You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1078 lines
43 KiB

//
// Copyright (c) 2021 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "procs.h"
#include "subhelpers.h"
#include "subgroup_common_templates.h"
#include "harness/typeWrappers.h"
#include <bitset>
namespace {
// Test for ballot functions
template <typename Ty> struct BALLOT
{
static void log_test(const WorkGroupParams &test_params,
const char *extra_text)
{
log_info(" sub_group_ballot...%s\n", extra_text);
}
static void gen(Ty *x, Ty *t, cl_int *m, const WorkGroupParams &test_params)
{
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int non_uniform_size = gws % lws;
int wg_number = gws / lws;
wg_number = non_uniform_size ? wg_number + 1 : wg_number;
int last_subgroup_size = 0;
for (int wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
if (non_uniform_size && wg_id == wg_number - 1)
{
set_last_workgroup_params(non_uniform_size, sb_number, sbs, lws,
last_subgroup_size);
}
for (int sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
int current_sbs;
if (last_subgroup_size && sb_id == sb_number - 1)
{
current_sbs = last_subgroup_size;
}
else
{
current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
}
for (int wi_id = 0; wi_id < current_sbs; wi_id++)
{
cl_uint v;
if (genrand_bool(gMTdata))
{
v = genrand_bool(gMTdata);
}
else if (genrand_bool(gMTdata))
{
v = 1U << ((genrand_int32(gMTdata) % 31) + 1);
}
else
{
v = genrand_int32(gMTdata);
}
cl_uint4 v4 = { v, 0, 0, 0 };
t[wi_id + wg_offset] = v4;
}
}
// Now map into work group using map from device
for (int wi_id = 0; wi_id < lws; ++wi_id)
{
x[wi_id] = t[wi_id];
}
x += lws;
m += 4 * lws;
}
}
static test_status chk(Ty *x, Ty *y, Ty *mx, Ty *my, cl_int *m,
const WorkGroupParams &test_params)
{
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int non_uniform_size = gws % lws;
int wg_number = gws / lws;
wg_number = non_uniform_size ? wg_number + 1 : wg_number;
int last_subgroup_size = 0;
for (int wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
if (non_uniform_size && wg_id == wg_number - 1)
{
set_last_workgroup_params(non_uniform_size, sb_number, sbs, lws,
last_subgroup_size);
}
for (int wi_id = 0; wi_id < lws; ++wi_id)
{ // inside the work_group
mx[wi_id] = x[wi_id]; // read host inputs for work_group
my[wi_id] = y[wi_id]; // read device outputs for work_group
}
for (int sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
int current_sbs;
if (last_subgroup_size && sb_id == sb_number - 1)
{
current_sbs = last_subgroup_size;
}
else
{
current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
}
bs128 expected_result_bs = 0;
std::set<int> active_work_items;
for (int wi_id = 0; wi_id < current_sbs; ++wi_id)
{
if (test_params.work_items_mask.test(wi_id))
{
bool predicate = (mx[wg_offset + wi_id].s0 != 0);
expected_result_bs |= (bs128(predicate) << wi_id);
active_work_items.insert(wi_id);
}
}
if (active_work_items.empty())
{
continue;
}
cl_uint4 expected_result =
bs128_to_cl_uint4(expected_result_bs);
for (const int &active_work_item : active_work_items)
{
int wi_id = active_work_item;
cl_uint4 device_result = my[wg_offset + wi_id];
bs128 device_result_bs = cl_uint4_to_bs128(device_result);
if (device_result_bs != expected_result_bs)
{
log_error(
"ERROR: sub_group_ballot mismatch for local id "
"%d in sub group %d in group %d obtained {%d, %d, "
"%d, %d}, expected {%d, %d, %d, %d}\n",
wi_id, sb_id, wg_id, device_result.s0,
device_result.s1, device_result.s2,
device_result.s3, expected_result.s0,
expected_result.s1, expected_result.s2,
expected_result.s3);
return TEST_FAIL;
}
}
}
x += lws;
y += lws;
m += 4 * lws;
}
return TEST_PASS;
}
};
// Test for bit extract ballot functions
template <typename Ty, BallotOp operation> struct BALLOT_BIT_EXTRACT
{
static void log_test(const WorkGroupParams &test_params,
const char *extra_text)
{
log_info(" sub_group_ballot_%s(%s)...%s\n", operation_names(operation),
TypeManager<Ty>::name(), extra_text);
}
static void gen(Ty *x, Ty *t, cl_int *m, const WorkGroupParams &test_params)
{
int wi_id, sb_id, wg_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int wg_number = gws / lws;
int limit_sbs = sbs > 100 ? 100 : sbs;
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
int current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
// rand index to bit extract
int index_for_odd = (int)(genrand_int32(gMTdata) & 0x7fffffff)
% (limit_sbs > current_sbs ? current_sbs : limit_sbs);
int index_for_even = (int)(genrand_int32(gMTdata) & 0x7fffffff)
% (limit_sbs > current_sbs ? current_sbs : limit_sbs);
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{
// index of the third element int the vector.
