You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1188 lines
28 KiB

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2025 Rockchip Electronics Co., Ltd
*/
#include <clk.h>
#include <clk-uclass.h>
#include <common.h>
#include <crypto.h>
#include <dm.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <asm/arch/clock.h>
#include <rockchip/crypto_ecc.h>
#include <rockchip/crypto_v2_pka.h>
#include <rockchip/rkce_core.h>
fdt_addr_t crypto_base;
#define ROUNDUP(size, alignment) round_up(size, alignment)
#define RKCE_HASH_TIMEOUT_MS 1000
#define RKCE_SYMM_TIMEOUT_MS 1000
struct rkce_sha_contex {
u32 length;
struct rkce_hash_td_ctrl ctrl;
struct rkce_hash_td *td;
struct rkce_hash_td_buf *td_buf;
};
struct rkce_cipher_contex {
struct rkce_symm_td *td;
struct rkce_symm_td *td_aad;
struct rkce_symm_td_buf *td_buf;
};
struct rockchip_crypto_priv {
fdt_addr_t reg;
u32 frequency;
char *clocks;
u32 *frequencies;
u32 nclocks;
u32 freq_nclocks;
u32 capability;
void *hardware;
struct rkce_sha_contex *hash_ctx;
};
struct rockchip_map {
u32 crypto;
u32 rkce;
};
static const struct rockchip_map rk_hash_map[] = {
{CRYPTO_SM3, RKCE_HASH_ALGO_SM3},
{CRYPTO_MD5, RKCE_HASH_ALGO_MD5},
{CRYPTO_SHA1, RKCE_HASH_ALGO_SHA1},
{CRYPTO_SHA256, RKCE_HASH_ALGO_SHA256},
{CRYPTO_SHA512, RKCE_HASH_ALGO_SHA512},
};
#if CONFIG_IS_ENABLED(ROCKCHIP_HMAC)
static const struct rockchip_map rk_hmac_map[] = {
{CRYPTO_HMAC_MD5, RKCE_HASH_ALGO_MD5},
{CRYPTO_HMAC_SHA1, RKCE_HASH_ALGO_SHA1},
{CRYPTO_HMAC_SHA256, RKCE_HASH_ALGO_SHA256},
{CRYPTO_HMAC_SHA512, RKCE_HASH_ALGO_SHA512},
{CRYPTO_HMAC_SM3, RKCE_HASH_ALGO_SM3},
};
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_CIPHER)
static const struct rockchip_map rk_cipher_map[] = {
{CRYPTO_AES, RKCE_SYMM_ALGO_AES},
{CRYPTO_DES, RKCE_SYMM_ALGO_TDES},
{CRYPTO_SM4, RKCE_SYMM_ALGO_SM4},
};
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_RSA)
static const struct rockchip_map rk_rsa_map[] = {
{CRYPTO_RSA512, RKCE_ASYM_ALGO_RSA},
{CRYPTO_RSA1024, RKCE_ASYM_ALGO_RSA},
{CRYPTO_RSA2048, RKCE_ASYM_ALGO_RSA},
{CRYPTO_RSA3072, RKCE_ASYM_ALGO_RSA},
{CRYPTO_RSA4096, RKCE_ASYM_ALGO_RSA},
};
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_EC)
static const struct rockchip_map rk_ec_map[] = {
{CRYPTO_SM2, RKCE_ASYM_ALGO_SM2},
{CRYPTO_ECC_192R1, RKCE_ASYM_ALGO_ECC_P192},
{CRYPTO_ECC_224R1, RKCE_ASYM_ALGO_ECC_P224},
{CRYPTO_ECC_256R1, RKCE_ASYM_ALGO_ECC_P256},
};
#endif
static int rk_crypto_enable_clk(struct udevice *dev);
static int rk_crypto_disable_clk(struct udevice *dev);
static void crypto_flush_cacheline(ulong addr, ulong size)
{
ulong alignment = CONFIG_SYS_CACHELINE_SIZE;
ulong aligned_input, aligned_len;
if (!addr || !size)
return;
/* Must flush dcache before crypto DMA fetch data region */
aligned_input = round_down(addr, alignment);
aligned_len = round_up(size + (addr - aligned_input), alignment);
flush_cache(aligned_input, aligned_len);
}
static u32 rk_get_cemode(const struct rockchip_map *map, u32 num, u32 algo)
{
u32 i, j;
struct {
const struct rockchip_map *map;
u32 num;
} map_tbl[] = {
{rk_hash_map, ARRAY_SIZE(rk_hash_map)},
#if CONFIG_IS_ENABLED(ROCKCHIP_HMAC)
{rk_hmac_map, ARRAY_SIZE(rk_hmac_map)},
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_CIPHER)
{rk_cipher_map, ARRAY_SIZE(rk_cipher_map)},
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_RSA)
