You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

374 lines
19 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "MotionPredictorMetricsManager"
#include <input/MotionPredictorMetricsManager.h>
#include <algorithm>
#include <android-base/logging.h>
#include "Eigen/Core"
#include "Eigen/Geometry"
#ifdef __ANDROID__
#include <statslog_libinput.h>
#endif
namespace android {
namespace {
inline constexpr int NANOS_PER_SECOND = 1'000'000'000; // nanoseconds per second
inline constexpr int NANOS_PER_MILLIS = 1'000'000; // nanoseconds per millisecond
// Velocity threshold at which we report "high-velocity" metrics, in pixels per second.
// This value was selected from manual experimentation, as a threshold that separates "fast"
// (semi-sloppy) handwriting from more careful medium to slow handwriting.
inline constexpr float HIGH_VELOCITY_THRESHOLD = 1100.0;
// Small value to add to the path length when computing scale-invariant error to avoid division by
// zero.
inline constexpr float PATH_LENGTH_EPSILON = 0.001;
} // namespace
MotionPredictorMetricsManager::MotionPredictorMetricsManager(nsecs_t predictionInterval,
size_t maxNumPredictions)
: mPredictionInterval(predictionInterval),
mMaxNumPredictions(maxNumPredictions),
mRecentGroundTruthPoints(maxNumPredictions + 1),
mAggregatedMetrics(maxNumPredictions),
mAtomFields(maxNumPredictions) {}
void MotionPredictorMetricsManager::onRecord(const MotionEvent& inputEvent) {
// Convert MotionEvent to GroundTruthPoint.
const PointerCoords* coords = inputEvent.getRawPointerCoords(/*pointerIndex=*/0);
LOG_ALWAYS_FATAL_IF(coords == nullptr);
const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f{coords->getY(),
coords->getX()},
.pressure =
inputEvent.getPressure(/*pointerIndex=*/0)},
.timestamp = inputEvent.getEventTime()};
// Handle event based on action type.
switch (inputEvent.getActionMasked()) {
case AMOTION_EVENT_ACTION_DOWN: {
clearStrokeData();
incorporateNewGroundTruth(groundTruthPoint);
break;
}
case AMOTION_EVENT_ACTION_MOVE: {
incorporateNewGroundTruth(groundTruthPoint);
break;
}
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL: {
// Only expect meaningful predictions when given at least two input points.
if (mRecentGroundTruthPoints.size() >= 2) {
computeAtomFields();
reportMetrics();
break;
}
}
}
}
// Adds new predictions to mRecentPredictions and maintains the invariant that elements are
// sorted in ascending order of targetTimestamp.
void MotionPredictorMetricsManager::onPredict(const MotionEvent& predictionEvent) {
for (size_t i = 0; i < predictionEvent.getHistorySize() + 1; ++i) {
// Convert MotionEvent to PredictionPoint.
const PointerCoords* coords =
predictionEvent.getHistoricalRawPointerCoords(/*pointerIndex=*/0, i);
LOG_ALWAYS_FATAL_IF(coords == nullptr);
const nsecs_t targetTimestamp = predictionEvent.getHistoricalEventTime(i);
mRecentPredictions.push_back(
PredictionPoint{{.position = Eigen::Vector2f{coords->getY(), coords->getX()},
.pressure =
predictionEvent.getHistoricalPressure(/*pointerIndex=*/0,
i)},
.originTimestamp = mRecentGroundTruthPoints.back().timestamp,
.targetTimestamp = targetTimestamp});
}
std::sort(mRecentPredictions.begin(), mRecentPredictions.end());
}
void MotionPredictorMetricsManager::clearStrokeData() {
mRecentGroundTruthPoints.clear();
mRecentPredictions.clear();
std::fill(mAggregatedMetrics.begin(), mAggregatedMetrics.end(), AggregatedStrokeMetrics{});
std::fill(mAtomFields.begin(), mAtomFields.end(), AtomFields{});
}
void MotionPredictorMetricsManager::incorporateNewGroundTruth(
const GroundTruthPoint& groundTruthPoint) {
// Note: this removes the oldest point if `mRecentGroundTruthPoints` is already at capacity.
mRecentGroundTruthPoints.pushBack(groundTruthPoint);
// Remove outdated predictions those that can never be matched with the current or any future
// ground truth points. We use fuzzy association for the timestamps here, because ground truth
// and prediction timestamps may not be perfectly synchronized.
