You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
206 lines
10 KiB
206 lines
10 KiB
//
|
|
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreateReduceTfLiteModel(tflite::BuiltinOperator reduceOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
std::vector<int32_t>& input0TensorShape,
|
|
std::vector<int32_t>& input1TensorShape,
|
|
const std::vector <int32_t>& outputTensorShape,
|
|
std::vector<int32_t>& axisData,
|
|
const bool keepDims,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0,
|
|
bool kTfLiteNoQuantizationForQuantized = false)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
flatbuffers::Offset<tflite::Buffer> buffers[4] = {
|
|
CreateBuffer(flatBufferBuilder),
|
|
CreateBuffer(flatBufferBuilder),
|
|
CreateBuffer(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(axisData.data()),
|
|
sizeof(int32_t) * axisData.size())),
|
|
CreateBuffer(flatBufferBuilder)
|
|
};
|
|
|
|
flatbuffers::Offset<tflite::QuantizationParameters> quantizationParametersAxis
|
|
= CreateQuantizationParameters(flatBufferBuilder);
|
|
|
|
flatbuffers::Offset<tflite::QuantizationParameters> quantizationParameters;
|
|
|
|
if (kTfLiteNoQuantizationForQuantized)
|
|
{
|
|
if ((quantScale == 1 || quantScale == 0) && quantOffset == 0)
|
|
{
|
|
// Creates quantization parameter with quantization.type = kTfLiteNoQuantization
|
|
quantizationParameters = CreateQuantizationParameters(flatBufferBuilder);
|
|
}
|
|
else
|
|
{
|
|
// Creates quantization parameter with quantization.type != kTfLiteNoQuantization
|
|
quantizationParameters = CreateQuantizationParameters(
|
|
flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({quantScale}),
|
|
flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
quantizationParameters = CreateQuantizationParameters(
|
|
flatBufferBuilder,
|
|
0,
|
|
0,
|
|
flatBufferBuilder.CreateVector<float>({quantScale}),
|
|
flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
|
|
}
|
|
|
|
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
|
|
tensors[0] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
|
|
input0TensorShape.size()),
|
|
tensorType,
|
|
1,
|
|
flatBufferBuilder.CreateString("input"),
|
|
quantizationParameters);
|
|
|
|
tensors[1] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(input1TensorShape.data(),
|
|
input1TensorShape.size()),
|
|
::tflite::TensorType_INT32,
|
|
2,
|
|
flatBufferBuilder.CreateString("axis"),
|
|
quantizationParametersAxis);
|
|
|
|
// Create output tensor
|
|
tensors[2] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
|
|
outputTensorShape.size()),
|
|
tensorType,
|
|
3,
|
|
flatBufferBuilder.CreateString("output"),
|
|
quantizationParameters);
|
|
|
|
// Create operator. Reduce operations MIN, MAX, SUM, MEAN, PROD uses ReducerOptions.
|
|
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_ReducerOptions;
|
|
flatbuffers::Offset<void> operatorBuiltinOptions = CreateReducerOptions(flatBufferBuilder, keepDims).Union();
|
|
|
|
const std::vector<int> operatorInputs{ {0, 1} };
|
|
const std::vector<int> operatorOutputs{ 2 };
|
|
flatbuffers::Offset <Operator> reduceOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
|
|
operatorBuiltinOptionsType,
|
|
operatorBuiltinOptions);
|
|
|
|
const std::vector<int> subgraphInputs{ {0, 1} };
|
|
const std::vector<int> subgraphOutputs{ 2 };
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&reduceOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Reduce Operator Model");
|
|
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, reduceOperatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&operatorCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers, 4));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
template <typename T>
|
|
void ReduceTest(tflite::BuiltinOperator reduceOperatorCode,
|
|
tflite::TensorType tensorType,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<int32_t>& input0Shape,
|
|
std::vector<int32_t>& input1Shape,
|
|
std::vector<int32_t>& expectedOutputShape,
|
|
std::vector<T>& input0Values,
|
|
std::vector<int32_t>& input1Values,
|
|
std::vector<T>& expectedOutputValues,
|
|
const bool keepDims,
|
|
float quantScale = 1.0f,
|
|
int quantOffset = 0)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
std::vector<char> modelBufferArmNN = CreateReduceTfLiteModel(reduceOperatorCode,
|
|
tensorType,
|
|
input0Shape,
|
|
input1Shape,
|
|
expectedOutputShape,
|
|
input1Values,
|
|
keepDims,
|
|
quantScale,
|
|
quantOffset,
|
|
false);
|
|
std::vector<char> modelBufferTFLite = CreateReduceTfLiteModel(reduceOperatorCode,
|
|
tensorType,
|
|
input0Shape,
|
|
input1Shape,
|
|
expectedOutputShape,
|
|
input1Values,
|
|
keepDims,
|
|
quantScale,
|
|
quantOffset,
|
|
true);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBufferTFLite);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBufferArmNN, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|