You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
431 lines
14 KiB
431 lines
14 KiB
//
|
|
// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#include "Pooling3dTestHelper.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/interpreter.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/model.h>
|
|
#include <schema_generated.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace armnnDelegate
|
|
{
|
|
|
|
// Pool3D custom op was only added in tflite r2.6.
|
|
#if defined(ARMNN_POST_TFLITE_2_5)
|
|
|
|
void MaxPool3dFP32PaddingValidTest(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input and expected output data
|
|
std::vector<int32_t> inputShape = { 1, 2, 3, 4, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 1, 2, 3, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 6, 6, 4 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kMax";
|
|
TfLitePadding padding = kTfLitePaddingValid;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
1,
|
|
1,
|
|
1,
|
|
2,
|
|
2,
|
|
2);
|
|
}
|
|
|
|
void MaxPool3dFP32PaddingSameTest(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data
|
|
std::vector<int32_t> inputShape = { 1, 2, 3, 4, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 2, 3, 4, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 6, 6, 4, 4, 6, 6, 6, 6, 4, 5, 6, 6, 6, 6, 4, 4 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kMax";
|
|
TfLitePadding padding = kTfLitePaddingSame;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
1,
|
|
1,
|
|
1,
|
|
2,
|
|
2,
|
|
2);
|
|
}
|
|
|
|
void MaxPool3dFP32H1Test(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data
|
|
std::vector<int32_t> inputShape = { 1, 2, 3, 4, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 1, 3, 3, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 2, 3 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kMax";
|
|
TfLitePadding padding = kTfLitePaddingValid;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
1,
|
|
1,
|
|
1,
|
|
2,
|
|
1,
|
|
2);
|
|
}
|
|
|
|
void MaxPool3dFP32Test(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data
|
|
std::vector<int32_t> inputShape = { 1, 2, 3, 4, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 2, 3, 4, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 6, 6 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kMax";
|
|
TfLitePadding padding = kTfLitePaddingUnknown;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
1,
|
|
1,
|
|
1,
|
|
2,
|
|
2,
|
|
2);
|
|
}
|
|
|
|
void AveragePool3dFP32PaddingValidTest(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data.
|
|
std::vector<int32_t> inputShape = { 1, 2, 3, 4, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 1, 2, 3, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 3.5, 3, 2.5 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kAverage";
|
|
TfLitePadding padding = kTfLitePaddingValid;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
1,
|
|
1,
|
|
1,
|
|
2,
|
|
2,
|
|
2);
|
|
}
|
|
|
|
void AveragePool3dFP32PaddingSameTest(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data
|
|
std::vector<int32_t> inputShape = { 4, 2, 3, 1, 1 };
|
|
std::vector<int32_t> outputShape = { 4, 2, 3, 1, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 3, 4, 4.5, 4.5, 5.5, 6, 3, 4, 4.5, 4.5, 5.5, 6, 3, 4, 4.5, 4.5 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kAverage";
|
|
TfLitePadding padding = kTfLitePaddingSame;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
1,
|
|
1,
|
|
1,
|
|
2,
|
|
2,
|
|
2);
|
|
}
|
|
|
|
void AveragePool3dFP32H1Test(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data
|
|
std::vector<int32_t> inputShape = { 1, 2, 3, 4, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 1, 2, 2, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 1.5, 3.5 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kAverage";
|
|
TfLitePadding padding = kTfLitePaddingUnknown;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
2,
|
|
2,
|
|
2,
|
|
2,
|
|
1,
|
|
2);
|
|
}
|
|
|
|
void AveragePool3dFP32Test(std::vector<armnn::BackendId>& backends)
|
|
{
|
|
// Set input data and expected output data
|
|
std::vector<int32_t> inputShape = { 4, 3, 2, 1, 1 };
|
|
std::vector<int32_t> outputShape = { 1, 2, 2, 4, 1 };
|
|
|
|
std::vector<float> inputValues = { 1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6,
|
|
1, 2, 3, 4, 5, 6 };
|
|
std::vector<float> expectedOutputValues = { 3.125, 4.25 };
|
|
|
|
// poolType string required to create the correct pooling operator
|
|
// Padding type required to create the padding in custom options
|
|
std::string poolType = "kMax";
|
|
TfLitePadding padding = kTfLitePaddingUnknown;
|
|
|
|
Pooling3dTest<float>(poolType,
|
|
::tflite::TensorType_FLOAT32,
|
|
backends,
|
|
inputShape,
|
|
outputShape,
|
|
inputValues,
|
|
expectedOutputValues,
|
|
padding,
|
|
2,
|
|
2,
|
|
2,
|
|
2,
|
|
2,
|
|
2);
|
|
}
|
|
|
|
TEST_SUITE("Pooling3d_GpuAccTests")
|
|
{
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
MaxPool3dFP32Test(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_PaddingValid_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
MaxPool3dFP32PaddingValidTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_PaddingSame_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
MaxPool3dFP32PaddingSameTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_H1_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
MaxPool3dFP32H1Test(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_PaddingValid_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
AveragePool3dFP32PaddingValidTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_PaddingSame_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
AveragePool3dFP32PaddingSameTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_H1_GpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::GpuAcc };
|
|
AveragePool3dFP32H1Test(backends);
|
|
}
|
|
|
|
} // TEST_SUITE("Pooling3d_GpuAccTests")
|
|
|
|
TEST_SUITE("Pooling3d_CpuAccTests")
|
|
{
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_PaddingValid_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
MaxPool3dFP32PaddingValidTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_PaddingSame_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
MaxPool3dFP32PaddingSameTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
MaxPool3dFP32Test(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_H1_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
MaxPool3dFP32H1Test(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_PaddingValid_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
AveragePool3dFP32PaddingValidTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_PaddingSame_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
AveragePool3dFP32PaddingSameTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_H1_CpuAcc_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
|
|
AveragePool3dFP32H1Test(backends);
|
|
}
|
|
|
|
} // TEST_SUITE("Pooling3d_CpuAccTests")
|
|
|
|
TEST_SUITE("Pooling3d_CpuRefTests")
|
|
{
|
|
TEST_CASE ("MaxPooling3d_FP32_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
MaxPool3dFP32Test(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_PaddingValid_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
MaxPool3dFP32PaddingValidTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_PaddingSame_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
MaxPool3dFP32PaddingSameTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("MaxPooling3d_FP32_H1_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
MaxPool3dFP32H1Test(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_PaddingValid_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
AveragePool3dFP32PaddingValidTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_PaddingSame_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
AveragePool3dFP32PaddingSameTest(backends);
|
|
}
|
|
|
|
TEST_CASE ("AveragePooling3d_FP32_H1_CpuRef_Test")
|
|
{
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
AveragePool3dFP32H1Test(backends);
|
|
}
|
|
|
|
} // TEST_SUITE("Pooling3d_CpuRefTests")
|
|
|
|
#endif
|
|
|
|
} |