const nsecs_t fuzzy_association_time_delta = mPredictionInterval / 4;
const auto firstCurrentIt =
std::find_if(mRecentPredictions.begin(), mRecentPredictions.end(),
[&groundTruthPoint,
fuzzy_association_time_delta](const PredictionPoint& prediction) {
return prediction.targetTimestamp >
groundTruthPoint.timestamp - fuzzy_association_time_delta;
});
mRecentPredictions.erase(mRecentPredictions.begin(), firstCurrentIt);
// Fuzzily match the new ground truth's timestamp to recent predictions' targetTimestamp and
// update the corresponding metrics.
for (const PredictionPoint& prediction : mRecentPredictions) {
if ((prediction.targetTimestamp >
groundTruthPoint.timestamp - fuzzy_association_time_delta) &&
(prediction.targetTimestamp <
groundTruthPoint.timestamp + fuzzy_association_time_delta)) {
updateAggregatedMetrics(prediction);
}
}
}
void MotionPredictorMetricsManager::updateAggregatedMetrics(
const PredictionPoint& predictionPoint) {
if (mRecentGroundTruthPoints.size() < 2) {
return;
}
const GroundTruthPoint& latestGroundTruthPoint = mRecentGroundTruthPoints.back();
const GroundTruthPoint& previousGroundTruthPoint =
mRecentGroundTruthPoints[mRecentGroundTruthPoints.size() - 2];
// Calculate prediction error vector.
const Eigen::Vector2f groundTruthTrajectory =
latestGroundTruthPoint.position - previousGroundTruthPoint.position;
const Eigen::Vector2f predictionTrajectory =
predictionPoint.position - previousGroundTruthPoint.position;
const Eigen::Vector2f predictionError = predictionTrajectory - groundTruthTrajectory;
// By default, prediction error counts fully as both off-trajectory and along-trajectory error.
// This serves as the fallback when the two most recent ground truth points are equal.
const float predictionErrorNorm = predictionError.norm();
float alongTrajectoryError = predictionErrorNorm;
float offTrajectoryError = predictionErrorNorm;
if (groundTruthTrajectory.squaredNorm() > 0) {
// Rotate the prediction error vector by the angle of the ground truth trajectory vector.
// This yields a vector whose first component is the along-trajectory error and whose
// second component is the off-trajectory error.
const float theta = std::atan2(groundTruthTrajectory[1], groundTruthTrajectory[0]);
const Eigen::Vector2f rotatedPredictionError = Eigen::Rotation2Df(-theta) * predictionError;
alongTrajectoryError = rotatedPredictionError[0];
offTrajectoryError = rotatedPredictionError[1];
}
// Compute the multiple of mPredictionInterval nearest to the amount of time into the
// future being predicted. This serves as the time bucket index into mAggregatedMetrics.
const float timestampDeltaFloat =
static_cast<float>(predictionPoint.targetTimestamp - predictionPoint.originTimestamp);
const size_t tIndex =
static_cast<size_t>(std::round(timestampDeltaFloat / mPredictionInterval - 1));
// Aggregate values into "general errors".
mAggregatedMetrics[tIndex].alongTrajectoryErrorSum += alongTrajectoryError;
mAggregatedMetrics[tIndex].alongTrajectorySumSquaredErrors +=
alongTrajectoryError * alongTrajectoryError;
mAggregatedMetrics[tIndex].offTrajectorySumSquaredErrors +=
offTrajectoryError * offTrajectoryError;
const float pressureError = predictionPoint.pressure - latestGroundTruthPoint.pressure;
mAggregatedMetrics[tIndex].pressureSumSquaredErrors += pressureError * pressureError;
++mAggregatedMetrics[tIndex].generalErrorsCount;
// Aggregate values into high-velocity metrics, if we are in one of the last two time buckets
// and the velocity is above the threshold. Velocity here is measured in pixels per second.
const float velocity = groundTruthTrajectory.norm() /
(static_cast<float>(latestGroundTruthPoint.timestamp -
previousGroundTruthPoint.timestamp) /
NANOS_PER_SECOND);
if ((tIndex + 2 >= mMaxNumPredictions) && (velocity > HIGH_VELOCITY_THRESHOLD)) {
mAggregatedMetrics[tIndex].highVelocityAlongTrajectorySse +=
alongTrajectoryError * alongTrajectoryError;
mAggregatedMetrics[tIndex].highVelocityOffTrajectorySse +=
offTrajectoryError * offTrajectoryError;
++mAggregatedMetrics[tIndex].highVelocityErrorsCount;
}
// Compute path length for scale-invariant errors.
