
recurrentToOutputWeights,
|
|
hasCellToInputWeights,
|
|
cellToInputWeights,
|
|
hasCellToForgetWeights,
|
|
cellToForgetWeights,
|
|
hasCellToOutputWeights,
|
|
cellToOutputWeights,
|
|
hasInputGateBias,
|
|
inputGateBias,
|
|
forgetGateBias,
|
|
cellBias,
|
|
outputGateBias,
|
|
hasProjectionWeights,
|
|
projectionWeights,
|
|
hasProjectionBias,
|
|
projectionBias,
|
|
hasInputLayerNormWeights,
|
|
inputLayerNormWeights,
|
|
hasForgetLayerNormWeights,
|
|
forgetLayerNormWeights,
|
|
hasCellLayerNormWeights,
|
|
cellLayerNormWeights,
|
|
hasOutputLayerNormWeights,
|
|
outputLayerNormWeights,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
activationFunction,
|
|
clippingThresCell,
|
|
clippingThresProj);
|
|
}
|
|
|
|
TEST_SUITE("LstmTest_CpuRefTests")
|
|
{
|
|
|
|
TEST_CASE ("LstmTest_CpuRef_Test")
|
|
{
|
|
std::vector <armnn::BackendId> backends = {armnn::Compute::CpuRef};
|
|
LstmTest(backends);
|
|
}
|
|
|
|
} //End of TEST_SUITE("Convolution2dTest_CpuRef")
|
|
|
|
TEST_SUITE("LstmTest_CpuAccTests")
|
|
{
|
|
|
|
TEST_CASE ("LstmTest_CpuAcc_Test")
|
|
{
|
|
std::vector <armnn::BackendId> backends = {armnn::Compute::CpuAcc};
|
|
LstmTest(backends);
|
|
}
|
|
|
|
} //End of TEST_SUITE("Convolution2dTest_CpuAcc")
|
|
|
|
} // namespace armnnDelegate
|