int midx = 4 * wg_offset + 4 * wi_id + 2;
// storing information about index to bit extract
m[midx] = (cl_int)index_for_odd;
m[++midx] = (cl_int)index_for_even;
}
set_randomdata_for_subgroup<Ty>(t, wg_offset, current_sbs);
}
// Now map into work group using map from device
for (wi_id = 0; wi_id < lws; ++wi_id)
{
x[wi_id] = t[wi_id];
}
x += lws;
m += 4 * lws;
}
}
static test_status chk(Ty *x, Ty *y, Ty *mx, Ty *my, cl_int *m,
const WorkGroupParams &test_params)
{
int wi_id, wg_id, sb_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int wg_number = gws / lws;
cl_uint4 expected_result, device_result;
int last_subgroup_size = 0;
int current_sbs = 0;
int non_uniform_size = gws % lws;
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
if (non_uniform_size && wg_id == wg_number - 1)
{
set_last_workgroup_params(non_uniform_size, sb_number, sbs, lws,
last_subgroup_size);
}
// Map to array indexed to array indexed by local ID and sub group
for (wi_id = 0; wi_id < lws; ++wi_id)
{ // inside the work_group
// read host inputs for work_group
mx[wi_id] = x[wi_id];
// read device outputs for work_group
my[wi_id] = y[wi_id];
}
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
if (last_subgroup_size && sb_id == sb_number - 1)
{
current_sbs = last_subgroup_size;
}
else
{
current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
}
// take index of array where info which work_item will
// be broadcast its value is stored
int midx = 4 * wg_offset + 2;
// take subgroup local id of this work_item
int index_for_odd = (int)m[midx];
int index_for_even = (int)m[++midx];
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{ // for each subgroup
int bit_value = 0;
// from which value of bitfield bit
// verification will be done
int take_shift =
(wi_id & 1) ? index_for_odd % 32 : index_for_even % 32;
int bit_mask = 1 << take_shift;
if (wi_id < 32)
(mx[wg_offset + wi_id].s0 & bit_mask) > 0
? bit_value = 1
: bit_value = 0;
if (wi_id >= 32 && wi_id < 64)
(mx[wg_offset + wi_id].s1 & bit_mask) > 0
? bit_value = 1
: bit_value = 0;
if (wi_id >= 64 && wi_id < 96)
(mx[wg_offset + wi_id].s2 & bit_mask) > 0
? bit_value = 1
: bit_value = 0;
if (wi_id >= 96 && wi_id < 128)
(mx[wg_offset + wi_id].s3 & bit_mask) > 0
? bit_value = 1
: bit_value = 0;
if (wi_id & 1)
{
bit_value ? expected_result = { 1, 0, 0, 1 }
: expected_result = { 0, 0, 0, 1 };
}
else
{
bit_value ? expected_result = { 1, 0, 0, 2 }
: expected_result = { 0, 0, 0, 2 };
}
device_result = my[wg_offset + wi_id];
if (!compare(device_result, expected_result))
{
log_error(
"ERROR: sub_group_%s mismatch for local id %d in "
"sub group %d in group %d obtained {%d, %d, %d, "
"%d}, expected {%d, %d, %d, %d}\n",
operation_names(operation), wi_id, sb_id, wg_id,
device_result.s0, device_result.s1,
device_result.s2, device_result.s3,
expected_result.s0, expected_result.s1,
expected_result.s2, expected_result.s3);
return TEST_FAIL;
}
}
}
x += lws;
y += lws;
m += 4 * lws;
}
return TEST_PASS;
}
};
template <typename Ty, BallotOp operation> struct BALLOT_INVERSE
{
static void log_test(const WorkGroupParams &test_params,
const char *extra_text)
{
log_info(" sub_group_inverse_ballot...%s\n", extra_text);
}
static void gen(Ty *x, Ty *t, cl_int *m, const WorkGroupParams &test_params)
{