{rk_rsa_map, ARRAY_SIZE(rk_rsa_map)},
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_EC)
{rk_ec_map, ARRAY_SIZE(rk_ec_map)},
#endif
};
for (i = 0; i < ARRAY_SIZE(map_tbl); i++) {
const struct rockchip_map *map = map_tbl[i].map;
u32 num = map_tbl[i].num;
for (j = 0; j < num; j++) {
if (map[j].crypto == algo)
return map[j].rkce;
}
}
return 0;
}
static u32 rk_load_map(struct rockchip_crypto_priv *priv, u32 algo_type,
const struct rockchip_map *map, u32 num)
{
u32 i;
u32 capability = 0;
for (i = 0; i < num; i++) {
if (rkce_hw_algo_valid(priv->hardware, algo_type, map[i].rkce, 0))
capability |= map[i].crypto;
}
return capability;
}
static u32 rockchip_crypto_capability(struct udevice *dev)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
u32 cap = 0;
if (priv->capability)
return priv->capability;
cap |= rk_load_map(priv, RKCE_ALGO_TYPE_HASH,
rk_hash_map, ARRAY_SIZE(rk_hash_map));
#if CONFIG_IS_ENABLED(ROCKCHIP_HMAC)
cap |= rk_load_map(priv, RKCE_ALGO_TYPE_HMAC,
rk_hmac_map, ARRAY_SIZE(rk_hmac_map));
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_CIPHER)
cap |= rk_load_map(priv, RKCE_ALGO_TYPE_CIPHER,
rk_cipher_map, ARRAY_SIZE(rk_cipher_map));
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_RSA)
cap |= rk_load_map(priv, RKCE_ALGO_TYPE_ASYM, rk_rsa_map,
ARRAY_SIZE(rk_rsa_map));
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_EC)
cap |= rk_load_map(priv, RKCE_ALGO_TYPE_ASYM, rk_ec_map,
ARRAY_SIZE(rk_ec_map));
#endif
return cap;
}
static void *rkce_sha_ctx_alloc(void)
{
struct rkce_sha_contex *hw_ctx;
hw_ctx = malloc(sizeof(*hw_ctx));
if (!hw_ctx)
return NULL;
memset(hw_ctx, 0x00, sizeof(*hw_ctx));
hw_ctx->td = rkce_cma_alloc(sizeof(struct rkce_hash_td));
if (!hw_ctx->td)
goto error;
memset(hw_ctx->td, 0x00, sizeof(struct rkce_hash_td));
hw_ctx->td_buf = rkce_cma_alloc(sizeof(struct rkce_hash_td_buf));
if (!hw_ctx->td_buf)
goto error;
memset(hw_ctx->td_buf, 0x00, sizeof(struct rkce_hash_td_buf));
return hw_ctx;
error:
rkce_cma_free(hw_ctx->td);
rkce_cma_free(hw_ctx->td_buf);
free(hw_ctx);
return NULL;
}
static void rkce_sha_ctx_free(struct rkce_sha_contex *hw_ctx)
{
if (!hw_ctx)
return;
rkce_cma_free(hw_ctx->td);
rkce_cma_free(hw_ctx->td_buf);
free(hw_ctx);
}
static int rk_sha_init(struct udevice *dev, sha_context *ctx,
u8 *key, u32 key_len, bool is_hmac)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
struct rkce_sha_contex *hash_ctx = NULL;
u32 ce_algo = 0;
int ret = 0;
if ((ctx->algo & priv->capability) == 0)
return -ENOSYS;
if (priv->hash_ctx)
return -EFAULT;
rkce_soft_reset(priv->hardware, RKCE_RESET_HASH);
hash_ctx = rkce_sha_ctx_alloc();
if (!hash_ctx)
return -ENOMEM;
ret = rkce_init_hash_td(hash_ctx->td, hash_ctx->td_buf);
if (ret)
goto exit;
ce_algo = rk_get_cemode(rk_hash_map, ARRAY_SIZE(rk_hash_map), ctx->algo);
hash_ctx->ctrl.td_type = RKCE_TD_TYPE_HASH;
hash_ctx->ctrl.hw_pad_en = 1;
hash_ctx->ctrl.first_pkg = 1;
hash_ctx->ctrl.last_pkg = 0;
hash_ctx->ctrl.hash_algo = ce_algo;
hash_ctx->ctrl.hmac_en = is_hmac;
hash_ctx->ctrl.is_preemptible = 0;
hash_ctx->ctrl.int_en = 1;
if (is_hmac) {
if (key_len > 64) {
ret = -EINVAL;
goto exit;
}
memcpy(hash_ctx->td_buf->key, key, key_len);
}
priv->hash_ctx = hash_ctx;
exit:
if (ret) {
rkce_sha_ctx_free(hash_ctx);
priv->hash_ctx = NULL;
}
return ret;
}
static int rk_sha_update(struct udevice *dev, u32 *input, u32 len, bool is_last)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