float pathLength = 0;
for (size_t i = 1; i < mRecentGroundTruthPoints.size(); ++i) {
pathLength +=
(mRecentGroundTruthPoints[i].position - mRecentGroundTruthPoints[i - 1].position)
.norm();
}
// Avoid overweighting errors at the beginning of a stroke: compute the path length as if there
// were a full ground truth history by filling in missing segments with the average length.
// Note: the "- 1" is needed to translate from number of endpoints to number of segments.
pathLength *= static_cast<float>(mRecentGroundTruthPoints.capacity() - 1) /
(mRecentGroundTruthPoints.size() - 1);
pathLength += PATH_LENGTH_EPSILON; // Ensure path length is nonzero (>= PATH_LENGTH_EPSILON).
// Compute and aggregate scale-invariant errors.
const float scaleInvariantAlongTrajectoryError = alongTrajectoryError / pathLength;
const float scaleInvariantOffTrajectoryError = offTrajectoryError / pathLength;
mAggregatedMetrics[tIndex].scaleInvariantAlongTrajectorySse +=
scaleInvariantAlongTrajectoryError * scaleInvariantAlongTrajectoryError;
mAggregatedMetrics[tIndex].scaleInvariantOffTrajectorySse +=
scaleInvariantOffTrajectoryError * scaleInvariantOffTrajectoryError;
++mAggregatedMetrics[tIndex].scaleInvariantErrorsCount;
}
void MotionPredictorMetricsManager::computeAtomFields() {
for (size_t i = 0; i < mAggregatedMetrics.size(); ++i) {
if (mAggregatedMetrics[i].generalErrorsCount == 0) {
// We have not received data corresponding to metrics for this time bucket.
continue;
}
mAtomFields[i].deltaTimeBucketMilliseconds =
static_cast<int>(mPredictionInterval / NANOS_PER_MILLIS * (i + 1));
// Note: we need the "* 1000"s below because we report values in integral milli-units.
{ // General errors: reported for every time bucket.
const float alongTrajectoryErrorMean = mAggregatedMetrics[i].alongTrajectoryErrorSum /
mAggregatedMetrics[i].generalErrorsCount;
mAtomFields[i].alongTrajectoryErrorMeanMillipixels =
static_cast<int>(alongTrajectoryErrorMean * 1000);
const float alongTrajectoryMse = mAggregatedMetrics[i].alongTrajectorySumSquaredErrors /
mAggregatedMetrics[i].generalErrorsCount;
// Take the max with 0 to avoid negative values caused by numerical instability.
const float alongTrajectoryErrorVariance =
std::max(0.0f,
alongTrajectoryMse -
alongTrajectoryErrorMean * alongTrajectoryErrorMean);
const float alongTrajectoryErrorStd = std::sqrt(alongTrajectoryErrorVariance);
mAtomFields[i].alongTrajectoryErrorStdMillipixels =
static_cast<int>(alongTrajectoryErrorStd * 1000);
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].offTrajectorySumSquaredErrors < 0,
"mAggregatedMetrics[%zu].offTrajectorySumSquaredErrors = %f should "
"not be negative",
i, mAggregatedMetrics[i].offTrajectorySumSquaredErrors);
const float offTrajectoryRmse =
std::sqrt(mAggregatedMetrics[i].offTrajectorySumSquaredErrors /
mAggregatedMetrics[i].generalErrorsCount);
mAtomFields[i].offTrajectoryRmseMillipixels =
static_cast<int>(offTrajectoryRmse * 1000);
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].pressureSumSquaredErrors < 0,
"mAggregatedMetrics[%zu].pressureSumSquaredErrors = %f should not "
"be negative",
i, mAggregatedMetrics[i].pressureSumSquaredErrors);
const float pressureRmse = std::sqrt(mAggregatedMetrics[i].pressureSumSquaredErrors /
mAggregatedMetrics[i].generalErrorsCount);
mAtomFields[i].pressureRmseMilliunits = static_cast<int>(pressureRmse * 1000);
}
// High-velocity errors: reported only for last two time buckets.