// no work here
}
static test_status chk(Ty *x, Ty *y, Ty *mx, Ty *my, cl_int *m,
const WorkGroupParams &test_params)
{
int wi_id, wg_id, sb_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
cl_uint4 expected_result, device_result;
int non_uniform_size = gws % lws;
int wg_number = gws / lws;
int last_subgroup_size = 0;
int current_sbs = 0;
if (non_uniform_size) wg_number++;
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
if (non_uniform_size && wg_id == wg_number - 1)
{
set_last_workgroup_params(non_uniform_size, sb_number, sbs, lws,
last_subgroup_size);
}
// Map to array indexed to array indexed by local ID and sub group
for (wi_id = 0; wi_id < lws; ++wi_id)
{ // inside the work_group
mx[wi_id] = x[wi_id]; // read host inputs for work_group
my[wi_id] = y[wi_id]; // read device outputs for work_group
}
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
if (last_subgroup_size && sb_id == sb_number - 1)
{
current_sbs = last_subgroup_size;
}
else
{
current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
}
// take subgroup local id of this work_item
// Check result
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{ // for each subgroup work item
wi_id & 1 ? expected_result = { 1, 0, 0, 1 }
: expected_result = { 1, 0, 0, 2 };
device_result = my[wg_offset + wi_id];
if (!compare(device_result, expected_result))
{
log_error(
"ERROR: sub_group_%s mismatch for local id %d in "
"sub group %d in group %d obtained {%d, %d, %d, "
"%d}, expected {%d, %d, %d, %d}\n",
operation_names(operation), wi_id, sb_id, wg_id,
device_result.s0, device_result.s1,
device_result.s2, device_result.s3,
expected_result.s0, expected_result.s1,
expected_result.s2, expected_result.s3);
return TEST_FAIL;
}
}
}
x += lws;
y += lws;
m += 4 * lws;
}
return TEST_PASS;
}
};
// Test for bit count/inclusive and exclusive scan/ find lsb msb ballot function
template <typename Ty, BallotOp operation> struct BALLOT_COUNT_SCAN_FIND
{
static void log_test(const WorkGroupParams &test_params,
const char *extra_text)
{
log_info(" sub_group_%s(%s)...%s\n", operation_names(operation),
TypeManager<Ty>::name(), extra_text);
}
static void gen(Ty *x, Ty *t, cl_int *m, const WorkGroupParams &test_params)
{
int wi_id, wg_id, sb_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int non_uniform_size = gws % lws;
int wg_number = gws / lws;
int last_subgroup_size = 0;
int current_sbs = 0;
if (non_uniform_size)
{
wg_number++;
}
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
if (non_uniform_size && wg_id == wg_number - 1)
{
set_last_workgroup_params(non_uniform_size, sb_number, sbs, lws,
last_subgroup_size);
}
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
if (last_subgroup_size && sb_id == sb_number - 1)
{
current_sbs = last_subgroup_size;
}
else
{
current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
}
if (operation == BallotOp::ballot_bit_count
|| operation == BallotOp::ballot_inclusive_scan
|| operation == BallotOp::ballot_exclusive_scan)
{
set_randomdata_for_subgroup<Ty>(t, wg_offset, current_sbs);
}
else if (operation == BallotOp::ballot_find_lsb
|| operation == BallotOp::ballot_find_msb)
{
// Regarding to the spec, find lsb and find msb result is
// undefined behavior if input value is zero, so generate
// only non-zero values.