struct rkce_sha_contex *hash_ctx;
struct rkce_hash_td *td;
int ret = 0;
if (!priv->hash_ctx)
return -EINVAL;
if (!is_last && (!input || len == 0))
return -EINVAL;
hash_ctx = priv->hash_ctx;
td = hash_ctx->td;
td->ctrl = hash_ctx->ctrl;
memset(&td->sg, 0x00, sizeof(*td->sg));
if (hash_ctx->ctrl.first_pkg == 1)
hash_ctx->ctrl.first_pkg = 0;
if (is_last) {
td->ctrl.last_pkg = 1;
} else {
#ifdef CONFIG_ARM64
td->sg[0].src_addr_h = rkce_cma_virt2phys(input) >> 32;
#endif
td->sg[0].src_addr_l = rkce_cma_virt2phys(input) & 0xffffffff;
td->sg[0].src_size = len;
hash_ctx->length += len;
crypto_flush_cacheline((ulong)input, len);
}
rk_crypto_enable_clk(dev);
crypto_flush_cacheline((ulong)hash_ctx->td, sizeof(*hash_ctx->td));
crypto_flush_cacheline((ulong)hash_ctx->td_buf, sizeof(*hash_ctx->td_buf));
ret = rkce_push_td_sync(priv->hardware, td, RKCE_HASH_TIMEOUT_MS);
if (ret) {
rkce_sha_ctx_free(hash_ctx);
priv->hash_ctx = NULL;
}
rk_crypto_disable_clk(dev);
return ret;
}
static int rockchip_crypto_sha_init(struct udevice *dev, sha_context *ctx)
{
return rk_sha_init(dev, ctx, NULL, 0, false);
}
static int rockchip_crypto_sha_update(struct udevice *dev, u32 *input, u32 len)
{
return rk_sha_update(dev, input, len, false);
}
static int rockchip_crypto_sha_final(struct udevice *dev, sha_context *ctx, u8 *output)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
struct rkce_sha_contex *hash_ctx = priv->hash_ctx;
u32 nbits;
int ret;
if (!priv->hash_ctx)
return -EINVAL;
nbits = crypto_algo_nbits(ctx->algo);
if (hash_ctx->length != ctx->length) {
printf("total length(0x%08x) != init length(0x%08x)!\n",
hash_ctx->length, ctx->length);
ret = -EIO;
goto exit;
}
ret = rk_sha_update(dev, NULL, 0, true);
if (ret == 0)
memcpy(output, hash_ctx->td_buf->hash, BITS2BYTE(nbits));
exit:
rkce_sha_ctx_free(hash_ctx);
priv->hash_ctx = NULL;
return ret;
}
#if CONFIG_IS_ENABLED(ROCKCHIP_HMAC)
static int rockchip_crypto_hmac_init(struct udevice *dev, sha_context *ctx, u8 *key, u32 key_len)
{
return rk_sha_init(dev, ctx, key, key_len, true);
}
static int rockchip_crypto_hmac_update(struct udevice *dev, u32 *input, u32 len)
{
return rockchip_crypto_sha_update(dev, input, len);
}
static int rockchip_crypto_hmac_final(struct udevice *dev, sha_context *ctx, u8 *output)
{
return rockchip_crypto_sha_final(dev, ctx, output);
}
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_CIPHER)
static int hw_crypto_ccm128_setiv(u8 *iv_buf, u8 *nonce, u32 nlen, u32 mlen)
{
u32 L = iv_buf[0] & 7; /* the L parameter */
if (nlen < (14 - L))
return -1; /* nonce is too short */
if (sizeof(mlen) == 8 && L >= 3) {
iv_buf[8] = mlen >> (56 % (sizeof(mlen) * 8));
iv_buf[9] = mlen >> (48 % (sizeof(mlen) * 8));
iv_buf[10] = mlen >> (40 % (sizeof(mlen) * 8));
iv_buf[11] = mlen >> (32 % (sizeof(mlen) * 8));
}
iv_buf[12] = mlen >> 24;
iv_buf[13] = mlen >> 16;
iv_buf[14] = mlen >> 8;
iv_buf[15] = mlen;
iv_buf[0] &= ~0x40; /* clear aad flag */
memcpy(&iv_buf[1], nonce, 14 - L);
return 0;
}
static void hw_get_ccm_aad_padding(u32 aad_len, u8 *padding, u32 *padding_size)
{
u32 i = 0;
if (aad_len == 0) {
*padding_size = 0;
return;
}
if (aad_len < (0x10000 - 0x100)) {
i = 2;
} else if (sizeof(aad_len) == 8 &&
aad_len >= (size_t)1 << (32 % (sizeof(aad_len) * 8))) {
i = 10;
} else {
i = 6;
}
if (i == 2) {
padding[0] = aad_len >> 8;
