You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
7.1 KiB
154 lines
7.1 KiB
//
|
|
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreateElementwiseUnaryTfLiteModel(tflite::BuiltinOperator unaryOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
const std::vector <int32_t>& tensorShape)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers;
|
|
buffers[0] = CreateBuffer(flatBufferBuilder);
|
|
|
|
std::array<flatbuffers::Offset<Tensor>, 2> tensors;
|
|
tensors[0] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(), tensorShape.size()),
|
|
tensorType);
|
|
tensors[1] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(), tensorShape.size()),
|
|
tensorType);
|
|
|
|
// create operator
|
|
const std::vector<int> operatorInputs{0};
|
|
const std::vector<int> operatorOutputs{1};
|
|
flatbuffers::Offset <Operator> unaryOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()));
|
|
|
|
const std::vector<int> subgraphInputs{0};
|
|
const std::vector<int> subgraphOutputs{1};
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&unaryOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Elementwise Unary Operator Model");
|
|
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, unaryOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&operatorCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
void ElementwiseUnaryFP32Test(tflite::BuiltinOperator unaryOperatorCode,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<float>& inputValues,
|
|
std::vector<float>& expectedOutputValues)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<int32_t> inputShape { { 3, 1, 2} };
|
|
std::vector<char> modelBuffer = CreateElementwiseUnaryTfLiteModel(unaryOperatorCode,
|
|
::tflite::TensorType_FLOAT32,
|
|
inputShape);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<float> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<float> armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, inputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
void ElementwiseUnaryBoolTest(tflite::BuiltinOperator unaryOperatorCode,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<int32_t>& inputShape,
|
|
std::vector<bool>& inputValues,
|
|
std::vector<bool>& expectedOutputValues)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<char> modelBuffer = CreateElementwiseUnaryTfLiteModel(unaryOperatorCode,
|
|
::tflite::TensorType_BOOL,
|
|
inputShape);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<bool> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor(inputValues, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<bool> armnnOutputValues = armnnInterpreter.GetOutputResult(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareData(expectedOutputValues, armnnOutputValues, expectedOutputValues.size());
|
|
armnnDelegate::CompareData(expectedOutputValues, tfLiteOutputValues, expectedOutputValues.size());
|
|
armnnDelegate::CompareData(tfLiteOutputValues, armnnOutputValues, expectedOutputValues.size());
|
|
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, inputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|