// Check if we are in one of the last two time buckets, and there is high-velocity data.
if ((i + 2 >= mMaxNumPredictions) && (mAggregatedMetrics[i].highVelocityErrorsCount > 0)) {
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityAlongTrajectorySse < 0,
"mAggregatedMetrics[%zu].highVelocityAlongTrajectorySse = %f "
"should not be negative",
i, mAggregatedMetrics[i].highVelocityAlongTrajectorySse);
const float alongTrajectoryRmse =
std::sqrt(mAggregatedMetrics[i].highVelocityAlongTrajectorySse /
mAggregatedMetrics[i].highVelocityErrorsCount);
mAtomFields[i].highVelocityAlongTrajectoryRmse =
static_cast<int>(alongTrajectoryRmse * 1000);
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityOffTrajectorySse < 0,
"mAggregatedMetrics[%zu].highVelocityOffTrajectorySse = %f should "
"not be negative",
i, mAggregatedMetrics[i].highVelocityOffTrajectorySse);
const float offTrajectoryRmse =
std::sqrt(mAggregatedMetrics[i].highVelocityOffTrajectorySse /
mAggregatedMetrics[i].highVelocityErrorsCount);
mAtomFields[i].highVelocityOffTrajectoryRmse =
static_cast<int>(offTrajectoryRmse * 1000);
}
// Scale-invariant errors: reported only for the last time bucket, where the values
// represent an average across all time buckets.
if (i + 1 == mMaxNumPredictions) {
// Compute error averages.
float alongTrajectoryRmseSum = 0;
float offTrajectoryRmseSum = 0;
for (size_t j = 0; j < mAggregatedMetrics.size(); ++j) {
// If we have general errors (checked above), we should always also have
// scale-invariant errors.
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantErrorsCount == 0,
"mAggregatedMetrics[%zu].scaleInvariantErrorsCount is 0", j);
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse < 0,
"mAggregatedMetrics[%zu].scaleInvariantAlongTrajectorySse = %f "
"should not be negative",
j, mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse);
alongTrajectoryRmseSum +=
std::sqrt(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse /
mAggregatedMetrics[j].scaleInvariantErrorsCount);
LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse < 0,
"mAggregatedMetrics[%zu].scaleInvariantOffTrajectorySse = %f "
"should not be negative",
j, mAggregatedMetrics[j].scaleInvariantOffTrajectorySse);
offTrajectoryRmseSum +=
std::sqrt(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse /
mAggregatedMetrics[j].scaleInvariantErrorsCount);
}
const float averageAlongTrajectoryRmse =
alongTrajectoryRmseSum / mAggregatedMetrics.size();
mAtomFields.back().scaleInvariantAlongTrajectoryRmse =
static_cast<int>(averageAlongTrajectoryRmse * 1000);
const float averageOffTrajectoryRmse = offTrajectoryRmseSum / mAggregatedMetrics.size();
mAtomFields.back().scaleInvariantOffTrajectoryRmse =
static_cast<int>(averageOffTrajectoryRmse * 1000);
}
}
}
void MotionPredictorMetricsManager::reportMetrics() {
// Report one atom for each time bucket.
for (size_t i = 0; i < mAtomFields.size(); ++i) {
// Call stats_write logging function only on Android targets (not supported on host).
#ifdef __ANDROID__
android::stats::libinput::
stats_write(android::stats::libinput::STYLUS_PREDICTION_METRICS_REPORTED,
/*stylus_vendor_id=*/0,
/*stylus_product_id=*/0, mAtomFields[i].deltaTimeBucketMilliseconds,
mAtomFields[i].alongTrajectoryErrorMeanMillipixels,
mAtomFields[i].alongTrajectoryErrorStdMillipixels,
mAtomFields[i].offTrajectoryRmseMillipixels,
mAtomFields[i].pressureRmseMilliunits,
mAtomFields[i].highVelocityAlongTrajectoryRmse,
mAtomFields[i].highVelocityOffTrajectoryRmse,
mAtomFields[i].scaleInvariantAlongTrajectoryRmse,
mAtomFields[i].scaleInvariantOffTrajectoryRmse);
#endif
}
// Set mock atom fields, if available.
if (mMockLoggedAtomFields != nullptr) {
*mMockLoggedAtomFields = mAtomFields;
}
}
} // namespace android