padding[1] = aad_len;
} else if (i == 10) {
padding[0] = 0xFF;
padding[1] = 0xFF;
padding[2] = aad_len >> (56 % (sizeof(aad_len) * 8));
padding[3] = aad_len >> (48 % (sizeof(aad_len) * 8));
padding[4] = aad_len >> (40 % (sizeof(aad_len) * 8));
padding[5] = aad_len >> (32 % (sizeof(aad_len) * 8));
padding[6] = aad_len >> 24;
padding[7] = aad_len >> 16;
padding[8] = aad_len >> 8;
padding[9] = aad_len;
} else {
padding[0] = 0xFF;
padding[1] = 0xFE;
padding[2] = aad_len >> 24;
padding[3] = aad_len >> 16;
padding[4] = aad_len >> 8;
}
*padding_size = i;
}
static int hw_compose_ccm_aad_iv(u8 *aad_iv, u32 data_len,
u32 aad_len, u32 tag_size)
{
u32 L; /* the L parameter */
u8 nonce[AES_BLOCK_SIZE];
L = aad_iv[0] & 7;
aad_iv[0] |= ((u8)(((tag_size - 2) / 2) & 7) << 3);
if (sizeof(data_len) == 8 && L >= 3) {
aad_iv[8] = data_len >> (56 % (sizeof(data_len) * 8));
aad_iv[9] = data_len >> (48 % (sizeof(data_len) * 8));
aad_iv[10] = data_len >> (40 % (sizeof(data_len) * 8));
aad_iv[11] = data_len >> (32 % (sizeof(data_len) * 8));
}
/* save nonce */
memcpy(nonce, &aad_iv[1], 14 - L);
aad_iv[12] = data_len >> 24;
aad_iv[13] = data_len >> 16;
aad_iv[14] = data_len >> 8;
aad_iv[15] = data_len;
/* restore nonce */
memcpy(&aad_iv[1], nonce, 14 - L);
aad_iv[0] &= ~0x40; /* clear Adata flag */
if (aad_len)
aad_iv[0] |= 0x40; //set aad flag
return 0;
}
static void rkce_destroy_ccm_aad(u8 *new_aad)
{
rkce_cma_free(new_aad);
}
static int rkce_build_ccm_aad(const u8 *aad, u32 aad_len, u32 data_len,
u8 *iv, u32 iv_len,
u8 **new_aad, u32 *new_aad_len,
u8 *new_iv, u32 *new_iv_len)
{
int ret = -RKCE_INVAL;
u32 L;
u8 nonce[AES_BLOCK_SIZE];
u8 pad[AES_BLOCK_SIZE];
u32 pad_size = 0;
u32 tag_len = AES_BLOCK_SIZE;
u8 *aad_tmp = NULL;
u32 aad_tmp_len = 0;
memset(nonce, 0x00, sizeof(nonce));
L = 15 - iv_len;
nonce[0] = (L - 1) & 7;
ret = hw_crypto_ccm128_setiv(nonce, (u8 *)iv, iv_len, 0);
if (ret)
return ret;
memcpy(new_iv, nonce, sizeof(nonce));
*new_iv_len = sizeof(nonce);
memset(pad, 0x00, sizeof(pad));
hw_get_ccm_aad_padding(aad_len, pad, &pad_size);
aad_tmp_len = aad_len + AES_BLOCK_SIZE + pad_size;
aad_tmp_len = ROUNDUP(aad_tmp_len, AES_BLOCK_SIZE);
aad_tmp = rkce_cma_alloc(aad_tmp_len);
if (!aad_tmp) {
ret = -RKCE_NOMEM;
goto exit;
}
/* clear last block */
memset(aad_tmp + aad_tmp_len - AES_BLOCK_SIZE, 0x00, AES_BLOCK_SIZE);
memcpy(aad_tmp, nonce, sizeof(nonce));
hw_compose_ccm_aad_iv(aad_tmp, data_len, aad_len, tag_len);
memcpy(aad_tmp + AES_BLOCK_SIZE, pad, pad_size);
memcpy(aad_tmp + AES_BLOCK_SIZE + pad_size, aad, aad_len);
*new_aad = aad_tmp;
*new_aad_len = aad_tmp_len;
exit:
return ret;
}
static void *rkce_cipher_ctx_alloc(void)
{
struct rkce_cipher_contex *hw_ctx;
hw_ctx = malloc(sizeof(*hw_ctx));
if (!hw_ctx)
return NULL;
hw_ctx->td = rkce_cma_alloc(sizeof(struct rkce_symm_td));
if (!hw_ctx->td)
goto error;
memset(hw_ctx->td, 0x00, sizeof(struct rkce_symm_td));
hw_ctx->td_aad = rkce_cma_alloc(sizeof(struct rkce_symm_td));
if (!hw_ctx->td_aad)
goto error;
memset(hw_ctx->td_aad, 0x00, sizeof(struct rkce_symm_td));
hw_ctx->td_buf = rkce_cma_alloc(sizeof(struct rkce_symm_td_buf));
if (!hw_ctx->td_buf)
goto error;
memset(hw_ctx->td_buf, 0x00, sizeof(struct rkce_symm_td_buf));
return hw_ctx;
error:
rkce_cma_free(hw_ctx->td);
rkce_cma_free(hw_ctx->td_aad);
rkce_cma_free(hw_ctx->td_buf);
free(hw_ctx);
return NULL;
}
