You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
7.8 KiB
165 lines
7.8 KiB
//
|
|
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "TestUtils.hpp"
|
|
|
|
#include <armnn_delegate.hpp>
|
|
#include <DelegateTestInterpreter.hpp>
|
|
|
|
#include <flatbuffers/flatbuffers.h>
|
|
#include <tensorflow/lite/kernels/register.h>
|
|
#include <tensorflow/lite/version.h>
|
|
|
|
#include <schema_generated.h>
|
|
|
|
#include <doctest/doctest.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
std::vector<char> CreateResizeTfLiteModel(tflite::BuiltinOperator operatorCode,
|
|
tflite::TensorType inputTensorType,
|
|
const std::vector <int32_t>& inputTensorShape,
|
|
const std::vector <int32_t>& sizeTensorData,
|
|
const std::vector <int32_t>& sizeTensorShape,
|
|
const std::vector <int32_t>& outputTensorShape)
|
|
{
|
|
using namespace tflite;
|
|
flatbuffers::FlatBufferBuilder flatBufferBuilder;
|
|
|
|
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(
|
|
reinterpret_cast<const uint8_t*>(sizeTensorData.data()),
|
|
sizeof(int32_t) * sizeTensorData.size())));
|
|
buffers.push_back(CreateBuffer(flatBufferBuilder));
|
|
|
|
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
|
|
tensors[0] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(), inputTensorShape.size()),
|
|
inputTensorType,
|
|
1,
|
|
flatBufferBuilder.CreateString("input_tensor"));
|
|
|
|
tensors[1] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(sizeTensorShape.data(),
|
|
sizeTensorShape.size()),
|
|
TensorType_INT32,
|
|
2,
|
|
flatBufferBuilder.CreateString("size_input_tensor"));
|
|
|
|
tensors[2] = CreateTensor(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
|
|
outputTensorShape.size()),
|
|
inputTensorType,
|
|
3,
|
|
flatBufferBuilder.CreateString("output_tensor"));
|
|
|
|
// Create Operator
|
|
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
|
|
flatbuffers::Offset<void> operatorBuiltinOption = 0;
|
|
switch (operatorCode)
|
|
{
|
|
case BuiltinOperator_RESIZE_BILINEAR:
|
|
{
|
|
operatorBuiltinOption = CreateResizeBilinearOptions(flatBufferBuilder, false, false).Union();
|
|
operatorBuiltinOptionsType = tflite::BuiltinOptions_ResizeBilinearOptions;
|
|
break;
|
|
}
|
|
case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR:
|
|
{
|
|
operatorBuiltinOption = CreateResizeNearestNeighborOptions(flatBufferBuilder, false, false).Union();
|
|
operatorBuiltinOptionsType = tflite::BuiltinOptions_ResizeNearestNeighborOptions;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
const std::vector<int> operatorInputs{0, 1};
|
|
const std::vector<int> operatorOutputs{2};
|
|
flatbuffers::Offset <Operator> resizeOperator =
|
|
CreateOperator(flatBufferBuilder,
|
|
0,
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
|
|
operatorBuiltinOptionsType,
|
|
operatorBuiltinOption);
|
|
|
|
const std::vector<int> subgraphInputs{0, 1};
|
|
const std::vector<int> subgraphOutputs{2};
|
|
flatbuffers::Offset <SubGraph> subgraph =
|
|
CreateSubGraph(flatBufferBuilder,
|
|
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
|
|
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
|
|
flatBufferBuilder.CreateVector(&resizeOperator, 1));
|
|
|
|
flatbuffers::Offset <flatbuffers::String> modelDescription =
|
|
flatBufferBuilder.CreateString("ArmnnDelegate: Resize Biliniar Operator Model");
|
|
flatbuffers::Offset <OperatorCode> opCode = CreateOperatorCode(flatBufferBuilder, operatorCode);
|
|
|
|
flatbuffers::Offset <Model> flatbufferModel =
|
|
CreateModel(flatBufferBuilder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
flatBufferBuilder.CreateVector(&opCode, 1),
|
|
flatBufferBuilder.CreateVector(&subgraph, 1),
|
|
modelDescription,
|
|
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
|
|
|
|
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
|
|
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
|
|
}
|
|
|
|
void ResizeFP32TestImpl(tflite::BuiltinOperator operatorCode,
|
|
std::vector<armnn::BackendId>& backends,
|
|
std::vector<float>& input1Values,
|
|
std::vector<int32_t> input1Shape,
|
|
std::vector<int32_t> input2NewShape,
|
|
std::vector<int32_t> input2Shape,
|
|
std::vector<float>& expectedOutputValues,
|
|
std::vector<int32_t> expectedOutputShape)
|
|
{
|
|
using namespace delegateTestInterpreter;
|
|
|
|
std::vector<char> modelBuffer = CreateResizeTfLiteModel(operatorCode,
|
|
::tflite::TensorType_FLOAT32,
|
|
input1Shape,
|
|
input2NewShape,
|
|
input2Shape,
|
|
expectedOutputShape);
|
|
|
|
// Setup interpreter with just TFLite Runtime.
|
|
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
|
|
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<float>(input1Values, 0) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.FillInputTensor<int32_t>(input2NewShape, 1) == kTfLiteOk);
|
|
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<float> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
|
|
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
|
|
|
|
// Setup interpreter with Arm NN Delegate applied.
|
|
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
|
|
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<float>(input1Values, 0) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.FillInputTensor<int32_t>(input2NewShape, 1) == kTfLiteOk);
|
|
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
|
|
std::vector<float> armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
|
|
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
|
|
|
|
armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
|
|
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
|
|
|
|
tfLiteInterpreter.Cleanup();
|
|
armnnInterpreter.Cleanup();
|
|
}
|
|
|
|
} // anonymous namespace
|