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{
char x = (genrand_int32(gMTdata)) & 0xff;
// undefined behaviour in case of 0;
x = x ? x : 1;
memset(&t[wg_offset + wi_id], x, sizeof(Ty));
}
}
else
{
log_error("Unknown operation...\n");
}
}
// Now map into work group using map from device
for (wi_id = 0; wi_id < lws; ++wi_id)
{
x[wi_id] = t[wi_id];
}
x += lws;
m += 4 * lws;
}
}
static bs128 getImportantBits(cl_uint sub_group_local_id,
cl_uint sub_group_size)
{
bs128 mask;
if (operation == BallotOp::ballot_bit_count
|| operation == BallotOp::ballot_find_lsb
|| operation == BallotOp::ballot_find_msb)
{
for (cl_uint i = 0; i < sub_group_size; ++i) mask.set(i);
}
else if (operation == BallotOp::ballot_inclusive_scan
|| operation == BallotOp::ballot_exclusive_scan)
{
for (cl_uint i = 0; i < sub_group_local_id; ++i) mask.set(i);
if (operation == BallotOp::ballot_inclusive_scan)
mask.set(sub_group_local_id);
}
return mask;
}
static test_status chk(Ty *x, Ty *y, Ty *mx, Ty *my, cl_int *m,
const WorkGroupParams &test_params)
{
int wi_id, wg_id, sb_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int non_uniform_size = gws % lws;
int wg_number = gws / lws;
wg_number = non_uniform_size ? wg_number + 1 : wg_number;
cl_uint expected_result, device_result;
int last_subgroup_size = 0;
int current_sbs = 0;
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
if (non_uniform_size && wg_id == wg_number - 1)
{
set_last_workgroup_params(non_uniform_size, sb_number, sbs, lws,
last_subgroup_size);
}
// Map to array indexed to array indexed by local ID and sub group
for (wi_id = 0; wi_id < lws; ++wi_id)
{ // inside the work_group
// read host inputs for work_group
mx[wi_id] = x[wi_id];
// read device outputs for work_group
my[wi_id] = y[wi_id];
}
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
if (last_subgroup_size && sb_id == sb_number - 1)
{
current_sbs = last_subgroup_size;
}
else
{
current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
}
// Check result
expected_result = 0;
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{ // for subgroup element
bs128 bs;
// convert cl_uint4 input into std::bitset<128>
bs |= bs128(mx[wg_offset + wi_id].s0)
| (bs128(mx[wg_offset + wi_id].s1) << 32)
| (bs128(mx[wg_offset + wi_id].s2) << 64)
| (bs128(mx[wg_offset + wi_id].s3) << 96);
bs &= getImportantBits(wi_id, sbs);
device_result = my[wg_offset + wi_id].s0;
if (operation == BallotOp::ballot_inclusive_scan
|| operation == BallotOp::ballot_exclusive_scan
|| operation == BallotOp::ballot_bit_count)
{
expected_result = bs.count();
if (!compare(device_result, expected_result))
{
log_error("ERROR: sub_group_%s "
"mismatch for local id %d in sub group "
"%d in group %d obtained %d, "
"expected %d\n",
operation_names(operation), wi_id, sb_id,
wg_id, device_result, expected_result);
return TEST_FAIL;
}
}
else if (operation == BallotOp::ballot_find_lsb)
{
if (bs.none())
{
// Return value is undefined when no bits are set,
// so skip validation:
continue;
}
for (int id = 0; id < sbs; ++id)
{
if (bs.test(id))
{
expected_result = id;
break;
}
}
if (!compare(device_result, expected_result))
{
log_error("ERROR: sub_group_ballot_find_lsb "
"mismatch for local id %d in sub group "
"%d in group %d obtained %d, "
"expected %d\n",
wi_id, sb_id, wg_id, device_result,
expected_result);
return TEST_FAIL;
}
}
else if (operation == BallotOp::ballot_find_msb)
{
if (bs.none())
{
// Return value is undefined when no bits are set,
// so skip validation:
continue;
}
for (int id = sbs - 1; id >= 0; --id)
{
if (bs.test(id))
{
expected_result = id;
break;
}
}
if (!compare(device_result, expected_result))
{
log_error("ERROR: sub_group_ballot_find_msb "
"mismatch for local id %d in sub group "
"%d in group %d obtained %d, "
"expected %d\n",
wi_id, sb_id, wg_id, device_result,
expected_result);
return TEST_FAIL;
}
}
}
}
x += lws;
y += lws;
m += 4 * lws;
}
return TEST_PASS;
}
};
// test mask functions
template <typename Ty, BallotOp operation> struct SMASK
{
static void log_test(const WorkGroupParams &test_params,
const char *extra_text)
{
log_info(" get_sub_group_%s_mask...%s\n", operation_names(operation),
extra_text);
}
static void gen(Ty *x, Ty *t, cl_int *m, const WorkGroupParams &test_params)
{
int wi_id, wg_id, sb_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
int wg_number = gws / lws;
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{ // for each subgroup
int wg_offset = sb_id * sbs;
int current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