static void rkce_cipher_ctx_free(struct rkce_cipher_contex *hw_ctx)
{
if (!hw_ctx)
return;
rkce_cma_free(hw_ctx->td);
rkce_cma_free(hw_ctx->td_aad);
rkce_cma_free(hw_ctx->td_buf);
free(hw_ctx);
}
static void crypto_invalidate_cacheline(u32 addr, u32 size)
{
ulong alignment = CONFIG_SYS_CACHELINE_SIZE;
ulong aligned_input, aligned_len;
if (!addr || !size)
return;
/* Must invalidate dcache after crypto DMA write data region */
aligned_input = round_down(addr, alignment);
aligned_len = round_up(size + (addr - aligned_input), alignment);
invalidate_dcache_range(aligned_input, aligned_input + aligned_len);
}
static const struct rockchip_map rk_cipher_algo_map[] = {
{RK_MODE_ECB, RKCE_SYMM_MODE_ECB},
{RK_MODE_CBC, RKCE_SYMM_MODE_CBC},
{RK_MODE_CTS, RKCE_SYMM_MODE_CTS},
{RK_MODE_CTR, RKCE_SYMM_MODE_CTR},
{RK_MODE_CFB, RKCE_SYMM_MODE_CFB},
{RK_MODE_OFB, RKCE_SYMM_MODE_OFB},
{RK_MODE_XTS, RKCE_SYMM_MODE_XTS},
{RK_MODE_CCM, RKCE_SYMM_MODE_CCM},
{RK_MODE_GCM, RKCE_SYMM_MODE_GCM},
{RK_MODE_CMAC, RKCE_SYMM_MODE_CMAC},
{RK_MODE_CBC_MAC, RKCE_SYMM_MODE_CBC_MAC},
};
static int rk_get_cipher_cemode(u32 algo, u32 mode, u32 *ce_algo, u32 *ce_mode)
{
u32 i;
switch (algo) {
case CRYPTO_DES:
*ce_algo = RKCE_SYMM_ALGO_TDES;
break;
case CRYPTO_AES:
*ce_algo = RKCE_SYMM_ALGO_AES;
break;
case CRYPTO_SM4:
*ce_algo = RKCE_SYMM_ALGO_SM4;
break;
default:
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(rk_cipher_algo_map); i++) {
if (mode == rk_cipher_algo_map[i].crypto) {
*ce_mode = rk_cipher_algo_map[i].rkce;
return 0;
}
}
return -EINVAL;
}
u32 rk_get_td_keysize(u32 ce_algo, u32 ce_mode, u32 key_len)
{
u32 key_size = 0;
if (ce_algo == RKCE_SYMM_ALGO_AES) {
if (key_len == AES_KEYSIZE_128)
key_size = RKCE_KEY_AES_128;
else if (key_len == AES_KEYSIZE_192)
key_size = RKCE_KEY_AES_192;
else if (key_len == AES_KEYSIZE_256)
key_size = RKCE_KEY_AES_256;
else
;
}
return key_size;
}
int rk_set_symm_td_buf_key(struct rkce_symm_td_buf *td_buf,
u32 ce_algo, u32 ce_mode, cipher_context *ctx)
{
memset(td_buf->key1, 0x00, sizeof(td_buf->key1));
memset(td_buf->key2, 0x00, sizeof(td_buf->key2));
if (ce_mode == RKCE_SYMM_MODE_XTS) {
memcpy(td_buf->key1, ctx->key, ctx->key_len);
memcpy(td_buf->key2, ctx->twk_key, ctx->key_len);
} else {
memcpy(td_buf->key1, ctx->key, ctx->key_len);
}
if (ctx->key_len == DES_KEYSIZE * 2 &&
(ce_algo == RKCE_SYMM_ALGO_DES || ce_algo == RKCE_SYMM_ALGO_TDES))
memcpy(td_buf->key1 + DES_KEYSIZE * 2, td_buf->key1, DES_KEYSIZE);
return 0;
}
int rk_set_symm_td_sg(struct rkce_symm_td *td,
const u8 *in, u32 in_len, u8 *out, u32 out_len)
{
memset(td->sg, 0x00, sizeof(td->sg));
#ifdef CONFIG_ARM64
td->sg[0].src_addr_h = rkce_cma_virt2phys(in) >> 32;
#endif
td->sg[0].src_addr_l = rkce_cma_virt2phys(in) & 0xffffffff;
td->sg[0].src_size = in_len;
if (out && out_len) {
#ifdef CONFIG_ARM64
td->sg[0].dst_addr_h = rkce_cma_virt2phys(out) >> 32;
#endif
td->sg[0].dst_addr_l = rkce_cma_virt2phys(out) & 0xffffffff;
td->sg[0].dst_size = out_len;
}
td->next_task = 0;
return 0;
}
static int rk_crypto_cipher(struct udevice *dev, cipher_context *ctx,
const u8 *in, u8 *out, u32 len, bool enc,
const u8 *aad, u32 aad_len, u8 *tag)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
struct rkce_cipher_contex *hw_ctx = NULL;
u32 ce_algo = 0, ce_mode = 0;
int ret = 0;
rkce_soft_reset(priv->hardware, RKCE_RESET_SYMM);
