You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
7.9 KiB
174 lines
7.9 KiB
//
|
|
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreatePooling2dTfLiteModel(
|
|
tflite::BuiltinOperator poolingOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
const std::vector <int32_t>& inputTensorShape,
|
|
const std::vector <int32_t>& outputTensorShape,
|
|
tflite::Padding padding = tflite::Padding_SAME,
|
|
int32_t strideWidth = 0,
|
|
int32_t strideHeight = 0,
|
|
int32_t filterWidth = 0,
|
|
int32_t filterHeight = 0,
|
|
tflite::ActivationFunctionType fusedActivation = tflite::ActivationFunctionType_NONE,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
flatbuffers::Offset<tflite::Buffer> buffers[3] = {CreateBuffer(flatBufferBuilder),
|
|
CreateBuffer(flatBufferBuilder),
|
|
CreateBuffer(flatBufferBuilder)};
|
|
|
|
auto quantizationParameters =
|
|
CreateQuantizationParameters(flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({ quantScale }),
|
|
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
|
|
|
|
flatbuffers::Offset<Tensor> tensors[2] {
|
|
CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape),
|
|
tensorType,
|
|
1,
|
|
flatBufferBuilder.CreateString("input"),
|
|
quantizationParameters),
|
|
|
|
CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape),
|
|
tensorType,
|
|
2,
|
|
flatBufferBuilder.CreateString("output"),
|
|
quantizationParameters)
|
|
};
|
|
|
|
// create operator
|
|
tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_Pool2DOptions;
|
|
flatbuffers::Offset<void> operatorBuiltinOptions = CreatePool2DOptions(flatBufferBuilder,
|
|
padding,
|
|
strideWidth,
|
|
strideHeight,
|
|
filterWidth,
|
|
filterHeight,
|
|
fusedActivation).Union();
|
|
|
|
const std::vector<int32_t> operatorInputs{0};
|
|
const std::vector<int32_t> operatorOutputs{1};
|
|
flatbuffers::Offset <Operator> poolingOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs),
|
|
operatorBuiltinOptionsType,
|
|
operatorBuiltinOptions);
|
|
|
|
const int subgraphInputs[1] = {0};
|
|
const int subgraphOutputs[1] = {1};
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors, 2),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs, 1),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs, 1),
|
|
flatBufferBuilder.CreateVector(&poolingOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Pooling2d Operator Model");
|
|
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, poolingOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&operatorCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers, 3));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
template <typename T>
|
|
void Pooling2dTest(tflite::BuiltinOperator poolingOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<int32_t>& inputShape,
|
|
std::vector<int32_t>& outputShape,
|
|
std::vector<T>& inputValues,
|
|
std::vector<T>& expectedOutputValues,
|
|
tflite::Padding padding = tflite::Padding_SAME,
|
|
int32_t strideWidth = 0,
|
|
int32_t strideHeight = 0,
|
|
int32_t filterWidth = 0,
|
|
int32_t filterHeight = 0,
|
|
tflite::ActivationFunctionType fusedActivation = tflite::ActivationFunctionType_NONE,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<char> modelBuffer = CreatePooling2dTfLiteModel(poolingOperatorCode,
|
|
tensorType,
|
|
inputShape,
|
|
outputShape,
|
|
padding,
|
|
strideWidth,
|
|
strideHeight,
|
|
filterWidth,
|
|
filterHeight,
|
|
fusedActivation,
|
|
quantScale,
|
|
quantOffset);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|