// Produce expected masks for each work item in the subgroup
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{
int midx = 4 * wg_offset + 4 * wi_id;
cl_uint max_sub_group_size = m[midx + 2];
cl_uint4 expected_mask = { 0 };
expected_mask = generate_bit_mask(
wi_id, operation_names(operation), max_sub_group_size);
set_value(t[wg_offset + wi_id], expected_mask);
}
}
// Now map into work group using map from device
for (wi_id = 0; wi_id < lws; ++wi_id)
{
x[wi_id] = t[wi_id];
}
x += lws;
m += 4 * lws;
}
}
static test_status chk(Ty *x, Ty *y, Ty *mx, Ty *my, cl_int *m,
const WorkGroupParams &test_params)
{
int wi_id, wg_id, sb_id;
int gws = test_params.global_workgroup_size;
int lws = test_params.local_workgroup_size;
int sbs = test_params.subgroup_size;
int sb_number = (lws + sbs - 1) / sbs;
Ty expected_result, device_result;
int wg_number = gws / lws;
for (wg_id = 0; wg_id < wg_number; ++wg_id)
{ // for each work_group
for (wi_id = 0; wi_id < lws; ++wi_id)
{ // inside the work_group
mx[wi_id] = x[wi_id]; // read host inputs for work_group
my[wi_id] = y[wi_id]; // read device outputs for work_group
}
for (sb_id = 0; sb_id < sb_number; ++sb_id)
{
int wg_offset = sb_id * sbs;
int current_sbs = wg_offset + sbs > lws ? lws - wg_offset : sbs;
// Check result
for (wi_id = 0; wi_id < current_sbs; ++wi_id)
{ // inside the subgroup
expected_result =
mx[wg_offset + wi_id]; // read host input for subgroup
device_result =
my[wg_offset
+ wi_id]; // read device outputs for subgroup
if (!compare(device_result, expected_result))
{
log_error("ERROR: get_sub_group_%s_mask... mismatch "
"for local id %d in sub group %d in group "
"%d, obtained %d, expected %d\n",
operation_names(operation), wi_id, sb_id,
wg_id, device_result, expected_result);
return TEST_FAIL;
}
}
}
x += lws;
y += lws;
m += 4 * lws;
}
return TEST_PASS;
}
};
std::string sub_group_non_uniform_broadcast_source = R"(
__kernel void test_sub_group_non_uniform_broadcast(const __global Type *in, __global int4 *xy, __global Type *out) {
int gid = get_global_id(0);
XY(xy,gid);
Type x = in[gid];
if (xy[gid].x < NR_OF_ACTIVE_WORK_ITEMS) {
out[gid] = sub_group_non_uniform_broadcast(x, xy[gid].z);
} else {
out[gid] = sub_group_non_uniform_broadcast(x, xy[gid].w);
}
}
)";
std::string sub_group_broadcast_first_source = R"(
__kernel void test_sub_group_broadcast_first(const __global Type *in, __global int4 *xy, __global Type *out) {
int gid = get_global_id(0);
XY(xy,gid);
Type x = in[gid];
if (xy[gid].x < NR_OF_ACTIVE_WORK_ITEMS) {
out[gid] = sub_group_broadcast_first(x);;
} else {
out[gid] = sub_group_broadcast_first(x);;
}
}
)";
std::string sub_group_ballot_bit_scan_find_source = R"(
__kernel void test_%s(const __global Type *in, __global int4 *xy, __global Type *out) {
int gid = get_global_id(0);
XY(xy,gid);
Type x = in[gid];
uint4 value = (uint4)(0,0,0,0);
value = (uint4)(%s(x),0,0,0);
out[gid] = value;
}
)";
std::string sub_group_ballot_mask_source = R"(
__kernel void test_%s(const __global Type *in, __global int4 *xy, __global Type *out) {
int gid = get_global_id(0);
XY(xy,gid);
xy[gid].z = get_max_sub_group_size();
Type x = in[gid];
uint4 mask = %s();
out[gid] = mask;
}
)";
std::string sub_group_ballot_source = R"(
__kernel void test_sub_group_ballot(const __global Type *in, __global int4 *xy, __global Type *out, uint4 work_item_mask_vector) {
uint gid = get_global_id(0);
XY(xy,gid);
uint subgroup_local_id = get_sub_group_local_id();
uint elect_work_item = 1 << (subgroup_local_id % 32);
uint work_item_mask;
if (subgroup_local_id < 32) {
work_item_mask = work_item_mask_vector.x;
} else if(subgroup_local_id < 64) {
work_item_mask = work_item_mask_vector.y;
} else if(subgroup_local_id < 96) {
work_item_mask = work_item_mask_vector.z;
} else if(subgroup_local_id < 128) {
work_item_mask = work_item_mask_vector.w;
}
uint4 value = (uint4)(0, 0, 0, 0);
if (elect_work_item & work_item_mask) {
value = sub_group_ballot(in[gid].s0);
}
out[gid] = value;
}
)";
std::string sub_group_inverse_ballot_source = R"(
__kernel void test_sub_group_inverse_ballot(const __global Type *in, __global int4 *xy, __global Type *out) {
int gid = get_global_id(0);
XY(xy,gid);
Type x = in[gid];
uint4 value = (uint4)(10,0,0,0);
if (get_sub_group_local_id() & 1) {
uint4 partial_ballot_mask = (uint4)(0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA);
if (sub_group_inverse_ballot(partial_ballot_mask)) {
value = (uint4)(1,0,0,1);
} else {
value = (uint4)(0,0,0,1);