ret = rk_get_cipher_cemode(ctx->algo, ctx->mode, &ce_algo, &ce_mode);
if (ret)
return ret;
hw_ctx = rkce_cipher_ctx_alloc();
if (!hw_ctx)
return -ENOMEM;
rkce_init_symm_td(hw_ctx->td, hw_ctx->td_buf);
hw_ctx->td->ctrl.td_type = RKCE_TD_TYPE_SYMM;
hw_ctx->td->ctrl.is_dec = !enc;
hw_ctx->td->ctrl.symm_algo = ce_algo;
hw_ctx->td->ctrl.symm_mode = ce_mode;
hw_ctx->td->ctrl.key_size = rk_get_td_keysize(ce_algo, ce_mode, ctx->key_len);
hw_ctx->td->ctrl.first_pkg = 1;
hw_ctx->td->ctrl.last_pkg = 1;
hw_ctx->td->ctrl.int_en = 1;
memcpy(hw_ctx->td_buf->iv, ctx->iv, ctx->iv_len);
hw_ctx->td->ctrl.iv_len = ctx->iv_len;
ret = rk_set_symm_td_buf_key(hw_ctx->td_buf, ce_algo, ce_mode, ctx);
if (ret)
goto exit;
ret = rk_set_symm_td_sg(hw_ctx->td, in, len, out, len);
if (ret)
goto exit;
if (ce_mode == RKCE_SYMM_MODE_CCM) {
u8 *new_aad = NULL;
u32 new_aad_len = 0, new_iv_len = 0;
rkce_init_symm_td(hw_ctx->td_aad, hw_ctx->td_buf);
ret = rkce_build_ccm_aad(aad, aad_len, len,
hw_ctx->td_buf->iv, ctx->iv_len,
&new_aad, &new_aad_len,
hw_ctx->td_buf->iv, &new_iv_len);
if (ret)
goto exit;
ret = rk_set_symm_td_sg(hw_ctx->td_aad, new_aad, new_aad_len, NULL, 0);
if (ret)
goto exit;
hw_ctx->td->ctrl.iv_len = new_iv_len;
hw_ctx->td_buf->gcm_len.aad_len_l = new_aad_len;
hw_ctx->td_aad->ctrl = hw_ctx->td->ctrl;
hw_ctx->td_aad->ctrl.is_aad = 1;
crypto_flush_cacheline((ulong)hw_ctx->td_aad, sizeof(*hw_ctx->td_aad));
crypto_flush_cacheline((ulong)hw_ctx->td_buf, sizeof(*hw_ctx->td_buf));
crypto_flush_cacheline((ulong)new_aad, new_aad_len);
rk_crypto_enable_clk(dev);
ret = rkce_push_td_sync(priv->hardware, hw_ctx->td_aad, RKCE_SYMM_TIMEOUT_MS);
rk_crypto_disable_clk(dev);
rkce_destroy_ccm_aad(new_aad);
if (ret) {
printf("CCM calc aad data failed.\n");
goto exit;
}
} else if (ce_mode == RKCE_SYMM_MODE_GCM) {
rkce_init_symm_td(hw_ctx->td_aad, hw_ctx->td_buf);
ret = rk_set_symm_td_sg(hw_ctx->td_aad, aad, aad_len, NULL, 0);
if (ret)
goto exit;
hw_ctx->td_buf->gcm_len.aad_len_l = aad_len;
hw_ctx->td_buf->gcm_len.pc_len_l = len;
hw_ctx->td_aad->ctrl = hw_ctx->td->ctrl;
hw_ctx->td_aad->ctrl.is_aad = 1;
crypto_flush_cacheline((ulong)hw_ctx->td_aad, sizeof(*hw_ctx->td_aad));
crypto_flush_cacheline((ulong)hw_ctx->td_buf, sizeof(*hw_ctx->td_buf));
crypto_flush_cacheline((ulong)aad, aad_len);
rk_crypto_enable_clk(dev);
ret = rkce_push_td_sync(priv->hardware, hw_ctx->td_aad, RKCE_SYMM_TIMEOUT_MS);
rk_crypto_disable_clk(dev);
if (ret) {
printf("GCM calc aad data failed.\n");
goto exit;
}
}
crypto_flush_cacheline((ulong)hw_ctx->td, sizeof(*hw_ctx->td));
crypto_flush_cacheline((ulong)hw_ctx->td_buf, sizeof(*hw_ctx->td_buf));
crypto_flush_cacheline((ulong)in, len);
crypto_invalidate_cacheline((ulong)out, len);
rk_crypto_enable_clk(dev);
ret = rkce_push_td_sync(priv->hardware, hw_ctx->td, RKCE_SYMM_TIMEOUT_MS);
crypto_invalidate_cacheline((ulong)out, len);
rk_crypto_disable_clk(dev);
if (tag)
memcpy(tag, hw_ctx->td_buf->tag, sizeof(hw_ctx->td_buf->tag));
exit:
rkce_cipher_ctx_free(hw_ctx);
return ret;
}
static int rockchip_crypto_cipher(struct udevice *dev, cipher_context *ctx,
const u8 *in, u8 *out, u32 len, bool enc)
{
return rk_crypto_cipher(dev, ctx, in, out, len, enc, NULL, 0, NULL);
}
static int rockchip_crypto_mac(struct udevice *dev, cipher_context *ctx,
const u8 *in, u32 len, u8 *tag)
{
return rk_crypto_cipher(dev, ctx, in, NULL, len, true, NULL, 0, tag);
}
