You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
9.7 KiB
213 lines
9.7 KiB
//
|
|
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
template <typename T>
|
|
std::vector<char> CreatePadTfLiteModel(
|
|
tflite::BuiltinOperator padOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
tflite::MirrorPadMode paddingMode,
|
|
const std::vector<int32_t>& inputTensorShape,
|
|
const std::vector<int32_t>& paddingTensorShape,
|
|
const std::vector<int32_t>& outputTensorShape,
|
|
const std::vector<int32_t>& paddingDim,
|
|
const std::vector<T> paddingValue,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
auto quantizationParameters =
|
|
CreateQuantizationParameters(flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({ quantScale }),
|
|
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
|
|
|
|
auto inputTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
|
|
inputTensorShape.size()),
|
|
tensorType,
|
|
0,
|
|
flatBufferBuilder.CreateString("input"),
|
|
quantizationParameters);
|
|
|
|
auto paddingTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(paddingTensorShape.data(),
|
|
paddingTensorShape.size()),
|
|
tflite::TensorType_INT32,
|
|
1,
|
|
flatBufferBuilder.CreateString("padding"));
|
|
|
|
auto outputTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
|
|
outputTensorShape.size()),
|
|
tensorType,
|
|
2,
|
|
flatBufferBuilder.CreateString("output"),
|
|
quantizationParameters);
|
|
|
|
std::vector<flatbuffers::Offset<Tensor>> tensors = { inputTensor, paddingTensor, outputTensor};
|
|
|
|
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(
|
|
CreateBuffer(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(paddingDim.data()),
|
|
sizeof(int32_t) * paddingDim.size())));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
|
|
std::vector<int32_t> operatorInputs;
|
|
std::vector<int> subgraphInputs;
|
|
|
|
tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_PadOptions;
|
|
flatbuffers::Offset<void> operatorBuiltinOptions;
|
|
|
|
if (padOperatorCode == tflite::BuiltinOperator_PAD)
|
|
{
|
|
operatorInputs = {{ 0, 1 }};
|
|
subgraphInputs = {{ 0, 1 }};
|
|
operatorBuiltinOptions = CreatePadOptions(flatBufferBuilder).Union();
|
|
}
|
|
else if(padOperatorCode == tflite::BuiltinOperator_MIRROR_PAD)
|
|
{
|
|
operatorInputs = {{ 0, 1 }};
|
|
subgraphInputs = {{ 0, 1 }};
|
|
|
|
operatorBuiltinOptionsType = BuiltinOptions_MirrorPadOptions;
|
|
operatorBuiltinOptions = CreateMirrorPadOptions(flatBufferBuilder, paddingMode).Union();
|
|
}
|
|
else if (padOperatorCode == tflite::BuiltinOperator_PADV2)
|
|
{
|
|
buffers.push_back(
|
|
CreateBuffer(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(paddingValue.data()),
|
|
sizeof(T))));
|
|
|
|
const std::vector<int32_t> shape = { 1 };
|
|
auto padValueTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(shape.data(),
|
|
shape.size()),
|
|
tensorType,
|
|
3,
|
|
flatBufferBuilder.CreateString("paddingValue"),
|
|
quantizationParameters);
|
|
|
|
tensors.push_back(padValueTensor);
|
|
|
|
operatorInputs = {{ 0, 1, 3 }};
|
|
subgraphInputs = {{ 0, 1, 3 }};
|
|
|
|
operatorBuiltinOptionsType = BuiltinOptions_PadV2Options;
|
|
operatorBuiltinOptions = CreatePadV2Options(flatBufferBuilder).Union();
|
|
}
|
|
|
|
// create operator
|
|
const std::vector<int32_t> operatorOutputs{ 2 };
|
|
flatbuffers::Offset <Operator> paddingOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
|
|
operatorBuiltinOptionsType,
|
|
operatorBuiltinOptions);
|
|
|
|
const std::vector<int> subgraphOutputs{ 2 };
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&paddingOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Pad Operator Model");
|
|
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
|
|
padOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&operatorCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
template <typename T>
|
|
void PadTest(tflite::BuiltinOperator padOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
const std::vector<armnn::BackendId>& backends,
|
|
const std::vector<int32_t>& inputShape,
|
|
const std::vector<int32_t>& paddingShape,
|
|
std::vector<int32_t>& outputShape,
|
|
std::vector<T>& inputValues,
|
|
std::vector<int32_t>& paddingDim,
|
|
std::vector<T>& expectedOutputValues,
|
|
T paddingValue,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0,
|
|
tflite::MirrorPadMode paddingMode = tflite::MirrorPadMode_SYMMETRIC)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<char> modelBuffer = CreatePadTfLiteModel<T>(padOperatorCode,
|
|
tensorType,
|
|
paddingMode,
|
|
inputShape,
|
|
paddingShape,
|
|
outputShape,
|
|
paddingDim,
|
|
{paddingValue},
|
|
quantScale,
|
|
quantOffset);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|