}
} else {
uint4 partial_ballot_mask = (uint4)(0x55555555,0x55555555,0x55555555,0x55555555);
if (sub_group_inverse_ballot(partial_ballot_mask)) {
value = (uint4)(1,0,0,2);
} else {
value = (uint4)(0,0,0,2);
}
}
out[gid] = value;
}
)";
std::string sub_group_ballot_bit_extract_source = R"(
__kernel void test_sub_group_ballot_bit_extract(const __global Type *in, __global int4 *xy, __global Type *out) {
int gid = get_global_id(0);
XY(xy,gid);
Type x = in[gid];
uint index = xy[gid].z;
uint4 value = (uint4)(10,0,0,0);
if (get_sub_group_local_id() & 1) {
if (sub_group_ballot_bit_extract(x, xy[gid].z)) {
value = (uint4)(1,0,0,1);
} else {
value = (uint4)(0,0,0,1);
}
} else {
if (sub_group_ballot_bit_extract(x, xy[gid].w)) {
value = (uint4)(1,0,0,2);
} else {
value = (uint4)(0,0,0,2);
}
}
out[gid] = value;
}
)";
template <typename T> int run_non_uniform_broadcast_for_type(RunTestForType rft)
{
int error =
rft.run_impl<T, BC<T, SubgroupsBroadcastOp::non_uniform_broadcast>>(
"sub_group_non_uniform_broadcast");
return error;
}
}
int test_subgroup_functions_ballot(cl_device_id device, cl_context context,
cl_command_queue queue, int num_elements)
{
if (!is_extension_available(device, "cl_khr_subgroup_ballot"))
{
log_info("cl_khr_subgroup_ballot is not supported on this device, "
"skipping test.\n");
return TEST_SKIPPED_ITSELF;
}
constexpr size_t global_work_size = 170;
constexpr size_t local_work_size = 64;
WorkGroupParams test_params(global_work_size, local_work_size);
test_params.save_kernel_source(sub_group_ballot_mask_source);
test_params.save_kernel_source(sub_group_non_uniform_broadcast_source,
"sub_group_non_uniform_broadcast");
test_params.save_kernel_source(sub_group_broadcast_first_source,
"sub_group_broadcast_first");
RunTestForType rft(device, context, queue, num_elements, test_params);
// non uniform broadcast functions
int error = run_non_uniform_broadcast_for_type<cl_int>(rft);
error |= run_non_uniform_broadcast_for_type<cl_int2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_int3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_int4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_int8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_int16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uint>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uint2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_uint3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uint4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uint8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uint16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_char>(rft);
error |= run_non_uniform_broadcast_for_type<cl_char2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_char3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_char4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_char8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_char16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uchar>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uchar2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_uchar3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uchar4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uchar8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_uchar16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_short>(rft);
error |= run_non_uniform_broadcast_for_type<cl_short2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_short3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_short4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_short8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_short16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ushort>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ushort2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_ushort3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ushort4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ushort8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ushort16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_long>(rft);
error |= run_non_uniform_broadcast_for_type<cl_long2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_long3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_long4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_long8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_long16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ulong>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ulong2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_ulong3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ulong4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ulong8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_ulong16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_float>(rft);