static int rockchip_crypto_ae(struct udevice *dev, cipher_context *ctx,
const u8 *in, u32 len, const u8 *aad, u32 aad_len,
u8 *out, u8 *tag)
{
return rk_crypto_cipher(dev, ctx, in, out, len, true, aad, aad_len, tag);
}
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_RSA)
static int rockchip_crypto_rsa_verify(struct udevice *dev, rsa_key *ctx,
u8 *sign, u8 *output)
{
struct mpa_num *mpa_m = NULL, *mpa_e = NULL, *mpa_n = NULL;
struct mpa_num *mpa_c = NULL, *mpa_result = NULL;
u32 n_bits, n_words;
int ret;
if (!ctx)
return -EINVAL;
if (ctx->algo != CRYPTO_RSA512 &&
ctx->algo != CRYPTO_RSA1024 &&
ctx->algo != CRYPTO_RSA2048 &&
ctx->algo != CRYPTO_RSA3072 &&
ctx->algo != CRYPTO_RSA4096)
return -EINVAL;
n_bits = crypto_algo_nbits(ctx->algo);
n_words = BITS2WORD(n_bits);
ret = rk_mpa_alloc(&mpa_m, sign, n_words);
if (ret)
goto exit;
ret = rk_mpa_alloc(&mpa_e, ctx->e, n_words);
if (ret)
goto exit;
ret = rk_mpa_alloc(&mpa_n, ctx->n, n_words);
if (ret)
goto exit;
if (ctx->c) {
ret = rk_mpa_alloc(&mpa_c, ctx->c, n_words);
if (ret)
goto exit;
}
ret = rk_mpa_alloc(&mpa_result, NULL, n_words);
if (ret)
goto exit;
rk_crypto_enable_clk(dev);
ret = rk_exptmod_np(mpa_m, mpa_e, mpa_n, mpa_c, mpa_result);
if (!ret)
memcpy(output, mpa_result->d, BITS2BYTE(n_bits));
rk_crypto_disable_clk(dev);
exit:
rk_mpa_free(&mpa_m);
rk_mpa_free(&mpa_e);
rk_mpa_free(&mpa_n);
rk_mpa_free(&mpa_c);
rk_mpa_free(&mpa_result);
return ret;
}
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_EC)
static int rockchip_crypto_ec_verify(struct udevice *dev, ec_key *ctx,
u8 *hash, u32 hash_len, u8 *sign)
{
struct mpa_num *bn_sign = NULL;
struct rk_ecp_point point_P, point_sign;
u32 n_bits, n_words;
int ret;
if (!ctx)
return -EINVAL;
if (ctx->algo != CRYPTO_SM2 &&
ctx->algo != CRYPTO_ECC_192R1 &&
ctx->algo != CRYPTO_ECC_224R1 &&
ctx->algo != CRYPTO_ECC_256R1)
return -EINVAL;
n_bits = crypto_algo_nbits(ctx->algo);
n_words = BITS2WORD(n_bits);
ret = rk_mpa_alloc(&bn_sign, sign, n_words);
if (ret)
goto exit;
ret = rk_mpa_alloc(&point_P.x, ctx->x, n_words);
ret |= rk_mpa_alloc(&point_P.y, ctx->y, n_words);
if (ret)
goto exit;
ret = rk_mpa_alloc(&point_sign.x, sign, n_words);
ret |= rk_mpa_alloc(&point_sign.y, sign + WORD2BYTE(n_words), n_words);
if (ret)
goto exit;
rk_crypto_enable_clk(dev);
ret = rockchip_ecc_verify(ctx->algo, hash, hash_len, &point_P, &point_sign);
rk_crypto_disable_clk(dev);
exit:
rk_mpa_free(&bn_sign);
rk_mpa_free(&point_P.x);
rk_mpa_free(&point_P.y);
rk_mpa_free(&point_sign.x);
rk_mpa_free(&point_sign.y);
return ret;
}
#endif
static const struct dm_crypto_ops rockchip_crypto_ops = {
.capability = rockchip_crypto_capability,
.sha_init = rockchip_crypto_sha_init,
.sha_update = rockchip_crypto_sha_update,
.sha_final = rockchip_crypto_sha_final,
#if CONFIG_IS_ENABLED(ROCKCHIP_HMAC)
.hmac_init = rockchip_crypto_hmac_init,
.hmac_update = rockchip_crypto_hmac_update,
.hmac_final = rockchip_crypto_hmac_final,
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_RSA)
.rsa_verify = rockchip_crypto_rsa_verify,
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_EC)
.ec_verify = rockchip_crypto_ec_verify,
#endif
#if CONFIG_IS_ENABLED(ROCKCHIP_CIPHER)
.cipher_crypt = rockchip_crypto_cipher,
.cipher_mac = rockchip_crypto_mac,
.cipher_ae = rockchip_crypto_ae,
#endif
};
/*
* Only use "clocks" to parse crypto clock id and use rockchip_get_clk().
