You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
7.8 KiB
175 lines
7.8 KiB
//
|
|
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreatePreluTfLiteModel(tflite::BuiltinOperator preluOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
const std::vector<int32_t>& inputShape,
|
|
const std::vector<int32_t>& alphaShape,
|
|
const std::vector<int32_t>& outputShape,
|
|
std::vector<float>& alphaData,
|
|
bool alphaIsConstant)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector(
|
|
reinterpret_cast<const uint8_t *>(alphaData.data()), sizeof(float) * alphaData.size())));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
|
|
|
|
auto quantizationParameters =
|
|
CreateQuantizationParameters(flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({ 1.0f }),
|
|
flatBufferBuilder.CreateVector<int64_t>({ 0 }));
|
|
|
|
auto inputTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(inputShape.data(),
|
|
inputShape.size()),
|
|
tensorType,
|
|
1,
|
|
flatBufferBuilder.CreateString("input"),
|
|
quantizationParameters);
|
|
|
|
auto alphaTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(alphaShape.data(),
|
|
alphaShape.size()),
|
|
tensorType,
|
|
2,
|
|
flatBufferBuilder.CreateString("alpha"),
|
|
quantizationParameters);
|
|
|
|
auto outputTensor = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputShape.data(),
|
|
outputShape.size()),
|
|
tensorType,
|
|
3,
|
|
flatBufferBuilder.CreateString("output"),
|
|
quantizationParameters);
|
|
|
|
std::vector<flatbuffers::Offset<Tensor>> tensors = { inputTensor, alphaTensor, outputTensor };
|
|
|
|
const std::vector<int> operatorInputs{0, 1};
|
|
const std::vector<int> operatorOutputs{2};
|
|
flatbuffers::Offset <Operator> preluOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()));
|
|
|
|
std::vector<int> subgraphInputs{0};
|
|
if (!alphaIsConstant)
|
|
{
|
|
subgraphInputs.push_back(1);
|
|
}
|
|
|
|
const std::vector<int> subgraphOutputs{2};
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&preluOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Prelu Operator Model");
|
|
flatbuffers::Offset <OperatorCode> opCode = CreateOperatorCode(flatBufferBuilder, preluOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&opCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
void PreluTest(tflite::BuiltinOperator preluOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
const std::vector<armnn::BackendId>& backends,
|
|
const std::vector<int32_t>& inputShape,
|
|
const std::vector<int32_t>& alphaShape,
|
|
std::vector<int32_t>& outputShape,
|
|
std::vector<float>& inputData,
|
|
std::vector<float>& alphaData,
|
|
std::vector<float>& expectedOutput,
|
|
bool alphaIsConstant)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
|
|
std::vector<char> modelBuffer = CreatePreluTfLiteModel(preluOperatorCode,
|
|
tensorType,
|
|
inputShape,
|
|
alphaShape,
|
|
outputShape,
|
|
alphaData,
|
|
alphaIsConstant);
|
|
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
|
|
CHECK(armnnInterpreter.FillInputTensor<float>(inputData, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<float>(inputData, 0) == kTfLiteOk);
|
|
|
|
// Set alpha data if not constant
|
|
if (!alphaIsConstant)
|
|
{
|
|
CHECK(tfLiteInterpreter.FillInputTensor<float>(alphaData, 1) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<float>(alphaData, 1) == kTfLiteOk);
|
|
}
|
|
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<float> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
|
|
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<float> armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
|
|
|
|
armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutput);
|
|
|
|
// Don't compare shapes on dynamic output tests, as output shape gets cleared.
|
|
if(!outputShape.empty())
|
|
{
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
|
|
}
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
} // anonymous namespace
|