error |= run_non_uniform_broadcast_for_type<cl_float2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_float3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_float4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_float8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_float16>(rft);
error |= run_non_uniform_broadcast_for_type<cl_double>(rft);
error |= run_non_uniform_broadcast_for_type<cl_double2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_double3>(rft);
error |= run_non_uniform_broadcast_for_type<cl_double4>(rft);
error |= run_non_uniform_broadcast_for_type<cl_double8>(rft);
error |= run_non_uniform_broadcast_for_type<cl_double16>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_half>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_half2>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_half3>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_half4>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_half8>(rft);
error |= run_non_uniform_broadcast_for_type<subgroups::cl_half16>(rft);
// broadcast first functions
error |=
rft.run_impl<cl_int, BC<cl_int, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_uint,
BC<cl_uint, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_long,
BC<cl_long, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_ulong,
BC<cl_ulong, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_short,
BC<cl_short, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_ushort,
BC<cl_ushort, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_char,
BC<cl_char, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_uchar,
BC<cl_uchar, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_float,
BC<cl_float, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<cl_double,
BC<cl_double, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
error |= rft.run_impl<
subgroups::cl_half,
BC<subgroups::cl_half, SubgroupsBroadcastOp::broadcast_first>>(
"sub_group_broadcast_first");
// mask functions
error |= rft.run_impl<cl_uint4, SMASK<cl_uint4, BallotOp::eq_mask>>(
"get_sub_group_eq_mask");
error |= rft.run_impl<cl_uint4, SMASK<cl_uint4, BallotOp::ge_mask>>(
"get_sub_group_ge_mask");
error |= rft.run_impl<cl_uint4, SMASK<cl_uint4, BallotOp::gt_mask>>(
"get_sub_group_gt_mask");
error |= rft.run_impl<cl_uint4, SMASK<cl_uint4, BallotOp::le_mask>>(
"get_sub_group_le_mask");
error |= rft.run_impl<cl_uint4, SMASK<cl_uint4, BallotOp::lt_mask>>(
"get_sub_group_lt_mask");
// sub_group_ballot function
WorkGroupParams test_params_ballot(global_work_size, local_work_size, 3);
test_params_ballot.save_kernel_source(sub_group_ballot_source);
RunTestForType rft_ballot(device, context, queue, num_elements,
test_params_ballot);
error |=
rft_ballot.run_impl<cl_uint4, BALLOT<cl_uint4>>("sub_group_ballot");
// ballot arithmetic functions
WorkGroupParams test_params_arith(global_work_size, local_work_size);
test_params_arith.save_kernel_source(sub_group_ballot_bit_scan_find_source);
test_params_arith.save_kernel_source(sub_group_inverse_ballot_source,
"sub_group_inverse_ballot");
test_params_arith.save_kernel_source(sub_group_ballot_bit_extract_source,
"sub_group_ballot_bit_extract");
RunTestForType rft_arith(device, context, queue, num_elements,
test_params_arith);
error |=
rft_arith.run_impl<cl_uint4,
BALLOT_INVERSE<cl_uint4, BallotOp::inverse_ballot>>(
"sub_group_inverse_ballot");
error |= rft_arith.run_impl<
cl_uint4, BALLOT_BIT_EXTRACT<cl_uint4, BallotOp::ballot_bit_extract>>(
"sub_group_ballot_bit_extract");
error |= rft_arith.run_impl<
cl_uint4, BALLOT_COUNT_SCAN_FIND<cl_uint4, BallotOp::ballot_bit_count>>(
"sub_group_ballot_bit_count");
error |= rft_arith.run_impl<
cl_uint4,
BALLOT_COUNT_SCAN_FIND<cl_uint4, BallotOp::ballot_inclusive_scan>>(
"sub_group_ballot_inclusive_scan");
error |= rft_arith.run_impl<
cl_uint4,
BALLOT_COUNT_SCAN_FIND<cl_uint4, BallotOp::ballot_exclusive_scan>>(
"sub_group_ballot_exclusive_scan");
error |= rft_arith.run_impl<
cl_uint4, BALLOT_COUNT_SCAN_FIND<cl_uint4, BallotOp::ballot_find_lsb>>(
"sub_group_ballot_find_lsb");
error |= rft_arith.run_impl<
cl_uint4, BALLOT_COUNT_SCAN_FIND<cl_uint4, BallotOp::ballot_find_msb>>(
"sub_group_ballot_find_msb");
return error;
}