* Because we always add crypto node in U-Boot dts, when kernel dtb enabled :
*
* 1. There is cru phandle mismatch between U-Boot and kernel dtb;
* 2. CONFIG_OF_SPL_REMOVE_PROPS removes clock property;
*/
static int rockchip_crypto_ofdata_to_platdata(struct udevice *dev)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
int len, ret = -EINVAL;
memset(priv, 0x00, sizeof(*priv));
priv->reg = (fdt_addr_t)dev_read_addr_ptr(dev);
if (priv->reg == FDT_ADDR_T_NONE)
return -EINVAL;
crypto_base = priv->reg;
/* if there is no clocks in dts, just skip it */
if (!dev_read_prop(dev, "clocks", &len)) {
printf("Can't find \"clocks\" property\n");
return 0;
}
priv->clocks = malloc(len);
if (!priv->clocks)
return -ENOMEM;
priv->nclocks = len / (2 * sizeof(u32));
if (dev_read_u32_array(dev, "clocks", (u32 *)priv->clocks,
priv->nclocks)) {
printf("Can't read \"clocks\" property\n");
ret = -EINVAL;
goto exit;
}
if (dev_read_prop(dev, "clock-frequency", &len)) {
priv->frequencies = malloc(len);
if (!priv->frequencies) {
ret = -ENOMEM;
goto exit;
}
priv->freq_nclocks = len / sizeof(u32);
if (dev_read_u32_array(dev, "clock-frequency", priv->frequencies,
priv->freq_nclocks)) {
printf("Can't read \"clock-frequency\" property\n");
ret = -EINVAL;
goto exit;
}
}
return 0;
exit:
if (priv->clocks)
free(priv->clocks);
if (priv->frequencies)
free(priv->frequencies);
return ret;
}
static int rk_crypto_do_enable_clk(struct udevice *dev, int enable)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
struct clk clk;
int i, ret;
for (i = 0; i < priv->nclocks; i++) {
ret = clk_get_by_index(dev, i, &clk);
if (ret < 0) {
printf("Failed to get clk index %d, ret=%d\n", i, ret);
return ret;
}
if (enable)
ret = clk_enable(&clk);
else
ret = clk_disable(&clk);
if (ret < 0 && ret != -ENOSYS) {
printf("Failed to enable(%d) clk(%ld): ret=%d\n",
enable, clk.id, ret);
return ret;
}
}
return 0;
}
static int rk_crypto_enable_clk(struct udevice *dev)
{
return rk_crypto_do_enable_clk(dev, 1);
}
static int rk_crypto_disable_clk(struct udevice *dev)
{
return rk_crypto_do_enable_clk(dev, 0);
}
static int rk_crypto_set_clk(struct udevice *dev)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
struct clk clk;
int i, ret;
/* use standard "assigned-clock-rates" props */
if (dev_read_size(dev, "assigned-clock-rates") > 0)
return clk_set_defaults(dev);
/* use "clock-frequency" props */
if (priv->freq_nclocks == 0)
return 0;
for (i = 0; i < priv->freq_nclocks; i++) {
ret = clk_get_by_index(dev, i, &clk);
if (ret < 0) {
printf("Failed to get clk index %d, ret=%d\n", i, ret);
return ret;
}
ret = clk_set_rate(&clk, priv->frequencies[i]);
if (ret < 0) {
printf("%s: Failed to set clk(%ld): ret=%d\n",
__func__, clk.id, ret);
return ret;
}
}
return 0;
}
static int rockchip_crypto_probe(struct udevice *dev)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
int ret = 0;
ret = rk_crypto_set_clk(dev);
if (ret)
return ret;
rk_crypto_enable_clk(dev);
priv->hardware = rkce_hardware_alloc((void *)priv->reg);
if (!priv->hardware) {
ret = -ENOMEM;
goto exit;
}
priv->capability = rockchip_crypto_capability(dev);
exit:
rk_crypto_disable_clk(dev);
return ret;
}
static const struct udevice_id rockchip_crypto_ids[] = {
{
.compatible = "rockchip,crypto-ce",
},
{ }
};
U_BOOT_DRIVER(rockchip_crypto_ce) = {
.name = "rockchip_crypto_ce",
.id = UCLASS_CRYPTO,
.of_match = rockchip_crypto_ids,
.ops = &rockchip_crypto_ops,
.probe = rockchip_crypto_probe,
.ofdata_to_platdata = rockchip_crypto_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct rockchip_crypto_priv),
};