You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
9.7 KiB
198 lines
9.7 KiB
//
|
|
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreateBatchSpaceTfLiteModel(tflite::BuiltinOperator batchSpaceOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
std::vector<int32_t>& inputTensorShape,
|
|
std::vector <int32_t>& outputTensorShape,
|
|
std::vector<unsigned int>& blockData,
|
|
std::vector<std::pair<unsigned int, unsigned int>>& cropsPadData,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 5> buffers;
|
|
buffers[0] = CreateBuffer(flatBufferBuilder);
|
|
buffers[1] = CreateBuffer(flatBufferBuilder);
|
|
buffers[2] = CreateBuffer(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(blockData.data()),
|
|
sizeof(int32_t) * blockData.size()));
|
|
buffers[3] = CreateBuffer(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(cropsPadData.data()),
|
|
sizeof(int64_t) * cropsPadData.size()));
|
|
buffers[4] = CreateBuffer(flatBufferBuilder);
|
|
|
|
auto quantizationParameters =
|
|
CreateQuantizationParameters(flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({ quantScale }),
|
|
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
|
|
|
|
std::string cropsOrPadding =
|
|
batchSpaceOperatorCode == tflite::BuiltinOperator_BATCH_TO_SPACE_ND ? "crops" : "padding";
|
|
|
|
std::vector<int32_t> blockShape { 2 };
|
|
std::vector<int32_t> cropsOrPaddingShape { 2, 2 };
|
|
|
|
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
|
|
tensors[0] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
|
|
inputTensorShape.size()),
|
|
tensorType,
|
|
1,
|
|
flatBufferBuilder.CreateString("input"),
|
|
quantizationParameters);
|
|
|
|
tensors[1] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(blockShape.data(),
|
|
blockShape.size()),
|
|
::tflite::TensorType_INT32,
|
|
2,
|
|
flatBufferBuilder.CreateString("block"),
|
|
quantizationParameters);
|
|
|
|
tensors[2] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(cropsOrPaddingShape.data(),
|
|
cropsOrPaddingShape.size()),
|
|
::tflite::TensorType_INT32,
|
|
3,
|
|
flatBufferBuilder.CreateString(cropsOrPadding),
|
|
quantizationParameters);
|
|
|
|
// Create output tensor
|
|
tensors[3] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
|
|
outputTensorShape.size()),
|
|
tensorType,
|
|
4,
|
|
flatBufferBuilder.CreateString("output"),
|
|
quantizationParameters);
|
|
|
|
// Create operator
|
|
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
|
|
flatbuffers::Offset<void> operatorBuiltinOptions = 0;
|
|
switch (batchSpaceOperatorCode)
|
|
{
|
|
case tflite::BuiltinOperator_BATCH_TO_SPACE_ND:
|
|
{
|
|
operatorBuiltinOptionsType = tflite::BuiltinOptions_BatchToSpaceNDOptions;
|
|
operatorBuiltinOptions = CreateBatchToSpaceNDOptions(flatBufferBuilder).Union();
|
|
break;
|
|
}
|
|
case tflite::BuiltinOperator_SPACE_TO_BATCH_ND:
|
|
{
|
|
operatorBuiltinOptionsType = tflite::BuiltinOptions_SpaceToBatchNDOptions;
|
|
operatorBuiltinOptions = CreateSpaceToBatchNDOptions(flatBufferBuilder).Union();
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
const std::vector<int> operatorInputs{ {0, 1, 2} };
|
|
const std::vector<int> operatorOutputs{ 3 };
|
|
flatbuffers::Offset <Operator> batchSpaceOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
|
|
operatorBuiltinOptionsType,
|
|
operatorBuiltinOptions);
|
|
|
|
const std::vector<int> subgraphInputs{ {0, 1, 2} };
|
|
const std::vector<int> subgraphOutputs{ 3 };
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&batchSpaceOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: BatchSpace Operator Model");
|
|
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, batchSpaceOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&operatorCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
template <typename T>
|
|
void BatchSpaceTest(tflite::BuiltinOperator controlOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<int32_t>& inputShape,
|
|
std::vector<int32_t>& expectedOutputShape,
|
|
std::vector<T>& inputValues,
|
|
std::vector<unsigned int>& blockShapeValues,
|
|
std::vector<std::pair<unsigned int, unsigned int>>& cropsPaddingValues,
|
|
std::vector<T>& expectedOutputValues,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<char> modelBuffer = CreateBatchSpaceTfLiteModel(controlOperatorCode,
|
|
tensorType,
|
|
inputShape,
|
|
expectedOutputShape,
|
|
blockShapeValues,
|
|
cropsPaddingValues,
|
|
quantScale,
|
|
quantOffset);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|